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Abstract: The fundamental validity of the self-thinning "law" has been debated over the last three decades. A long-sanding 
concern centers on how to objectively sclect data points for fitting the self-thinning line and the most appropriate re- 
gression method for estimating the two coelficients. Using data from an even-aged Pinus snwbus L. stand as an exam- 
ple, we show that quantile regression (QR), deterministic frontier function (DFF), and stochastic frontier function (SFF) 
methods have the potential to produce an upper linliting boundary line above all plots for the maximum size-density rela- 
tionship, without subjectively selecting a subset of data points based on predefined criteria. On the other hand, ordinary 
least squares (OLS), corrected ordinary least squares (COLS), and reduced major axis (RMA) methods are sensitive to 
the data selected for model filting and may produce self-thinning lines with inappropriate slopes. However, statistical infer- 
ence is very difficult with the DFF and QR methods. Although SFF produces a self-thinning line lower than the upper 
limiting boundary line because of the nature of the method, it can easily produce the statistics for inference on the 
model coefficients, given that there are no significant departures from underlying distributional assumptions. 

Resume : La validit6 fondamentale de la << loi n d'autoeclaircie a 616 debattue au coun des trois dernibres decennies. 
Une prCoccupation de langue date porte sur la faqon de selectionner objectivelnent les donnecs pour ajuster la droitc 
d'auto6claircie et sur la methode de regression la plus appropriee pour estimer les deux coefficients. A I'aide de don- 
ndes provenant d'un pcuplement dquienne de Pinus strobus L. comme exemple, les auteurs montrent que les mCthodcs 
de regression quantile (RQ), de fonction deterministe frontikre (FDF) et de fonction stochastique frontihre (FSF) ont la 
capacitd de produire une droile qui constitue la lilnite superieure nu-dessus de toutes les parceiles pour la relation 
maximale de la dimensiolt en fonctio~l de la densitd sans selectionner subjectiven~ent un sous-ensemble de poillts bases 
sur des critbres prCddfinis. D'un autre ~616. la mQhode ordinaire des moindres carres, la methode orditvaire conig6e des 
moindres carrds et la lnCthode des axes majeun rCduits sont sensibles aux donndes sdlectionnCes pour I'ajustement du 
modhle et peuvent produire des droites d'autoeclaircie avec des pentes inappropri&s. Cependant. I'inf6rence statistique 
est 115s difficile avec les mdthodes FDF et RQ. MBme si la mdthode FSF produit une droite d'autodclaircie plus basse 
que la droite qui conslilue la limite superieure maximale, A cause de la nature de la mCthode, elle peut facilemellt pro- 
duire les slatistiques pour deduire les coefficients du modEle, elant donne qu'il n'y a pas de demarcation significative 
des hypothbses sous-jacentes de distribution. 

[Traduit par la Rddactionl 

Introduction mortality. Historically, this self-thinning line has been ex- 
pressed by relating either mean plant biomass o r  total stand 

Self-thinning is a dynamic equilibrium between plant biomass to  stand density on logarithmic scales with a con- 
growth and death at crowding density and is governed by the stant slope of  -1.5 (for mean biomass) o r  -0.5 (for total bio- 
so-called "self-thinning rule" or "-312 power law" (Yoda et  mass) in plant population ecology (Yoda et  al. 1963: 
al. 1963; Wcstoby 1984). T h e  rule states that, in logarithmic Westoby 1984). Stem volume has been used oflen in lieu of 
scales, the relationship between average plant size and stand biomass for tree species. A long tradition in forestry has 
density is a straight line ( i t . ,  self-thinning line o r  maximum been to relate mean diameter to stand density, that is, lo@= 
size-density relationship) for a stand undergoing density-related a - 1.6logD, where N is number of trees per unit area, D is 
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quadratic mean diameter, and a is a constant (Reineke 1933). 
A recent variation of this expression is logD = b - O.6logN 
(Jack and Long 19961, where b is a coostant. The intercept 
of the self-thinning line varies with species, but only within 
rial-row logarithmic limits (White 1985), while the slope pa- 
rainetcr is apparently consistent regardless of species, age, 
and site quality (Jack and Long 1996). Consequently, the 
self-thinning rule has been considered one of the most im- 
portant principles in plant population ecology (Drew and 
Flewelling 1977; Long and Smith 1984; Jack and Long 1996). 

