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Abstract

In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest
(the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface reflectance of green, near infrared and shortwave infrared
bands, and clearly delineate leaf phenology and length of plant growing season. We also estimate the fractions of photosynthetically active
radiation (PAR) absorbed by vegetation canopy (FAPAR .4nopy), l€af (FAPAR,¢), and chlorophyll (FAPARy,), respectively, using a coupled leaf-
canopy radiative transfer model (PROSAIL-2) and daily MODIS data. The Markov Chain Monte Carlo (MCMC) method (the Metropolis
algorithm) is used for model inversion, which provides probability distributions of the retrieved variables. A two-step procedure is used to estimate
the fractions of absorbed PAR: (1) to retrieve biophysical and biochemical variables from MODIS images using the PROSAIL-2 model; and (2) to
calculate the fractions with the estimated model variables from the first step. Inversion and forward simulations of the PROSAIL-2 model are
carried out for the temperate deciduous broadleaf forest during day of year (DOY) 184 to 201 in 2005. The reproduced reflectance values from the
PROSAIL-2 model agree well with the observed MODIS reflectance for the five spectral bands (green, red, NIR;, NIR,, and SWIR;). The
estimated leaf area index, leaf dry matter, leaf chlorophyll content and FAPAR .40y Values are close to field measurements at the site. The results
also showed significant differences between FAPAR i4nopy and FAPARy, at the site. Our results show that MODIS imagery provides important
information on biophysical and biochemical variables at both leaf and canopy levels.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Seasonal variations of vegetation dynamics (e.g., leaf area
index [LAI], fraction of photosynthetically active radiation
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[PAR] absorbed by vegetation canopy [FAPAR 4nopyl, and leaf
phenology) have profound impacts on ecosystem fluxes of
matter and energy, including carbon sinks and sources (Arora,
2002; Defries et al., 2002; Fitzjarrald et al., 2001; Lawrence &
Slingo, 2004; Linderman et al., 2005; Osborne et al., 2004;
Pielke et al., 1998; Zhang et al., 2004a). While the National
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Oceanic and Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR), particularly
Normalized Difference Vegetation Index (NDVI, Tucker,
1979) of AVHRR, has been widely used to monitor long-term
and/or large-scale vegetation trends, its inherent data and sensor
problems and other noises limited its utility in change analyses
in detail for short-terms, for example, daily, monthly or
seasonally (Goward & Prince, 1995; Lovell & Graetz, 2001;
Pettorelli et al., 2005; Prince & Goward, 1996).

The MODerate Imaging Spectrometer (MODIS) onboard
Terra and Aqua satellites provides unprecedented data to
monitor and quantify seasonal changes of forest canopy and
phenology at local, regional and global scales. The MODIS
science team provides standard products of LAl and FPAR c4nopy
(note that it is also called FAPAR ,0py) (Knyazikhin et al.,
1998a,b). The MODIS-based LAI and FPAR 4oy at 1-km
spatial resolution were generated by inversion of a radiative
transfer model that uses surface reflectance of two bands (one
red band and one near infrared band) or by an empirical model
that describes the relationships among NDVI-LAI-FPAR ¢4n0py
when there are not enough good-quality observations for
inversion of the radiative transfer model. The retrieval
algorithms are based on the assumption that leaf spectral
properties for each biome type are constant (Myneni et al.,
2002; Wang, 2002). Similarly, Gobron and colleagues assumed
a single spectra profile for all leaves when they retrieved
FPAR anopy (Gobron et al., 2000, 2002; Taberner et al., 2002).

However, many experiments showed that leaf structure and
chemistry vary seasonally, resulting in seasonal dynamics of
spectral properties. For example, some experiments showed that
the chlorophyll concentration of leaves changed during the plant
growing season (Demarez et al., 1999; Kodani et al., 2002).
Another experiment also showed the variations of leaf water
thickness and dry matter during the plant growing season (Gond
et al., 1999). Accordingly, some researchers reported that their
spectral measurements of leaves changed over the plant
growing season (e.g., Demarez et al., 1999; Gitelson et al.,
2002; Stylinski et al., 2002). Ustin, Duan and Hart documented
the changes of the canopy reflectance of the grass vegetation,
deciduous vegetation and evergreen vegetation over a plant
growing season (Ustin et al., 1994). Kodani and colleagues
documented the seasonal reflectance variation of Japanese
beech from spring to autumn (Kodani et al., 2002), whereas
Remer, Wald and Kaufman demonstrated changes in reflectance
spectra of various ground surface targets, including forests,
across three seasons (Remer et al., 2001). Work by Richardson
and coauthors demonstrates that leaf reflectance properties
change along elevational and latitudinal gradients; presumably
this variation is driven by physiological differences resulting
from differences in climate and site quality (Richardson &
Berlyn, 2002; Richardson et al., 2003). So the seasonal and
geographic variations of observed MODIS reflectance can be
possibly attributed to variations of both canopy-level and leaf-
level characteristics of vegetation.

