
www.elsevier.com/locate/rse
Remote Sensing of Environm
Change detection with heterogeneous data using ecoregional stratification,

statistical summaries and a land allocation algorithm

Kathleen M. Bergena,*, Daniel G. Browna, James F. Rutherforda, Eric J. Gustafsonb

aSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109-1115, United States
bUSDA Forest Service, North Central Research Station, United States

Received 13 April 2004; received in revised form 9 March 2005; accepted 12 March 2005
Abstract

A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery

to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To

derive useful land-cover change data using a heterogeneous dataset and to validate our results, we a) stratified the classification using

predefined ecoregions, b) developed statistical relationships by ecoregion between land-cover proportions derived from the 1980 national-

level classification and aggregate statistical data that were available in time series for all regions in the U.S., c) classified multi-temporal

AVHRR data using a process that constrained the results to the estimated proportions of land covers in ecoregions within a multi-objective

land allocation (MOLA) procedure, d) interpreted land cover from a sample of aerial photographs from 2000, following the protocols used to

produce the 1980 classification for use in accuracy assessment of land cover and land-cover change data, and e) compared land cover and

land-cover change results for the MOLA method with an unsupervised classification alone. Overall accuracies for the 2000 MOLA and

unsupervised land-cover classifications were 85% and 82%, respectively. On average, the 1980–2000 land-cover change RMSEs were one

order of magnitude lower using the MOLA method compared with those based on the unsupervised data.
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1. Introduction

Remote sensing provides important data for monitoring

land-cover changes on regional and global scales (Skole et

al., 1997; Hansen et al., 2000). While methods for detecting,

mapping and analyzing land-cover changes are diverse and

well established in the remote sensing literature (e.g.,

Collins & Woodcock, 1996; Song et al., 2001; Rogan et

al., 2002), the vast majority of applications are based on

data derived from the same sensor platform at different

dates. In order, however, to take advantage of the historical

record of land-cover changes represented in archival aerial

photographs and data sets derived from them, longer-term

land-cover change detection may require use of heteroge-

neous data sources. Innovative methods are needed that can
0034-4257/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2005.03.016

* Corresponding author.

E-mail address: kbergen@umich.edu (K.M. Bergen).
account for the differences in spatial and thematic character-

istics that result from extraction of land-cover information

using different data sources (Petit & Lambin, 2001).

In this paper we describe and demonstrate a methodology

for combining a photo-digitized historical land-cover

map with contemporary satellite imagery to identify land-

cover changes. The research described in this paper

contributes to the Changing Midwest Assessment carried

out by the United States Forest Service (USFS) North

Central Research Station. The purpose of the Assessment

was to describe the spatial distribution, direction and

intensity of the changes that have occurred on the

biophysical and social landscapes of the region over the

past two decades (1980 to 2000), including change in land

cover, forest characteristics, plants and animals, and human

demographics (Potts et al., 2004; http://ncrs.fs.fed.us/4153/

deltawest/). Our specific goal in contributing to the project

was to generate land-cover change data at a 1-km spatial
ent 97 (2005) 434 – 446
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resolution and to map hotspots of land-cover change

between agriculture, forest, and urban cover. This posed a

challenge, as no identical remote sensing or land-cover

datasets exist at that resolution for both dates. However,

existing national land-cover classifications combined with

current satellite imagery could be useful for our purposes, if

we could assure their comparability.

The specific objectives and methodologies we developed

are based on the premise that, by imposing constraints on

the classification process that are based on other data for

which a consistent time series exists, we can improve the

consistency of the resulting land-cover products. We

achieve this improvement using existing statistical summa-

ries of land cover that are collected in regular intervals by

ecological sub-regions within our study area. These

statistical summaries for the year closest to 2000 were used

to constrain the classification of remotely sensed data from

the year 2000 using a multi-objective land allocation

algorithm. The existing national land-cover dataset (1980)

was then combined with the remote sensing classification

(2000) developed in this project, and used to determine the

spatial distribution of land-cover change over the 20-year

time period in the seven-state region. We focus our analysis

on changes in forest, agriculture, and urban areas, and

especially areas that have experienced urban growth and

forest growth.