Since the late 1980s the controversy about the fundamental 
validity of the self-thinning rule has been more intense. The 
debate. has primarily focused on whether the slope of the 
sclf-thinning line is invariant (Zeide 1987; Weller 1989; Lotls- 
dale 1990; Osawa and Allen 1993; Guo and Rundel 1998). A 
long-standing concern centers on the most appropriate meth- 
ods for data selectio~l and parameter estimation in the 
self-thinning equations (Weller 1989; Bi and Turvey 1997; Bi 
et al. 2000). It is emphasized that data used to estimate the 
nlaxinlum sizedensity relationship should be carefully se- 
Iccted. Incorectly including data points from stands of mean 
density (in number of plants per area) that have not yet begun 
to thin will flatLen the estimated slope of the line from -312 
toward -1, while inclusion of data points coming from stands 
of high density that have not yet begun to thin will steepen 
the slope of the line (Westoby 1984; Osawa and Allen 1993). 
Some authors considered that the maximum size-density rela- 
tionships for given data sets were curvilinear instead of linear 
on a log-log scale (Zeide 1987; Cao et al. 2000). Others ar- 
gued that it is possible that some plots at lower densities in a 
given data set ]nay have not reached the stage of self-thinning 
yet (i.e., growth periods are not sufficiently long). Therefore, 
these plots should not be included for estimating the 
self-thinning line (Westoby 1984; Osawa and Allen 1993). In 
this study we assume the maxitnurn sizdensity relationsl~ip is 
linear across the entire range of trec de~lsities. 

Over the last three decades researcllers have applied dif- 
ferent methods for selecting appropriate data points used to 
cstimate thc maximum sizedensity relationship. A common 
mcthod is to purposefully select data points that lie close to 
an arbitrarily visualized upper boundary based on some cri- 
teria (Westoby 1984; Osawa and-Sugita 1989; Osawa and 
Allen 1993; Wilson et al. 1999). As many authors have 
poinled out, this method is arbitrary and subjective. To im- 
prove selection objectivity, Bi and Turvey (1997) plotted the 
stand biomass @-axis) against density (x-axis) on a log-log 
scale and divided the range of log density into a specified 
number of equal intervals. Then one data point of maximum 
stand biomass was selected from each interval. A similar 
method was used in an animal study (Blackburn et al. 1992). 
In a recent study, Solomon and Zhang (2002) assumed the 
theoretical value of the slope coefficient of the maximum 
size-density line (is., -1.5 for the logM - logN relationship, 
where M is mean tree volume). The intcrccpt cocfficient was 
calculated by a = logM + 1.5 IogN, using the stand with the 
la!-gest relative density (RD) (Drew and Flewelling 1979). 
Once determined, the equation was used to compute maxi- 
mum stand density (N,,,,) for M of a given stand. The RD 
was calculated as NIN,,,,, for each stand, where N is current 
stand density. Stands with RD 20.7 were the11 selected for 
de\,elopiog the lnaximu~n size-density relationship. 
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Historically, there are several regression  neth hods used to 
estimate the two coefficients of the maximum size-density 
line, such as (1) arbitrarily hand fitting a line above an upper 
boundary of data points (Yoda et al. 1963; Drew and 
Flewelling 1977). (2) fitting an ordinary least squares regres- 
sion (OLS) or weighted least squares regression (WLS) 
through data points selected on a density-dependent mortal- 
ity criterion (Ford 1975; Wilson and Lee 1988), and (3) esti- 
nlating coefficients via major axis analysis or principal 
components analysis (PCA) based on chosen data (Mohler el 
81. 1978; Hutchings and Budd 1981; Bi and Turvey 1997; 
Wilson el al. 1999). The last two methods define an "avcr- 
age" maximum size-density line (Osawa and Sugita 1989) 
rather than a "biological" maximum size-density line (Smith 
and Woods 1997). In theory, the maximum si7.e-density line 
should be the upper boundary line of the selected data points 
(Weller 1987). Many analyses and applications of the -312 
power law have failed to account for the asymptotic and lini- 
iting nature of the maximum sizedensity line when estimat- 
ing coefficients. To correct this problem, Solomon and 
Zhang (2002) shifted the "average" maximum size-density 
line estimated by reduced major axis (RMA) regression par- 
allel and upward to intersect the plot with the largest RD by 
increasing the esti~nated intercept, while preserving the esti- 
mated slope value. 

