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Abstract: The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory distur- 
bance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensu- 
ing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's 
composition. We challenge that assumption by reviewing over 125 papers on 38 species worldwide that form dense and 
persistent understory canopies. Once established, this layer strongly diminishes tree regeneration, thus altering the rate 
and direction of forest succession. We term these dense strata recalcitrant understory layers. Over half of the cases re- 
viewed were linked to increases in canopy disturbance and either altered herbivory or fire regimes. Nearly 75% of the 
studies declared that competition and allelopathy were the likely interference mechanisms decreasing tree regeneration, 
yet only 25% of the studies used manipulative field experiments to test these putative mechanisms. We present a con- 
ceptual model that links the factors predisposing the formation of recalcitrant understory layers with their interference 
mechanisms and subsequent impacts on succession. We propose that their presence constricts floristic diversity and ar- 
gue for their explicit inclusion in forest dynamics theory and models. Finally, we offer management suggestions to 
limit their establishment and mitigate their impacts. 

RCsumC : Le fondement mkcaniste qui sous-tend la succession forestikre est le paradigme de la phase de rkgknkration 
par troukes durant laquelle la perturbation de l'ktage dominant interagit avec la tolerance B l'ombre des semis et des 
jeunes tiges pour dkterminer les trajectoires de la succession. La thkorie, ainsi que les modkles de simulation qui en 
dkcoulent, assument typiquement que les plantes en sous-ktage ont peu d'impact sur la composition de la strate de rk- 
gknkration prkktablie. Nous remettons en question cette hypothkse en passant en revue 125 articles portant sur 38 espk- 
ces qui forment des couverts denses et persistants en sous-ktage partout B travers le monde. Une fois ttablie, cette 
strate diminue considkrablement la rkgknkration des arbres et modifie par conskquent le taux et la direction de la suc- 
cession de la foret. Nous qualifions ces strates denses de strates rkcalcitrantes de sous-&age. Plus de la moitik des cas 
que nous avons examinks ktaient reliks h l'augmentation des perturbations de la canopCe et ont modifik l'herbivorisme 
ou le regime des feux. Prks de 75 % des ktudes ont mentionni que la compttition et l'allopathie ktaient vraisemblable- 
ment les mkcanismes d'interfkrence qui diminuaient la rkgenkration des arbres mais seulement 25% de ces ttudes ont 
eu recours B des manipulations expkrimentales sur le terrain pour tester ces mkcanismes prksumks. Nous prtsentons un 
modkle conceptuel mettant en relation les facteurs qui favorisent la formation des strates rkcalcitrantes en sous-&age 
avec leurs mkcanismes d'interfkrence et leurs impacts subskquents sur la succession. Nous soumettons l'idke que leur 
presence limite la diversitk floristique et plaidons pour qu'elles soient incluses de faqon explicite dans les modkles et la 
thkorie de la dynamique forestikre. Finalement, nous offrons des suggestions d'amknagement pour limiter leur ktablisse- 
ment et attknuer leurs impacts. 

[Traduit par la Rkdaction] 

t 
Introduction larly species recruitment, growth, survivorship, and turnover 

(Watt 1947; Bray 1956; Runkle 198 1; 1982, Uhl et al. 1988; 
Current forest successional theory focuses primarily on Houle 1990; Oliver and Larson 1996; Marks and Gardescu 

the processes that occur after major disturbances, particu- 1998; Greene et al. 1999; Antos et al. 2000; McCarthy 2001; 
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see also Ecology Special Feature Vol. 70, 1989, and 
Biotropica Special Feature Vol. 28, 1996). This theory typi- 
cally assumes that (I) the advance-regeneration layer is 
diverse and composed of a well-developed seedling and sap- 
ling layer, (2) tree species vary in shade tolerance, 
(3) overstory disturbances vary in size and frequency, and 
(4) variation in disturbances and the varying degrees of 
shade tolerance of the tree species interact to determine 
successional trajectories (e.g., SORTIE Forest Dynamics 
Model; Kobe et al. 1995; Pacala et al. 1996). In addition, 
this view of forest succession assumes that the rest of the 
understory community (herbs and shrubs) has little impact 
on postdisturbance tree species regeneration and subsequent 
canopy formation (Ehrenfeld 1980). In contrast, we present 
evidence the herb and shrub layer can act as a strong filter 
on tree species succession both after a major canopy distur- 
bance and prior to any disturbance within closed-canopy for- 
ests (Runkle 1990). 

On the development of recalcitrant 
understory layers worldwide 

Recent changes in disturbance and browsing regimes have 
strongly impacted species composition in forest understories 
worldwide (de la Cretaz and Kelty 1999; Vanderrnast et al. 
2002; Coomes et al. 2003; Mallik 2003). Typically, these 
changes have led to large increases in the density and cover 
of a small number of native understory plant species (e.g., 
Mallik 2003). In many cases, these species expand to form 
persistent, monodominant layers that in some cases are 
nearly impenetrable (Fig. 1, Tables 1 and 2). We term these 
dense strata "recalcitrant understory layers". No matter 
where they occur worldwide, these layers are characterized 
by sharing one or more of the following attributes: (1) The 
understory layer is often more dense with greater vegetation 
cover and lower diversity than was common in forest under- 
stories in the past. (2) This layer can alter successional 
trajectories and slow the rate of succession by creating con- 
ditions in the understory near ground level that are inimical 
to seeds and seedlings of many tree species (e.g., very low 
light at the soil surface). (3) Once this layer is formed, it can 
resist displacement by other species and remain intact for 
decades even beneath closed canopy forests. These layers 
and the species that compose them have been termed "low 
canopies" (Schnitzer et al. 2000) and "native invasives", re- 
spectively (de la Cretaz and Kelty 1999). We prefer recalci- 
trant understory layer because this term emphasizes that this 
layer is resistant to displacement and that its effect occurs in 
the understory. Additionally, the term native invasive sug- 
gests these species, similar to exotic invasives, are invading 
novel habitat (e.g., exotic Japanese barberry, Amur honey- 
suckle; reviewed by Richburg et al. 2001), when, in fact, the 
species that formed these layers were present throughout the 
habitat at varying degrees of abundance. Overall, we argue 
that models and theories of forest succession must now con- 
sider that many forests have a strong understory filter that 
determines which tree species are present to take advantage 
of a newly formed gap. In many cases, these recalcitrant 
understory layers are dramatically altering forest-wide spe- 
cies diversity and patterns of succession. 

