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A comparison of alternative methods for
estimating the self-thinning boundary line

Lianjun Zhang, Huiquan Bi, Jeffrey H. Gove, and Linda S. Heath

Abstract: The fundamental validity of the self-thinning “law” has been debated over the last three decades. A long-standing
concern centers on how to objectively select data points for fitting the self-thinning line and the most appropriate re-
gression method for estimating the two coefficients. Using data from an even-aged Pinus strobus L. stand as an exam-
ple, we show that quantile regression (QR), deterministic frontier function (DFF), and stochastic frontier function (SFF)
methods have the potential to produce an upper limiting boundary fine above all plots for the maximum size-density rela-

~ tionship, without subjectively selecting a subset of data points based on predefined criteria. On the other hand, ordinary
least squares (OLS), corrected ordinary least squares (COLS), and reduced major axis (RMA) methods are sensitive to
the data selected for modet fitting and may produce self-thinning lines with inappropriate slopes. However, statistical infer-
ence is very difficalt with the DFF and QR methods. Although SFF produces a sclf-thinning line lower than the upper
Timiting boundary line because of the nature of the method, it can easily produce the statistics for inference on the
model coefficients, given that there are no significant departures from underlying distributional assumptions.

Résumé 1 La validité fondamentale de 1a « loi » d'antoéclaircie a 6té débattue au cours des trois dernidres décennies,
Une préoccupation de longue date porte sur [a fagon de sélectionner objectivement les données pour ajuster 1a droite
d’autoéelairgie et sur 1a méthode de régression la plus appropri€e pour estimer les deux coefficients. A Paide de don-
nées provenant d’un peuplement équienne de Pinus strobus L. comme exemple, les autenrs montrent gue les méthodes
de régression quantile (RQ), de fonction déterministe frontiére (FDF) et de fonction stochastique frontigre (FSF) ont la
capacité de produire une droile qui constitue 1a limite supérieure au-dessus de toutes les parcelles pour la relation
maximale de fa dimension en fonction de Ja densité sans sélectionner subjectivement un sous-ensemble de points basés
sur des critéres prédéfinis, D’un autre ¢6té, la méthode ordinaire des moindres carrés, la méthode ordinaire corrigee des
moindres carrés et fa méthode des axes majeurs réduits sont sensibles aux données sélectionnées pour ajustement du
modtle et peuvent produire des droites d’autoéelaircie avec des pentes inappropriées, Cependant, 'inférence statistigue
est trés difficile avec les méthodes FDF ot RQ. Méme si la méthode FSF produit une droite d'autoéclaircie plus basse
que 1a droite qui conslitue la limite supérienre maximale, 2 cause de la nature de la méthode, eile peut facilement pro-

duire les statistiques pour déduire les coefficients du modle, étant donné qu’il n'y a pas de démarcation significative

des hypothéses sous-jacentes de distribution.

FTraduit par 1a Rédaction]

Introduction

Self-thinning is a dynamic equilibrivinm between plant
growth and death at crowding density and is governed by the
so-called “self-thinning rule” or “-3/2 power law” (Yoda et
al, 1963; Westoby 1984). The rule states that, in logarithmic
scales, the relationship between average plant size and stand
density is a straight line (i.e., self-thinning line or maximum
size—density relationship) for a stand undergoing density-related

