
Using satellite imagery as ancillary data for
increasing the precision of estimates for the
Forest Inventory and Analysis program of the
USDA Forest Service

Ronald E. McRoberts, Geoffrey R. Holden, Mark D. Nelson, Greg C. Liknes, and
Dale D. Gormanson

Abstract: Forest inventory programs report estimates of forest variables for areas of interest ranging in size from mu-
nicipalities, to counties, to states or provinces. Because of numerous factors, sample sizes are often insufficient to esti-
mate attributes as precisely as is desired, unless the estimation process is enhanced using ancillary data. Classified
satellite imagery has been shown to be an effective source of ancillary data that, when used with stratified estimation tech-
niques, contributes to increased precision with little corresponding increase in cost. Stratification investigations con-
ducted by the Forest Inventory and Analysis program of the USDA Forest Service are reviewed, and a new approach to
stratification using satellite imagery is proposed. The results indicate that precision may be substantially increased for
estimates of both forest area and volume per unit area.

Résumé : Les programmes d’inventaire forestier produisent des estimations des variables forestières pour des zones
d’intérêt dont la dimension varie, allant des municipalités, aux comtés, aux états ou aux provinces. À cause de nombreux
facteurs, l’intensité d’échantillonnage est souvent insuffisant pour estimer les attributs aussi précisément qu’on le voudrait,
à moins que le processus d’estimation soit amélioré par l’utilisation de données ancillaires. Utilisée avec les techniques
d’estimation stratifiée, l’imagerie satellitaire classifiée s’est avérée une source efficace de données ancillaires qui con-
tribue à accroître la précision avec une augmentation minime des coûts. Les enquêtes de stratification effectuées par le
programme Forest Inventory and Analysis du USDA Forest Service sont revues, et une nouvelle approche de stratifica-
tion qui utilise l’imagerie satellitaire est proposée. Les résultats indiquent que la précision peut être augmentée substan-
tiellement pour l’estimation de la superficie des forêts et du volume par unité de surface.

[Traduit par la Rédaction] McRoberts et al. 2980

Introduction

The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service reports estimates of forest variables
for medium to large geographic areas such as counties, na-
tional forests, and states based on data collected from arrays
of field plots. Because of budgetary constraints and natural
variability among plots, sufficient numbers of plots frequently
cannot be measured to satisfy precision guidelines for the
estimates of many variables unless the estimation process is
enhanced using ancillary data. Satellite imagery has been ac-
cepted as a source of ancillary data that can be used with strat-
ified estimation techniques to increase the precision of estimates
with little corresponding increase in costs (Hansen and Wendt
2000; McRoberts et al. 2002a; Hoppus and Lister 2003).

Considerable research has been conducted by the FIA pro-
gram to develop better classification approaches, to deter-
mine the optimal spatial resolution of classifications from
which strata are derived, and to select strata boundaries that

maximize precision. However, much of this research has been
reported only in limited-distribution proceedings or theses. In
addition, the strata are derived nearly exclusively from forest–
nonforest classifications or proportion forest area predictions
for the imagery. This feature of the stratifications likely ac-
counts for their greater success in increasing the precision of
estimates of proportion forest area (P) than for other vari-
ables such as volume per unit area (V). The objective of this
study is twofold: (1) to review how the FIA program has
used satellite imagery to increase the precision of forest in-
ventory estimates and (2) to evaluate satellite image based
stratifications intended to increase the precision of estimates
of V without compromising the precision of estimates of P.

Background information

The FIA program has established field plot locations us-
ing a sampling design that is assumed to produce a random
equal-probability sample (McRoberts and Hansen 1999). The
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sampling design is based on a tessellation of the United
States into approximate 2400 ha hexagons derived using the
Environmental Monitoring and Assessment Program meth-
odology (White et al. 1992) (Fig. 1). The location and orien-
tation of the hexagonal array was randomly selected, and
plot locations within hexagons are assumed to be randomly
distributed with respect to the hexagonal array.

In general, locations of forested or previously forested
plots are determined using global positioning system (GPS)
receivers, while locations of nonforested plots are determined
using aerial imagery and digitization methods. Each field
plot consists of four 7.31 m (24 ft) radius circular subplots
(Fig. 2). The subplots are configured as a central subplot and
three peripheral subplots with centers located at 36.58 m
(120 ft) and azimuths of 0°, 120°, and 240° from the center
of the central subplot. Among the observations field crews
collect are the proportions of subplot areas that satisfy spe-
cific ground land use conditions. Subplot estimates of P are
obtained by collapsing ground land use conditions into for-
est and nonforest classes consistent with the FIA definition
of forest land. Field crews also measure the diameter at
breast height (DBH) (1.37 m, 4.5 ft) and the height of each
tree with DBH ≥ 12.5 cm (5 in.). Statistical models are used
to predict the volume of each tree from the DBH and height
measurements, and volumes of all trees with DBH ≥ 12.5 cm
on each subplot are added to obtain subplot estimates of V. The

national FIA program uses an infinite sampling framework
and attributes aggregations of data for the four subplots to
the point corresponding to the center of the central subplot.

Stratified estimation
Stratified estimation is a statistical technique that can be

used to increase the precision of estimates without increas-
ing sample sizes. Cochran (1977) indicates that there is little
additional benefit when more than six to eight strata are
used. Past FIA experience indicates that effective stratifica-
tions may be obtained by aggregating classes or predictions
into four or five strata. For example, the multiple classes of
general land cover classifications such as the National Land
Cover Dataset (NLCD) (Vogelmann et al. 2001a) or the Gap
Analysis Program classification (Scott et al. 1993) may be
aggregated into classes related to forest and nonforest or
continuous predictions of proportion forest cover may be ag-
gregated into classes such as 0.00–0.10, 0.11–0.50, 0.51–
0.90, and 0.91–1.00.

