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Soil Carbon Storage Estimation in a Forested Watershed using 
Quantitative Soil-Landscape Modeling 

James A. Thompson* and Randall K. Kolka 

ABSTRACT 
Carbon storage in soils is important to forest ecosystems. Moreover, 

forest soils may serve as important C sinks for ameliorating excess 
atmospheric Cot. Spatial estimates of soil organic C (SOC) storage 
have traditionally relied upon soil survey maps and laboratory charac- 
terization data. This approach does not account for inherent variability 
within map units, and often relies on incomplete, unrepresentative, 
or biased data. Our objective was to develop soil-landscape models 
that quantify relationships between SOC and topographic variables 
derived from digital elevation models. Within a 1500-ha watershed 
in eastern Kentucky, the amount of SOC stored in the soil to a depth 
of 0.3 m was estimated using triplicate cores at each node of a 380-m 
grid. We stratified the data into four aspect classes and used robust 
linear regression to generate empirical models. Despite low coeffi- 
cients of correlation between measured SOC and individual terrain 
attributes, we developed and validated models that explain up to 71% 
of SOC variability using three to five terrain attributes. Mean SOC 
content in the upper 30 cm, as predicted from our models, is 5.3 kg 
m-2, compared with an estimate of 2.9 kg mP2 from soil survey data. 
Total SOC storage in the upper 30 cm within the entire watershed is 
82.0 Gg, compared with an estimate of 44.8 Gg from soil survey data. 
A soil-landscape modeling approach may prove useful for future SOC 
spatial modeling because it incorporates the continuous variability of 
SOC across landscapes and may be transportable to similar landscapes. 

N IMPORTANT component in understanding the role A of soils in the global C cycle is developing reliable 
estimates of the amounts of C stored in the soil and 
other terrestrial C pools. Estimates of SOC storage have 
been made at global (Post et al., 1990; Akin, 1991; Es- 
waran et al., 1995), continental (Bajtes, 2000), national 
(Kern, 1994), state (Bliss et al., 1995; Kern et al., 1998; 
Amichev and Galbraith, 2004; Tan et al., 2004), regional 
(Homann et al., 1998; Galbraith et al., 2003), and land- 
scape (Bell et al., 2000; Arrouays et al., 1995, 1998; 
Chaplot et al., 2001; Terra et al., 2004) scales. These 
studies have used a range of techniques by which point 
measurements of SOC are extrapolated to larger scale 
predictions of C storage. 

These various techniques can be divided into two 
general methods of spatial extrapolation. The most 
prominent method of producing coarse predictions of 
SOC storage at regional to global scales is often referred 
to as "measure and multiply" (Schimel and Potter, 1995). 
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Proxy information is used to stratify larger areas, and 
then measurements within each of these strata are ag- 
gregated and multiplied by the area of each stratum 
(Schimel and Potter, 1995). Soil survey maps and labora- 
tory characterization data are the primary resources for 
estimating the amount of SOC stored in soils using this 
approach (e.g., Homann et al., 1998; Kern et al., 1998; 
Galbraith et al., 2003; Tan et al., 2004). There are numer- 
ous benefits to this approach (Arnold, 1995), but there 
also are several limitations. There may be significant 
variability of SOC content within map units due to natu- 
ral soil variability and unmapped inclusions of higher 
or lower C soils (Eswaran et al., 1995). Galbraith et al. 
(2003) attributed the greatest source of uncertainty in 
their SOC maps to the high variation among SOC data 
from replicate samples from the same soil series. Also, 
the soil characterization data that are commonly used 
to establish SOC levels within a soil map unit were not 
originally collected for examining SOC content, and 
therefore may not include all of the necessary data for 
calculating SOC storage (Amichev and Galbraith, 2004). 
These data sets also may be biased toward different soil 
types or landscape settings, and may not adequately 
represent true range in variability of SOC (Tan et al., 
2004). 

An alternative to the measure and multiply approach 
is referred to as "paint by numbers" (Schimel and Pot- 
ter, 1995). This approach incorporates information on 
multiple environmental factors within geographic areas 
that are used as input variables to models, which then 
are used to make predictions that can be multiplied by 
the areal extent of given combinations of each of these 
factors. This approach is akin to soil-landscape modeling 
(McSweeney et al., 1994), in which the variability of soils 
is analyzed with respect to changes in environmental 
variables known to influence soil property variability, 
such as topography, hydrology, or geology. 