mortality. Historically, this self-thinning line has been ex-
pressed by relating either mean plant biomass or total stand
biomass to stand density on logarithmic scales with a con-
stant slope of 1.5 (for mean biomass) or —0.5 (for total bio-
mass) in plant population ecology (Yoda et al. 1963;
Westoby 1984), Stem volume has been used often in lieu of
biomass for tree species. A long tradition in forestry has
been to relate mean diameter to stand density, that is, logh =
a — 1.6logD, where N is number of trees per unit area, D is
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quadratic mean diameter, and & is a constant (Reineke 1933).
A recent variation of this expression is logD = b — 0.6logV
(Jack and Long 1996), where b is a constant, The intercept
of the self-thinning line varies with species, but only within
narrow logarithmic limits (White 1985), while the slope pa-
ramceter is apparently consistent regardless of species, age,
and site quality (Jack and Long 1996). Consequently, the
self-thinning rule has been considered one of the most im-
portant principies in plant population ecology (Drew and
Flewelling 1977; Long and Smith 1984; Jack and Long 1996).
Since the late 1980s the controversy about the fundamental
validity of the seH-thinning rule has been more intense. The
debate bas primarily focused on whether the slope of the
self-thinning line is invariant (Zeide 1987, Weller 1989; Lons-
dale 1990; Osawa and Alien 1993; Guo and Rundel 1998). A

long-standing concern centers on the most appropriate meth--

ods for data selection and parameter estimation in the
self-thinning equations (Weller 1989; Bi and Turvey 1997; Bi
et al, 2000). 1t is emphasized that data used to estimate the
maximum size—density relationship should be carefully se-
lected, Incorrectly including data points from stands of mean
density (in number of plants per area) that have not yet begun
to thin will flatten the estimated slope of the line from —3/2
toward -1, while inclusion of data points coming from stands
of high density that have not yet begun to thin will steepen
the slope of the line (Westoby 1984; Osawa and Allen 1993).
Some authors considered that the maximum size—density rela-
tionships for given data sets were curvilinear instead of linear
on a log-log scale (Zeide 1987; Cao et al, 2000). Others ar-
gued that it is possible that some plots at lower densities in a
given daia set may have not reached the stage of seif-thinning
yet (i.e., growth periods are not sufficiently long). Therefore,
these plots should not be included for estimating the
seif-thinning line (Westoby 1984; Osawa and Allen 1993). In
this study we assume the maximum size—density relationship is
linear across the entire range of tree densities.

Over the last three decades researchers have applied dif-
ferent methods for selecting appropriate data points used to
estimate the maximum size—density relationship. A common
method is to purposefully select data points that lie close to
an arbitrarily visualized upper boundary based on some cri-
teria (Westoby 1984; Osawa and-Sugita 1989; Osawa and
Allen 1993; Wilson et al. 1999). As many authors have
poinied out, this method is arbitrary and subjective. To im-
prove selection objectivity, Bi and Turvey (1997) plotted the
stand biomass (y-axis) against density (x-axis) on a log-iog
scale and divided the range of log density into a specified
number of equal intervals. Then one data point of maximum
stand biomass was selected from each interval. A similar
method was used in an animal study (Blackburn et al. 1992).
In a recent study, Solomon and Zhang (2002) assumed the
theoretical value of the slope coefficient of the maximum
size~density line (i.e., —1.5 for the logM ~ log relationship,
where M is mean tree volume), The intercept coefficient was
calculated by a = logh! + 1.5 logN, using the stand with the
largest relative density (RD) (Drew and Flewelling 1979).
Once determined, the equation was used to compute maxi-
muimn stand density (N, for M of a given stand, The RD
was calculated as N/N,,, for each stand, where N is current
stand density. Stands with RD 0.7 were then selected for
developing the maximum size—density relationship.
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Historically, there are several regression methods used to
estimate the two coefficients of the maximum size-density
line, such as (1) arbitrarily hand fitting a line above an upper
boundary of data points (Yoda et al. 1963; Drew and
Flewelling 1977), (2) fitting an ordinary least squares regres-
sion {(OLS} or weighted least squares regression (WLS)
through data points selected on a density-dependent mortal-
ity criterion (Ford 1975; Wilson and Lee 1988), and (3) esti-
mating coefficients via major axis analysis or principal
components analysis (PCA) based on chosen data (Mohler et
al. 1978; Hutchings and Budd 1981; Bi and Turvey 1997,
Wilson et al. 1999). The last iwo methods define an “aver-
age” maximum size—density line (Osawa and Sugita 1989)
rather than a “biological” maximum size—density line (Smith
and Woods 1997), In theory, the maximum size~density line
should be the upper boundary line of the selected data points
(Weller 1987). Many analyses and applications of the ~3/2
power law have failed to account for the asymptotic and lim-
iting nature of the maximum size—density line when cstimat-
ing coefficients. To correct this problem, Solomon and
Zhang (2002) shifted the “average” maximum size-density
line estimated by reduced major axis (RMA) regression par-
allel and upward to intersect the plot with the largest RD by
increasing the estimated intercept, while preserving the esti-
mated slope value.