The effectiveness of the stratifications for decreasing vari-
ances and increasing precision is enhanced when the classifica-
tion or prediction variables are closely related to the estimation
variables, when the sampling units can be accurately regis-
tered to the classified imagery, when the dates of the satellite
imagery are close to the dates of the plot measurements, and
when the classifications are unbiased, with small misclassifi-
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cation rates. Numerous factors contribute to misclassification,
including errors in the training data, errors in the registration
of plot locations to imagery, the effects of pixels with mixed
land covers, the diffusion of spectral information among ad-
jacent pixels, and the averaging of spectral information for
multiple pixels to accommodate plots that are larger than a
single pixel. Although stratifications are more effective when
the misclassification rates are low, the only effect of misclassifi-
cation is to decrease the efficiency of the stratifications with
respect to increasing precision; misclassification, as long as
it is consistent, does not induce bias into estimates. Thus, the
effects of misclassification due to these causes are character-
ized by increased variances, not biased estimates.

Stratified estimation requires that two tasks be accom-
plished: (1) calculation of the relative proportion of the land
area corresponding to each stratum and (2) assignment of
each plot to a single stratum. Once the classifications or pre-
dictions for the satellite imagery have been obtained and ag-
gregated into strata, the two required tasks are relatively
easy to accomplish. The first task is accomplished by count-
ing the number of pixels in each stratum and then calculat-
ing the relative proportions of pixels per strata. The second
task is accomplished by assigning plots to strata on the basis
of the stratum assignments of their associated pixels.

The second task, assignment of plots to strata, merits ad-
ditional discussion. Stratified estimation assumes that a plot
is assigned to only one stratum; typically, this is accom-
plished by assigning the plot to the stratum to which the
pixel containing the plot center is assigned. However, de-
pending on the plot dimensions and the resolution of the
classified satellite imagery, different plot components may
be associated with different pixels. Such is the case when
FIA plots with dimensions in excess of 60 m × 70 m are
assigned to strata derived from classified 30 m Landsat The-
matic Mapper (TM) imagery. If all the pixels associated with

plot components are not assigned to the same stratum, the
plot may sample multiple strata. Accommodation of this phe-
nomenon frequently requires that classifications or predictions
for individual pixels be based on a multiple pixel context.

Stratified estimates for FIA variables are calculated using
standard methods (Cochran 1977):
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Yhi is the ith observation in the hth stratum of the variable of
interest; h = 1, 2, …, H denotes strata; wh is the weight for
the hth stratum, calculated as the proportion of pixels in the
area of interest (AOI) assigned to the stratum; nh is the num-
ber of plots assigned to the hth stratum; Yh is the sample
mean for the hth stratum, and �σh

2 is the sample estimate for
the stratum variance.

The FIA program uses stratified estimation but not strati-
fied sampling. For estimation purposes, at least five plots per
stratum are considered necessary to obtain reliable stratified
estimates. If fewer than five plots are assigned to a stratum,
then similar strata are combined, the AOI is increased so that
it includes sufficient numbers of plots per stratum, or strati-
fied estimation is not used.

With the infinite population sampling framework used by
the FIA program, no finite population correction factor ad-
justments are necessary. However, depending on how the
classification or prediction for the satellite imagery for an
AOI is considered, adjustment for estimated rather than known
stratum weights may be necessary. If the classifications or
predictions for a satellite image are considered as complete
coverage, then the stratum weights are considered known.
However, if the classification or prediction for an image
pixel is considered applicable only to a single point in the
pixel (e.g., the pixel center), then the construction of strata
using classified satellite imagery should be considered as the
first phase of double sampling for stratification. In this case,
stratum weights obtained as relative proportions of points as-
signed to strata are estimates rather than known quantities.
Cochran (1977) provides the following formula for the strati-
fied variance when using estimated stratum weights:
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where N is the population size and n′ is the size of the first

sample. For an infinite population,
1

0
N

= , and when using

classified satellite imagery as the basis for stratifications, n′
is the number of pixels with centers in the AOI. For sizes of
AOIs relevant for FIA applications and for the spatial resolu-
tion of satellite imagery on which stratifications are gener-
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[5] reduces to [2]. The result is that for both known stratum
weights and estimated stratum weights from pixel classifica-
tions or predictions, [2] may be used with confidence.

Stratified estimation is effective when the elements of a
heterogeneous population are grouped into strata so that vari-
ances of stratum means are substantially smaller than the
variance of the overall mean obtained under the assumption
of simple random sampling (SRS) or when strata with large
variances for stratum means are small in size. Stratified esti-
mation may be ineffective if the AOI is partitioned into
strata for which several have similar means and variances.
Consider a stratification that includes three strata with weights
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multiple similar strata may have a detrimental effect on strati-
fied estimates of variances.

The effectiveness of a stratification is often evaluated us-
ing relative efficiency (RE), calculated as
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where Var� (.) is estimated variance, YSRS is the estimate of the
mean obtained under the SRS assumption, and YStr is the es-
timate of the mean obtained using stratified estimation. RE >
1.0 indicates that the strata and stratified estimation have the
desired effect of reducing variance and increasing precision,
while RE ≈ 0 indicates the strata are having little beneficial
effect. RE – 1.0 may be interpreted as the factor by which
the sample size would have to be increased to achieve the
same precision under the SRS assumption as is achieved
with stratified estimation.

Relevant previous studies

Nordic experiences
Although the use of remotely sensed data for increasing

the precision of inventory estimates has been investigated in
several regions (Bowden 1979; Holt and Smith 1979;
Johnston 1982; Köhl 1990), many of the early and important
contributions came from scientists in the Nordic countries.
Poso (1972) used information from aerial photographs in a
double sampling for stratification approach, and Poso et al.

(1984, 1987) derived stratifications from unsupervised clas-
sifications of satellite imagery to increase the precision of
inventory estimates of volume and age in Finland. Muinonen
and Tokola (1990) used a nearest-neighbor technique with
field data to predict forest attributes for Landsat TM pixels.
Strata were then derived from the pixel predictions, and
stratified estimation was used to obtain estimates of forest
attributes. More recently, Nilsson et al. (2003, 2005) used
the k-nearest neighbour (k-NN) technique and poststratification
to reduce standard errors (SE) for the Swedish National For-
est Inventory.