Soil-landscape modeling has been successfully ap- 
plied to predict soil variability at the site or hillslope 
scale, focusing almost exclusively on small-scale land- 
scapes of <I00 ha, with some as small as 2 ha (Moore 
et al., 1993; Thompson et al., 1997, 2001; Chaplot et al., 
2000; Gessler et al., 2000; Park et al., 2001; Florinsky et 
al., 2002). These studies have demonstrated that combi- 
nations bf one to five terrain attributes derived from a 
digital elevation model (DEM) can explain 20 to 88% of 
the variability of selected soil properties. The empirical 
relationships between soil properties and terrain attri- 
butes are unique to each soil property and each soil- 
forming environment. Modeling examples at the water- 
shed scale (and coarser) are more limited and require 

Abbreviations: CFI, continuous forest inventory; DEM, digital eleva- 
tion model; SOC, soil organic carbon. 
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more complex modeling techniques (Gessler et al., 1995; 
McKenzie and Ryan, 1999; Ryan et a]., 2000). Arrouays 
et al. (1995,1998) and Chaplot et al. (2001) have recently 
applied environmental correlation techniques to gener- 
ate SOC predictions, demonstrating the applicability of 
terrain attributes and other spatial data for developing 
empirical soil-landscape models of the spatial variability 
of SOC storage. This approach can also reduce the need 
for extensive field sampling and costly laboratory analy- 
sis by minimizing the number of samples needed to 
generate spatial predictions (Chaplot et al., 2001). 

Our objective was to develop quantitative soil-land- 
scape models that quantify relationships between SOC 
and topographic variables derived from a DEM. Our 
hypothesis was that the spatial patterns of SOC in a 
mountainous forested watershed could be predicted 
from spatial patterns of terrain attributes that have been 
shown to influence soil-forming processes. Quantifica- 
tion of the systematic soil-landscape relationships into 
quantitative soil-landscape models will overcome some 
of the limitations of the measure and multiply approach 
by ensuring a representative and complete dataset nec- 
essary for calculating SOC storage and resolving vari- 
ability of SOC within map units. This approach provides 

a means to quantify the spatial distribution of soil prop- 
erties by relying on the variability of correlated proxy 
variables that are easier to collect at a higher resolution 
than sampling and measuring soil properties directly. 
Such models may be transferable to similar landscapes, 
facilitating even broader scale prediction of SOC storage. 

MATERIALS AND METHODS 

The research was conducted at the University of Kentucky's 
Robinson Forest, a 6000-ha research and educational property 
located on the Cumberland Plateau in southeastern Kentucky 
(Fig. 1). Watersheds at Robinson Forest are dominated by 
mature, mixed, mesophytic forest. The bedrock is level-bed- 
ded with two distinct geologic formations (McDowell, 1985). 
Both the upper and lower formations are dominated by irregu- 
larly interbedded sandstones, siltstones, and shales (McDow- 
ell, 1985). A 1500-ha watershed within Robinson Forest, 
known as the Clemons Fork watershed, was selected for de- 
tailed study (Fig. 1). Clemons Fork flows from the northeast 
to the southwest, so slope aspects are predominantly south- 
easterly and northwesterly. The range in elevation in the Clem- 
ons Fork watershed is from 260 to 490 m. Slopes are steep, 
interrupted only by narrow ridges and narrow stream bottoms, 
with a mean slope gradient of 31%. 

Our examination of SOC storage at Robinson Forest in- 

Fig. 1. 
Inse 

Digita 
!t: The 

d elel 
local 

lation model for the Clemons Fork watershed and the location of sample points. Streams (white) are r 
tion of Robinson Forest in southeastern Kentucky. 

iha for reference. 



1088 SOIL SCI. SOC. AM. J., \ 69, JULY-AUGUST 2005 

cludes (i) a geographic information system-based inventory 
of SOC storage based on estimates from published soil survey 
data, and (ii) a soil-landscape modeling inventory based on 
soil samples collected from a regular grid of sample points. 
We generated SOC estimates using both the measure and 
multiply approach and the soil-landscape modeling approach 
to more clearly contrast these two methods and their results. 