In a “concept” paper in Ecology, Thomson ct al. (1996)
discussed the inappropriatencss of commeonly used standard
statistical methods such as correlation and regression for es~
timating or testing limiting relationships in ecology. They
suggested alternative methods for estimating {unctions along
the edges of distribution such as mixture models (Maller
1990; Kaiser et al. 1994) and production [rontiers (Fire et
al. 1994). Alternatively, Scharf et al. (1998) and Cade et al.
(1999) applied quantile regression to model-limiting rela-
tions and account for unmeasured ecological factors by esti-
mating changes near upper extremes of data distributions. Bi
et al. (2000) and Bi (2001, 2004) adopted a stochastic fron-
tier production function to estimate the self-thinning line for
even-aged pure pine stands, concluding that it used all data
points without subjective selection and provided an efficient
estimation of the self-thinning upper boundary.

The purpose of the present study is to compare alternative
regression methods that have been or can be used to estimate
the self-thinning boundary line. The methods include three
regression-based techniques and three technigues used in
economics studies (production functions). The self-thinning
lincs obtained by the six methods are also compared with
traditional ways of fitting the line such as hand fitting the
upper boundary line, fitting the line using the plots selected
by the interval method, and fitting the line using the plots se-
lected based on RD. An example was used to demonstrate
and compare the methods. However, we emphasize that the
objective of this study is not to test whether or not the slope
coefficients estimated by alternative methods are signifi-
cantly different from the theoretical constant,

Theoretical background

First we briefly review the three regression-based tech-
niques: OLS, RMA repression, and quantile regression (QR).
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OLS

OLS is generally acknowledged to be the best method for
estimating the conditional mean of one random variable given
a fixed value of another. For estimating the two coefficients
of the maximum size-density line, however, researchers
have realized that OLS is inappropriate because in this case
the primary interest is in the values of the equation parame-
ters themselves, which are used to describe the functional re-
lationship between two random variables (Leduc 1987),

RMA

Mohler et al. {1978) introduced the use of PCA (o esti-
mate the regression coefficients between logM and logh,
They argued that PCA is preferable to OLS, since the first
axis represents the line that minimizes the sum of the squared
perpendicular distances of the points to the Hne and thus
makes no assumptions about which is the dependent and
which is the independent variable. Within the techniques of
PCA, two variants are commonly used: major axis regres-
sion (MA) and RMA. One limitation of MA is that it is sen-
sitive to the scale of measurement and can yield different
results when the axes of the bivariate plot are rotated. RMA,
on the other hand, overcomes the scale dependence of the
MA regression technique by standardizing the variables M
and N before the scaling exponent is computed (LaBarbera
[989; Niklas 1994}, RMA can be summarized as follows:
Assume a linear regression model y = + Bx + €, where y and
x are dependent and independent variables, respectively, o and
B are OLS regression coefficients, and € is a random error

P
min| Y tly- YR+ Y (-1
teiily, 26 1) j=0 ielily, 2f )

Clearly, positive and negative residuals are differentially
weighted for QR other than at 1= 0.5. The advantages of QR
are (1) it is robust to distribution assumptions, (2) it is equiva-
lent to monotonic transformation, (3) the term w(X) allows the
random error € to change as a function of X, accommodating
both homogeneous and heteroscedastic error models, and (4) QR
estimates are insensitive to extreme values of outlying de-
pendent variables, However, the variance of quantile regres-
sion estimator is U-shaped with T changing from zcro to one.
Thus, the estimated boundary line by quantile regression can
be variable even with a very small change in T. The variability
is particularly high when the number of data points under
analysis is small (Scharf et al. 1998; Cade and Noon 2003).