The North Central (NC) Research Station approach to
stratification

The first objective of the overall study is to review how
the FIA program has used classified satellite imagery to in-
crease the precision of forest inventory estimates. Hansen
and Wendt (2000) proposed constructing strata by collapsing
the classes of the GAP (Scott et al. 1993) classification into
forest and nonforest strata and then constructing forest edge
and nonforest edge strata along forest–nonforest boundaries.
They compared sampling errors for two sets of estimates: (1)
1986 estimates of P and V for the states of Illinois and Indi-
ana, USA (Fig. 3), obtained using a double sampling for
stratification approach based on first-phase interpretation of
aerial photographs and (2) 1998 estimates of P and V for the
same states using the GAP classification as the source of
stratification data. They found that the variances of estimates
were slightly larger for the approach based on satellite imag-
ery. However, the consistency of the stratification, the ease
of constructing strata, and the generally greater utility of the
approach based on satellite imagery made it preferable.

McRoberts et al. (2002a) derived the same four strata
from the NLCD and investigated optimal widths for the forest
edge and nonforest edge strata. The first NLCD classifica-
tion, designated NLCD-92, is based on nominal 1992 Landsat
TM satellite imagery and a variety of ancillary data (Vogelmann
et al. 2001a), and the second, designated NLCD-01, is based
on nominal 2001 Landsat TM satellite imagery and is cur-
rently available for only a few mapping zones. The FIA pro-
gram of the North Central Research Station, USDA Forest
Service, derives strata from the NLCD-92 using a three-step
process. First, selected NLCD-92 classes are aggregated into
a forest stratum, and the remaining classes are aggregated
into a nonforest stratum. Second, a clump and eliminate al-
gorithm (ERDAS 1997) is used to reassign isolated groups
of small numbers of contiguous forest and nonforest pixels
to the nonforest and forest strata, respectively. Groups of
fewer than four pixels are reassigned because of the approxi-
mate correspondence of the four-pixel aggregated area of
0.36–0.39 ha (1.0 acre) to the minimum area necessary to be
designated FIA forest land. Third, two additional strata are
created by subdividing the forest stratum into forest and for-
est-edge strata and by subdividing the nonforest stratum into
nonforest and nonforest-edge strata. The edge strata are cre-
ated by assigning pixels in the original forest stratum within
two pixels of the forest–nonforest boundary to the forest-
edge stratum and pixels in the original nonforest stratum
within two pixels of the forest–nonforest boundary to the
nonforest-edge stratum. This approach to stratification is
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designated the NC approach, and the four strata are denoted
F (forest), FE (forest edge), NFE (nonforest edge), and NF
(nonforest). Plots are assigned to the stratum of the pixel
containing the plot center. Using this approach, McRoberts
et al. (2002a) obtained RE estimates for P for the states of
Indiana, Iowa, Minnesota, and Missouri (Fig. 3) that ranged
from 1.72 to 3.22.

Comparing classification and prediction approaches
For Mapping Zone 41 (Fig. 3), Nelson et al. (2002) com-

pared REs for stratifications derived from NLCD-01 and
stratifications derived from the same underlying 30 m Landsat
TM imagery using maximum likelihood (ML), fuzzy convolu-
tion (FC), logistic regression (LOG), and the k-NN techniques.
The ML and FC techniques produced binary forest–nonforest
classifications from which the four NC strata were derived.
The LOG and k-NN approaches yielded continuous predic-
tions of P from which four strata consisting of intervals of
predicted P were derived. The four approaches produced
similar estimates of both P and REP, with values of the latter
ranging from REP = 1.53 for the ML approach and REP =
1.61 for the other approaches.

MODIS-based stratifications
Liknes et al. (2004) investigated stratifications derived from

500 m and 1 km MODIS-based products for estimating P
using data for 6635 FIA plots measured between 1999 and
2002. Although MODIS imagery and associated products are
available more frequently than 30 m NLCD-based products,
the question is whether coarser resolution classifications or

predictions have an adverse effect on RE. For Mapping
Zone 41 (Fig. 3), forest–nonforest stratifications derived
from the 500 m MODIS Vegetation Continuous Fields
(VCF) data set (Hansen et al. 2003) and the 1 km
MOD12Q1 land cover data set (Friedl et al. 2002) were
compared with forest–nonforest stratifications derived from
NLCD-92 and NLCD-01. Estimates of P obtained for the
four stratification approaches and under the SRS assumption
were comparable. However, REP = 2.37 for NLCD-92 and
REP = 2.25 for NLCD-01 were greater than REP = 1.50 for
the VCF-derived stratification and REP = 1.41 for
MOD12Q1. Although these results could be attributed to the
coarser resolution of the MODIS imagery, they could also
be attributed to other factors. First, the 0.0672 ha FIA plot
area is likely not an adequate sample of the 25 ha area of the
VCF MODIS pixel or the 100 ha area of the MOD12Q1
pixel area. Second, the small differences in the results could
also be attributed to random effects, particularly if there had
been little change in forest area in the AOI between the 1992
date of the TM imagery for the NLCD-92 and the 2000–
2001 dates of the MODIS imagery used to create VCF and
MOD12Q1. Third, the 30 m NLCD classifications, which
use a variety of other ancillary data in addition to satellite
imagery, may better represent Mapping Zone 41 forests.