The specific objectives of this study are threefold: (1) to
develop an improved procedure that identifies snow-contami-
nated, atmosphere-contaminated or other poor quality observa-

tions in daily MODIS images; (2) to study the seasonal
dynamics of surface reflectance and some widely used
vegetation indices, using contamination-free-or-less MODIS
time series data collection; and (3) to estimate LAI and the
fractions of PAR absorbed by chlorophyll, leaf and canopy, i.c.,
FAPAR canopys FAPAR ¢ and FAPAR., with contamination-
free multiple daily MODIS images. We used a coupled leaf-
canopy radiative transfer model (PROSPECT model+SAIL-2
model; Zhang et al., 2005). Both the leaf-level PROSPECT
model and canopy-level SAIL model have been discussed
extensively in the published literature, both separately and in
combination (Bacour et al, 2002; Baret & Fourty, 1997;
Braswell et al., 1996; Combal et al., 2002; Di Bella et al., 2004;
Gond et al., 1999; Jacquemoud & Baret, 1990; Jacquemoud et
al., 1996, 2000; Kuusk, 1985; Verhoef, 1984, 1985; Verhoef &
Bach, 2003; Weiss et al., 2000; Zarco-Tejada et al., 2003). Our
coupled PROSPECT+SAIL-2 model (hereafter called PRO-
SAIL-2 model) retrieves simultaneously both leaf-level vari-
ables and canopy-level variables (Zhang et al., 2005). As a case
study, we selected a temperate deciduous broadleaf forest at the
Bartlett Experimental Forest in the White Mountains of New
Hampshire, USA, where field-based measurements of LAI, leaf
dry matter, leaf chlorophyll content and FAPAR unopy are
available for evaluating the inverted model variables.

2. Description of the study site and MODIS images
2.1. Brief description of the Bartlett Experimental Forest site

The Bartlett Experimental Forest eddy flux tower site
(44.06°N, 71.29°W, 272 m elevation) is within the White
Mountain National Forest in north central New Hampshire,
USA. Established in 1932 as a USDA Forest Service research
forest, the Bartlett Experimental Forest is a 1050 ha tract of
secondary successional northern deciduous and mixed northern
coniferous forest. The vegetation is primarily deciduous forest,
dominated by American beech (Fagus grandifolia), yellow
birch (Betula alleghaniensis), sugar maple (Acer saccharum),
red maple (Acer rubum), paper birch (Betula papyrifera), white
ash (Fraxinus Americana), and pin cherry (Prunus pennsylva-
nica). There are also some evergreen needleleaf species within
the forest, for example, eastern hemlock (T3uga canadensis),
red spruce (Picea rubens), white pine (Pinus strobus) and
balsam fir (4bies balsamea). Soils are mainly moist but well
drained spodosols. The climate is warm in summer and cold in
winter. Annual mean precipitation is about 127 cm, and the
precipitation is distributed throughout the year. Winter snow can
accumulate to the depths of 150 to 180 cm. Winter season
covers from November to next May. Additional information of
the study site is available elsewhere (Ollinger & Smith, 2005;
http://www.fs.fed.us/ne/durham/4 155/bartlett. htm#MPC).

The area surrounding the eddy flux tower site is relatively
flat. Instruments to measure incident and canopy-reflected
radiation (PPFD, LI-190 quantum sensor, Li-Cor Biosciences,
Lincoln, NE; global radiation, CM-3 pyranometer, Kipp and
Zonen, Delft, Netherlands) are located at the top of a 25 m eddy
covariance flux tower. A below-canopy network of six quantum
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sensors is located in a circle (radius=15 m) around the base of
the tower. Instruments are sampled every 10 s, and half-hourly
means are output to a data logger (CR-10, Campbell Scientific,
Logan, UT).

2.2. Brief description of daily MODIS images

MODIS daily surface reflectance (MOD09GHK and
MYDO09GHK, v004), MODIS daily observation viewing
geometry (MODMGGAD and MYDMGGAD, v004), and
MODIS daily observation pointers (MODPTHKM and
MYDPTHKM, v004) are used in this study. The MODIS
daily surface reflectance product at 500-m spatial resolution has
reflectance values of the seven spectral bands: red (620—
670 nm), blue (459-479 nm), green (545-565 nm), near
infrared (NIR;, 841-875 nm, and NIR,, 1230-1250 nm), and
short-wave infrared (SWIR;, 1628—-1652 nm, and SWIR,,
2105-2155 nm). The MODIS daily observation viewing
geometry product contains observation viewing geometry
information (view zenith angle, view azimuth angle, sun zenith
angle and sun azimuth angle) at a nominal 1-km scale. The
MODIS daily observation pointers product provides a refer-
ence, at the 500 m scale, to observations that intersect each pixel
of MODIS daily surface reflectance product in MODIS daily
observation viewing geometry product (Zhang et al., 2005). All
the MODIS data products are freely available at USGS Earth
Observing System Data Gateway (http://edcimswww.cr.usgs.
gov/pub/imswelcome/). The MODIS data are delivered to users
in a tile fashion, each tile covering an area of 10° (latitude) and
10° (longitude).
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We acquired daily MODIS data (tile H12V04) from the
NASA data archive for an area containing the Bartlett
Experimental Forest eddy flux tower site. Using the geo-
location information of the eddy flux tower site, we extracted
time series data of daily MODIS images for one MODIS pixel
that centers on the flux tower site. All daily MODIS data
in 2004 are used to study the seasonal dynamics of reflectance
and phenology, and the daily MODIS data over date of year
(DOY) of 184-201 in 2005 were used for inversion of the
PROSAIL-2 model.

