
Summary The gulf between process-based and empirical
approaches to modeling tree growth may be bridged, in part, by
the use of a common model. To this end, we have formulated a
process-based model of tree growth that can be fitted and ap-
plied in an empirical mode. The growth model is grounded in
pipe model theory and an optimal control model of crown de-
velopment. Together, the pipe model and the optimal control
model provide a framework for expressing the components of
tree biomass in terms of three standard inventory variables: tree
height, crown height and stem cross-sectional area. Growth
rates of the inventory variables and the components of biomass
are formulated from a carbon balance. Fundamentally, the pa-
rameters of the model comprise physiological rates and mor-
phological ratios. In principle, the values of these parameters
may be estimated by lower-level process models. Alterna-
tively, the physiological and morphological parameters com-
bine, under reasonable assumptions, into a set of aggregate
parameters, whose values can be estimated from inventory data
with a statistical fitting procedure.

Keywords: carbon balance, crown length, crown rise, diame-
ter, height, optimal control model, pipe model, self-thinning.

Introduction

The problem of forecasting tree growth can be approached as a
problem in forecasting the assimilation and allocation of car-
bon and other constituents. Tree-level models of carbon allo-
cation translate rates of carbon assimilation into growth rates
of tree diameters, heights, volumes and other attributes. By
providing these translations, allocation models link the sci-
ences that underlie forestry to the goods and services that
emerge from forestry.

Le Roux et al. (2001) recently reviewed 27 carbon-based
models of tree growth, including their approaches to carbon al-
location. Nearly half the models incorporate a “functional bal-
ance approach” to allocation. Two early examples of this
approach (Valentine 1985, Mäkelä 1986) were grounded in
pipe model theory (Shinozaki et al. 1964a, 1964b) and the
principle of functional balance (Davidson 1969), but other ar-

chitectural rules can be added or substituted (see Le Roux et al.
2001, Table V). For example, an optimal control model of car-
bon allocation (Mäkelä and Sievänen 1992), which derives in
part from pipe model theory and functional balance, has been
incorporated into the CROBAS model (Mäkelä 1997).

The functional balance approach is one of four basic ap-
proaches listed by Le Roux et al. (2001) for modeling carbon
allocation. By contrast, hundreds of empirical models of forest
growth have been fitted, and they come in a rich, but somewhat
frustrating, variety of mathematical forms. This variety may
be due to the absence of a robust theory that affords the deriva-
tion of efficacious models with wide applicability. Commonly,
one modeler may estimate one set of parameters, while an-
other modeler, somewhere else, estimates a completely differ-
ent set, perhaps for the same species. For example, Robinson
and Ek (2000) noted the existence of seven growth models for
red pine (Pinus resinosa Ait.) in one region. This is not an effi-
cient strategy for attaining lux et veritas, nor one that takes ad-
vantage of fundamental biological knowledge and our most
cogent theories and principles.

The theories and principles that underlie the functional bal-
ance approach to modeling allocation can also be used to for-
mulate empirical models of tree growth. To substantiate this
claim, we have formulated a simple carbon-based model of
tree growth that can be fitted as an empirical model. Of neces-
sity, the model incorporates minimal, rather than detailed, lev-
els of structure and function and uses state variables that
ordinarily are monitored in forest inventories: stem cross-sec-
tional area (or diameter), height and crown height (or crown
ratio).

The carbon-based model closely resembles CROBAS (Mä-
kelä 1997). The values of the parameters of the model can be
specified by measuring or estimating physiological rates and
morphological ratios or they can be supplied by lower-level
process models. The latter procedure would normally apply
when the model is used in a process-based framework for ex-
ploration, description or hypothesis generation. Alternatively,
the physiological and morphological parameters can be com-
bined into an identifiable set of aggregate parameters, whose
values can be estimated from inventory data with a statistical
fitting procedure. This is the normal procedure in forestry for
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updating a past inventory to the present or projecting a present
inventory into the future. The model also offers some middle
ground, i.e., some hybridization between the two procedures.

Whether there is any advantage to using the same basic
model in process-based and empirical modes is an open ques-
tion. But any movement toward a common model seems sure to
increase communication between the two schools of thought.
The approach may also afford a gradual transition from empir-
ical to process-based models, especially in regions where
mixed stands contain numerous species. Most importantly, the
empirical model provides an upper bound on acceptable error.
If forecasts from a process-based model have greater error
than the empirical model, then there is little reason to apply the
former to problems that can be addressed by either.