In this paper, we first review the processes that cause the 
formation of recalcitrant understory layers. Second, we de- 
scribe how these layers alter the rate and direction of forest 
succession. Third, we review published work to identify how 
these layers control tree recruitment, growth, and survivor- 
ship and thus patterns of tree regeneration and succession. 
Fourth, we present a conceptual model that synthesizes and 
identifies the most prominent causal mechanisms for the for- 
mation of these layers and outlines the consequences of their 
formation on successional dynamics and forest regeneration. 
Finally, we discuss how recalcitrant understory layers may 
reduce floristic diversity, we argue for their incorporation 
into forest successional models, and we explore management 
options for mitigation of their impacts. 4r 

Processes causing the formation of recalcitrant 
understory layers. 

Increased overstory disturbance 
In the past century, direct and indirect human-induced dis- 

turbances, including logging, fires, insect outbreaks, and 
pathogens, have increased the extent and particularly the 
frequency of overstory disturbance (Sharitz et al. 1992; 
Youngblood and Titus 1996; Seymour et al. 2002; Carson et 
al. 2004). These disturbances typically increase resource 
availability (e.g., light) in the understory both in the short 
and long term. There is little doubt that these disturbances 
increase the establishment and growth of seedlings and sap- 
lings of canopy trees at least in the short term (Hartshorn 
1978; Runkle 1982, Denslow 1987; Canham 1989; Canham 
et al. 1994; Finzi and Canham 2000). However, these exten- 
sive and repeated overstory disturbances may be most bene- 
ficial to a few understory species that possess high rates of 
growth and vegetative expansion when exposed to high light 
levels (Ehrenfeld 1980; Huenneke 1983; Schnitzer et al. 
2000) (Table I). These species are typically shade intolerant, 
yet highly plastic, so that they can persist at low light levels 
following canopy closure by using sunflecks or clonal inte- 
gration (e.g . , Lipscomb and Nilsen 1990; Messier 1992; 
Brach et al. 1993; Moola and Mallik 1998). 

There are numerous examples worldwide whereby canopy 
disturbances lead to the formation of recalcitrant understory 
layers (Table 1). Tappeiner et al. (1991) found that the abun- 
dance of salmonberry (Rubus spectabilis) tangles was nearly 
300% greater in logged stands than in uncut stands. 
Throughout the tropics, large-scale disturbances can create 
bamboo and fern thickets that persist for decades 
(Guarigauta 1990; Walker 1994; Russell et al. 1998; 
Griscom and Ashton 2003). In temperate and boreal forests, 
both native and exotic insect outbreaks open up vast areas of 
forest canopies (e.g., Gypsy moth, Lymantria dispar, and 
spruce budworm, Choristoneura fumiferana), often leading 
to an increase in the density and dominance of a few shrub 
species (Ghent et al. 1957; Ehrenfeld 1980; Batzer and Popp 
1985; Hix et al. 1991; Muzika and Twery 1995; Aubin et al. 
2000). Fungal pathogens have opened up canopies in central 
New York (Dutch elm disease, Ophiostoma ulmi), thereby 
causing the formation of widespread and dense patches of 
Alnus, Cornus, and Viburnum spp. (Huenneke 1983). Both 
Huenneke (1983) and Ehrenfeld (1980) argued that these 
dense shrub layers would delay canopy formation and alter 
its composition. Likewise, Chestnut blight (Cryphonectria 
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Fig. 1. Diagramatic representation of the conversion from (A) forests containing a diverse and structured advance-regeneration layer 
with sparse understory plant abundance (v) to (B) forests where a native understory species expands and monopolizes the understory. 
The dense herbaceous or shrubby cover represents a new vegetation layer that exerts direct and indirect interference effects and pre- 
vents seedling (a) recruitment into the sapling class. ( C )  Example with hay-scented fern in northwestern Pennsylvania forests. 

A B 

parasitica) apparently led to the aggressive expansion of 
Rhododendron maximum in the southern Appalachians 
(Vandermast et al. 2002). In general, any process, whether 
anthropogenic or not, that increases light availability in the 
understory has the potential to lead to the formation of recal- 
citrant understory layers. Nonetheless, it appears that several 
processes must be altered in combination before these recal- 
citrant layers can form (see below). 