Analysis of Soil Survey Data 
We acquired USDA NRCS Soil Survey Geographic (SSUR- 

GO) data for Breathitt County, Kentucky, and followed the 
methods of Bliss et al. (1995) to compute SOC storage within 
the upper 30 cm of soil on an areal basis (kg mP2). The 
SSURGO database reports both a high and a low estimate of 
soil organic matter for each soil horizon. These values are 
converted to SOC values by dividing by 1.724 (Soil Survey 
Laboratory Staff, 1996). The SOC content of each horizon (to 
a depth of 30 cm) was calculated using SOC content, bulk 
density, thickness, and rock fragment content data of each 
horizon. The SOC content of each horizon was summed over 
the 30-cm depth to determine the SOC content of each soil 
in the survey area. The SOC content of each map unit was 
calculated as the weighted average of all the soils represented 
in each map unit. We calculated three SOC storage values: 
(i) a low value using the reported low estimate, (ii) a high 
value using the reported high estimate, and (iii) an average 
value from the midpoint of the high and low estimates. 

Soil-Landscape Modeling 
Sampling and Analysis 

A systematic grid (384 m by 384 m) of continuous forest 
inventory (CFI) plots had been previously established as part 
of the long-term forest management at Robinson Forest. Our 
sampling was linked to the CFI to allow for the possibility of 
in the future combining results from this study to sampling of 
aboveground C storage at these plots. We collected triplicate 
soil samples from all 101 CFI plots located within the Clemons 
Fork watershed of Robinson Forest (Fig. 1). The three repli- 
cate samples were collected 3 m from the established center 
of the CFI plot, with the locations selected based on topogra- 
phy: one sample taken upslope of plot center, one taken down- 
slope of plot center, and one taken to the right of plot center. 
We sampled soil below the forest floor to a depth of 30 cm 
(or to refusal) using 6.25-cm diam. core, which was driven 
into the soil with a slide hammer, then extracted with a shovel. 
Each sample was divided into three subsamples: the A horizon 
(based on color), the subsoil from the bottom of the A horizon 
to 20 cm, and the subsoil from 20 to 30 cm. These samples 
were not composited. Samples were air dried and sieved to 
remove rock fragments. A 20-g subsample was then removed 
for C analysis by dry combustion (Nelson and Sommers. 1996). 
The remainder was oven dried and we calculated a rock free 
bulk density (Blake and Hartge, 1986), correcting for the oven- 
dry weight of the previous subsample. SOC content of each 
layer was calculated as: 

SOC = OC X Db X D X UCF 

where SOC is soil organic C content (g mp2), OC is the organic 
C concentration (%), Db is bulk density of the rock-free soil 
(g cmP3), D is the horizon thickness (cm), and UCF is a unit 
conversion factor (= 100 cm2 mP2). For each core, the total 
SOC was calculated as the sum of SOC from all layers. The 
mean total SOC for each CFI plot was calculated from the 
three replicate cores. 

Terrain Analysis 

Terrain data were derived from United States Geologic 
Survey (USGS) DEM with 30-m horizontal resolution and 
1-m vertical precision. Terrain attributes were calculated using 
ArcJInfo (Version 8.0.2, Environmental Systems Research In- 
stitute, Inc., Redlands, CA). Terrain attributes included eleva- 
tion (Z), slope gradient (S), slope aspect (q), profile (down 
slope) curvature (K,), contour (cross-slope) curvature (Kc), 
total curvature (K), tangential curvature (K,), upslope length 
(L), specific catchment area (A,), specific dispersal area (Ad), 
topographic wetness index (TWI), stream power index (SPI), 
proximity to nearest stream (P,,,,,,), elevation above nearest 
stream (E,,,,,,), and slope to nearest stream (S,,,,,). Tangential 
curvature, a measure of local flow convergence or divergence, 
is a secondary terrain attribute calculated as the product of 
contour curvature and slope gradient (Kt = Kc x S). The 
topographic wetness index, a predictor of zones of soil satura- 
tion, is the ratio of specific catchment area to slope gradient 
[TWI = ln(AcIS)] (Wilson and Gallant, 2000). The SPI, a 
measure of runoff erosivity, is the product of specific catch- 
ment area and slope gradient [SPI = ln(Ac X S)] (Wilson and 
Gallant, 2000). The values for these terrain attributes were 
extracted for all sample locations by assigning the terrain 
attribute values from the nearest cell of the DEM. 

Statistical Analysis and Modeling 

Simple exploratory data analysis functions were used to 
elucidate the primary topographic factors that appear to con- 
trol SOC in the landscapes of Robinson Forest. We calculated 
the correlation coefficients between SOC and the various ter- 
rain attributes calculated from the DEM, and we examined 
scatter plots of SOC for these terrain attributes. 