We begin with some essential definitions, and then we for-
mulate the model. Symbols are listed in Table 1.

Definitions

Let H (m) be tree height and let HC be crown height, i.e., the
height of the base of the live crown. An increase in HC over
time is called crown rise. Crown length (L C; Figure 1) is:

L H HC C� � (1)

The growth rate of crown length (m year – 1) equals the
growth rate of tree height less the rate of crown rise, i.e.,
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Ignoring bark, let A+(h) (m2) be the total cross-sectional
area of a stem at any height h (m) between the ground line, h =
0, and the crown base, h = HC (if h = breast height, A+(h) is
equivalent to the forester’s definition of basal area inside
bark). Dividing the total cross-sectional area into components,
let A(h) be the cross-sectional area of sapwood at h and let
A–(h) be the cross-sectional area of heartwood, a term we use
in a generic sense to describe any type of non-conducting xy-
lem. Focusing on the sapwood area, we note that:

A h A h A h( ) ( ) ( )� �� � (3)

The growth rate of the total cross-sectional area, dA+(h)/dt
(m2 year – 1), is equivalent to the rate of production of new sap-
wood area, and the growth rate of heartwood area, dA–(h)/dt, is
equivalent to the rate of senescence of old sapwood area. Thus,
the growth rate of sapwood area is:
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Let W (kg C) be the live biomass of a tree. We divide this
live biomass into three components: foliage (WF), fine roots
(WR) and live woody tissues, principally sapwood (WW), i.e.,

W W W W� � �F R W (5)

We denote the growth rate of a component of biomass (kg C
year – 1) by dWi /dt (i = F, R, W), the rate of production of new
biomass by dWi

�/dt and the rate of transition of live biomass to
dead biomass by dWi

–/dt. In the case of woody biomass, the
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Table 1. Variables and parameters.

Symbol Definition Units

A(h) Cross-sectional area of sapwood m2

at height h
A+(h) Cross-sectional area inside bark m2

at height h
A–(h) Cross-sectional area of heartwood m2

at height h
AC Cross-sectional area of sapwood m2

at the crown base
C Crown coverage m2 m – 2

G Cross-sectional area of stem m2

at breast height
H Tree height m
HC Crown height m
LC Crown length m
WB Live woody biomass in branches kg C
WB+S Live woody biomass aboveground kg C
WC Live woody biomass above kg C

the crown base
WF Foliage biomass kg C
WR Feeder root biomass kg C
WS Live woody biomass in main stem kg C
WW Live woody biomass above kg C

and below ground
WX Heartwood biomass kg C
Wi

� Cumulative production of Wi, kg C
i = F, R, W

Wi
– Cumulative senescence of Wi, kg C

i = F, R, W
c Overhead cost of converting kg C (kg C) – 1

photosynthate to biomass
mi Specific rate of maintenance kg C (kg C year) –1

respiration of Wi, i = F, R, W
s, s0 Specific rate of photosynthesis kg C (kg C year) – 1

s1 Decrease in s per unit tree height kg C (kg C m year) –1

(hydraulic limitation)
z Ratio of specific growth rates: –

sapwood area to crown length
� Crown intersection angle °
�0 Ratio of total to aboveground kg C (kg C) – 1

live woody biomass
�B Ratio of mean branch length m m –1

to crown length
�S Ratio of mean pipe length in main m m –1

stem of crown to crown length
� Net production per unit of photo- kg C (kg C) – 1

synthate (constant efficiency)
vF Leaf longevity years
vR Feeder root longevity years
�F Ratio of foliage mass to cross- kg C m – 2

sectional area of sapwood
�R Ratio of feeder root mass to cross- kg C m – 2

sectional area of sapwood
�W Wood density kg C m – 3



transition of live to dead biomass includes the conversion of
sapwood to heartwood. Therefore:
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Structure

Observed consistencies in structural relationships among spe-
cies have given rise to theories of tree structure that apply
rather generally. In particular, the pipe model theory of stem
form (Shinozaki et al. 1964a, 1964b) is based on observations
of an approximately constant ratio between the sapwood cross-
sectional area at the base of a stem or branch and the total mass
of foliage borne by that stem or branch. Implicit in this as-
sumption of a constant ratio is the notion of area-preserving
branching (also known as Leonardo’s rule), where the cross-
sectional areas of daughter branches sum to approximate the
cross-sectional area of the mother branch. Even more impor-
tant for our purposes is a central idea of pipe model theory: that
sapwood cross-sectional area is preserved at branchings and
constant at all heights between the crown base and the ground
line. The pipe model is also applicable to coarse roots (e.g.,
Carson and Harrington 1987, Richardson and zu Dohna 2003).
In addition, an approximately constant ratio of fine root mass
to coarse root sapwood area has been found in stands of Scots
pine (Pinus sylvestris L.) (Vanninen and Mäkelä 1999). In con-
cert with the principle of functional balance, this ratio de-
creases from poor to good sites.