The interaction of elevated herbivory and canopy 
disturbance 

In many parts of the world, large-scale canopy distur- 
bances have coincided with extended periods of elevated 
browsing by either introduced or native mammalian herbi- 
vores (e.g., white-tailed deer in eastern United States; re- 
viewed by McShea et al. 1997; Russell et al. 2001; C8te et 
al. 2004). Frelich (2002) has characterized this pattern of 
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chronic overbrowsing as a low-intensity disturbance that 
over time can lead to depauperate understories composed al- 
most entirely of highly browse-tolerant or unpalatable spe- 
cies (e.g., Frelich and Lorimer 1985; Waller and Alverson 
1997; Rooney and Dress 1997; Horsley et al. 2003; Banta et 
al. 2005). If these browse-tolerant or unpalatable species 
happen to be clonal shrubs or herbs, then any canopy distur- 
bance that suddenly elevates understory light levels can 
cause the rapid expansion of these species. One of best 
examples of the interplay between long periods of over- 
browsing and canopy disturbance can be seen with hay- 
scented fern (Dennstaedtia punctilobula). This species, 
which historically occupied <3% of the understory (Lutz 
1930), currently forms a recalcitrant understory layer over 
more than a third of the forested area in Pennsylvania (Ta- 
ble 2) and is abundant throughout much of the northeastern 
United States (De la Cretaz and Kelty 1999). Essentially, 
years of overbrowsing created a depauperate forest under- 
story and suppressed woody establishment into the advance- 
regeneration layer. When light levels increased, continued 
overbrowsing prevented successful seedling establishment 
and growth, while the unpalatable hay-scented fern rapidly 
spread into this sparsely occupied habitat, forming dense 
monospecific stands (Fig. 1). Other examples can be found 
in Sweden, where clear-cutting and overbrowsing have con- 
verted forests to unpalatable grass-dominated communities 
(e.g., Deschampsia JZexuosa; Bergquist et al. 1999), and in 
New Zealand, where arboreal herbivory by marsupials has 
opened up the canopy and, in combination with deer over- 
browsing, has led to stands of unpalatable plant species 
(Jane and Pracy 1974; Allen et al. 1984; Rogers and 
Leathwick 1997; Wardle et al. 2001; Coomes et al. 2003). In 
parts of New Zealand, forest area cover by shrubs, ferns, and 
grasses has increased from <1% to nearly 30% in just 
30 years (Batcheler 1984). 

The interaction of altered fire regimes and canopy 
disturbance 

Humans have either substantially decreased or increased 
the frequency or severity of fire in various ecosystems 
(Attiwill 1994; May 2000; Mallik 2003). Frequent under- 
story fires thin the understory by reducing seedling and sap- 
ling densities, thereby increasing light availability; this 
process favors species that can survive the fire or resprout 
thereafter (Abrams 1992; Collins and Carson 2003; Donlan 
and Parker 2004). When canopy disturbances and surface 
fires occur in tandem or relatively close together in time, the 
increase in light can contribute to the development of a 
recalcitrant understory layer (Mallik 2003; Payette and 
Delwaide 2003). For example, in boreal forests Payette and 
Delwaide (2003) found that a "synergy" existed between 
fires and overstory disturbance, which created shrub- 
dominated heathlands. These heathlands became dominated 
by shrub species, mainly Calluna, Kalmia, and Vaccinium 
spp., which can rapidly resprout and spread clonally follow- 
ing severe fires (Meades 1983; Mallik 1995). Similarly, in 
tropical forests various shade-intolerant ferns (Dicranop- 
teris, Gleichenia, or Pteridium spp.) or bamboo (Guadua) 
that also spread clonally can rapidly colonize and monopo- 
lize areas following catastrophic fires (Gleissman 1978a; 
Finegan 1996; Dolling 1999; Nelson 1994; May 2000). 

Alternatively, canopy disturbances that coincide with a de- 
crease in fire frequency can lead to the development of re- 
calcitrant understory layers. Mallik (2003) hypothesized that 
long-term fire suppression in logged or defoliated stands led 
to forest "conversion" to Kalmia, Calluna, and Gaultheria 
heathlands. In temperate forest systems, fire suppression and 
canopy disturbances contribute to the spread of rhododen- 
dron (Rhododendron spp.) and mountain laurel (Kalmia 
latifolia). These species now form recalcitrant understory 
layers that cover an estimated 2.5 x lo6 ha in the southeast- 
ern United States alone (Table 2) (Monk et al. 1985; 
Vandermast and Van Lear 2002). Furthermore, studies from 
the Coweeta Basin in North Carolina confirm that the expan- 
sion continues with a doubling of rhododendron cover in 
only 17 years (Nilsen et al. 1999). 

The separate and combined effects of disturbances and 
browsing act as strong filters on species richness, thereby 
creating depauperate understories dominated by one or a few 
species. The degree of control or release of specific species 
will depend on the degree to which disturbance and brows- 
ing regimes are altered as well as the life-history characteris- 
tics of the understory plant species (Roberts 2004). 
Overbrowsing selects for only those species that are well de- 
fended or tolerant to browsing (e.g., Horsley et al. 2003; 
Banta et al. 2005). Frequent fires select for only those spe- 
cies that can survive the fire or resprout thereafter (e.g., 
Gliessman 1978; Mallik 2003; Payette and Delwaide 2003). 
Finally, increased overstory disturbance selects for shade- 
intolerant species with rapid rates of vegetative spread as op- 
posed to slower growing shade-tolerant herbs and shrubs 
(e.g., Ehrenfeld 1980; Moola and Mallik 1998; Schnitzer et 
al. 2000). Ultimately, these processes create novel conditions 
that favor only a small subset of species that possess some 
combination of the following life-history characteristics: 
rapid vegetative growth, relatively shade intolerant, and her- 
bivore tolerant (Table 1; see also Roberts 2004). The result 
is a low-diversity but dense understory that can persist for 
long periods of time even if the canopy closes. 