We developed empirical models of the distribution of SOC 
using a split-sample method, with 75% of data randomly se- 
lected and used for model training and the remaining 25% 
used for model validation. Stepwise linear regression (Neter 
et al., 1989) and regression trees were used to identify variables 
related to SOC, then robust linear regression (Rousseeuw and 
Leroy, 1987) was used to develop models using 75% of the 
data. Models were tested against the assumptions of linear 
regression analysis (Neter et al., 1989): lack of multicollinear- 
ity, equal error variance (no heteroscedasticity), and normal 
and random residuals. We validated the models using simple 
regression analysis on the remaining 25% of the data, compar- 
ing the observed SOC values with those predicted from indi- 
vidual linear models and the terrain attributes in the validation 
data set. 

RESULTS AND DISCUSSION 
Analysis of Soil Survey Data 

The mean SOC content in the upper 30 cm as calcu- 
lated from the SSURGO data from Clemons Fork wa- 
tershed is 2.9 kg rn 2. The total SOC storage in the 
upper 30 cm within the entire watershed is 44.8 Gg. Soil 
organic C storage could be as high as 73.7 Gg, or as 
low as 14.6 Gg considering the high and low estimates 
reported in the SSURGO database. Patterns of soils 
qnd landforms are recognized in Robinson Forest and 
expressed in soil map unit delineations associated with 
four landscape positions: NE-facing slopes, SW-facing 
slopes, ridgetops, and floodplains. These differences 
translate to differences in average SOC levels in map 
units in the Clemons Fork watershed (Fig. 2), with high- 
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Fig. 2. Soil organic C distribution in the upper 30 cm for soils of the Clemons Fork watershed of Robinson Forest calculated from SSURGO 
soil map unit data. 

est SOC levels on NE-facing slopes (4.3 kg mP2), less 
on SW-facing slopes (2.7-3.5 kg mP2), and lowest on 
floodplains, terraces, ridgetops, and minelands (0.3-3.4 
kg m-2). Within map units, more specific relationships 
between soils and landforms were noted, but not deline- 
ated. This within map unit variability is shown by ranges 
in SOC estimates among soils within a map unit (Ta- 
ble 1). 

These differences, if elucidated, could be used to cre- 
ate more accurate spatial estimates of SOC content. 
Mapping of SOC in Robinson Forest using the SSURGO 
data is not ideal because: (i) all of Robinson Forest and 
the surrounding watersheds is mapped in soil complexes 
and undifferentiated soil groups, which have a higher 
degree of variability of SOC within map units; (ii) SOC 
ranges are unchanged among different phases of the 
same soil type; and (iii) SOC ranges are identical for 
soils when found in different complexes. 

Soil-Landscape Modeling Approach 
The mean amount of organic C in the upper 30 cm 

of soil (SOC) in the Clemons Fork watershed (based 
on the soil core samples) is 3.6 kg mP2. The SOC, how- 
ever, is not distributed equally throughout these land- 
scapes. Box plots of SOC conditioned by slope aspect 

class (Fig. 3) illustrate the differences in SOC among 
NW-, NE-, SE-, and SW-facing slopes. There is a large 
range in measured SOC within each slope aspect class, 
but the highest SOC values are found on the NE- and 
SE-facing slopes (Fig. 3). The NE-facing slopes have 
most of the highest SOC values, which we attribute 
to the lower mean annual soil temperature and higher 
available soil moisture (Hutchins et al., 1976; Hunckler 
and Schaetzl, 1997). The observed differences in the 
distribution of SOC are statistically significant (P < 
0.05) between the SW- and SE-facing and the SW- and 

Table 1. Soil organic C (SOC) content estimates in the upper 30 cm 
determined from soil survey data, by soil series and land- 
scape position. 

Soil series Landscape position SOC content 
- 

Cutshin 
Kimper 
Shelocta 
Cloverlick 

Kimper 
Shelocta 
Hazelton 
Gilpin 

NE facing slopes 

benches, footslopes 
coves, benches 
sideslopes, footslopes 
upper sideslopes 

SW facing slopes 

coves, benches 
sideslopes, footslopes 
sideslopes, benches 
sideslopes, ridges 
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Fig. 3. Boxplots of SOC in the Clemons Fork watershed. 