In a "concept" paper in Ecology, Thomson ct al. (1996) 
discussed the inappropriatc~less of com~no~lly uscd standard 
statistical methods such as correlation and regression for es- 
timating or testing limiting relationships in ecology. They 
suggested alternative methods for estimating functions along 
the edges of distribution such as mixture models (Maller 
1990; Kaiser et al. 1994) and production Crontiers (Fare et 
al. 1994). Alternatively, Scharf et al. (1998) and Cade et al. 
(1999) applied quantile regressio~l to model-limiting rela- 
tions and account for unmeasured ecological factors by esti- 
mating changes near upper extremes of data distributions. Bi 
el al. (2000) and Bi (2001. 2004) adopted a stochastic fron- 
tier production function to estimate the self-thinning line for 
even-aged pure pine stands, concluding that it used all data 
points without subjective selection and provided an efficient 
cstinlation of the self-thinning upper bounda~y. 

The purpose of the present study is to compare alternative 
regression methods that have been or can be used to estimate 
the self-thinning boundary line. The methods include three 
regression-based techniques and three techniques used in 
economics studies (production functions). The self-thinning 
lincs obtained by the six methods arc also compared with 
traditional ways of fitting the line such as hand fitting the 
upper boundary line, fitting the line using the plots selected 
by the interval method, and fitting the line using the plots se- 
lected based on RD. An example was used to demonstrate 
and c0mpal.e the methods. However, we emphasize that the 
objective OF this study is not to test whether or not the slope 
coefficients estimated by alternative methods are signili- 
cantly different from the theoretical constant. 

Theoretical background 

First we briefly review the three regression-based tech- 
niques: OLS, RMA regression, and quantile regression (QR). 





the variances. They further concluded that COLS was an ap- 
pealing altcrnative to inaxiinu~n likelihood (ML) estimation 
of frontier models because of its computational siinplicity 
and relative robustness. 

Deterministic frontier function (DFF) 
In a deterininistic frontier model, output is bounded from 

above by a deterministic (nonstochastic) production func- 
tion. Aigner and Chu (1968) used linear programming and 
quadratic prograininiiig to fit a DFF. In the linear program- 
ming approach, the sum of the absolute values of the residu- 
als are minimized as 

rninClyj -a-Pxi/  
' ' 1  

subject toe; = yi -a-pxi  < 0,V 

whereas in the quadratic programming approach, the sum of 
squared residuals is minimized as 

min C ( y i  -a - px;)' 
P i 

subject to E; = y; -a - @xi < 0, V 

The negative residuals force all observations of output to 
be on or below the frontier function through a set of con- 
straints. However, the problems arising with the mathemati- 
cal optimization approach include (1) undue sensitivity to 
outliers, (2) lack of SE for the estimated parameters, and 
(3) statistics for inference is difficult (Greene 1980). 