Next we review three methods for estimating frontier pro-
duction functions. In economics, a frontier production func-
tion is defined as a function giving the maximum possible
output for a given input set and can be used to study technical
efficiency of individual firms. The word “frontier” empha-
sizes the idea of maximality (Schmidt 1985-1986; Greene
1997). Let a production process or technology be repre-
sented by Q; = f(x;, B)e®, where Q denotes output, x denotes
a set of inputs, § is a set of parameters to be estimated, and i
denotes producers. In most applications, after transforma-

»
Yi— szxij
j=0
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term. The RMA slope coefficient is Brma = B / Ir,,l, where
7y, 18 Pearson’s correlation coefficient between y and x. The
standard error (SE) of Py, Is equal to the SE of . The
RMA intercept coefficient is lgya =¥ — PrmaX, and the SE

of tpya 18 equal to the SE of o (Solomon and Zhang 2002).
QR

Classic OLS regression can be viewed as a natural way of
estimating conditional means for modeling central tendency.
In contrast, QR solves an oplimization problem of minimiz-
ing an asymmetric function of absolute error Joss (Koenker
and Bassett 1978; Koenker and Portnoy [996; Bi et al.
2002). It is capable of providing statistical analysis and esti-
mation for linear model fit to any part of a response distribu-
tion, including near the upper bounds, without imposing
stringent assumptions on the error distributions (Scharf et al.
1998; Cade et al. 1999; Cade and Noon 2003). The tth
quantile (0 £ v £ 1) of a random variable y is defined as the
smallest real value of ¥ such that the probability of obtaining
any smaller values is greater than or equal to . For a linear
model ¥ = XP + v(X)e, the 1th regression quantile of v condi-
tional on X s defined as @, (t|X) = XB(1), where y is an n X
1 vector of dependent responses, X is an n X p matrix of pre-
dictors (the first column of X consists of 1%s (an intercept)),
Bis a p x 1 vector of unknown regression coefficients, w(e) >
0 is a known function, and e is an n x 1 vector of random er-
rors. The (7 can be estimated by minimizing an asymmet-
ric loss function of absclute values of residuals, where
positive residuals are given weights equal to T and negative
residuals are given weight equal to 1 — 1 as follows:

tion, a production function is linear in the logarithmic scales
of output and a set of independent variables:

yi = logQ; = o + Bx; +¢;

Since a production function gives maximal output rather
than mean output by definition, the residuals €; are assumed
to possess a nonzero mean and constant variance and to be
randomly distributed across firms (Greene 1997). Economet-
ric researchers have developed many methods for estimating
frontier production functions, We review three of these next.

Corrected OLS (COLS)

In all frontier production functions, the slope parameter 3
can be consistently estimated by OLS, since OLS is robust
to non-normality. The intercept parameter o in a frontier
model can be consistently estimated simply by shifting the
OLS line upward so that the largest residual is zero. That is

Qlcors =@+ m;:lXEf

This procedure is known as COLS (Greene 1993, 1997).
Kopp and Mullahy (1993) showed that COLS was actually a
method of moments estimator and provided expressions for
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the variances. They further concluded that COLS was an ap-
pealing alternative to maximuin likelihood (ML) estimation
of frontier models because of its computational simplicity
and relative robustness.