Comparing resolutions of classifications
Nelson et al. (2005) challenged the assumption that finer

resolution classifications produce more efficient stratifica-
tions and compared the effectiveness of strata derived from
predictions of P for 30 m Landsat TM data sets and strata
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that were derived from aggregations of the 30 m predictions
into data sets with blocks ranging in size from 3 × 3 pixel
groupings to 33 × 33 pixel groupings. A logistic regression
model was used to predict P for each pixel, and two strati-
fied estimation approaches based on aggregating pixel pre-
dictions into coarser resolution data sets were investigated.
The average approach designated a block as a forest if the
average of predictions of P for pixels in the block exceeded
a threshold; if the average failed to exceed the threshold, the
block was designated nonforest. The majority approach des-
ignated a block as forest if the majority of predictions of P
for pixels in the block exceeded a threshold; if not, the block
was designated nonforest. Stratifications were derived from
the forest–nonforest classifications of the blocks obtained
with each approach for a heavily forested Landsat TM scene
(path 28, row 28) and a sparsely forested scene (path 27,
row 27) in north-central Minnesota, USA (Fig. 3).

For both approaches, differences in estimates of forest
area obtained by counting 30 m pixels and by counting blocks
classified as forest generally increased as block size increased,
suggesting the possibility of increasing bias as block size in-
creased. The largest REs were obtained for classifications
with 90–150 m spatial resolutions. The conclusion of the
study was that stratifications derived from finer resolution
classifications should not necessarily be assumed to produce
larger REs when using stratified estimation for P.

Stratification based on continuous volume predictions
All the stratification approaches discussed to this point are

based on underlying or derived forest–nonforest classifica-
tions that, as previously noted, are more effective in reduc-
ing the variances of estimates of P than estimates of V,
because the aggregated forest class is more closely related to
P than it is to V. Thus, there is reason to expect that if the
classifications or predictions for the pixels of the underlying
satellite imagery were based on variables more closely re-
lated to V, then the resulting stratifications might be more ef-
fective at increasing the precision of V.

Holden et al. (2005) investigated the effectiveness of a
250 m resolution biomass map for deriving strata for the
stratified estimation of biomass for 11 North Central states
of the United States (Fig. 3). The map was based on MODIS
imagery and training data obtained from FIA plot measure-
ments of V. As a source of stratification data, the map was
only marginally effective at increasing the precision of bio-
mass estimates. Although statewide estimates of mean bio-
mass per unit area obtained from pixel predictions for states
were within 10% of the mean for plot observations, the cor-
relation between biomass observations for an independent
subset of FIA plots and biomass predictions for pixels con-
taining the centers of the plots was r = 0.44. Thus, even
though the map produced approximately correct estimates at
the spatial scale of states, the accuracy at the pixel level was
relatively low. For stratification purposes, accuracy at the
pixel level is important because plots are assigned to strata
on the basis of the stratum assignments of the pixels contain-
ing their centers. Therefore, because of the low pixel-level
accuracy of the biomass map, the results of this study are in-
conclusive as to the utility of V or V-related maps for in-
creasing the precision of estimates of V.

Change stratifications
Despite the effectiveness of stratifications derived from

forest–nonforest classifications for increasing the precision
of estimates of both P and V, these same stratifications are
much less effective for increasing the precision of estimates
of change between inventories such as change in P, change in
V, mortality, and change in number of trees. McRoberts et al.
(2005) reasoned that if a current forest–nonforest classifica-
tion produces effective stratifications for estimating current P
and current V, then perhaps, by analogy, a forest–nonforest
change classification would produce effective stratifications
for the change estimates. For Mapping Zone 41 (Fig. 3),
they derived the F, FE, NFE, and NF strata from both the
NLCD-92 and NLCD-01 classifications and then constructed
change stratifications by combining the two stratifications.
For example, a pixel assigned to the F stratum derived from
NLCD-92 and the FE stratum derived from NLCD-01 would
be assigned to the F–FE change stratum. In this manner, 16
change strata were derived from NLCD-92 and NLCD-01.
Accuracies of both underlying forest–nonforest classifica-
tions were estimated as approximately 85%.

The change strata were relatively ineffective in increasing
the precision of estimates of annual change in P, V, and num-
ber of trees. These results are attributed to several factors:
(1) approximately 80% of the AOI was assigned to the no-
change strata; (2) several of the change strata were very
small, less than 0.5% of the AOI; (3) the estimate of mean
change in P was not statistically significantly greater than
zero (α = 0.05) for most strata, suggesting very little hetero-
geneity in the population; (4) the proportion of the AOI as-
signed to change strata, approximately 0.20, was of the same
order of magnitude as the proportion of the AOI that was
misclassified, suggesting that the total area of the AOI that
was classified as changed could conceivably be attributed to
classification errors; and (5) the estimate of annual propor-
tion change in forest area for the entire AOI over the 11-year
interval, approximately 0.0165, is an order of magnitude
smaller than the approximate 0.15 misclassification rate, sug-
gesting that a high proportion of plots that experienced change
could have been assigned to incorrect strata.

Summary
From these studies, four conclusions may be drawn. First,

stratifications based on satellite imagery may contribute sub-
stantially to increasing the precision of forest inventory esti-
mates. For P, RE values were typically in the range of 1.7 ≤
REp ≤ 3.2 for 30 m Landsat TM imagery. These results are
similar to the REp = 3.00 reported by Nilsson et al. (2003).
Second, stratifications are apparently more effective when
they are based on classifications closely related to the attrib-
ute of interest. Third, multiple approaches to classification
and prediction and multiple approaches to deriving strata from
classes and predictions are effective. Fourth, the optimal reso-
lution of underlying classifications from which stratifications
are derived is uncertain, although very coarse resolution is
considerably less than optimal. Stratifications based on 500 m
and 1 km MODIS imagery were inferior to 30 m stratifica-
tions, as were aggregations of 30 m pixels to blocks of
250 m resolution and larger. These results are consistent
with those of Poso et al. (1987), who found that stratifica-
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tions of 30 m resolution were superior to those of 79 m reso-
lution, and those of Nilsson et al. (2003, 2005), who found
30 m stratifications superior to 250 and 500 m stratifica-
tions. Nelson et al. (2005) indicate that the optimal larger
resolution may be in the 90–150 m range.