NE-facing slopes based on two-sample Kolmogorov- 
Smirnov goodness of fit test results. These data support 
the presence of landscape-scale differences in SOC in 
Robinson Forest. 

Correlation coefficients between SOC and individual 
terrain attributes are low, with few statistically signifi- 
cant values (Table 2). Because of the effect of slope 
aspect on soil formation in these landscapes, when we 
stratified the data into four aspect classes, correlation 
coefficients within at least one the individual aspect 
classes are higher than for the whole data set (Table 2). 
Elevation had the highest correlation values with SOC 
in all cases except for on the SE-facing slopes, and al- 
ways had a positive correlation, with higher SOC values 
associated with higher elevations in these landscapes. 
At regional scales in the southern Appalachians, Garten 
et al. (1999) and Bolstad and Vose (2001) found that 
SOC content increased with elevation over ranges of 
L l O O O  m. Bolstad and Vose (2001) attributed this to 
cooler soil temperatures at higher elevations, but their 
results were confounded by a change in parent material 
from mixed sandstone at lower elevations to gneiss at 

Table 3. Model parameters from soil-landscape models for the 
prediction of soil organic C content (kg mP2) for each of four 
slope aspect classes a t  Robinson Forest. 

Model coefficient 

Model varameter SW NE SE NW 

Intercept 
Elevation 
Profile curvature 
Contour curvature 
Total curvature 
Specific catchment area 
Specific dispersal area 
Stream power index 
Slope to nearest stream 
Model R" 
Validation r2 

higher elevations (Bolstad and Vose, 2001). Within our 
study site the change in the geologic formation occurs 
at approximately 400 m. However, both the upper and 
lower formations are dominated by irregularly interbed- 
ded sandstones, siltstones, and shales, such that there 
is no clear lithologic distinction between the two forma- 
tions (McDowell, 1985). Additionally, most soils have 
formed in colluvium (Hayes, 1998) from a mixture of 
rock types, and samples from within a single strati- 
graphic unit show increasing SOC with increasing eleva- 
tion. Subtle differences in these two stratigraphic units, 
which are not represented in the available geologic map 
data, may have an influence on C dynamics in this 
landscape. 

We stratified the data by slope aspect when generat- 
ing the empirical models used to relate variation in SOC 
to variability in selected terrain attributes. The models 
explain up to 71% of the variability in SOC using se- 
lected terrain attributes (Table 3). Among all models, 
elevation was always a significant model variable, with 
higher SOC values found at higher elevations. 

All models included a slope curvature attribute, with 
contour curvature being included in three of the four 
models. The NE model did not include contour curva- 
ture, but did include both profile and total curvature. 
In all cases, slope curvature had a positive correlation 

Table 2. Coefficients of correlation between measured soil organic C (SOC) and various terrain attributes calculated from a digital 
elevation model (DEM). 

Slope aspect class 
-- - -- 

Terrain attribute All NE SE SW NW 

Elevation, m 
Slope gradient, % 
Slope aspect, " 
Specific catchment area, mZ m-' 
Specific dispersal area, m' m-' 
Total curvature, m mPz 
Profile curvature, m m 
Contour curvature, m m-Z 
Tangential curvature, cm m-z 
Upslope length, m 
Topographic wetness index 
Stream power index 
Proximity to nearest stream, m 
Elevation above nearest stream, m 
Slope to nearest stream, % 

* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
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with SOC, indicating that convex sites had higher SOC 
than did concave sites. In low-relief landscapes, soils in 
concave positions have been shown to have greater SOC 
contents than those in convex positions (Gessler et al., 
2000). On the steeper slope gradients in these land- 
scapes the convex sideslopes may be somewhat more 
stable than the concave sideslopes, where there appears 
to be some convergence of flow and greater rates of 
soil erosion, which in turn produces relatively shallow 
and rocky soils, low in SOC. 

Slope gradient to the nearest stream was the third 
terrain attribute that occurred in multiple models and 
exhibited a consistent relationship with SOC. In all 
cases, slope gradient to the nearest stream had a nega- 
tive correlation with SOC, indicating that SOC decreased 
as the gradient to the nearest stream increased. This is 
likely attributable to drier soil conditions on steeper 
slopes, due to more rapid removal of water. 