To demonstrate the methodological improvement of using

remote sensing satellite data constrained by statistical data

and modeling, we compared the resulting data with results

based on an unsupervised classification. The accuracies of the

land-cover and land-cover-change products resulting from
Fig. 1. Location of the study re
both constrained and unconstrained classifications were

evaluated in two ways. First, land cover was mapped at 86

sites using a sample of aerial photos taken in 2000 and

interpreted according to the same protocols developed for an

aerial-photo derived national land-cover dataset created for

ca. 1980. Land-cover and land-cover-change results from the

two classifications were evaluated and compared at sample

sites. Second, we compared estimates of percentages of land-

cover change obtained over two sets of regional area

aggregations (i.e., ecoregions and states) with those observed

in the statistical data set for these same areas.

For the two dates of interest the most suitable datasets by

which to achieve the above objectives included an aerial

photo-derived national land-cover classification from ca.

1980, i.e., the USGS (United States Geological Survey)

LUDA (Land-Use and Land-Cover Dataset); 1-km AVHRR

(Advanced Very High Resolution Radiometer) satellite

imagery from 2000; and the United States Department of

Agriculture (USDA) Natural Resources Inventory (NRI)

statistical land cover survey, collected every five years since

1982.
2. Study region

The research in this paper addresses the North Central

Region of the United States, as defined by the USFS and

comprising the states of Illinois, Indiana, Iowa, Michigan,

Minnesota, Missouri and Wisconsin (Fig. 1). In the past

century, the region has been and continues to be dominated

by agriculture; it includes the majority of the productive
gion in the United States.



Table 1

State-wide land-cover statistics from the Natural Resources Inventory (NRI) statistical surveys (1982 and 1997)

State Land area Agriculture Forest Urban

1982 1997 Change (%) 1982 1997 Change (%) 1982 1997 Change (%)

Illinois 56,342 115,688 112,872 �2.4 14,509 15,312 +5.5 10,881 12,872 +18.3

Indiana 36,185 67,679 65,916 �2.6 15,294 15,299 0.0 7426 9148 +23.2

Iowa 56,276 129,404 127,444 �1.5 7527 8829 +17.3 6402 6889 +7.6

Michigan 58,358 58,733 52,901 �9.9 64,007 66,182 +3.4 11,028 14,349 +30.1

Minnesota 84,390 120,836 117,796 �2.5 64,670 65,755 +1.7 6959 8845 +27.1

Missouri 69,709 114,895 108,972 �5.2 46,364 50,306 +8.5 8433 10,186 +20.8

Wisconsin 56,125 67,208 64,450 �4.1 57,526 58,469 +1.6 8050 9785 +21.6

Total 417,385 674,446 650,352 �3.6 269,894 280,155 +3.8 59,182 72,075 +21.8

Data include land area in square kilometers, percent of non-federal land occupied by agriculture, forest, and urban land-covers in 1982 and in 1997, and percent

change of each land cover with respect to its original 1982 area.

Fig. 2. AVHRR NDVI composite from May 18 to June 1, 2000. Boundaries

shown and used for ecoregional stratification of the remote sensing

classification are NRI MLRAs.
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United States corn and soybean belt that cuts diagonally

through the seven-state region. In the northwest and west,

the region borders the wheat-growing region of the Great

Plains. Forests dominate the glacial landscapes in the north,

which are also characterized by wetlands and lakes, and in

areas of topographic relief (e.g. Ozarks and Shawnee Hills)

in the south. Urban centers developed near water and rail

transportation routes. The largest urban centers in the region

include Chicago, Illinois; Detroit, Michigan; Indianapolis,

Indiana; St. Louis, Missouri; and Minneapolis, Minnesota.

Investigation of NRI statistical data indicated that agri-

culture was being lost while urban and forest land covers

were increasing in the region between 1982–1997 (Table 1)

(U.S. Department of Agriculture, 2001). More specifically,

agriculture has decreased in all seven of the study states

relative to its percent presence in 1982, ranging from �1.5%

(Iowa) to �9.9% (Michigan). Urban land-cover has

increased in all seven states relative to its percent presence

in 1982, ranging from +7.6% (Iowa) to +30.1% (Michigan).