The pipe model does not account for butt swell or buttresses.
And, in disagreement with the theory, sapwood area is not con-
stant between the base of the crown and the ground line, but re-
portedly waxes and wanes (e.g., Waring et al. 1982). Neverthe-
less, for our purposes, an assumption of constant sapwood area
is reasonable if the sapwood area averaged over the length of
the bole approximates the sapwood area at the base of the
crown.

Biomass

Among other things, pipe model theory allows us to express
the components of live biomass in terms of sapwood area, tree
height and crown height. Mäkelä (1986, 1997) noted that the
mass of foliage supported by a unit of sapwood cross-sectional
area varies according to whether the sapwood is in a branch,
the main stem, or a coarse root. We shall ignore the slight dif-
ference between branches and the main stem. Focusing on the
main stem at the crown base, the mass of foliage is approxima-
ted by:

W AF F C�	 � (8)

where AC is sapwood area at the crown base, i.e., AC 
 A(HC)
and �F is the ratio of foliage mass to cross-sectional area of
sapwood. We assume, generally, that fine root mass is propor-
tional to foliage mass, so:

W AR R C�	 � (9)

where �R is the ratio of feeder root mass to the cross-sectional
area of sapwood, and �F and �R have dimensions kg C m– 2.

To express live woody biomass in terms of AC, H and HC, we
must first express the mean length (m) of a sapwood pipe in
terms of H and HC. In accordance with pipe model theory, the
mean pipe length in the main stem is equivalent to the crown
height plus �SLC (0 < �S < 1), i.e., the distance from the crown
base to a point within the crown where half the sapwood area
has branched off from the main stem. Hence, mean pipe length
in the central main stem is:

H H H H LC S C C S C� � 
 �� �( ) (10)

In the absence of heartwood above the crown base, �S � 1 –
� �� � 0.293 if the shape of the main stem above the crown

base approximates a cone; �S � 1/2 if the shape approximates a
quadratic paraboloid. If heartwood occurs above the crown
base, �S is a larger fraction than otherwise.

We assume that the mean pipe length through a branch off
the main stem is:

� �B C B C( )H H L� 
 (11)

In connection with the study reported by Valentine et al.
(1994), randomized branch sampling for mean pipe length in
30 loblolly pine trees, selected from among 9 stands, furnished
�B + �S = 0.77.
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Figure 1. Defined lengths and cross-sectional areas of the main stem
of a tree. Heartwood is shaded.



Denoting the carbon density of the wood by �W (kg C m– 3),
the live woody biomass in branches (WB) is approximated by:

W A LB W B C C�	 � � (12)

and the live woody biomass in the central main stem (WS) is
approximated by:

W A H LS W C C S C�	 �� � � ) (13)

provided the central stem extends to the tree tip. The live
woody biomass above the crown base (WC) is approximated
by:

W A LC W B S C C�	 �� �� � ) (14)

and the aboveground live woody biomass (WB+S) is approxi-
mated by:

W A H LB+S W C C B S C�	 �� � �� �( ) ) (15)

We assume that the mass of below ground sapwood is pro-
portional to the amount above ground. Let �0 be the ratio of to-
tal sapwood to aboveground sapwood; then the mass of total
sapwood is approximated by:

W A H HW W C 2 C�	 � � � �( )1 (16)

where �1 = �0(�B + �S) and �2 = �0 – �1.
Equations 12–16 are alternatives to allometric models for

estimating of sapwood mass or volume and can be fitted to
suitable data, which would provide estimates of of �B, �S,
�B+S, �1 and �2. These models may be most useful in studies
of sapwood respiration and carbon sequestration. A formula
for approximating the mass of heartwood (WX) is provided in
the next section. The total woody biomass in a tree (kg C) is
approximated by WW + WX.

Cross-sectional growth

The structural model quantifies the live biomass of a tree in
terms of three state variables, AC, H and HC. In this section, we
express the growth of AC in terms of the growth of H and HC.
We also formulate growth models for total cross-sectional area
below crown, A+(h), and heartwood cross-sectional area below
crown, A–(h). To do this, we utilize an allometric relationship
between crown length and cross-sectional area that has been
found to characterize tree form.