Summary 
We found that major anthropogenic changes to distur- 

bance and browsing regimes underlie the development of 
most recalcitrant understory layers (see Hobbs and 
Huenneke (1992) for similar conclusion with exotic 
invasives). Indeed, overbrowsing, altered fire regimes, and 
increased overstory disturbance were implicated in 18%, 
34%, and 82% of the cases, respectively (Table 1). More im- 
portantly, our review suggests that the formation of a dense 
understory canopy layer often arises (53%) when overstory 
disturbances and altered understory fire and browsing 
regimes occur in tandem (Table 1). Additionally, these 
understory layers are depauperate because repeated canopy 
disturbances combined with other processes (i.e., fire and 
browsing) strongly favor a small subset of species. 

Recalcitrant understory layers arrest, delay, and alter 
forest succession 

Arrested succession 
In a small number of documented cases, recalcitrant 

understory layers appear to exclude tree regeneration for 
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extended periods of time. This pathway is described by a va- 
riety of terms including "self-perpetuating climax commu- 
nity" (Horsley and Marquis 1983), "alternate stable state" 
(Schmitz and Sinclair 1997; Stromayer and Warren 1997), 
"polyclimax" (Tansley 1935), or "arrested succession" 
(Niering and Goodwin 1974). Although the long-term stabil- 
ity of these systems is difficult to confirm (Sutherland 1974; 
Connell and Sousa 1983; Peterson 1984; Sutherland 1990), 
there are compelling examples where shrubs and ferns have 
persisted for decades in stands formerly dominated by trees 
(Niering and Egler 1955; Horsley 1985; Koop and Hilgen 
1987; Raich and Christensen 1989; Petraitis and Latham 
1999; Den Ouden 2000; Latham 2003; Mallik 2003). It is 
unclear whether these layers are self- sustaining (e.g., via 
strong interference; Stromayer and Warren 1997) or whether 
continued browsing or frequent fire is required to perpetuate 
them and retard the reestablishment of trees (Hill 1996; 
Mallik 2003). 

Delayed succession 
A recalcitrant understory layer can slow the growth rate of 

tree species, thereby slowing the rate of successional change 
without altering the eventual tree species composition. For 
example, in boreal forests, the grass Calamagrostis 
canadensis suppresses the regeneration of dominant tree spe- 
cies, including white spruce (Picea glauca). This phenome- 
non delays stand development by 20-30 years until saplings 
eventually emerge through the C. canadensis canopy and the 
stands revert to forest (reviewed by Lieffers et al. 1993). De- 
layed successions also occur in other boreal forests; for ex- 
ample, a dense ericaceous shrub layer has been shown to 
suppress the growth and emergence of tree species, includ- 
ing western redcedar (Thuja plicata), Sitka spruce (Picea 
sitchensis), and Norway spruce (Picea abies) (Messier et al. 
1989; Messier and Kimmins 1991; Mallik 1995; Maubon et 
al. 1995). 

Additionally, a recalcitrant understory layer may reduce 
tree species survivorship sufficiently to delay gap-phase suc- 
cession. For example, in tropical forests, gaps promote the 
expansion of resident understory lianas (Schnitzer et al. 
2000). These understory lianas can become so dense after 
gap creation that they inhibit the subsequent growth and sur- 
vival of both pioneer and shade-tolerant trees, thus stalling 
succession for decades (Schnitzer et al. 2000). This dynamic 
of delayed gap-phase regeneration occurs in tropical and 
temperate forests where lianas, fern, and bamboo thickets ef- 
fectively clog gaps (Kochummen and Ng 1977; Taylor and 
Zisheng 1988; Guariguata 1990, Walker 1994, Schnitzer et 
al. 2000, Abe et al. 2002). In time, trees emerge from this 
layer and reach the canopy apparently with little impact on 
species composition or the ensuing successional trajectories 
(Abe et al. 2002). 

Altered gap-p hase regeneration 
A recalcitrant understory layer may differentially reduce 

establishment among cooccurring tree species, thereby con- 
trolling the composition of the advance-regeneration layer 
(George and Bazzaz 1999a, 1999b). Dense understories cre- 
ate conditions near the soil surface that are inimical to tree 
germination and early growth and survivorship. For exam- 
ple, understory layers that generate a thick litter layer may 

inhibit germination of small-seeded species (George and 
Bazzaz 1999a; Farris-Lopez et al. 2004), while those that 
strongly preempt light can preclude the establishment of 
many shade-intolerant and intermediately tolerant species 
(Horsley 1993a; de la Cretaz and Kelty 2002; Gonzalez et 
al. 2002). These dense layers may substantially suppress tree 
recruitment by a combination of at least six different types 
of interference mechanisms (Table 1). Consequently, only a 
few tree species may possess the necessary traits to persist 
under and eventually emerge through this understory layer 
to constitute the advance-regeneration layer (Runkle 1990; 
Connell 1990). If so, then the species composition of the 
advance-regeneration layer and subsequent pattern of gap- 
phase dynamics will contrast sharply between a forest with a 
recalcitrant understory layer and those without. 