3. Method to identify snow- or atmosphere-contaminated
MODIS daily observations

The MODIS daily surface reflectance product provides
product quality information. Its quality control (QC) data layer
includes information about errors and missing data in the daily
surface reflectance product, for each of the seven MODIS
bands, as well as information about whether an atmospheric
correction was performed, and information about whether an
adjacency correction was performed. If the QC value indicated
any quality problem, the observation was not used in our
analysis.

Furthermore, we examined reflectance values of SWIR, and
blue bands for additional quality inspection. If one observation
has SWIR, reflectance greater than 0.15 or blue reflectance
greater than 0.2, the observation is identified as bad observation
and excluded for analysis. Fig. la—b show the MODIS blue and
SWIR, reflectance for those observations in 2004 with blue
reflectance of <0.2 and SWIR, of <0.15. Some observations
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Fig. 1. Surface reflectance of blue and shortwave infrared (SWIR;) bands of MODIS daily observations in 2004 for the Bartlett Experimental Forest tower site
(reflectance scale=0.0001). (a) and (b) for those observations with blue reflectance of <0.2 and SWIR, reflectance of <0.15; (c) and (d) for those observations with
blue reflectance of <0.1 and SWIR, reflectance of <0.15.
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Fig. 2. Seasonal dynamics of surface reflectance and vegetation indices in 2004 at the Bartlett Experimental Forest tower site (reflectance scale=0.0001). Those
observations with blue reflectance of <0.1 and SWIR, reflectance of <0.15 are presented here.

having both blue band <0.1 and SWIR, band <0.15 appear as
clusters in Fig. 1c—d, while the other observations are randomly
scattered. Contaminated atmosphere (e.g., partial cloud cover or
residual aerosols) is one likely source that contributed to the
scattering, though there are possibly other sources. We
continued to remove those scattering observations, and Fig. 2
shows the reflectance of the MODIS seven bands for the
remaining observations.

We calculated NDVI, Enhanced Vegetation Index (EVI,
Huete et al., 1997), Land Surface Water Index (LSWI, Xiao et

al., 2004), and snow cover fraction (f,ow, Kaufman et al., 2002)
for those observations in Fig. 2a—g. The vegetation indices and
snow cover fraction are shown in Figs. 2h and 3.

NDVI — PNIR; ~ Pred (1)
PNIR, T Pred
EVI = 2.5 x PNIR; " Pred 2)

PNIR, +6 % prcd_7‘5 X Pplue T 1
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Fig. 3. Seasonal dynamics of snow cover fraction in 2004, as calculated from

those MODIS daily observations with blue reflectance of <0.1 and SWIR,
reflectance of <0.15.

LSWI — PNIR, “PSWIR, (3)
PNIR, T PswiR,

Prea—0-505wir,
0.6

, = -0.5 /
_/‘;nov» 0.51 4 0.07 x Pred 5 6fJS\MRg

0, otherwise

i prea > 0.5 pswir, and pswir, <0.15

(4)
where pplues Preds PNIR,» Pswir, and pswir, are reflectance
values of the blue, red, NIR;, SWIR; and SWIR, bands. Fig.
4a—g showed the observations in Fig. 2a—g except the snow
affected observations. Fig. 4h shows the NDVI, EVI and LSWI
in Fig. 2h except the snow affected observations.

4. Brief description of the radiative transfer model and the
inversion algorithm

We used the same PROSAIL-2 model as in our previous
study (Zhang et al., 2005). Replacing leaf description in the
canopy radiative transfer model — SAIL (Scattering from
Arbitrarily Inclined Leaves) with the leaf radiative transfer
model — PROSPECT is the way to couple. The SAIL model has
an evolving history more than two decades with minor changes
reflecting individual study objectives (e.g., Andrieu et al., 1997;
Badhwar et al., 1985; Braswell et al., 1996; Goel & Deering,
1985; Goel & Thompson, 1984; Jacquemoud et al., 2000;
Kuusk, 1985; Major et al., 1992; Verhoef, 1984, 1985). The
version of SAIL model provided by Braswell and others (SAIL-
2; Braswell et al., 1996) was used in this study. A vegetation
canopy in the SAIL-2 model is decomposed into stems and
leaves. In a typical parameterization, stems have spectral
properties that are more similar to soil and litter than green
leaves. Leaf and stem mean inclination angles, and the self-