Forest has remained stable in one state (Indiana) and

increased in six of the seven states relative to its percent

presence in 1982, ranging from +1.6% (Wisconsin) to

+17.3% (Iowa). The major trajectories and locations of rapid

change within the region were hypothesized to be: 1) the

conversion of agriculture and forest to high and low-density

urban land-use near urban centers, and 2) the conversion of

agriculture to forest inmarginally productive areas, often near

transition zones between predominantly agricultural and

predominantly forested ecological regions (Brown et al.,

2000; Theobald, 2001).

Geographical units of interest for summarizing and

analyzing land-cover change information were states,

counties, and ecological regions. The North Central Region

includes seven states and 650 counties. Given the large

geographical extent in both the N–S and E–W directions,

and the significant range of ecosystem types, the amount of

variability in a single remote sensing dataset for the region is

quite high. Therefore, we managed this variability by

stratifying the region prior to the remote sensing classi-

fication and all other analytical procedures. We chose to

stratify the region into ecological sub-regions (hereafter

referred to as sub-regions) defined by the Major Land
Resource Area (MLRA) units used by the NRI, because

they were appropriate in terms of number (there are 35 in

the region) and size (average size is just over 29,000 km2, or

7 million acres), and because we were incorporating NRI

statistical data into our methodology. A MLRA is a

geographic area that is characterized by a particular pattern

of soils, climate, water resources, land uses, and types of

farming. As such MLRA spatial configurations are inde-

pendent of state or other jurisdictional boundaries; for

example 22 of the 35 MLRAs in the region span two or

more states. Examination of these units with respect to the

remote sensing data revealed that they captured very well

much of the spatial variability on the actual landscape and

also in the NDVI time series, and to a much greater extent

than political strata, such as states (Fig. 2).
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3. Data

AVHRR records radiance in a visible (green-red 0.58–

0.68 Am) and a near-infrared (0.725–1.1 Am) band and

these are routinely processed to produce the Normalized

Difference Vegetation Index (NDVI) (Loveland et al.,

1991). The USGS EROS Data Center has consistently

processed the AVHRR 1-km resolution daily observations to

produce standard bi-weekly maximum NDVI composites

for the conterminous United States beginning in 1989. Over

a growing season, these bi-weekly NDVI composites

capture differences in the phenological trajectories of

different land-cover types (Loveland et al., 1991; Reed et

al., 1994) and these different spectral-temporal trajectories

form the basis for discriminating between different land-

cover types using image classification techniques. We

acquired these NDVI composites for the months of May

through October 2000 (U.S.G.S., 2001).
Fig. 3. Land-use change from NAPP photo interpretation for photos near Alpena,

land-use in 1980 (LUDA), and B) and D) show land-use in 2000 (‘‘simulated LU
We acquired the ca. 1980 digital Land-Use and Land-

Cover Dataset (LUDA) from the USGS. Interpretation of

land cover for LUDA had been carried out using National

High Altitude Aerial Photography Program (NHAP) or

National Aeronautics and Space Administration (NASA)

aerial photos at scales of 1:58,000 or smaller (U.S.G.S.,

1990). Dates of the photos ranged from 1978 to 1983. The

minimum mapping unit was 10 acres for urban and water

features and 40 acres for all other cover types. In some

cases, pre-existing land-cover and survey maps were used in

addition to aerial photographs. Land-use and land-cover

polygons were interpreted by USGS from the photographs

to create analog maps that were later digitized as land-cover

polygons forming the vector LUDA dataset. We rasterized

this product by assigning all 1-km cells to the dominant

land-cover category found within them.

LUDA data have not undergone a comprehensive inde-

pendent accuracy assessment on a national scale. However,
Michigan (top), and Fort Wayne, Indiana (bottom) where A) and C) show

DA’’).
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Fig. 4. Overview of the land-cover and land-cover change classification and

validation process.
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LUDAwas manually interpreted with USGS quality control

requirements and procedures (U.S.G.S., 1990). Our experi-

ence was that it is a reliable dataset—we found almost no

errors (e.g.,<10) in 1980 polygon labeling in the 2328

polygons that we examined for our validation dataset

(described below). Therefore, we are confident in making

the (necessary) assumption that these data can be considered

accurate for the purposes of this project. Our focus is, instead,

on the accuracy of our remotely sensed classification of 2000

land cover and of land-cover change.