Mechanisms of interference over tree establishment, 
survival, and growth 

A dense understory canopy can suppress regeneration 
directly through resource competition, allelopathy, and phys- 
ical impediment of seedling germination and growth, or in- 
directly through modifications of interspecific interactions 
(Fig. 2). Because most studies fail to distinguish among 
these mechanisms, Muller (1969) proposed the term interfer- 
ence to describe the suppression of one species or layer on 
another species. Below, we briefly review the literature to 
evaluate the evidence for six different mechanisms of inter- 
ference between the understory layer and co-occurring tree 
species. We suggest that the most efficient and cost-effective 
remediation of the deleterious effects of these recalcitrant 
understory layers will require a greater understanding of 
how these layers alter patterns of forest regeneration and 
succession (see below) 

Resource competition 
In closed canopy forests, dense understories exacerbate 

the degree of light attenuation caused by the midstory and 
canopy (Messier et al. 1998; Beckage et al. 2000; Nilsen et 
al. 2001; de la Cretaz and Kelty 2002). Photosynthetically 
active radiation (PAR) levels can drop well below 5% of full 
sun beneath these layers (Nakashizuka 1987; Kelly and 
Canham 1992; Horsley 1993a; Wada 1993; Walker 1994; 
Clinton and Vose 1996; Hill 1996; George and Bazzaz 
1999a; Aubin et al. 2000; Lusk 2001; Lei et al. 2002). Addi- 
tionally, these dense low canopies can reduce light quality 
(e.g., red:far-red wavelengths), thereby preventing germina- 
tion, altering internode elongation, and inhibiting flowering 
(Messier et al. 1989; Horsley 1993a; Mancinelli 1994). Fur- 
thermore, dense low canopies decrease the availability of 
sunflecks particularly for seedlings (Denslow et al. 199 1 ; 
Nilsen et al. 2001; Lei et al. 2002). Finally, if canopy gaps 
do form, they may not operate as gaps at all if seedlings re- 
main trapped beneath a dense understory layer (Beckage et 
al. 2000; Lusk 2001; Webb and Scanga 2001). Under this 
scenario, regeneration may be limited to only a few individ- 
uals of those few species that are highly shade tolerant. 

Dense understories may also exacerbate belowground 
competition (Putz and Canham 1992; Messier 1993; 
Dillenburg et al. 1993). Some studies infer resource limita- 
tion by detecting increased growth or survival of target 
plants following fertilization or measuring lower nutrient 
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Fig. 2. Conceptual model illustrating factors precipitating change from historical gap-phase regeneration into low-canopy dominance. 
The model also reveals various interference mechanisms and illustrates the ensuing successional pathways. The size of the arrows de- 

I notes the relative importance of each transition as revealed by our review. 

Arrested 

Altered Gap- -\- Decelerated Gap-Phase ~ u c c e s s i ~ ~  

Regeneration Few Species Can Escape Low Canopy 
with Limited 
Complement 

of Species 

and water concentrations in soil beneath dense understory 
cover than in soil in more open areas (e.g., Messier 1993; 
Yamasaki et al. 1998; Inderjit and Mallik 1996; Nilsen et al. 
2001). Similarly, vine-covered saplings often have lower 
foliar nitrogen levels, reduced preleaf water potential, and 
decreased diameter growth when compared with vine-free 
saplings (Dillenburgh et al. 1993; Perez-Salicrup and Barker 
2000). The above studies are suggestive of resource limita- 
tion, though they typically do not distinguish between com- 
petition for water and competition for soil nutrients. Because 
nutrient and water availability covary, decoupling these two 
factors is difficult (Nambiar and Sands 1993; Casper and 
Jackson 1997). Additionally, few experiments use factorial 
manipulations to disentangle a dense understory layer's 
aboveground versus belowground effects and their interac- 
tions (McPhee and Aarssen 2001). 

Horsley (1993~) experimentally tested the influence of 
aboveground versus belowground competition. He tied back 
hay-scented fern fronds while leaving their roots and rhi- 
zomes intact, thereby reducing light competition, and iso- 
lated seedlings within PVC tubes, thereby reducing root 
competition. He found that light attenuation, and not 
belowground competition, was the mechanism of interfer- 
ence (Horsley 1977, 1993a, 1993b). Putz and Canham 
(1 992) conducted similar aboveground and belowground ma- 
nipulations. They found that a dense shrubby understory 
layer reduced tree regeneration primarily because of below- 
ground competition (see also Christy 1986), although this re- 
sult varied with soil fertility. Belowground competition was 
more important in infertile sites, whereas aboveground com- 

petition was more important in fertile sites. Clearly well- 
replicated factorial experiments are required to ascertain the 
relative importance of belowground and aboveground com- 
petition, although other processes may confound the results 
of these experiments (e.g., allelopathy, see below). 

Allelopathy 
Direct field evidence for allelopathy remains equivocal 

and elusive. In forests that have dense understories domi- 
nated by ericaceous shrubs, phenolics and other phyto- 
chemical compounds can disrupt nitrogen mineralization and 
inhibit ectomycorrhizal fungi, which can result in a signifi- 
cant reduction in conifer growth and survivorship (Walker et 
al. 1999; reviewed by Mallik 1995, 2003 and Wardle et al. 
1998). In these systems, Nilsson (1994) used factorial ma- 
nipulations of aboveground and belowground competition 
and allelopathy to identify how the boreal shrub Empetrum 
herrnaphroditum suppressed tree regeneration. She found 
that both belowground competition and allelopathy were im- 
portant but that belowground competition played the primary 
role. Similarly, Jaderlund et al. (1997) found that Vaccinium 
myrtillus interfered with Norway spruce primarily through 
belowground competition. In forests where ferns form dense 
understories, bioassays and greenhouse studies have sug- 
gested that there is a potential for strong allelopathic effects 
on tree regeneration (Gliessman and Muller 1972; Horsley 
1977; Gliessman and Muller 1978); however, further field 
experimentation failed to find strong allelopathic effects 
(Horsley 1993b; Dolling 1996; Nilsen et al. 1999; den 
Ouden 2000). Despite these results, too few studies have 
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tried to experimentally disentangle resource competition 
from allelopathy via field experiments. Future research must 
move beyond merely documenting the mere existence of 
phytotoxic exudates in greenhouse and laboratory studies 
(Fuerst and Putnam 1983; Williamson 1990; Weidenhamer 
1996; Inderjit and Callaway 2003). 