shading effect of both leaves and stems are also considered. The
PROSPECT model we used has five variables: leaf internal
structure variable (&), leaf chlorophyll content (Cyp,), leaf dry
matter content (Cy,), leaf water thickness (C,,) and leaf brown
pigment (Cpown) (Baret & Fourty, 1997; Di Bella et al., 2004;
Verhoef & Bach, 2003). The brown pigment in the five-variable
PROSPECT model is needed for light absorption by non-
chlorophyll pigments in leaf. The coupled PROSAIL-2 model
was used to describe optical characteristics (reflectance,
absorption and transmittance) of the canopy and its compo-
nents. The sixteen biophysical/biochemical variables of the
PROSAIL-2 model (Table 1) are plant area index (PAI), stem
fraction (SFRAC), cover fraction (CF), stem inclination angle
(STINC), stem bidirectional reflectance distribution function
(BRDF) effect variable (STHOT), leaf inclination angle
(LFINC), leaf hot spot effect variable (LFHOT), five leaf
variables that simulate leaf optical properties (N, Cyp, Cy Cys
Chrown)> two soil/litter variables that simulate soil/litter optical
properties (SOIL o, SOILg; Eq. (5)), and two stem variables that
simulate stem optical properties (STEM o, STEMg; Eq. (6)). We
assume the pixel covering the Bartlett Experimental Forest eddy
flux tower site may include three parts: leaf, stem and soil
(Braswell, 1996; Braswell et al., 1996; Qin, 1993). Cover
fraction and stem fraction are used to address the decomposi-
tion. Because the MODIS data used in the study were
atmospherically corrected, we do not consider atmospheric
effect when we do inversion of the PROSAIL-2 model.

SOILA
psoil(}*) = 1—400\ ’
1 10- SOILA-1) - -
+( a~1) exp( SOILB>
where /1 is wavelength (nm) (5)
() = STEM,
stem A7 A—400 1\ ’
1 10- STEMa—1) - -
+ ( 0-S A ) exp( STEMB>
where A is wavelength (nm). (6)

A method based on the Metropolis algorithm (Braswell et al.,
2005; Hurtt & Armstrong, 1996; Metropolis et al., 1953; Zhang
etal., 2005) was employed for inversion using the MODIS data.
Fig. 4 (a) shows that the MODIS blue reflectance over the site
under cloud-free condition is less than 0.05 during plant growing
season in 2004. There are thirteen observations for the period
(DOY 184 t0 201 in 2005) after discarding the observations with
MODIS blue reflectance greater than 0.05. The thirteen
observations are used for inversion. All mathematical descrip-
tion of the method can be found in the previous paper. The search
ranges of the sixteen biophysical/ biochemical variables of the
PROSAIL-2 model, based on an extensive literature review,
were listed in Table 1. The prior distributions of the variables are
uniform over the search ranges of the variables (Zhang et al.,
2005). It is worthwhile to note that the spectral reflectance is
dependent on both the sun-sensor-target geometry and spectral
wavelength. The strength of the method is that it can estimate
posterior probability distributions of the variables and thus the
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Fig. 4. Seasonal dynamics of surface reflectance and vegetation indices in 2004 at the Bartlett Experimental Forest tower site (reflectance scale=0.0001), Those
observations with no snow- and atmospheric-contamination are presented in the graph.

retrieved distributions can provide estimates of uncertainty (e.g.,
standard deviations and confidence intervals) of individual
variables, conditioned on both the model and the observed data.
The retrieved distributions can also provide information about
the variable sensitivity of the model. The Metropolis algorithm is
relatively computationally intensive, because of its need for
simulation of a large number of samples to obtain a reliable
estimate of the variables’ distributions. It arises within a Baye-
sian statistical estimation framework (Gelman et al., 2000) and
reflects the remaining uncertainty after the model has been
constrained (inverted) with data. It constructs a random walk

(Markov chain) through two steps: first at the current iteration,
generating a new randomly generated “proposal” value, and
secondly testing an acceptance as follows: if the posterior
density increases, the proposed value is accepted, i.e. it becomes
the new value of the random walk, if the posterior density
decreases, the proposed value is only accepted with a probability
equal to the ratio of the new value posterior density over current
value posterior density. MODIS red, green, NIR;, NIR, and
SWIR, reflectance are used to calculate likelihood function. We
also applied the same simulated annealing temperature adapta-
tion as in our previous study (Zhang et al., 2005).
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Table 1