Stochastic frontier function (SFF) 
In contrast, a stochastic frontier model specifies that the 

maximum output a producer can obtain is assumed to be de- 
termined both by the production functioil and by random ex- 
ternal factors (Aigner ct al. 1977; Greene 1993, 1997; 
Kumbhakar and Lovell 2000). An appropriate model for the 
stochastic frontier is 

where &; = vj - ui is a compound error term with u; Z 0 and v; 
unrestricted. Both components of the coinpout~d error tern1 
are generally assumed to be independent and identically dis- 
tributed (i.i.d.) across observations. The v; are usually as- 
sumed to have a symmetric distribution such as a normal 
distribution, that is, vi - N(0, a:) and represent any stochas- 
tic factors beyond the firms' control. A stochastic frontier 
  nod el collapses into a deterministic frontier model when 
a,,' = 0. The ui embody the one-side (asymmetric) pelt of the 
compoui~d error term c j  (Aigner et al. 1977; Greeae 1993, 
1997). Scvcral spccifications have been considered for u; 
(I) a half-normal distribution u; - lN(0, a,<')I (Aigner et al. 
1977) - i n  this case, E(4) = (J2/nNu and var(ir;) = ( I  - 2/n) 
a:; (2) an expotle~itial distribution flu;) = 8esu with 8 > 0 
and u; > 0 (Aigner et al. 1977); and (3) a truncated ilorinal 
(Stcvenson 1980). The one-side error component ui is taken 
to be a variable obtained by truncating at zero with a possi- 
bly nonzcro mean, that is, u; - N u ,  a,:). Thc three afore- 
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mentioned specifications were implemented in LIMDEP 
computer software (Greer~e 1998). 

Materials and methods 

In this study an example stand of even-aged eastelm white 
pine (Pinus sfrobus L.) was used to compare the alternative 
methods for estimating the maximum size-density relation- 
ship of self-thinning. A total of 262 permanent plots of 
white pine (constituting 280% of total basal area) were ob- 
tained from the database used for the development of FIBER 
3.0 (Solomon et al. 1995). The descriptive statistics of vari- 
ables are listed in Table 1. The RD was computed for each 
plot based on the relationship between IogD and IogN (i.e., 
assuming the slope coefficient = -0.60), following a proce- 
dure siinilar to the one in Soloino~~ and Ulang (2002). 

We decided to work with the relationship between logD 
and logN rather than that between logM and IogN for several 
reasons: (I) the quadratic mcan tree diameter (D) is a com- 
rnon stand variable used in forestry practice, and it is a di- 
rect measurement of average tree size in forest inventory, 
(2) there is an exact relationship between D, N, and stand to- 
tal basal area, and (3) we avoid i~~tro~iucing biases into the 
analysis caused by computing tree voluine from a specific 
voluine equation or table (Curtis and Marshall 2000). The 
regression model was 

[ I ]  IogD = p, - PllogN + E 

where p, and pi  are regression coefficients to be estimated 
and E is a model error term. 

Firstly, we purposefully selected two data points that lay 
close to a visualized upper boundary for all available plots. 
The Po and PI  coefficients were calculated based on the x 
(i.e., IogN) and y (i.e., IogD) coordinates of the two plots 
(nanlely hand-fitting method). Secondly, the range of logN 
was divided into equal intervals, and one plot with the maxi- 
mum logD was selected from each interval. These plots were 
uscd to fit cq. 1 by OLS (namcly inte~val method) (Scharf et al. 
1998: Bi and Turvey 1997). Thirdly, the plots with RD 2 0.85 
were used to fit eq. 1 by OLS (namely RD method) (Solo- 
mon and Zhang 2002). Lastly, all available plots (n = 262) 
were used to fit eq. 1 by the six regression methods reviewed 
in the last section. SAS (SAS Institute Inc. 1999) was used 
for the OLS, RMA, QR (regression quantile z = 0.9991, and 
COLS methods. LINDO was used for DEE methods with the 
linear programming approach (LINDO System Inc. 199% 
and LMDEP 7 was used for SFF methods assuming ui fol- 
lows a half-normal distribution (Econometric Software Inc. 
1998). 