Materials and methods

The second objective of this study is to evaluate new ap-
proaches to stratifications based on satellite imagery with re-
spect to their effectiveness in increasing the precision of
estimates of P and V. This second objective is addressed in
two separate but related studies. The first used FIA plot data
and compared approaches to deriving stratifications from the
NLCD-92 for the state of Wisconsin, and the second used
FIA plot data and compared two approaches to prediction
for Landsat TM scenes in the states of Indiana and Minne-
sota.

Wisconsin study
Three approaches to deriving stratifications from the NLCD-

02 were compared. The first was the NC approach, as previ-
ously described (McRoberts et al. 2002a), which captures
information on plot context through the use of edge classes.
The second and third approaches capture plot context infor-
mation in different ways. The second approach, described by
Hoppus and Lister (2002) and used in the northeastern por-
tion of the United States, begins with a forest–nonforest
classification, and then assigns the center pixels of 5 × 5
blocks of pixels to strata on the basis of a summary of the
forest–nonforest classifications of pixels in the blocks. The
center pixel of each 5 × 5 block is assigned to one of 26
strata depending on the number of forested pixels in the
block, and the 26 strata are then collapsed into a smaller
number by combining adjacent strata. For this study, the 26
classes were collapsed to form four strata, and the approach
was designated the Northeast (NE) approach. The third ap-
proach is based on the reclassification of NLCD-92 pixels
by Riiters et al. (2002) into 14 fragmentation classes based
on the number and configuration of forest–nonforest pixels
in 5 × 5 pixel blocks. Five strata were derived by aggregat-
ing the 14 fragmentation classes into five broader classes: in-
terior, edge, transitional, patch, and nonforest. This approach
was designated the FRAG approach. For the five inventory
units in the state of Wisconsin (Fig. 3), the SRS, NC, NE,
and FRAG stratification approaches were compared with re-
spect to REP and REV calculated using [6].

Indiana–Minnesota study
The emphasis of this study is a comparison of four ap-

proaches to stratification with respect to the effectiveness of
increasing the precision of estimates of P and V for a Land-
sat TM scene in southern Indiana and a scene in northern
Minnesota (Fig. 3). The four included the NC and NE ap-
proaches, a k-NN approach, and a logistic model approach.
The latter two approaches are based on predicting both P
and V for 30 m Landsat TM pixels, using FIA plot observa-
tions as training or reference data.

Plot data
Observations were available for 1211 plots in the Indiana

study area and 2114 plots in the Minnesota study area. All
plots were observed between 1999 and 2003. Three variables
were used as the basis for classifications or predictions for
the satellite imagery: (1) P, (2) relative volume (RV), calcu-
lated as the ratio of observed V and the maximum observed
V for the AOI, and (3) P + RV, calculated as the average of
P and RV. The range of each variable is the closed interval
[0,1]. The rationale for using RV rather than V was so that
the combination of P and V would not be dominated by the
larger values of V.

Landsat TM satellite imagery
Landsat TM imagery for one Indiana scene (path 21, row

33) and one Minnesota scene (path 27, row 27) was obtained
from the Multi-Resolution Land Characteristics 2001 land
cover mapping project (Homer et al. 2004) of the US Geo-
logical Survey. The imagery was characterized by several salient
features: (1) a combination of Landsat 5 TM and Landsat 7
ETM+ data after radiometric conversion of Landsat 5 TM
data to Landsat 7 data (Vogelmann et al. 2001b), (2) geomet-
rically and radiometrically corrected including terrain cor-
rection using methods described by Irish (2000), (3) cubic
convolution resampling to 30 m × 30 m spatial resolution,
(4) visible and infrared bands (1–5, 7), and (5) conversion to
at-satellite reflectance in accordance with Markham and Barker
(1986) and the Landsat 7 Science Data User’s Handbook
(Irish 2000). Imagery for three dates corresponding to early,
peak, and late vegetation green-up (Yang et al. 2001) was
obtained for each scene: April 2001, July 2000, and October
2001 for the Indiana scene and April 2000, July 2001, and
November 1999 for the Minnesota scene. Preliminary analy-
ses indicated that the normalized difference vegetation index
(Rouse et al. 1973) and the tasseled cap transformations
(brightness, greenness, and wetness) (Kauth and Thomas 1976;
Crist and Cicone 1984) were superior to both the spectral
band data and principal component transformations with re-
spect to predicting the probability of forest cover. Thus, 12
satellite image based predictor variables, normalized differ-
ence vegetation index, and three tasseled cap transformations
for each of the three image dates were used. Because plots
would eventually be assigned to strata derived from pixel
classifications or predictions, and because it was necessary
to accommodate the possibility that a plot could sample
multiple strata, the mean of each transformation of the spec-
tral values was calculated for each 3 × 3 block of pixels and
attributed to the center pixel of each block.

Prediction approaches
Predictions of RV for individual pixels in each study area

were obtained using two techniques, k-NN and LOG. For the
k-NN approach (Franco-Lopez et al. 2001; Katila and Tomppo
2001; McRoberts et al. 2002b), the set of pixels with associ-
ated plots was denoted the reference set, and the set of pix-
els requiring predictions was denoted the target set. For each
pixel in the target set, the k closest pixels in the reference set
were determined using Euclidean distance

[7] d x xil jl
l

= −
=
∑ ( )2

1

12
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where i indexes the target set, j indexes the reference set, l
indexes the 12 spectral transformations, xil is the value of the
lth transformation for the ith pixel in the target set, and xjl is
the value of the lth transformation for the jth pixel in the ref-
erence set. The prediction, �yi, for the ith pixel is

[8] �y
k

yi j
j

k

=
=

∑1

1

where j indexes the k neighbors in the reference set nearest
to the ith pixel with respect to [7], and yj is the observed
value of the variable for the plot associated with the jth pixel
in the reference set. As recommended by Trotter et al. (1997),
Tokola et al. (1996), Tokola (2000), Franco-Lopez et al.
(2001), and Katila and Tomppo (2001), a small k value was
selected; that is, k = 5 for this study. Thus, the prediction for
each pixel was closely associated with the five observations
for the five nearest neighbors in the reference set.