A list of variables in the PROSAIL-2 model and their search ranges

Variable Description Unit Search

range

PAI Plant area index, i.e., leaf +stem m%/ m? 1-7.5
area index

SFRAC Stem fraction 0-1

CF Cover fraction: area of land covered 0.5-1
by vegetation/total area of land

Cap Leaf chlorophyll a+b content pg/cm? 0-80

N Leaf structure variable: measure of 1.0-4.5
the internal structure of the leaf

Cy Leaf equivalent water thickness cm 0.001-0.15

Chn Leaf dry matter content g/em? 0.001-0.04

Chrown Leaf brown pigment content 0.00001-8

LFINC Mean leaf inclination angle degree 10-89

STINC Mean stem inclination angle degree 10-89

LFHOT Leaf BRDF variable: length of 0-0.9
leaf/height of vegetation

STHOT Stem BRDF variable: length of 0-0.9
stem/height of vegetation

STEM Stem reflectance variable: maximum 0.2-20
(for a fitted function)

STEMp Stem reflectance variable range 50-5000
(for same fitted function)

SOIL, Soil reflectance variable: maximum 0.2-20
(for a fitted function)

SOILg Soil reflectance variable: range 50-5000

(for same fitted function)

We calculate FAPAR 4n0py (Goward & Huemmrich, 1992),
FAPAR|.r (Braswell et al., 1996), and FAPAR,y, (see Egs. (7)—
(11)) using the inverted biophysical and biochemical variables
as input of PROSAIL-2 forward simulations.

APAR,
FAPAR ynopy = W"‘O""Py (7)
APAR gy
FAPAR|gf = ————— 8
leaf P AR() ( )
APARy
FAPARg = ——— 9
'~ TPAR, ®)
APARunopy = APARear + APARiem (10)

ApARleaf = APARchl + APARdry matter 1 APARbrown pigment
(11)

where PAR, is the incoming PAR at the top of the canopy, and
APAR is the absorbed PAR. APAR ;.10py, APARcar, APARepm,
APAR i, APARGry matters a0 APARyoun pigment are absorbed
PAR by canopy, leaf, stem, chlorophyll in leaf, dry matter in
leaf, and brown pigment in leaf, respectively.

5. Results

5.1. Temporal analyses of MODIS daily reflectance data in
2004

Fig. 2 exhibits the time series of surface reflectance for the
seven spectral bands among the atmospheric-contamination-

free MODIS daily data that covered the Bartlett Experimental
Forest flux tower site. The surface reflectance values of blue
band for the period after DOY 122 are much lower than those
for the period before DOY 122 (Fig. 2a). Similar seasonal
patterns are also observed for surface reflectance in green and
red bands (Fig. 2c, ). In comparison, surface reflectance values
of NIR;, NIR, and SWIR; bands have a strong seasonal
dynamics with peak values in mid summer (Fig. 2d, f, g).

Higher surface reflectance values of visible bands (blue,
green and red) in early part of the year suggest that snow cover
occurs over that period and thus affects surface reflectance.
There existed fractional snow cover through much of winter and
early spring (Fig. 3) at the site. We further exclude those
observations with a fractional snow cover and Fig. 4 shows the
surface reflectance values of those observations without snow
cover. Among the three visible bands, surface reflectance of
green band has a distinct seasonal dynamics with peak values in
late-June to early July (Fig. 4e).

The seasonal dynamics of surface reflectance of individual
spectral bands provide rich information for interpreting
vegetation indices from the MODIS data and understanding
the impacts of snow cover on vegetation indices. Our analysis
identifies those daily observations that were partially covered
by snow (Fig. 3). The snow-covered season in 2004 for the
study site ended around DOY 110. Without knowing informa-
tion of both the fraction of snow cover and the surface
reflectance over a MODIS pixel, one will have some difficulties
in accurately interpreting NDVI, EVI and LSWI during the
winter/spring seasons. There is very little green vegetation for
the periods of DOY 1-100 and DOY 300-365 (Fig. 4d).
However, many observations in the winter/spring seasons still
have high NDVI values, for example, one MODIS observation
on DOY 57 has NDVI value of 0.856 (Fig. 2h). The high NDVI
values in the winter/spring seasons are likely attributed to both
the wetness of soil/canopy background and the higher solar
zenith angles in winter/spring seasons (in comparison to solar
zenith angles in summer/autumn). Note that SWIR, reflectance
was low during the winter/spring seasons, which clearly
suggests a wet soil/canopy background in that period. Moderate
LSWI values in that period also suggest a wet soil/canopy
background. The NIR; reflectance was low during the period,
which suggests that there is little green vegetation during the
period. Observations of bare or sparse vegetation targets with
higher solar zenith angles could result in higher NDVI values
than observations of same targets with lower solar zenith angles
(Goward & Huemmrich, 1992; Huete et al., 1992). Although
the NIR; reflectance was low during the same period,
reflectance values of blue, green, and red bands were much
smaller than NIR; reflectance (Fig. 4a, c, d, and e). As a result,
the mathematic formulation of NDVT still gives high NDVI
values for some observations in the winter/spring seasons. This
is consistent with earlier studies that examined the impacts of
soil background and solar-view geometry on NDVI (Huete et
al., 1997). Caution should be taken when using only NDVI to
monitor vegetation phenology because NDVI is very sensitive
to soil/canopy background wetness and solar-view geometry
when green vegetation cover fraction is small.
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Fig. 5. A comparison between the observed reflectance and PROSAIL-2
estimated reflectance for five MODIS spectral bands (red, green, NIR;, NIR,
and SWIR;) in DOY 184-201, 2005, at the Bartlett Experimental Forest flux
tower site. PROSAIL-2 estimated surface reflectance come from forward
simulation of the PROSAIL-2 model, which uses the mean values of inverted
variables from inversion of the PROSAIL-2 model as input.