Statistical data on land cover have been summarized as

part of the Natural Resources Inventory (NRI) and are

available by state and Major Land Resource Area (MLRA)

every 5 years starting in 1982 (Nusser & Goebel, 1997). The

1982 and 1997 surveys were the closest to our two target

years of 1980 and 2000. Our study area contained 35

ecoregions of variable size. Federal lands, which make up

¨4% of the study region, were excluded in our analysis

because they were not represented in the associated NRI

data. All other lands (96%) are included in the NRI survey

and data, including privately owned land, tribal and trust

land, and lands controlled by state and local governments.

All NRI estimates have a documented uncertainty

associated with them, and this uncertainty ranges from

quite large at small spatial units such as counties, to small

uncertainty at the larger spatial units of MLRAs and states.

The sampling is designed so that the standard error was less

than 20 percent for any estimate of a resource condition

(e.g., land cover) that comprised at least 10 percent of an

MLRA; in actual implementation most were estimated more

precisely (U.S. Department of Agriculture, 2000, 2001).

In order to classify land cover in 2000 and validate the

analysis of change from 1980–2000, we used a sample of

non-stereo National Aerial Photography Program (NAPP)

aerial photos (color infrared or black and white panchro-

matic at 1 :40,000) for 2000. Like the photos used by USGS

to create the 1980 LUDA dataset, the photos in our

validation set were from a small range of years (1997–

2000) because the NAPP program does not fly the entire

United States, or even entire states, in the same year. The

total number of sample photos chosen (86) resulted in about

0.5% coverage of the land area of the seven states. The

number of photos chosen per MLRA was selected in

proportion to the size of the MLRA and ranged from one

in the smallest sub-regions to five in the largest. We selected

photos in a way that considered (a) the consistency of the

resulting validation dataset, because the NAPP photos were

inconsistent in terms of available photo dates and types, and

(b) locations in which land covers actually changed.

Therefore, photos were not chosen completely randomly;

there was a bias towards selecting photos closest in time to

1997–2000 and in transition zones between land-cover

types, i.e., the areas undergoing most rapid change. Fig. 3 is

an example of the type of land-cover and land-cover change

data captured through a combination of 1980 LUDA and

2000 NAPP-classified aerial photographs.
4. Methods

In summary our methods involved the following. The

innovative classification process we developed to produce a

ca. 2000 land-cover dataset that was comparable to the

available 1980 land-cover data involved (1) estimating the

proportions of each land cover that should be expected

within each of a set of sub-regions (defined by MLRAs); (2)

performing unsupervised classification on multi-temporal

AVHRR data within sub-regions and labeling the resulting

clusters to land-cover classes; (3) extracting spectral–

temporal signatures for each class within each sub-region

and assigning all pixels a probability of belonging to each

class based on its Mahalanobis (Jensen, 1996) distance to

each class; (4) ranking all pixels in the resulting probability

maps from most to least probable for each class; and, finally,

(5) assigning all pixels to a class using a multi-objective

land allocation (MOLA) procedure that seeks to classify a

predetermined number of pixels (based on step 1) to each

class based on the set of pixels with high probability of

belonging to that class (Fig. 4). We used the resulting 2000

classified land-cover maps with the USGS c. 1980 LUDA to

create land-cover change maps for the entire region. We

used our sampled aerial photos and aggregate statistical data

to calculate and compare the accuracies of both the land-

cover and land-cover change maps resulting from processes

with and without the land-allocation procedure.

4.1. Estimating land-cover proportions

In order to allocate pixels to classes, we first required

estimates of land-cover proportions in 2000. We extracted

land-cover statistics for 1982 and 1997 from the 1997

NRI CD at the finest available level of spatial detail and

aggregated them to sub-regions following published

guidelines for doing so (Nusser & Goebel, 1997). Land-

cover classes used by the NRI were recoded to match the

classes in the existing 1980 land-cover dataset (Table 2).

We then calculated the percentages of each land cover in

each sub-region.