An assumption underlying stratified estimation is that the
plot observations assigned to a stratum are a random sample
of the stratum. Therefore, caution must be exercised when
using the k-NN method with a small k value to obtain pre-
dictions from which strata will be derived. The concern is
that for small k values, the set of plots assigned to each stra-
tum will be very similar to the mathematical union of the
sets of k-nearest neighbors used to obtain predictions for the
pixels assigned to the stratum. The result is that the plots as-
signed to a stratum may not be a random sample of the stra-
tum. To circumvent this problem, each study area was divided
into two subareas of approximately equal size, and the plots
geographically located in one subarea formed the reference
set for obtaining predictions for pixels in the other subarea.
In this manner, the predictions from which strata are derived
for a subarea are independent of the observations for the
plots assigned to the strata.

The LOG approach to prediction used the logistic regres-
sion model

[9] E( )y =
+ + + +

1
1 0 1 1 12 12exp( )β β βX X�

where E(.) is statistical expectation, exp(.) is the exponential
function, the βs are parameters to be estimated, and the Xs
are the 12 transformations of the spectral values. Separate
sets of parameter estimates were obtained for each variable
in each study area. An operational advantage accrues when
the model predictions are grouped into the same strata across
states. Because RV for each study area is based on the maxi-
mum V for the study area, classes of RV predictions will not
be equivalent for the two study areas. To obtain classes for
the two study areas that are equivalent, the classified or pre-
dicted variable must be the same. Therefore, a second rela-
tive volume variable, RV′, was calculated as the ratio of
observed V and the maximum V observed over both study
areas considered together. Separate sets of parameter esti-
mates were obtained for each study area using RV′. Classes
of RV′ predictions and groupings of the classes into strata
were equivalent for both study areas.

Because the estimate of each parameter of [9] is based on
all observations in the study area, the prediction for each im-
age pixel will similarly be based on the observations for all

plots in the study area. This is unlike the situation with the
k-NN approach for which the prediction for each image pixel
is based on only five plots in the study areas. The result is
that when using a regression model with parameters esti-
mated from the entire data set to predict values of pixels,
there is little concern that the plots assigned to a stratum are
not a random sample of the stratum (Breidt and Opsomer
2002).

Analyses
For each study area, the pixel predictions of P, RV, and

RV′ were grouped into 0.01-wide classes beginning with
0.00 and ending with 1.00. Plots were assigned to the result-
ing 101 classes on the basis of the class assignments of the
pixels containing the plot centers. The 101 classes were grouped
into four strata, subject to the constraint that no stratum with
fewer than five plots was permitted. Strata boundaries were
separately selected to maximize indices: (1) REP, within each
study area, (2) REV, within each study area, (3) the sum,
REP + REV, within each study area, and (4) the sum, REP +
REV, for the two study areas together. For (1) and (2), the
101 classes for a study area were based on predictions of P
and V, respectively, within the study area; for (3), the classes
were based on predictions of RV within the study area; and
for (4), the classes were based on predictions of RV′ across
the two study areas. Groupings were based on four criteria:
(1) REP within study areas, (2) REV within study areas, and
(3) REP + REV, within study areas. As a basis for compari-
son, REP and REV were also obtained for the NC and NE
approaches. For the Indiana study area, the NC and NE ap-
proaches were based on NLCD-92, while for the Minnesota
study area, the approaches were based on NLCD-01. Esti-
mates were also obtained under the SRS assumption.

Results

Wisconsin study
The four approaches produced estimates of P and V that

were nearly indistinguishable, and there were few substantial
differences in RE (Table 1). The FRAG approach produced
the smallest RE values for both P and V and as a result is not
considered further. The NE approach was generally slightly
better than the NC approach.

Indiana–Minnesota study
The estimates of P and V were nearly indistinguishable

for the different approaches to stratification (Table 2). REP >
REV, which is consistent with previous findings. In addition,
SE estimates for the Indiana study area were slightly smaller
than those for the Minnesota study area, although they were
comparable. The larger REs for the Indiana study area are
attributable to the larger SE of the SRS mean for both P and
V, the denominator in the RE calculation.

The NE and NC approaches produced RE values that were
similar, although RE for the NE approach for each variable
and study area was marginally greater than RE for the NC
approach. The groupings of the 26 NE classes into strata
were quite stable as indicated by the only slight reduction in
REP and REV for the three optimality criteria: REP and REV
separately within study areas, REP + REV within study areas,
and REP + REV across study areas.
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The LOG approaches were superior to the NC, NE, and k-
NN approaches for P and V for both study areas. Because
the k-NN approach is more difficult and time consuming to

implement, is subject to several precautions (McRoberts et
al. 2002b), and produces inferior results relative to the LOG
approaches, it is not further considered. As evidenced by the
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Inventory unit†

1 2 3 4 5

Approach* Mean RE Mean RE Mean RE Mean RE Mean RE

Proportion forest area
SRS 0.7104 1.00 0.6614 1.00 0.4268 1.00 0.3124 1.00 0.1343 1.00
NC 0.7130 2.36 0.6735 2.23 0.4380 2.22 0.3150 2.40 0.1341 1.67
NE 0.7170 3.05 0.6714 2.40 0.4318 2.50 0.3170 2.66 0.1340 1.94
FRAG 0.7108 1.43 0.6627 1.33 0.4391 1.29 0.3144 1.30 0.1369 1.21

Volume (m3/ha)
SRS 77.36 1.00 65.12 1.00 40.31 1.00 36.05 1.00 16.33 1.00
NC 77.64 1.34 66.33 1.27 41.38 1.39 36.38 1.63 16.32 1.55
NE 76.63 1.37 65.88 1.31 40.71 1.47 36.44 1.71 15.79 1.70
FRAG 77.33 1.14 65.23 1.14 41.40 1.11 36.28 1.17 16.54 1.14

Note: RE, relative efficiency.
*SRS, simple random sampling; NC, North Central; NE, Northeast; FRAG, fragmentation classes.