Seed and (or) seedling predators 
A dense understory layer can increase the activity of small 

mammals, thereby increasing the rate and impact of seed 
and seedling predation (Gliessman 1978; Wada 1993; 
George and Bazzaz 1999; Den Ouden 2000; Schreiner et al. 
2000). This can create a situation where it appears that low 
seedling densities are caused by resource competition (e.g., 
light attenuation) when, in fact, they are caused by predation 
(Holt 1977, 1984; Connell 1990). Connell (1990) defined 
this as a type of apparent competition (sensu Holt 1977, 
1984). Experiments that use canopy removals confound the 
direct competitive release of removing the understory layer 
with the indirect effects of removing this layer, particularly 
the decrease in small mammal predation (Reader 1993). 
Even though small mammals are abundant, forage preferen- 
tially beneath dense vegetative cover, and consume copious 
quantities of seeds, few experiments have attempted to eval- 
uate the role of seed or seedling predators versus the role 
of resource competition. Nonetheless, long-term studies in 
other plant systems have documented that selective seed and 
seedling predation can lead to rapid changes in plant com- 
munity composition (e.g., Brown and Heske 1990; Gill and 
Marks 1991; Ostfeld and Canham 1993; Howe and Brown 
2001). 

Litter accumulation 
A thick litter layer typically reduces plant species diver- 

sity and density through a wide variety of direct and indirect 
mechanisms (see Facelli and Pickett 1991). For example, 
George and Bazzaz (1999a) found that a thick fern litter 
layer directly limited the establishment of small-seeded tree 
species (see also Veblen 1982; Beckage et al. 2000; Lei et al. 
2002; Farris-Lopez et al. 2004). Alternatively, in boreal for- 
ests, the insulative properties of a dense grass litter layer re- 
sult in decreased soil nitrogen mineralization, water uptake, 
and seedling photosynthetic rates, thus indirectly diminish- 
ing conifer growth and survival (Hogg and Lieffers 1991; 
Lieffers et al. 1993; Cater and Chapin 2000). Aside from 
these examples, there are few experimental tests that unravel 
the many facets of litter interference or evaluate its impor- 
tance relative to other mechanisms (e.g., resource competi- 
tion). However, in forests characterized by a recalcitrant 
understory litter layer, it is clear that this alternative remains 
a viable and potentially important mechanism. 

Mechanical interference 
A dense understory layer can reduce tree seedling regen- 

eration via noncompetitive physical interference. Clark and 
Clark (1991) demonstrated that the passive shedding of 
branches and leaves of subcanopy palms smothered seed- 
lings present in the understory. Similarly, collapsing Guadua 
bamboo culms can reduce tree seedling growth and survival 
(Griscom and Ashton 2003). Additionally, the physical 
weight of a large liana load may suppress tree seedling and 

sapling growth (Putz 1991; Gerwing 2001; Schnitzer et al. 
2004). If tree species respond differentially to these physical 
stresses, then this mechanism alone can potentially alter 
understory tree species composition and modify future 
successional trajectories (e.g., Guarigauta 1998; Gillman et 
al. 2003). 

The relationship between mechanisms of interference and 
phenology 

The intensity and duration of any particular interference 
mechanism can vary temporally as a result of the species' 
life history, whether evergreen, deciduous, or monocarpic. In 
fact, this trait may provide clues to understand both the 
strength and type of interference. For example, evergreen 
species may pose a greater impediment to tree regeneration, 
as their effects are exerted throughout the year on all tree 
seedling life-history transitions (Givnish 2002). In contrast, 
herbaceous perennials that senesce in the fall or deciduous 
shrubby species only exert competitive effects during the 
growing season (e.g., Nilsen et al. 2001; de la Cretaz and 
Kelty 2002). This delayed expansion of the recalcitrant 
understory layer provides a brief window of opportunity for 
evergreen tree species, species with early germination (e.g., 
Acer rubrum), or species with early leaf expansion (e.g., 
Betula lenta) to overcome the understory stratum's deleteri- 
ous effects on early establishment. This temporal advantage 
can provide sufficient photosynthetic and growth opportuni- 
ties to enable trees to survive and eventually grow through a 
fern layer (de la Cretaz and Kelty 2002). Additionally, if the 
intensity of seed and seedling predation decreases with se- 
nescence of the low canopy, then the impact of pervasive 
seed predation may decrease in the fall. This timing of se- 
nescence may generate increased predation on early seed 
dispersers (e.g., Quercus spp.) relative to later dispersers 
(e.g., Acer saccharum, Fagus grandifolia). 