Mäkelä and Sievänen (1992) formulated an optimal control
model, based on an evolutionary argument, that relates foliage
mass to crown length as:

W Lz
F C (17)

Under the assumptions of pipe model theory, WF � AC, so
under the combined assumptions of pipe model theory and the
optimal control model:

A Lz
C C (18)

assuming that A(h) 
 AC for 0 � h � HC:

A h Lz( ) � �3 C (19)

where �3 is a coefficient of proportionality.
If quarter-power scaling is accurate for tree crowns, then z = 3

(e.g., West et al. 1999). Empirical fits of Equation 17, however,
suggest that z is ordinarily less than 3. Mäkelä and Sievänen
observed z = 2.4 for open-grown Scots pine, and z < 3 has been
consistently estimated for different boreal species (Figure 2).

Equations 8 and 18 relate properties of the whole crown to
the cross-sectional area at the crown base. From the optimal
control model and the pipe model, we may hypothesize that
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Figure 2. Foliage mass as a function of crown length. (A) Scots pine
(Pinus sylvestris): WF = 0.0201L C

2.75, R 2 = 0.76, n = 119 (trees from
17 stands of variable age, site type and density (Vanninen 2003)); (B)
Norway spruce (Picea abies (L.) Karst): WF = 0.133L C

1.85, R2 = 0.95, n
= 29 (trees from five stands of variable age and density (Kantola and
Mäkelä 2004)); (C) silver birch (Betula pendula Roth.) filled circles,
solid line: WF = 0.0062L C

2.62, R 2 = 0.93, n = 18 (trees from three
stands of equal age and variable density, Ilomäki et al. 2003), open cir-
cles, dashed line: WF = 0.012L C

2.45, R 2 = 0.98, n = 12 (dominant trees
from six stands differing in age (Parviainen 1999)).



Equations 17 and 18 apply at any point above the crown base
on the main stem. In that case, the relationship:

A l l z*( )  (20)

would define the taper of the main stem inside the crown,
where A*(l ) is sapwood cross-sectional area of the main stem
at a distance l from the tip. This relationship would also pro-
vide a value for �S and it would render thousands of observa-
tions of stem taper gathered over the last two centuries (e.g.,
Gray 1943, Assmann 1970) a basis for estimating the value of
z for different species (Appendix 1). Such models suggest that
z � 2 is not unusual. For example, the taper model of Valentine
and Gregoire (2001) yields values between 1.4 and 2.2 for four
North American species (Figure 3). However, estimates based
on foliage and sapwood suggest that z may vary somewhat
from the top to the bottom of a crown (Kershaw and Maguire
2000, Mäkelä and Vanninen 2001, Kantola and Mäkelä 2004).
Hence, if z is estimated from taper data with Equation 20, it
may be best to use data from the lower half of the crown, since
we are most interested in the relationship between LC and AC,
i.e., Equation 19.

For the derivation of the cross-sectional growth model, the
critical value of z is that which obtains for Equation 19. The
time derivative of Equation 19 expresses the growth rate of
A(h) in terms of the growth rate of crown length, i.e.,
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or, substituting Equations 2 and 4 into Equation 21:
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We decompose the growth rate of A(h) into a rate of produc-
tion of new sapwood cross-sectional area:
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and a rate of conversion of old sapwood cross-sectional area
into new heartwood cross-sectional area:
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Note that Equation 22 equals Equation 23 minus Equation
24. This decomposition accords with our assumptions to this
point, because Equation 23 indicates that the rate of produc-
tion of new sapwood area is related to growth rate of height,
and Equation 24 indicates that the rate of conversion of old
sapwood area to new heartwood area is related to the rate of
crown rise. In concert with this model, Kaipianen and Hari
(1985) found good agreement between the number of sap-
wood rings and the number of live whorls in Scots pine.