Table 1. Comparison of approaches to stratification based on forest–nonforest classifications for the state of Wis-
consin, USA.

Optimization Indiana Minnesota

Approach*

Classification
or predictor
variable Criterion Area Mean SE RE Mean SE RE

Proportion forest area (P)
SRS 0.3383 0.0127 1.00 0.7279 0.0091 1.00
NC Forest 0.3545 0.0067 3.60 0.7267 0.0073 1.53
NE Forest REP Within 0.3390 0.0065 3.79 0.7296 0.0071 1.64
NE Forest REP Across 0.3390 0.0065 3.79 0.7290 0.0072 1.60
NE Forest REP + REV Within 0.3390 0.0065 3.79 0.7296 0.0071 1.64
NE Forest REP + REV Across 0.3433 0.0062 3.79 0.7290 0.0072 1.60
k-NN RV REP + REV Within 0.3433 0.0062 4.13 0.7330 0.0066 1.91
LOG P, RV REP Within 0.3373 0.0052 5.87 0.7298 0.0060 2.33
LOG P REP Across 0.3373 0.0052 5.87 0.7298 0.0060 2.33
LOG P + RV REP + REV Within 0.3393 0.0053 5.72 0.7298 0.0060 2.33
LOG P + RV′ REP + REV Across 0.3385 0.0053 5.70 0.7281 0.0060 2.26

Volume (V; m3/ha)
SRS 47.44 2.15 1.00 48.91 1.25 1.00
NC Forest 49.75 1.53 1.99 48.78 1.17 1.13
NE Forest REV Within 47.72 1.46 2.19 48.74 1.16 1.15
NE Forest REP Within 47.55 1.46 2.17 49.03 1.17 1.13
NE Forest REP Across 47.55 1.46 2.17 49.00 1.17 1.13
NE Forest REP + REV Within 47.55 1.46 2.17 49.03 1.17 1.13
NE Forest REP + REV Across 47.55 1.46 2.17 49.00 1.17 1.13
k-NN RV REP + REV Within 48.21 1.43 2.28 49.37 1.14 1.19
LOG P, RV REV Within 46.97 1.31 2.71 48.62 1.06 1.37
LOG P REP Within 47.32 1.37 2.47 49.12 1.09 1.32
LOG P REP Across 47.32 1.37 2.47 48.71 1.11 1.26
LOG P + RV REP + REV Within 47.57 1.35 2.54 49.12 1.09 1.32
LOG P + RV′ REP + REV Across 47.46 1.35 2.54 49.05 1.10 1.29

Note: RV, relative volume; RE, relative efficiency; SE, standard error.
*SRS, simple random sampling; NC, North Central; NE, Northeast; k-NN, k-nearest neighbour; LOG, logistic regression.

Table 2. Comparison of approaches to stratification based on forest–nonforest classifications and on continuous pre-
dictions of proportion forest area and volume for the states of Indiana and Minnesota, USA.



only slight reduction in REP and REV, as the optimality crite-
rion changed from REP and REV within study areas to REP +

REV across study areas, the optimal combination of the 101
LOG prediction classes into four strata appears quite stable.

The superiority of the LOG approach is attributed more to
the nature of the 101 prediction classes than to incorporation
of a V component into the prediction variable that defined
the classes. First, when estimating V, RE values for strata de-
rived from classes based only on predictions of P were only
slightly less than RE values for strata derived from classes
based only on predictions of RV; for the Indiana study area
the reduction was from RE = 2.71 to 2.47, and for the Min-
nesota study area the reduction was from RE = 1.37 to 1.32.
Second, RE values for strata derived from classes based on
predictions of P were only slightly less than RE values for
strata derived from classes based on predictions of P + RV;
for the Indiana study area the decrease was from RE = 2.54
to 2.47, and for the Minnesota study area the decrease was
from RE = 1.32 to 1.26. Thus, strata derived from the 101
classes of predictions of P are nearly as effective as strata
derived from predictions of a combination of P and RV or
from predictions of RV alone and are better than strata de-
rived using the NC and NE approaches.

The LOG approach with classes derived from predictions
of P and grouped into four strata selected to minimize REP
across study areas produced strata that were equivalent with
respect to the classes of predictions of P that they combined.
However, the strata were somewhat different by study area
with respect to within-stratum means and variances (Table 3).
The strata were similar in that in each study area there was a
positive correlation between means for P and means for V,
one stratum had small P and small V and one had large P
and large V, and the rankings of the strata with respect to
variances were the same. However, the within-stratum means
and variances were not very similar for the two study areas.
These differences are attributed to different relationships be-
tween canopy and below-canopy attributes, different distri-
butions of plots with respect to canopy attributes (Figs. 4a
and 4b), and perhaps different prediction accuracies.

Greater RE values could possibly have been achieved with
a few more strata for these data sets. However, the bimodal
distributions of the plot observations (Figs. 4a and 4b) with
respect to predicted P, with most plots either completely for-
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Stratum boundary P V (m3/ha)

Stratum Lower Upper Weight Sample size Mean SE Mean SE

Indiana
1 0.00 0.45 0.631 761 0.0405 0.1435 4.88 0.79
2 0.46 0.64 0.034 43 0.4095 0.3637 58.10 11.80
3 0.65 0.91 0.107 132 0.7364 0.3280 98.17 6.08
4 0.92 1.00 0.228 275 0.9601 0.1413 139.20 4.47
Overall 1211 0.3373 0.0052 47.32 1.37

Minnesota
1 0.00 0.45 0.200 423 0.1213 0.2881 5.49 1.08
2 0.46 0.64 0.056 110 0.5905 0.4256 21.35 3.32
3 0.65 0.91 0.329 697 0.8334 0.3274 48.69 2.10
4 0.92 1.00 0.415 883 0.9524 0.1825 73.33 1.98
Overall 2113 0.7263 0.0060 48.71 1.11

Table 3. Stratum statistics for logistic regression (LOG) predictions of proportion forest area (P) and
volume (V), optimizing across the states of Indiana and Minnesota, USA.
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Fig. 4. (a) Frequency distribution of Indiana study area plots by
predictions of proportion forest area. (b) Frequency distribution of
Minnesota study area plots by predictions of proportion forest area.



ested or completely nonforested, suggests that the minimum
of five plots per stratum would be difficult to achieve with
larger numbers of strata, particularly for the smaller geo-
graphic areas for which the FIA program reports estimates.