On the causes and consequences of a recalcitrant 
understory layer 

We contend that the expansion and monopolization of the 
understory by a narrow set of plant species are often an in- 
advertent outcome of policies and management decisions 
that deviate from natural forest overstory disturbance, fire, 
and herbivory regimes. We propose a general conceptual 
model through which alterations in the dynamics of the 
overstory, understory, or both generate increases in a select 
few understory plant species (Fig. 1). These alterations in- 
volve changes in the frequency and scale of overstory distur- 
bance, increased or decreased fire frequency, or increased 
herbivory that release a restricted set of understory species 
from prior competitive constraints. Once released, these spe- 
cies increase dramatically in abundance and cover over large 
portions of the forested landscape (Table 1). Following its 
establishment, this recalcitrant understory layer interferes 
with tree regeneration through a variety of direct and indi- 
rect mechanisms including aboveground and belowground 
competition, allelopathy, microhabitat-mediated seed and 
(or) seedling predation, litter accumulation, and mechanical 
damage. Consequently, this recalcitrant layer itself inhibits 
tree regeneration and strongly influences which tree species 
establish and survive beneath its canopy (e.g., Veblen 1982; 
Clinton et al. 1994; Dolling 1996; Cater and Chapin 2000). 
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The strength and selectivity of this filter can retard succes- 
sion, alter the composition of tree species participating in the 
successional sere, or potentially arrest succession. 

We found that only 25% of the published studies reviewed 
reported results of manipulative field experiments designed 
to identify the existence of one or more particular interfer- 
ence mechanism(s) (Table 1). Aboveground and below- 
ground competition and allelopathy were the predominant 
mechanisms tested (37%, 32%, and 13%, respectively) (Ta- 
ble I). Apart from competition and allelopathy, many papers 
speculated on various interference mechanisms but few, if 
any, were tested experimentally. Given the paucity of infor- 
mation, it is clear that for most systems, we lack the infor- 
mation to clearly establish by which mechanism a 
recalcitrant understory layer inhibits tree regeneration (see 
Levine et al. (2003) for similar conclusion on exotic 
invasives). 

We argue that a move towards a more mechanistic under- 
standing of the "interference" phenomenon could begin by 
considering the most limiting resource(s) within a given sys- 
tem. For example, on a coarse scale, forested ecosystems 
differ in the identity of the most limiting resource(s) (e.g., 
light, soil nutrients, and water), and these differences could 
provide insight into the most plausible interference mecha- 
nism. Boreal and cool temperate forests are typically nutri- 
ent poor (primarily N) and less light limited relative to their 
temperate and tropical counterparts (Krause et al. 1978; 
Attiwill and Adams 1993; Kimmins 1996; Reich et al. 1997; 
reviewed by Coomes and Grubb 2000 and Ricard et al. 
2003). We found that dense low canopies in these forest 
types suppress regeneration directly via belowground com- 
petition and indirectly via allelopathic interactions that 
mediate resource availability and uptake (Table 1) (Christy 
1986; Nilsson 1994; Jaderlund et al. 1997). In contrast, tem- 
perate deciduous and tropical rain forests tend to be light 
limited (Pacala et al. 1994; Finzi and Canham 2000; Ricard 
et al. 2003). In these systems, we found that other mecha- 
nisms, including aboveground competition and seed preda- 
tion, were generally more important than belowground 
competition (Table 1) (Denslow et al. 1991; Horsley 1993a; 
den Ouden 2000). Ideally, the best tests would link a series 
of carefully controlled laboratory or greenhouse studies with 
field experimentation to identify which mechanisms merit 
further investigation. Furthermore, we strongly argue that 
manipulative field experiments remain among the best tools 
to test the relative importance of each factor independently 
as well as any interactions among these factors. 

Implications for forest diversity, successional models, 
and management 

Floristic diversity and forest succession 
The increasingly common development of recalcitrant 

understory layers worldwide plays a strong, yet vastly 
underappreciated, role in determining future successional 
patterns and forest composition and diversity because these 
layers tend to selectively suppress tree regeneration. Indeed, 
studies examining the regeneration success of a variety of 
tree species demonstrate that a majority of tree species suffer 
decreased seedling densities and limited height growth un- 
derneath recalcitrant understory canopies (e.g., Horsley and 

Marquis 1983; George and Bazzaz 1999a, 1999b; de la 
Cretaz and Kelty 2002; Hille Ris Lambers and Clark 2003). 
The presence of this additional filter on floristic diversity in 
forest understories, together with increased herbivory and 
altered fire regimes, undoubtedly restricts the number of 
species that can successfully regenerate. The potential con- 
sequences of these ecological filters (sensu George and 
Bazzaz 1999) on species composition remain poorly under- 
stood. Nevertheless,_ we suggest that floristic diversity in 
such areas is so severely constricted that succession may 
steadily march toward monodominance or complete regener- 
ation failure. These extreme cases include the fern- and 
grass-covered "orchard" stands in Pennsylvania where 50- to 
80-year-old failed _clearcuts remain devoid of tree regenera- 
tion (Horsley 1985) as well as the bracken-covered tropical 
regions of Central America that have persisted for centuries 
following forest removal (den Ouden 2000). 