Integration of Equations 22–24 from year t1 to year t2 pro-
vides cross-sectional growth from year t1 to year t2, given the
growth in both crown height and total height (Figure 4). For
example, Equation 24 integrates from year t1 to year t 2 to give
a new heartwood cross-sectional area, given a new crown
height, i.e.,
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Note that if H tC, 2
equals H tC, ,

1
there is no growth of heart-

wood cross-sectional area.
Equation 22 integrates from year t1 to year t2 to give new

sapwood cross-sectional area, given the new tree height and
crown height, i.e.,
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The new total cross-sectional area at height h is At2

� (h) =
At2

(h) + At2

– (h), or:
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(27)

An accurate model of stem taper could be used to estimate z
and initialize A(h) = AC. Alternatively, we can eliminate A(h)
from the model. From Equation 19, we note that A(h)/L z

C
equals a coefficient of proportionality, �3. Let G be cross-sec-
tional area at breast height, then Equation 27 can be rewritten
as:

G G L H Ht t t
z

t t
z

2 1 2 1 23� � � �� ( ( ) )C, C, (28)

We suggest fitting Equation 28 as a mixed-effects model, be-
cause �3 and z may vary from tree to tree.
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Figure 3. Estimates of z calculated from two within-crown measure-
ments (i.e., mid-crown and crown base) from each of 91 slash pines
(Pinus elliottii Engl.) (Valentine and Gregoire 2001).



In principle, we may keep track of At
�(h) at several heights

(h = h1, h2, …, hn). Equation 27 applies for each hj. We may
start to keep track of cross-sectional area at HC in any year, t,
that crown rise occurs, because under our assumptions:

A H A� �( )C C (29)

Thus, the model can provide a dynamic picture of the develop-
ment of the bole profile. However, the model would not ac-
count for butt swell.

The volume (V ) of the bole, from the ground line to the
crown base, can be approximated with Smalian’s (trapezoidal)
formula:

V
A h A h

h hj j
j j

j

n

�
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�

�
( ) ( )

( )1
1

1

2
(30)

The biomass in heartwood, WX (kg C), is approximated by:

W V A HX W C C�	 �� ( ) (31)

Height growth

The rate at which cross-sectional area accrues in Equations 27–
28 depends on the growth rate of tree height. Fundamentally,
this rate depends on the rates of photosynthesis and respira-
tion.

By definition, the rate of production of live biomass is:

d

dF,R,W
C M

W

t
P R P R Ri

i

�

�
� � � �	 � � (32)

where P is the rate of photosynthesis by the tree, R 
 RC + RM

is the rate of total respiration, RM is the rate of maintenance
respiration and RC is the rate of construction respiration. Equa-
tion 32 can be called a “carbon balance,” since all of the com-
ponents of this equation have dimensions (kg C year – 1).

We define P = sWF, RC = c�i (dWi
�/dt) and RM = �i(miWi),

where s (kg C (kg C year) – 1) is the specific rate of photosyn-
thesis, c (kg C (kg C) –1) is the amount of photosynthate con-
sumed in respiration per unit of new production, and mi (kg C
(kg C year) – 1) is the specific rate of maintenance respiration

of Wi. To invoke an effect of hydraulic limitation on the rate of
photosynthesis (e.g., Yoder et al. 1994), we assume that the
specific rate of photosynthesis, s, decreases as a function of
tree height, i.e.,

s s s H� �0 1 (33)

where s0 has dimensions kg C (kg C year)–1 and s1 has dimen-
sions kg C (kg C year m)–1. Substituting into Equation 32,
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Equation 34 allows for the popular simplifying assumption
of “constant efficiency,” where the ratio of total respiration to
photosynthesis is constant, i.e., R/P = 1 – �, where 0 < � < 1
(e.g., Landsberg and Waring 1997). This is the same as assum-
ing that net production is proportional to photosynthesis, i.e.,
P – R = �P. The “constant efficiency model” can be implemen-
ted from the full model, Equation 34, by setting mi to 0 and c to
(1 – �)/� (Mäkelä and Valentine 2001). This yields:

d

d F
W

t
s s H Wi

i

�

� � ��( )0 1 (35)

Equation 34 quantifies a tree’s contribution to the net pri-
mary production of a stand; it is an appropriate starting point
for the derivation of growth models for nearly all the tree at-
tributes of interest to foresters. To obtain a height growth
model, we can express each Wi and dWi

�/dt in terms of H, HC,
AC and their rates of change; substitute into Equation 34; and
then solve for the growth rate of tree height. The details of the
calculations for the following model are provided in the Ap-
pendix. It turns out that, under our assumptions, the growth
rate of tree height is a function of tree height and crown height,
i.e.,
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Figure 4. Cross-sectional growth.
(A) The state of the model tree at
the end of year t1. (B) Heartwood
(shaded area in figure) cross-sec-
tional area at height h increases with
crown height in a discrete jump at
the start of year t2. Sapwood cross-
sectional area at this point in time is:
At1

�(h) – At2

– (h)  (Ht1
– H t

z
C , )

2
.