Conclusions

The primary conclusions from the Wisconsin study are
that the NC and NE approaches produce similar and substan-
tial increases in precision and that both are superior to the
FRAG approach. The ranges of relative efficiencies obtained
for this study, 1.2 ≤ REP ≤ 3.1 and 1.1 ≤ REV ≤ 1.7, are con-
sistent with those obtained in previous FIA studies. For P,
the results are generally in the same range of results ob-
tained by Poso et al. (1987) and Nilsson et al. (2003, 2005).
However, for V the RE values are marginally less than those
obtained by Poso et al. (1987) and Nilsson et al. (2003,
2005). The latter result is attributed to greater homogeneity
in Finnish and Swedish forests than in the naturally regener-
ated, mixed species, uneven-aged forests characteristic of the
state of Wisconsin.

Three conclusions may be drawn from the Indiana–Min-
nesota study. The first conclusion is that the LOG approach
produced RE values for both P and V that were substantially
greater than RE values produced by either the NC or NE ap-
proaches. The k-NN approach also produced greater RE values
than did the NC and NE approaches, but because the LOG
approach is easier and less time consuming to implement
and produced greater RE values than the k-NN approach, the
LOG approach is preferable. For the LOG approach, strata
based on predictions of P for the underlying satellite imag-
ery were nearly as effective in increasing REV as were pre-
dictions for a combination of P and RV or RV alone. In
addition, derivation of strata from predictions of P is fairly
easy because observations of P by definition are in the inter-
val [0,1] and require no scaling for individual AOIs or for
optimization of classes into strata across AOIs. However,
derivation of strata from predictions of V or a combination
of P and V is more difficult because observations of V must
be scaled to make them commensurate with observations of
P and to group them into a smaller number of strata across
AOIs. Thus, derivation of strata from predictions of P ob-
tained with the LOG approach is preferable because of ease
of implementation.

The RE values obtained with the LOG approach for Indi-
ana are comparable to those obtained by Poso et al. (1987)
and Nilsson (2003, 2005) for both P and V, although they are
less so for Minnesota. The reasons for smaller RE values for
Minnesota are not apparent, although Minnesota forests in
the study area are characterized by a greater mixture of de-
ciduous and coniferous species than are the Indiana, Finnish,
or Swedish forests. In addition, REP values for both Indiana
and Minnesota were similar to or greater than the REP = 2.7
reported by Deppe (1998) using a regression estimator, an
approach related to stratified estimation.

The second conclusion is that strata derived from V-based
predictions were only slightly more effective in increasing
the precision of V estimates than strata derived from predic-
tions of P. This result is attributed to two factors. First, pre-
dicting V or constructing classes of V is a difficult task using
passive sensors such as Landsat TM. Passive sensors re-
spond to reflected sunlight, most of which comes from the
forest canopy, while V is a below-canopy attribute. Second,
P is much more highly correlated with V than is a binary
forest–nonforest variable. Thus, the aggregated classes of the
predictions of P apparently capture most of the information
pertaining to V in the satellite imagery, certainly more than
is captured by forest–nonforest classifications or the NC and
NE variations of them.

The third conclusion is that overall the NC and NE ap-
proaches produced similar results, but with each having ad-
vantages and disadvantages. Overall, the advantage of the
NE approach is that it was slightly better than the NC ap-
proach with respect to RE. However, the NC approach is
more intuitive in the sense that the F, FE, NFE, and NF
strata correspond to easily interpreted landscape features.
Although the 26 classes of the NE approach could be used
directly as strata, they would usually have to be combined to
comply with the five plots per stratum constraint for report-
ing areas such as counties. Thus, for each implementation, a
decision must be made as to which classes to combine. If the
same decision is not made at each implementation, the strata
will not be equivalent. The four strata for the NC approach,
however, are equivalent wherever they are constructed.

Finally, it is useful to express differences in RE in terms
of a tangible quantity. Differences in RE may be interpreted
as the factor by which a sample size would have to be in-
creased to achieve the same precision with the approach pro-
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Relative efficiency (RE)

Variable*
Sample
size Mean P LOG†

Max. for NC and
NE approaches‡ Difference

Cost savings
(US$)

Indiana
P 1211 0.34 5.87 3.79 2.08 642 000
V 1211 0.34 2.47 2.19 0.28 86 000

Minnesota
P 2113 0.73 2.33 1.64 0.69 798 000
V 2113 0.73 1.26 1.15 0.11 127 000

*P, proportion forest area; V, volume per unit area.
†LOG approach using predictions of P and optimizing across study areas.
‡NC, North Central; NE, Northeast.

Table 4. Potential cost savings achievable with the logistic regression (LOG) approach.



ducing the smaller RE as was achieved with the approach
producing the larger RE. Cost savings associated with the
approach to stratification yielding the greater RE may be es-
timated as the product of four factors: (1) the difference in
RE, (2) the sample size, (3) mean proportion forest area (P);
that is, an estimate of the proportion of plots that require
field measurement; and (4) the per-plot field measurement
cost of approximately US$750 in 2005. The potential cost
savings achievable using the LOG approach with predictions
of P and optimizing over study areas relative to the better of
the NC and NE approaches are $625 000 for estimating P in
Indiana, $86 000 for estimating V in Indiana, $798 000 for
estimating P in Minnesota, and $127 000 for estimating V in
Minnesota (Table 4). These cost savings are substantial even
though, in several cases, the differences in RE are relatively
small.
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