Independent validation data did not consistently re- 
flect high correlations between measured SOC and SOC 
predicted from the various models (Table 3). The best 
relationship was seen on the NW slopes (r2 = 0.802), 
however the quality of prediction on the other slopes 
may not be as poor as suggested by the coefficients of 
correlation. Scatterplots of measured vs. predicted SOC 
indicate that these low r2 values are due to two or three 
outliers, while the bulk of the data are clustered around 
the 1:l line (Fig. 4). The majority of the outliers are 
from the SE-facing slopes, which had the lowest model 
R2 (Table 3). 

Models (Table 3) were used to predict SOC content 
of the upper 30 cm throughout the Clemons Fork water- 
shed (Fig. 5). The resulting map depicts the coarse vari- 
ability in SOC within the watershed, with SOC levels 
that are higher on the NE-facing slopes and lower on 

Measured SOC (kg m-*) 

Fig. 4. Predicted vs. measured SOC at 26 independent validation 
points within the Clemons Fork watershed of Robinson Forest. 
Different symbols indicate samples from different slope aspect 
classes (0 = NE, A = NW, = SE, 0 = SW). 

the SW-facing slopes. The mean SOC content in the 
upper 30 cm as predicted from our models within Clem- 
ons Fork watershed is 5.3 kg m-2, with a range from 0 
to 11.8 kg m-2. The total SOC storage in the upper 
30 cm within the entire watershed is 82.0 Gg, similar to 
the high SOC value calculated from the SSURGO data 
(73.7 Gg), but almost twice the average SOC value 
(44.8 Gg). 

While the models tend to predict greater SOC storage 
throughout the Clemons Fork watershed relative to the 
SSURGO data, these differences are not uniform across 
the study site. The greatest positive differences in SOC 
(model-SSURGO) are found on the summits and NE 
slopes where SOC levels are greater, while the least 
differences are found in lower slope positions, particu- 
larly on the SW slopes, and the floodplain soils near the 
watershed outlet where SOC levels are lower (Fig. 6). 

CONCLUSIONS 
Systematic soil-landscape relationships exist in Rob- 

inson Forest and these relationships can be quantified 
using a soil-landscape modeling approach, which pro- 
vides for an ability to (i) resolve variability of soils and 
SOC within combined mapping units common on steep 
slopes, (ii) represent continuous variability of soil prop- 
erties across landscapes, and (iii) quantitatively relate 
environmental factors (e.g., topography) to soil proper- 
ties, including organic C storage. Up to 71% of the 
variability in SOC was explained using three to five 
terrain attributes calculated directly from a 30-m DEM. 
Results suggest that in SOC content in soils of these 
steep mountainous landscapes increases as elevation in- 
creases and as slope gradient to the nearest stream de- 
creases. However, these and other soil-landscape rela- 
tionships were significantly influenced by slope aspect, 
with more SOC in soils on east-facing slopes. Stratifica- 
tion of the data by slope aspect improved modeling 
results, suggesting that modeling efforts at the water- 
shed scale and above will require stratifying data into 
similar landscape units where soil-landscape processes 
have a similar effect on soil development. It is unlikely 
that a single model can be developed to be applicable 
to all soil-landscapes in an area (e.g., Bell et al., 2000). 

The methods used in this study and the results ob- 
tained may be applicable to areas outside of Robinson 
Forest. The use of these or similar models to estimate 
the spatial distribution of SOC requires additional eval- 
uation because of the discrepancy between the SOC 
storage estimates based on soil-landscape models (82.0 
Gg) and those derived from a measure and multiply 
approach using SSURGO data (44.8 Gg). Different 
methods of estimation normally produced varying in- 
ventories of SOC storage (Homann et al., 1998; Gal- 
braith et al., 2003). Systematic differences between the 
two estimates generated here indicate that traditional 
soil survey maps, especially those in steep mountainous 
areas, do not depict enough of the landscape-scale soil 
variability within map units. Reported SOC content val- 
ues may not be adequate for these purposes because 
typical values cannot represent the full range in varia- 
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Fig. 5. Soil organic C distribution in the upper 30 cm for soils of the Clemons Fork watershed of Robinson Forest calculated using developed 
soil-landscape models. 
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Fig. 6. Difference between soil organic C values between that calcu- 
lated from the empirical soil landscape models and that calculated 
from SSURGO soil map unit data. 

tion across a survey area. Such discrepancies among 
SOC storage estimates will be more important as greater 
attention is given to the role of S O C  in ameliorating 
excess atmospheric C 0 2 ,  particularly how proper soil 
management can deliberately increase SOC storage. 
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