(C) Sapwood cross-sectional area
increases with height growth in year
t2. The cross-sectional area of the
growth ring is: At2

� (h) – A t1

� (h).



where g1–g5 are combinations of the structural and physiolog-
ical parameters (see Appendix). Under the constant efficiency
assumption, g4 = 1, so g2 is asymptotic tree height.

Note that the growth rate of height is proportional to crown
length. This formulation, in concert with a model of crown
rise, captures competition effects of neighboring trees and
forecasts the differentiation of tree heights, including overtop-
ping and consequent self-thinning.

For the purpose of integration, we find it useful to rewrite
the model thus:
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d

d

d
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(37)

Prior to the onset of crown rise, HC and dHC/dt equal 0, so
LC is equivalent to tree height. Hence, integration of Equa-
tion 37 from t1 to t2 yields a growth model of tree height. After
the onset of crown rise, we can integrate the model from t1 to t2

if we assume that HC is constant over this period. Because HC

is assumed constant, dHC/dt equals 0, so the integration yields
a growth model for crown length. Our theory and assumptions
furnish a growth model that is nonlinear in L C, i.e.,
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where:
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� � g g H t2 4 2
� C, (40)

�
�

�
g g H t3 5 2

� C, (41)

We solve Equation 38 for L tC, 2
by iterative bisection, where

Ht2
= L Ht tC C, ,2 2

� . If we set � = 0, the resultant equation pro-
vides an upper bound for the solution of Equation 38, i.e.,

L H H g t tt t tC, C,2 1 2 1 2 1
* ( ( )) exp( ( ))� � � � �� � � (42)

Thus, the solution of Equation 38 is bracketed by[ ,L tC 1
, L tC,

* ].
2

Crown rise

Above, we have derived growth equations for cross-sectional
area and height on the basis of structural consistencies and the
carbon balance of the tree. To complete the model, we need to
provide equations for crown rise. Unlike other variables in the
model, the height of the crown base is not related solely to
other structural variables in the model, as it is also strongly in-
fluenced by external factors, principally shading and physical
crowding by other crowns.

Physical crowding affords wind-induced abrasion, which

destroys new growth, regardless of shade effects (e.g., Mitch-
ell 1975). How shading induces crown rise remains an open
question (Sprugel 2002), though leaves cannot grow where the
light availability is too low. The theory of branch autonomy
suggests that each branch is an independent unit that dies when
its carbon balance turns from positive to negative (Sprugel et
al. 1991). The principle of correlative inhibition assumes simi-
lar regulation by light but accounts for plasticity in leaf form
and presentation, explaining why leaves are initiated under
considerable shade, e.g., in a layered canopy (Snow 1931, Spru-
gel 2002). Some theories maintain that the crown as a whole
influences each branch to maximize the carbon gain of the
whole tree, leading not only to plasticity but also to evolution-
arily stable adaptations that involve competition with neigh-
bors (Nikinmaa and Hari 1990, Nikinmaa et al. 2004). This
could explain why leaf initiation is inhibited in the lower
crown if rapid height growth and increasing shading by other
trees are underway, even though the light availability would
momentarily support branch growth (Nikinmaa et al. 2004).

Empirical models of crown rise are usually constructed un-
der the assumption that physical space is limiting (e.g., Mitch-
ell 1975), whereas the few process-based models that model
crown rise tend to use relationships based on light availability
(e.g., Nikinmaa and Hari 1990). The two are closely related.
Under the assumptions of our model, the relationship between
crowding and light derives from (a) the allometric equation,
Equation 17, and (b) the assumption that crown width is pro-
portional to crown length, which relates crown projected area
to foliage mass. The relationship is most apparent when z = 2,
implying that stand foliage mass is proportional to crown cov-
erage. If z < 2, increasing crown size will decrease foliage
mass relative to crown coverage, and if z > 2, the opposite is
true. The degree of shade cast by the crowns depends on the
shade area of the crown, a combination of crown dimensions
and foliage density (Oker-Blom et al. 1989). This suggests that
limitations to shoot growth caused by crowding or shading are
not easily distinguishable, and that models based on either
could provide equally good results.

The stand-level crown-rise model of Valentine et al. (1992)
assumes that crown height is constant across the stand, i.e.,

H H H
D

t t t
t

C, C,2 1 1
10

2
� �

�

�

�
�

�

�

�
�

max , ,
tan �

(43)

where the overbars signify stand means and D is mean inter-
tree distance. This model has been adapted to apply to individ-
ual trees (Valentine et al. 2000); it requires a stem map, but has
just one parameter in the form of an angle � (Figure 5).