Results and discussion 

In the hand-fitting method a visualized line was placed 
across the upper boundary of available plots (Fig. I). The .r 
and 3' coordinates of the top-niost two plots (IogD, = 
3.26919, IogN, = 7.15851, and logD, = 3.66587, IogN, = 
6.42649) were used to compute the Po and PI cocflicients of 
eq. 1, resulting in 

[2] logD = 7.15 - 0.541ogN 
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Table 1. Descriptive statistics of variables ( 1 1  = 262 plots). 

Variable Mean SD Min. Max. 
Quadratic mean diameter (cm) 26.1 8.3 13.8 64.7 
Density (treeslha) 726 439 17 2619 

Although tlie hand-fitting method is considered arbitrary 
and subjective, the resultant self-thinning line is the upper 
limiting boundary for tlie maximum size-density relation- 
ship (Yoda et al. 1963; Drew and Flewelling 1977; Niklas 
1994). 

Following the interval method in Bi and Turvey (1997), 
the range of logN was divided into seven equal intervals 
(Fig. 2). One plot with tlie maximum logD was selected 
from cach interval. These seven plots were used to fit eq. I 
by OLS and produced the following model: 

131 logD = 6.50 - 0.461ogN 

More intervals (12 intervals) were also tried, but the resul- 
tant model (Po = 6.43 and PI = -0.45) was very similar to 
eq. 3. The interval method is less subjective than the 
hand-fitting method. However, it often generates a small 
sample size for model fitting (Blackbum et al. 1992: Bi and 
Turvey 1997), and the coefficient estimates may also vary 
depending on Lhe number of size classes and the melhod of 
dividing size classes (Scharf et al. 1998). More importantly, 
it is possible to include some plots at Iowcr densities (it. ,  at 
the left end of the logN axis) that have not reached the stage 
of self-thinning. Consequently, the slope cocfficicnt of the 
self-thinning line based on this subset of the plots may be 
flatter than expected (Westoby 1984; Osawa and Allen 
1993). In this case, the slope coefficient (-0.43) of eq. 3 
would produce a line flatter than the line defined by eq. 2 (PI 
= 4.54). 

Solomon and Zhang (2002) considered any plot with a 
high RD (say RD t 0.70) to be undergoing a self-thinning 
process and experiencing density-related mortality. There- 
fore, it is reasonable to sclect plots with an RD larger than a ' 
predetermined threshold value to fit the maximum size-den- 
sity relationship. In this study we chose 0.85 as the threshold 
value for RD and ended up with 21 plots (Fig. 3). The resul- 
tant OLS model was 

[4] logD = 7.66 - 0.621ogN 

Using a higher threshold value of RD (e.g., RD t 0.90) 
produced a similar model with Po = 7.62 and PI = -0.61. The 
conceni with the RD method is that the calculation of RD 
for each plot is based on a theoretical colistant for the slope 
coefficient in eq. 1 (i.e., -0.6 in this study). Thus, the central 
tendency of this subset of the plots has been predetertuined 
or influenced by the theoretical slope constant. In this case, 
the esti~nated slope (-0.62) by the RD method was closc to 
the theoretical constant, and much steeper than those of 
eqs. 1 and 2. 

One way to avoid subjectively selecting data points is Lo 
use all available plots and fit the self-thinning line by appro- 
priate regression techniques. Next we focus on the compari- 
son of the six regression methods reviewed in the 
Theoretical background section. Table 2 shows the two re- 
gression coefficietits for the six models. Figure 4 illustrates 

Fig. 1. The maximum size-density line obtained from the 
hand-fitting method. 

the regression lines obtained by the six modeling methods. It 
was clear that OLS represented a central tendency line (Po = 
5.78 and P, = -0.38) across the range of data. The COLS 
method moved the OLS line upward to intersect the plot 
with the largest OLS residual 2 = (0.35). The COLS method 
increased the estimate of the intercept coefficient from 5.78 
to 6.13, while preserving the estimate of the slope value 
(-0.38). However, the COLS line was not appropriate to de- 
scribe the maximum size-densitv relationshit, because of the 
inappropriate dope socfficicnt OI the 0L.S linc. The tuo LO- 

efficients tBA = 6.86 and 0, = -0.55) u i  the R M A  I~nc uvrc " "  . . 
recalculated based on Pearson's comelati011 coefficient bc- 
tween logD and logN (Solomon and Zhang 2002). The result 
was all "average" line across the data. If the COLS method 
was used again to "correct" the RMA line given the plot 
with the largest OLS ~'esidual, the new intercept coefficient 
would be 7.21 instead of 6.86, while the slope coefficient re- 
mained the same (-0.55). It would produce a line (not shown 
in Fig. 4) close to the QR and DFF lines discussed next. 