Deterministic frontier fonction (DFF)

In a deterministic frontier model, output is bounded from
above by a deterministic (nonstochastic) production func-
tion. Aigner and Chu (1968) used linear programming and
quadratic programming to fit a DFF. In the linear program-
ming approach, the sum of the absolute values of the residu-
als are minimized as

nlllin Z‘.'|y‘- —o.— Bx,-i

subjecttog; =y; — 0t —Bx; £ 0,9

whereas in the gquadratic programming approach, the sum of
squared residuals is minimized as

n}jin > 00 BX;)Z

subjecttog; =y, —o—fix; < 0, %

The negative residuals force all observations of output to
be on or below the frontier function through a set of con-
straints, However, the problems arising with the mathemati-
cal optimization approach include (1) undue sensitivity to
outliers, (2} lack of SE for the estimated parameters, and
(3) statistics for inference is difficult (Greene 1980).

Stochastic frontier function (SFI)

In contrast, a stochastic frontier model specifies that the
maximum output a producer can obtain is assumed to be de-
termined both by the production function and by random ex-
ternal factors (Aigner et al. 1977; Greene 1993, 1997,
Kumbhakar and Lovell 2000). An appropriate model for the
stochastic frontier is

i = logQ;
=o+fx+g
=0+ P, + v, -y

where g; = v; — 1; is a compound error term with u; = 0 and v;
unrestricted. Both components of the compound error term
are generally assumed to be independent and identically dis-
tributed (i.i.d.) across observations, The v; are usually as-
sumed to have a symmetric distribution such as a normal
distribution, that is, v; ~ N(0, 6,%) and represent any stochas-
tic factors beyond the firms’ control. A stochastic frontier
m(_l)del collapses into a deterministic frontier model when
o,” = 0. The i; embody the one-side (asymmetric) part of the
compound ervor term €; (Aigner et al. 1977, Greene 1993,
1997). Several specifications have been considered for ug
(1) a half-normal distribution »; ~ N(0, 6,7l (Aigner et al,
1977y — in this case, E(y;) = (v2/m)o, and var(y,) = (1 - 2/n)
0,5 (2) an exponential distribution flu;) = 8e%% with 8 > 0
and u; > 0 (Aigner et al. 1977); and (3} a truncated normal
(Stevenson 1980). The one-side error component g, is taken
to be a variable obtained by truncating at zero with a possi-
bly nonzero mean, that is, u; ~ N{, Guz). The three afore-
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mentioned specifications were implemented in LIMDEP
computer software (Greene 1998).

Materials and methods

In this study an example stand of even-aged eastern white
pine (Pinus strobus L.} was used to compare the aiternative
methods for estimating the maximum size—density relation-
ship of self-thinning. A total of 262 permanent plots of
white pine (constituting 280% of total basal area) were ob-
tained from the database used for the development of FIBER
3.0 {(Solomon et al. 1995). The descriptive statistics of vari-
ables are listed in Table 1. The RD was computed for each
plot based on the relationship between logD and log¥ (ie.,
assuming the slope coefficient = ~0.60), following a proce-
dure similar to the one in Solomon and Zhang (2002).

We decided to work with the relationship between logD
and logN rather than that between logM and logh for several
reasons: (1) the quadratic mean tree diameter (D) is a com-
mon stand variable used in forestry practice, and it is a di-
rect measurement of average tree size in forest inventory,
(2) there is an exact relationship between D, N, and stand to-
tal basal area, and (3) we avoid introducing biases into the
analysis caused by computing tree volume from a specific
volume equation or table {Curtis and Marshall 2000). The
regression model was

[1] logD = [§, — BilogVN + ¢

whete By and B, are regression coefficients to be estimated
and € is a model error term.