5.2. Comparison between retrieved and observed reflectances
of MODIS daily data collection from DOY 184 to 201 in 2005

After inversion of the PROSAIL-2 model for the daily
MODIS data collection (from DOY 184-201 in 2005), the mean
values of the retrieved variable distributions were utilized as
inputs to calculate the reflectances with forward simulations of
the PROSAIL-2 model. Fig. 5 shows a comparison between
PROSAIL-2 estimated reflectances and MODIS observed
reflectances of the green, red, NIR;, NIR,, and SWIR; bands.
The correlation coefficients between retrieved and observed
MODIS visible reflectances are 0.92 for the green band and 0.93
for the red band, respectively. The root mean squared errors
(RMSE) between observed and retrieved MODIS visible
reflectances are 0.0023 for the green band and 0.0040 for the
red band. The correlation coefficients between estimated and
observed NIR to SWIR reflectances are 0.92, 0.89, and 0.90 for
NIR;, NIR, and SWIR;, respectively. The RMSE between
estimated and observed NIR to SWIR reflectances are 0.025,
0.025, and 0.016 for NIR |, NIR, and SWIR, respectively. Note
that the daily data collection spanned over a period of eighteen
days, and any variation of leaf and canopy during the period may
have contributed to the discrepancies between the PROSAIL-2
estimated reflectances and MODIS observed reflectances,
although we would not expect large changes at both leaf and
canopy levels because the canopy was fully developed during
early July. Possible errors (e.g. imperfect atmospheric correc-
tion) introduced during the MODIS pre-processing may also
contribute to the discrepancies. The comparison suggests that the
PROSAIL-2 model with the retrieved mean values of individual
variables reasonably reproduces the surface reflectances of the
temperate deciduous broadleaf forest site.

5.3. Uncertainty of individual variables from inversion of the
PROSAIL-2 model with MODIS daily data collection from
DOY 184 to 201 in 2005

During the inversion of the PROSAIL-2 model, the
Metropolis inversion algorithm estimated probability distribu-
tions for individual model variables. The posterior distributions
offer a measure of uncertainty in the form of standard deviations
or other quantile intervals, and the shapes of the distributions
also provide a measure of compatibility between model and
data. We examined the histograms of the sixteen variables from
inversion of the PROSAIL-2 model for the MODIS data
collection from DOY 184 to 201 in 2005, and simply ranked
them into three categories: “well-constrained”, “poorly-con-
strained” and “edge-hitting” (Braswell et al., 2005; Zhang et al.,
2005). The “well-constrained” variables usually have well-
defined distributions, with small standard deviations relative to
their allowable ranges. The “poorly-constrained” variables have
relatively flat distributions with large standard deviations
relative to their allowable ranges. For the “edge-hitting”
variables, their modes of retrieved values occur near one of
the edges of their allowable ranges and most of the retrieved
values were clustered near this edge. Figs. 6—10 showed the
histograms of the sixteen variables in the PROSAIL-2 model
and the histogram of leaf area index (LAI). Eight variables
belong to the “well-constrained” category: plant area index (Fig.
6a), five leaf variables (leaf internal structure variable, leaf
chlorophyll content, leaf brown pigment content, leaf dry matter
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Fig. 6. Histograms of (a) plant area index (PAI) and (b) leaf area index (LAI) at
the Bartlett Experimental Forest tower site, as estimated from inversion of the
PROSAIL-2 model and MODIS data collection of DOY 184 to 201 in 2005.
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Fig. 7. Histograms of (a) stem fraction; (b) cover fraction at the Bartlett
Experimental Forest tower site, as estimated from inversion of the PROSAIL-2
model and MODIS data collection of DOY 184 to 201 in 2005.

and leaf equivalent water thickness, Fig. 8), average leaf
inclination angle and leaf BRDF effect variable (Fig. 9a and c).
Six variables belong to the “poor-constrained” category:
average stem inclination angle, stem BRDF effect variable
(Fig. 9b and d), two soil variables and two stem variables in
SAIL-2 model (Fig. 10). Stem fraction and cover fraction
belong to the “edge-hitting” category (Fig. 7). Because stem
fraction was distributed near zero and cover fraction was
distributed near one, stem and soil had little effect on the canopy
optical characteristics and consequently little information about
stem and soil could be retrieved from MODIS observations of
DOY 184-201, 2005. LAI was estimated using the equation
LAI=(1-SFRAC) x PAI. LAl is also a well-constrained variable
(Fig. 6b).