Forest dynamics models 
Computer-based forest successional models (e.g., 

JABOWA-FORET: Shugart and West 1977; Smith and 
Urban 1988; and SORTIE: Pacala et al. 1996) remain the 
best tool for exploring long-term successional outcomes; 
however, forest dynamics models typically fail to include a 
dense understory layer's impact on early seedling survival 
and growth. For example, in the original SORTIE calibra- 
tions, the growth and mortality parameters derived from sap- 
lings (15-750 cm in height) are applied to small seedlings as 
well (Pacala et al. 1994; Kobe et al. 1995). Additionally, the 
authors acknowledge that their recruitment parameter esti- 
mate is potentially unreliable, as the survival of individuals 
<5 years old is highly variable and mortality is often intense 
(Pacala et al. 1996). Indeed, researchers have documented 
that density-dependent (e.g., Packer and Clay 2000) and 
density-independent mortality can dramatically alter initial 
seedling distribution patterns, particularly under a dense 
understory layer (Hille Ris Lambers and Clark 2003; 
Schnurr et al. 2004). By constraining the model and its pa- 
rameters to the 25-year-old age-class, SORTIE neglects part 
of the early dynamics that may occur close to the ground un- 
derneath a recalcitrant understory layer and help shape the 
composition sapling class. 

As originally calibrated (Pacala et al. 1996), SORTIE did 
not include the effects of a recalcitrant understory layer into 
its resource (light) submodel. More recent developments 
note that SORTIE can underestimate light attenuation 
(Beaudet et al. 2002) and the long-term development of 
shade-intolerant tree species following major disturbance 
(Tremblay et al. 2005). Both papers suggest that this may be 
due to the lack of an understory layer component in the 
model and stress that this goal is an ongoing research focus 
(see also Aubin et al. 2000; Beaudet et al. 2004). We know 
of only one effort that has integrated a recalcitrant understory 
layer into SORTIE. Hill (1996) incorporated hay-scented fern 
abundance as a function of light as well as hay-scented fern's 
impact on light availability as a function of frond density. 
With the increased light limitation imposed by fern cover, 
successional projections indicated faster reductions in shade- 
intolerant-species abundance and an accelerated shift to- 
wards dominance by shade-tolerant species (Hill 1996). 
Nevertheless, none of the simulations containing a dense 
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fern layer reflected the pattern of complete regeneration fail- tree species that are relatively unaffected by the interfering 
ure documented in the field (Hill 1996). We concur with layer (e.g., shade-tolerant species) to attain a desirable and 
Hill (1996) that the inconsistencies between model projec- diverse mix regeneration outcome (Lof 2000). 
tions and observable field patterns likely result from overes- 
timates in seedling growth and underestimates in seedling 
mortality inherent in SORTIE. We argue these inconsisten- Acknowledgements 
ties are due '0 (1) ignoring the early (<5 years) seedling We thank our colleagues at both the University of Pitts- dynamics and (2) a failure to incorporate additional interfer- 

burgh, Department of Biological Sciences, and at the For- ence mechanisms causing seedling mortality (e.g., seed and 
estry Sciences Laboratory in Warren, Pennsylvania, whose seedling predation) beyond light competition. 
thoughtful comments and insightful conversations led to 

Forest management 
The framework advanced by this review could aid land 

managers in implementing informed management policies 
and practices that both limit the spread of these plants and 
target control and remediation treatments directed at the pre- 
cise mechanism of interference. We found that alterations in 
forest canopy disturbance, fire, and herbivory regimes may 
lead to the establishment of recalcitrant understory layers, 
particularly when alterations to the overstory and understory 
disturbance regimes occur in tandem (e.g., Payette and 
Delwaide 2003). We suggest that managers monitor over- 
story and understory conditions to ensure that modifications 
to either of these strata do not operate concurrently in an ef- 
fort to mitigate invasion risk. Furthermore, care should be 
taken when the control over overstory and understory factors 
fall under the purview of different agencies (e.g., wild game 
versus forestry management agencies). We caution that 
decisions regarding partial or complete overstory removals 
should consider the site's understory conditions, including 
inadequate advance regeneration, presence of clonal under- 
story plants, and high herbivore impact (e.g., Marquis et al. 
1990). We further suggest the implementation of manage- 
ment practices that more closely resemble natural distur- 
bance levels. 

Understanding the interfering plant species' ecology could 
provide managers with alternative treatments to promote tree 
regeneration when conventional treatments like herbicide are 
not desired or permitted (Berkowitz et al. 1995). For exam- 
ple, mowing or cutting of ferns, grasses, and shrubby inter- 
fering vegetation may successfully limit their aboveground 
competitive effects and enhance regeneration (Davies 1985; 
Maws et al. 1998; Biring et al. 2003). Alternatively, if 
belowground competition is the major interference mecha- 
nism, fertilizer application may mitigate the competitive 
effects of interfering plants and promote tree regeneration 
(Prescott et al. 1993; Haywood et al. 2003). Additional 
remediation techniques tailored to other interference mecha- 
nisms could include direct seeding of propagules coated 
with small mammal repellent (Campbell 1981; Nolte and 
Barnett 2000), soil scarification or controlled burning to re- 
duce litter interference (Nyland 2002), and activated carbon 
as a treatment to mitigate allelopathic interference (Jaderlund 
et al. 1998). A basic understanding of possible successional 
outcomes following the establishment of a low canopy may 
further aid land managers. In areas where the low canopy 
simply stalls succession, successful regeneration will ulti- 
mately occur without any silvicultural techniques. Finally, 
where the recalcitrant understory layer filters tree species 
composition or arrests succession, managers could manipu- 
late the rate and direction of regeneration by underplanting 

many of the ideas presented in this manuscript. We also 
thank Richard K. Kobe, Chris J. Peterson, and one anony- 
mous reviewer. Their critiques and contributions signifi- 
cantly improved the quality of this manuscript. This research 
was supported by the University of Pittsburgh and the USDA 
Forest Service Scientist Recruitment Initiative. 
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