Firstly, we purposefully selected two data points that lay
close to a visualized upper boundary for all available plots.
The By and 3, coefficients were calculated based on the x
(i.e., logh) and y (ie., logD) coordinates of the two plots
(namely hand-fitting method). Secondly, the range of logh'
was divided into equal intervals, and one plot with the maxi-
mum logD was selected from each interval, These plots were
used to fit cq. 1 by OLS (namely interval method) (Scharf et al.
1998; Bi and Turvey 1997). Thirdly, the plots with RD = 0.85
were used to fit eq. 1 by OLS (namely RD method) (Solo~
mon and Zhang 2002). Lastly, all available plots (n = 262)
were used to fit eq. 1 by the six regression methods reviewed
in the last section. SAS (SAS Institute Inc. 1999) was used
for the OIS, RMA, QR (regression quantile T = 0.999), and
COLS methods. LINDO was vsed for DFF methods with the
linear programming approach (LINDO System Inc. 1998),
and LIMDEP 7 was used for SFF methods assuming u; fol-
fows a half-normal distribution (Econometric Software Inc.
1998).

Results and discussion

In the hand-fitting method a visualized line was placed
across the upper boundary of available plots (Fig. 1). The x
and y coordinates of the top-most two plots (logD, =
3.26919, logh, = 7.15851, and logD; = 3.66587, logh, =
6.42649) were used to compute the , and B coefficients of
eq. I, resulting in

2] logh = 7.15 - 0.54logh
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Table 1. Descriptive statistics of variables (n = 262 plots),

Variable Mean  SD Min, Max.

Quadratic mean diameter (cm) 26.1 8.3 13.8 647
Density (trees/ha) 726 439 17 2619

Although the hand-fitting method is considered arbitrary
and subjective, the resultant scif-thinning line is the upper
limiting boundary for the maximum size-density relation-
ship (Yoda et al. 1963; Drew and Flewelling 1977; Niklas
1994).

Following the interval method in Bi and Turvey (1997),

the range of logh was divided into seven equal intervals
(Fig. 2). One plot with the maximum logD was selected
from each interval. These seven plots were used to fit eq. 1
by OLS and produced the following model:

{3} logD = 6.50 — 0.46logN

More intervals (12 intervals) were also tried, but the resul-
tant model By = 6.43 and P, = -0.45) was very similar to
eq. 3. The interval method is less subjective than the
hand-fitting method. However, it often gencrates a small
sample size for model fitting (Blackburn et al. 1992; Bi and
Turvey 1997), and the coefficient estimates may also vary
depending on the number of size classes and the method of
dividing size classes (Scharf et al. 1998). More importantly,
it is possible to include some plots at lower densities (i.e., at
the left end of the logN axis) that have not reached the stage
of self-thinning. Consequently, the slope cocfficient of the
self-thinning line based on this subset of the plots may be
flatter than expected (Westoby 1984; Osawa and Allen
1993). In this case, the slope coefficient (-0.43) of eq. 3
would produce a line flatter than the line defined by eq. 2 (,
= -0.54).

Solomon and Zhang (2002) considered any plot with a
high RD (say RD = 0.70) to be undergoing a self-thinning
process and experiencing density-related mortality. There~

fore, it is reasonable to select plots with an RD larger than a '

predetermined threshold value to fit the maximum size—den-
sity relationship. In this study we chose 0.85 as the threshold
value for RD and ended up with 21 plots (Fig. 3). The resul-
tant OLS model was

(41 logDh = 7.66 - 0.62logN

Using a higher threshold value of RD (e.g., RD 2 0.90
produced a similar model with }y = 7.62 and B, = ~0.61. The
concern with the RD method is that the calculation of RD
for each plot is based on a theoretical constant for the slope
coefficient in eq. 1 {(i.e., —0.6 in this study). Thus, the central
tendency of this subset of the plots has been predetermined
or influenced by the theoretical slope constant. In this case,
the estimated slope (-0.62) by the RD method was close to
the theoretical constant, and much steeper than those of
eqs. 1 and 2,