5.4. Distribution of FAPAR popy FAPARjqs and FAPAR.,
using MODIS daily data collection from DOY 184 to 201 in
2005

We estimated the distributions of FAPAR cunopy, FAPARcqy,
and FAPAR,; for the MODIS data collection from DOY 184 to
201 in 2005, using the retrieved distributions of individual
variables in PROSAIL-2, and extracted their mean and standard
deviation values (Fig. 11). The mean values of FAPAR canopys
FAPAR..;, and FAPAR.,; were 0.879, 0.858, and 0.707,
respectively. The standard deviation values were 0.033,
0.035, and 0.026, respectively. FAPAR canopys FAPAR oy, and
FAPAR,; were well-constrained variables.

The difference between FAPAR unopy and FAPAR;e is
attributed to light absorption by stem (APARg,), i.€., the non-
leaf part of the canopy. During DOY 184 to 201 in 2005, the
vegetation canopy is dominated by leaves, and only a very small
proportion of stems are observed by the MODIS sensor. This
may explain why the mean FAPAR ..npy Value is only slightly
higher than the mean value of FAPAR,.; The difference
between FAPAR.,r and FAPAR., is attributed to light
absorption by the non-chlorophyll component of the leaf. The
mean FAPAR, value is 15% lower than the mean value of
FAPAR s and 17% lower than the mean value of FAPAR ¢40py-

NDVI has been widely used for estimation of FAPAR canopy
and gross and net primary production (GPP, NPP) of vegetation
(Potter et al., 1993; Prince & Goward, 1995; Ruimy et al., 1996;
Running et al., 2004). In recent years, EVI was generated as a
standard product of MODIS Land Science Team (Justice et al.,
1998). We calculated the mean and standard deviation of NDVI
and EVI using the same MODIS images for the data collection
from DOY 184 to 201 in 2005. The mean values of NDVI and
EVI were 0.853 and 0.578, respectively. The standard
deviations of NDVI and EVI were 0.010 and 0.073,
respectively. The mean NDVI value is close to FAPAR.y,
which supports the earlier studies that used NDVI to
approximate FAPAR 4hopy (€.g., Goward & Huemmrich,
1992), as FAPARe,s and FAPAR ...,y Vvalues are close to
each other. The mean EVI value is closer to the mean FAPAR
values than to mean FAPAR,.,;. Note that reflectance values in
daily MODIS images are not BRDF corrected reflectance;
therefore, the observation viewing geometry has an effect on the
ranges of NDVI and EVI values that are directly calculated from
daily MODIS images.

6. Discussion

MODIS sensors on the Terra and Aqua platforms provide
daily observations of the land surface at moderate spatial
resolution (250m—1000m). MODIS has been used to
monitor phenology (e.g., Xiao et al., 2004, 2005; Zhang
et al.,, 2004a,b, 2003). However, there is a long and snowy
winter season over temperate forest areas like Harvard
Forest in MA, Howland Forest in ME, and Bartlett
Experimental Forest in NH, USA. Through better screening
out of the observations contaminated by snow and atmo-
sphere, one can construct time series data for identifying
green-up and leaf-off of forests more accurately (Figs. 2, 3
and 4). The plant growing season at the Bartlett flux tower
site. was from DOY 122 to 282 in 2004, approximately
160 days long. EVI values during the plant growing season
was greater than 0.3. NDVI, EVI and LSWI had a rapid
increase from DOY 122 to DOY 135, and also had a quick
decrease after DOY 275 in 2004 at the tower site (Fig. 4h).
The field measured daily FAPAR unopy and NDVI at the
Bartlett Experimental Forest flux tower site in 2004
(unpublished data and they will be reported in another
paper) shows similar green-up increase and leaf-senescence
tendencies during the same periods. The MODIS measure-
ments were consistent with field measurements.
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collection of DOY 184 to 201 in 2005.

A number of radiative transfer models have been used to
retrieve LAI and estimate FAPAR ;o0py (€.8., Asner et al., 1998;
Bicheron & Leroy, 1999; Myneni et al., 1997). The MODIS
Land Science Team has used reflectance of MODIS red and
NIR; bands as inputs to a 3-dimensional radiative transfer
model to provide standard products of FARAR ¢,50py and LAI at
1-km spatial resolution (Justice et al., 1998; Knyazikhin et al.,
1998b, and personal communication with Dr. Ranga Myneni).
The PROSAIL-2 model we used in this study is relatively
simple in structure (one dimension in space) but complex in leaf
biochemistry and spectral bands. The PROSAIL-2 model uses
five MODIS spectral bands as input data. The Egs. (5)—(6) used
to simulate soil and stem reflectance in PROSAIL-2 are simple.