In CROBAS (Mäkelä 1997), the rate of crown rise, instead
of crown height itself, is a function of crown coverage. It is de-
fined through carbon allocation, increasing crown coverage
shifting it from foliage growth to crown rise. If crown coverage
is defined separately at each horizontal level of the canopy, this
model can also be applied to a stand consisting of distance-in-
dependent size classes, resulting in different crown heights for
trees of different size (Mäkelä et al. 2000). Whereas the crown
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rise model of Valentine et al. (1992) may be interpreted in
terms of direct regulation by light (or physical space), CRO-
BAS combines these with some degree of control by the tree as
a whole.

More generally, we may express a dynamic crown rise
model dependent on crown coverage (i.e., projected crown
area per unit land area) as:

d

d

d

d
CH

t
S C

H

t
� ( ) (44)

where C is crown coverage (m2 m–2) and S(C) � 0 is a crown-
rise function dependent on crown coverage. This general for-
mulation allows for a continuous (Mäkelä 1997) as well as a
stepwise (Valentine et al. 1992) crown height function. This
formulation also easily relates to several empirical models of
crown height, often defined as:
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�
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(45)

A simple case with S(C ) = 0 until an age when crown cover-
age reaches the limiting value, Hm, and S(C ) = 0.7 afterwards,
is illustrated in Figure 6.

NPP and NEE

Net primary productivity (NPP) is the rate of net production
per unit land area (kg C ha – 1 year – 1 ). This is equivalent to
gross primary productivity (i.e., the rate of photosynthesis per
unit land area) less the rate of autotrophic respiration per unit
land area. Under our assumptions, total net production in a tree
(Pnet) from year t1 to year t 2 is approximately:
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(46)

where vF and vR, respectively, are leaf and feeder root longev-
ity (years). The formula is constructed from the difference
equations; it is not the exact integral of Equation 34. The four
lines of the formula, respectively, account for (i) biomass of
new leaves and feeder roots that attach to new sapwood pipes,
(ii) biomass of new leaves and feeder roots that attach to old
elongating pipes, (iii) biomass of new sapwood due to second-
ary growth, and (iv) biomass of new sapwood due to elonga-
tion. In a pure stand, which comprises N trees and occupies
land area A (ha), NPP is approximately:

NPP net�	
�

�1

2 1A

P

t t
k

k

N

(47)

Net ecosystem productivity (NEP) is NPP less the rate
of heterotrophic respiration per unit land area (kg C ha– 1

year – 1). Net ecosystem exchange (NEE) is equivalent to NEP
plus the flux of dissolved organic carbon, i.e., the rate at which
carbon enters or leaves in moving water. To put it another way,
NEE is the rate of change in the carbon stock per unit land
area. In a pure stand, the carbon tied up in live trees can be ap-
proximated with the biomass Equations 8, 9, 16 and 31. How-
ever, these equations do not account for the relatively small
amounts of carbon in unpruned dead branches and bark.

Discussion

Equations 26, 27, 38 and one of the crown rise options suffice
to grow a model stand comprising individual model trees. Al-
ternatively, Equation 28 may substitute for Equations 26 and
27. Each year, new crown height is calculated first, followed
by new tree height, and then sapwood area or basal area or
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Figure 6. Simulation of tree height (solid line) and crown height
(dashed line), applying the empirical crown rise model of Equation 45
in Equation 44 with S(C ) = 0 if HC < 7 m and S(C ) = 0.7 if HC > 7 m.Figure 5. Crown rise can be modeled mechanistically with one param-

eter in the form of an angle. The dotted lines form the angle � with the
main stems. Intersection points, which define crown heights, rise with
increasing tree height (see Valentine et al. 2000).



both. In most of our work with these equations, we have as-
sumed that a tree dies when its live crown ratio shrinks to less
than 10%. Differentiation in the growth rates of model trees
can be induced by a small random effect added or subtracted to
the specific rate of photosynthesis of each model tree (Fig-
ure 7).