One way to avoid subjectively selecting data points is (o
use all available plots and fit the self-thinning line by appro-
priate regression techniques. Next we focus on the compari-
son of the six regression methods reviewed in the
Theoretical background section. Table 2 shows the two re-
gression coefficients for the six models. Figure 4 illustrates
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Fig. 1. The maximum size—density line obtained from the
hand-fitting method.
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the regression lines obtained by the six modeling methods, 1t
was clear that OLS represented a central tendency line (3 =
5.78 and B, = —0.38) across the range of data. The COLS
method moved the OLS line upward to intersect the plot
with the largest QLS residual € = (0.35). The COLS method
increased the estimate of the intercept coefficient from 5.78
to 6.13, while preserving the estimate of the slope value
(-0.38). However, the COLS line was not appropriate to de-
scribe the maximum size—density relationship because of the
inappropriate stope coefficient of the OLS line. The two co-
efficients (B, = 6.86 and §; = —0.55) of the RMA line were
recalenlated based on Pearson’s correlation coefficient be-
tween logD and logN (Solomon and Zhang 2002). The result
was an “average” line across the data. If the COLS method
was used again to “correct” the RMA line given the plot
with the largest OLS residual, the new intercept coefficient
would be 7.21 instead of 6.86, while the slope coefficient re-
mained the same (=0.55). It would produce a Jine (not shown
in Fig. 4) close to the QR and DFF lines discussed next.

QR and DFF resulted in the same intercept (8, = 7.15} and
slope B, = —0.54) coefficients for eq. 1. Since both QR and
DFF methods forced all observations (o be on or below a
limiting boundary line, they produced a self-thinning line
very similar to the upper limiting boundary line of the
hand-fitting method (eq. 2).

On the other hand, the error term €; in the SFF method
has an asymmetric and non-normal distribution with a nega-
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Fig. 2. The maximum size—density lines obtained using the plots
selected by the interval method, using ordinary least squares
(OLS).
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tive mean. But a negative mean does not imply that all resid-
uals are negative and allows a few residuals to be positive,
especially when 6, is mach larger than zero (Bi et al. 2000,
Theretore, the SFF method yielded a maximum size—density
line (B¢ = 6.47 and B, = ~0.45) “lower” than the upper limit-
ing boundary line (Fig. 4). This line describes the maximum
size-density  relationship by taking into  account
site-occupancy due to density-dependent growth and mortal-
ity within individual stands and the effects of external fac-
tors that take place at random over space and time on the
frontier {Guo and Rundel 1998; Bi et al. 2000; Bi 2001). Its
intercept and slope are similar to those of eq. 3 by the inter-
val method. Such comparability was consistent with other
studies (Bi and Turvey 1997; Bi 2000). However, the SFF
method can yield an upper limiting boundary line only when
the estimated o,* is small and close to zero, as in the case of
Bi (2004).

Summary

Our results indicate that QR, DFF, SEF methods have the
potential to produce an upper limiting boundary line above
all plots for the maximum size—density relationship, without
subjectively selecting a subset of data points based on prede-
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Fig. 3. The maximum size-density lines obtained using the plots
selected with RD > 0.85 and fit using ordinary least squares (OLS).
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Table 2. Regression coefficients of the six models.

Method Be B

Ordinary least squares {OLS) . 578 038
Reduced major axis (RMA) 686 -0.55
Quantile regression {(QR) 715 =054
Corrected ordinary feast squares {COLS)  6.13 038
Deterministic frontier function (DFEF) 715 -0.54
Stochastic frontier function (SFF) 6.47 —0.45

fined criteria. In contrast, OLS, COLS, and RMA methods
are sensitive to the data selected for model fitting and may
produce scif-thinning lines with inappropriate slopes. How-
ever, statistical inference is very difficult with DFF and QR
methods. Although SFF produces a self-thinning line lower
than the upper limiting boundary line because of the nature
of the method, the method can easily perform statistical in-
ference on the model coefficients, given that there are no
significant departures from underlying distributional as-
sumptions.
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Fig. 4. The maximum size—density lines obtained from the six
modeling metheds, Corrected ordinary least squares, COLS; de-
terministic frontier function, DFF; ordinary least squares, OLS;
QR, quantile regression; reduced major axis, RMA; stochastic
frontier function, SFF.
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