As the results show that the retrieved cover fraction and stem
fraction are “edge-hitting” and the retrieved reflectances and
real MODIS reflectances match well, whether the formula of the
soil and stem is simple or complex does not matter. That is to
say, for this case, very little information could be retrieved from
the real MODIS observations. For cases where there are
significant soil or stem observed by MODIS, for example,
sparse vegetation, one has chances to check whether the soil/
stem equations are applicable and whether it is a need to
develop more complex approaches to simulate soil/stem
reflectances. There is also a need to further combine complex
canopy radiative transfer models with leaf-level PROSPECT for
future studies.
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Very limited amount of in sifu data at both canopy and
leaf levels, which can be used for evaluation of biophysical/
biochemical variables at moderate (500 m to 1000 m) spatial
resolution, have been collected because of expensive financial
and human resource cost (e.g., Cohen et al., 2003; Turner et
al., 2003). Here we discuss four variables (LAI leaf dry
matter, leaf chlorophyll content and FAPARu,0py) that are
important for interpreting the results of inversion of the
PROSAIL-2 model in this study. The inversion of the
PROSAIL-2 model estimated LAI with a mean of 3.99 and
a standard deviation of 0.66. The field measured LAI around
the footprint of the Bartlett Experimental Forest flux tower site
during the peak growing season in 2004 varied between 3.6

and 5.1 m*/m? (Smith et al. unpublished data). The model-
based estimation of LAI overlapped with the range of field
measured LAL Leaf dry matter (C,,, g/cm?), another widely
used variable in biogeochemical models, had a mean of
0.0105 g/cm® and standard deviation of 0.0041 g/cm?. The
top-canopy leaf specific weight used for the deciduous trees in
the Bartlett Experimental Forest by Ollinger and Smith (2005)
was 0.01 g/cm’, which was very close to the model-based
estimate of the mean value of leaf dry matter. The histogram
of inverted leaf chlorophyll content has a mean of 52.3 pg/
cm? and standard deviation of 2.6 pg/cm?®. The field measured
leaf chlorophyll content for the leaves of mid to upper canopy
of the deciduous species in early July of 2005 has a range of
23.5-52.6 pg/em?®. The range of inverted leaf chlorophyll
content overlapped with the range of field measurements.
Field measured leaf chlorophyll content for top, middle and
bottom leaves of forest canopy are proposed to be conducted
in the future. We suspect MODIS observed leaf chlorophyll
content is closer to top-leaf chlorophyll content than to
middle-leaf and bottom-leaf contents. The model-based
FAPAR ¢4nopy (Fig. 11) had a range from 0.72 to 0.95 (most
in the range from 0.77 to 0.95). The FAPAR ;40py calculated
from field measurements of radiation above- and below-
canopy at the Bartlett Experimental Forest flux tower site, had
a range from 0.798 to 0.930 during 11:00 am to 1:00 pm of
DOY 184 to 201 in 2005. The range of field measured
FAPAR 4nopy falls within the inverted range of FAPAR ,y0py»
although the field radius is 15 m and the MODIS pixel has a
spatial resolution of 500 m. We may estimate canopy/leaf
variables for some whole snow-free growing season and
conduct field canopy/leaf measurement during the same period
in the future when we have enough financial and human
resources. Then we may check how canopy/leaf variables
change over the snow-free growing season and to evaluate the
capability of the inversion procedure that if it can catch up the
seasonal status of canopy/leaf.

The results of this study, together with the results from
our previous study (Zhang et al., 2005) highlight the
substantial difference between FAPAR 4opy and FAPAR
for the two temperate deciduous broadleaf forests (the
Harvard Forest and the Bartlett Experimental Forest). The
results suggest that the Production Efficiency Models (e.g.,
Potter et al., 1993; Prince & Goward, 1995; Ruimy et al.,
1996; Running et al., 2004) that use FAPAR upopy to estimate
the amount of PAR for photosynthesis may potentially
overestimate amount of light absorption for photosynthesis,
an important source of uncertainty for calculation of GPP
and NPP.

In summary, this study provides an improved procedure for
selecting atmosphere-contamination and snow-contamination-
free MODIS observations. With a contamination-free (atmo-
spheric-contamination-free and/or snow-contamination-free)
time series of daily MODIS observations, the seasonal
variations of NDVI, EVI, LSWI and snow cover fraction of
a temperate deciduous broadleaf forest site is better
interpreted through the seasonal dynamics of surface
reflectance of MODIS seven spectral bands. The procedure
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can be tested at other places. This study continued to evaluate
an innovative methodology presented in our previous study
(Zhang et al., 2005) that combined radiative transfer model
with the Metropolis statistical method to estimate leaf- and
canopy-level biophysical/biochemical properties of the forests.
It has clearly demonstrated the potential of daily MODIS data
at 500-m spatial resolution for better characterization of
forests. This study further strengthens our call for routine
field measurements of canopy-level variables (e.g., LAI) and
leaf-level variables (e.g., chlorophyll, other pigments, leaf dry
matter, and leaf water content), the resultant data could shed
new insight for better understanding of the seasonal dynamics
of leaf and canopy.
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