We have defined the rate of photosynthesis per unit leaf
mass rather than per unit leaf area because the former is report-
edly more uniform within a crown (Niinemets and Tenhunen
1997). Some recent studies even suggest that structural accli-
mation is sufficient to make the annual mean photosynthetic
rate per unit foliage mass almost independent of crown posi-
tion in the canopy (Stenberg et al. 2001, Vanninen 2003). We
have not specified an explicit effect of foliar density (i.e., leaf
mass per unit land area) on the rate of photosynthesis, though
there is an indirect connection: some decrease in the specific
rate of photosynthesis occurs with increasing tree height in
concert with the hydraulic limitation hypothesis, i.e., Equa-
tion 33. Before closure, tree height is equivalent to crown
length, which is effectively related to leaf mass by Equa-
tion 19. Mäkelä (1997) accounted for hydraulic limitation by
specifying a decrease in the specific rate of photosynthesis
with increasing crown length (see Appendix). This approach

has a similar effect on the rate of photosynthesis.
Pipe model theory and the optimal control model have pro-

vided a simple, and perhaps minimal, model for translating
physiological rates and morphological ratios into growth rates
of inventory variables. From the point of view of carbon bal-
ance, this translation is essentially about rules of carbon allo-
cation, while assuming that the total annual carbon gain can be
estimated. The long-term growth pattern is more sensitive to
carbon allocation than to year-to-year variation of specific
metabolic rates. Constraining the allocation by observed struc-
tural relationships together with the carbon balance makes
the model robust yet reasonably flexible to account for the
wide variation of individual growth rates encountered in forest
stands (Figure 7). Many other carbon balance models focus on
estimating photosynthesis and respiration from weather and
available resources, such as soil nitrogen and water, at shorter
time steps. Integration of these low-level process models for
estimating the mean annual physiological rates used in the
present model should provide a fruitful link between effects of
weather, site and inherent growth pattern.

Whether the present model will be accepted by the forest
modeling community cannot be predicted. But it seems a logi-
cal step in the evolution of a process-based model for practical
use in forecasting forest growth. We recognize that our theory
and knowledge has not yet advanced to the point where it
might afford the formulation of a “standard model” that every-
one would be happy with, and perhaps it never will. Assump-
tions and trade-offs between practicality and detail must be
made in the course of a formulation of any forecasting model.
However, any forest model, standard or otherwise, need not be
chiseled in stone; rather it should be subjected to unremitting
scrutiny so that it may evolve as we improve our theory and
knowledge. If the forest modeling community were to pursue
an evolving standard model, we could estimate or measure the
same parameters and learn from the resultant differences with-
in and among species and environments.
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Appendix

Estimation of z with a stem taper model

Our objective is an estimate of z for Equation 19 and the func-
tions that derive from it. We generalize Equation 19 to apply at
any point on the main stem within the crown:

A l l l Lz*( ) � ��3 0 < C (A1)

where A*(l) is cross-sectional area of the main stem at a dis-
tance l (m) from the tip. In theory (West et al. 1999), z is con-
stant over the length of the crown, so:
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Alternatively, estimating A*(l ) with a stem taper model at l1 =
L C/2 and l2 = LC:
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Derivation of the height growth model

The rate of production of foliage is (e.g., Valentine 1997):
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Analogously, the rate of production of feeder roots is:
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The time derivative of Equation 16 expresses the growth
rate of sapwood biomass in terms of the growth rates A(h) and
H, and the rate of crown rise, i.e.,
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Setting dHC/dt and d A–/dt to zero isolates the rate of produc-
tion:
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Substituting Equations 8, 9, 16, 23 and A6, A7 and A9 into
Equation 34 and solving for the growth rate of tree height:
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where:
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Mäkelä (1997) used an alternative to Equation 33 to model
the effect of hydraulic limitation, in effect substituting crown
length for tree height. In the present notation:
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which yields:

g
m s

g
4

2 1

0

1� �
��

�
��

�

�
��

� � �W W F (A18)

Details of Figure 7

The projections shown in Figure 7 were generated with the fol-
lowing parameter values: c = 0.25, mF = 0.7, mR = 0.35, mW =
0.075, s1 = 0.075, z = 1.7, � = 15.5°, �B = 0.47, �R = 0.5, �S =
0.3, vF = 2, vR = 0.5, �F = 270, �R = 88 and �W = 220. Similar
results can be achieved with other parameter values (Mäkelä
and Valentine 2001).

The mean specific rate of photosynthesis was fixed at s0 =
7.5. Variation among model trees was achieved with s0 ± us0,
where u was uniform random deviate drawn from U[0,0.1].
Crown rise was calculated in 16 directions for each model tree
and then averaged (see Valentine et al. 2000). Death of a model
tree was assumed when its live crown ratio shrank to 0.15. The
real-tree data come from a loblolly pine spacing trial on the
Piedmont Plateau of Virginia (Amateis et al. 1988). Planted
trees were were spaced 2.44 m apart on a square grid. Initial
tree diameters averaged 1.1 cm and heights averaged 0.5 m.
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