QR and DFF resulted in the same intercept (Po = 7.15) and 
slopc (PI = -0.54) coefficients for eq. I. Since both QR and 
DFF methods forced all observations to be on or below a 
limiting boundary line, they produced a self-thinning line 
very similar to the upper limiting boundary line of the 
hand-fitting method (eq. 2). 

On the other hand, the error term ci in the SFF method 
has an asymmetric and uon-normal distribution with a nega- 
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Fig. 2. The maximum size-densily lines obtained using the plots 
selected by the interval method, using ordinary least squares 
(OLS). 

0 Data Selecled -0LS Fit 

2.5 
4 4.5 5 5.5 6 6.5 7 7.5 8 

Log N 

tive mean. But a negative mean does not imply that all resid- 
uals are tiegative and allows a fcw residuals to be positive, 
especially when oV2is much larger than zero (Bi et al. 2000). 
Therefore, the SFF method yielded a maxitnum size4ensity 
line (po = 6.47 and P, = -0.45) "lower" than the upper limit- 
ing boundary line (Fig. 4). This line describes the maximum 
size-density wlationship by taking into account 
site-occupancy due to density-dependent growth and mortal- 
ity within individual stands and the effects of external fac- 
tors that take place at random over space and time on the 
frontier (Guo and Rundel 1998: Bi et al. 2000; Bi 2001). Its 
intercept and slope are similar to those of eq. 3 by the inter- 
val method. Such comparability was consistent with other 
studies (Bi and Turvev 1997: Bi 2000). However. the SFF 
method can yield an upper limiting boundary line drily when 
Ihe estimated a,' is small and close to zero, as in the case of 
Bi (2004). 

Summary 

Our results indicate that QR, DFF, SFF metliods have the 
potential to produce an upper limiting boundary line above 
all plots for the maximum size-density relationship, without 
subjectively selecting a subset of data poinls based on prede- 

Fig. 3. The maximum size-density lines obtained using ihe plots 
selected with RD > 0.85 and fit using ordinary least squares (OLS). 

.., I 0 Data Selected -0LS Fitlo 0 

2.5 
4 4.5 5 5.5 6 6.5 7 7.5 8 

Log N 

Table 2. Regression coefficients of the six models. 

Method P o  PI 
Ordinagy least squares (OLS) 5.78 4 .38 
Reduced major axis (RMA) 6.86 4.55 
Quantile regression (QR) 7.15 4 . 5 4  
Corrected ordinary least squares (COLS) 6.13 4 .38 
Deterministic frontier function (DFF) 7.15 4 .54  
Stochastic fronlier function (SFF) 6.47 -0.45 

fined criteria. In contrast, OLS, COLS, and RMA methods 
are sensitive to the data selected for model fitting and may 
produce self-thinning lines with inappropriate slopes. How- 
ever, statislical inference is very difficult with DFF and QR 
methods. Although SFF produces a self-thinning line lower 
than the upper limiting boundaly line because of the nature 
of the method, the method can easily perfortn statistical in- 
fercnce on the model coefficients, given that there are no 
significant departures from underlying distributional as- 
sumptions. 
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Fig. 4. The maximum size-density lines obtained from the six 
modeling methods. Corrected ordinary least squares, COLS; de- 
tenninistic rraritier ftlnctioe. DFF; ordinary least squares, OLS; 
QR, quantile regression; reduced major axis, RMA; stochastic 
frontier function, SFF. 
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