Table 2

Relationships between level I land-cover classes as defined in this project

and in the LUDA and NRI datasets

Project classes LUDA (Level 2) NRI (Specific

land cover/use)

1 Urban Urban (11–17) Urban, transportation

(700–870)

2 Agriculture

(includes rangelands)

Agricultural land,

rangeland (21, 23,

24, 31, 32, 33)

Cropland, pastureland,

rangeland (1–213,

250, 400–410, 650)

3 Forest (includes

forested wetlands

and orchards)

Forestland, forested

wetland, orchards

(22,41,42,43,61)

Forestland (341, 342)

5 Nonforested wetlands Nonforested

wetlands (62)

Marshland (640)

6 Barren Barren (72–76) Barren (611–620)

7 Water Water (51–54) Water (901–924)

Table 3

Example land-cover proportions in one sub-region (MLRA 99)

Urban Agriculture Forest Non-forested

wetland

Barren Total

1980 LUDA 0.1021 0.7572 0.1350 0.0042 0.0015 1.0

1982 NRI 0.1594 0.6658 0.1617 0.0088 0.0043 1.0

Ratio=1980

LUDA/1982

NRI

0.6405 1.1373 0.8349 0.4773 0.3488 NA

1997 NRI 0.1910 0.6140 0.1810 0.0078 0.0062 1.0

Predicted

¨2000

AVHRR

0.1252 0.7143 0.1546 0.0038 0.0021 1.0

Lines 1–5 in the table are: 1) the proportion of each land-cover type

calculated from the LUDA data (ca. 1980); 2) the proportion of each land-

cover type in 1982 calculated from the NRI data; 3) the ratio between the

proportions from the LUDA and NRI data; 4) the proportion of each land-

cover type in 1997 calculated from the NRI data; and 5) the estimated

proportion of each land-cover type for use in the MOLA mapping process.
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Because of definitional and methodological differences

between the statistical survey and a remote sensing based

analysis, we needed to determine the quantitative relationship

between land-cover proportions calculated from the 1982

NRI statistical dataset and the 1980 air-photo-based LUDA

dataset for each sub-region and for each land-cover type. We

initially tested region-wide regression relationships between

land-cover proportions of each type; however, the relation-

ships were too weak, given the ecological variability among

sub-regions, to make a single regression model useful across

the entire study area. Instead we employed another approach,

which was to calculate the ratios between the sub-region

proportions of each type of land-cover estimated from the two

datasets. These ratios were then applied to the sub-regional

land-cover proportions from the 1997 NRI dataset to estimate

the proportions of each land-cover class in each sub-region

that should result from the 2000 AVHRR classification for it

to be comparable with the 1980 land-cover map. The process

is illustrated for one of our sub-regions in Table 3. We

considered extending any trends in land-cover proportions

observed in the NRI dataset between 1982 and 1997, to

produce estimates for 2000. Because we could not absolutely

know that a trend would continue in the same form, we chose

to not do so, and instead used the 1997 proportions to guide

our classification of 2000 AVHRR data. However trend

extrapolation might be a useful extension of the methods

presented here for similar projects.

4.2. Unsupervised classification

Bi-weekly composites of NDVI calculated from AVHRR

images were chosen from among the 12 composites

available from the 2000 growing season to minimize the

effects of clouds and image defects. In most cases, some of

the bi-weekly composites had visible anomalies over a

given sub-region, and the selection process netted 7–10

NDVI composites for use in the classifications.

The ISODATA classification method (Tou & Gonzalez,

1974), as implemented in the ISOCLUS program in PCI
(PCI Geomatics, Richmond Hill, Ontario, Canada), was

used to identify clusters of pixels with similar spectral–

temporal sequences. The classification process was run

separately for each of the 35 sub-regions in the study region.

All water areas, identified using the 1980 land-cover data

set, were excluded from the clustering process. The resulting

classifications contained 14–40 clusters (depending on size

and complexity of the sub-regions), that we labeled as

urban, agriculture, forest, non-forested wetland or barren.

While we were ultimately interested in the change between

the three dominant land-cover classes (i.e., agriculture,

forest and urban), non-forested wetland and barren were

included because they also existed on the landscape.

Because these non-forested wetland and barren categories

were often confused with other classes, they were further

refined in a later step.

As references, and to evaluate change trajectories as

logical or illogical, the 1992 National Land Cover Data

(NLCD) (Vogelmann et al., 1998) and the LUDA 1980

data sets were consulted during cluster labeling. Clusters

generated for all 35 sub-regions were labeled by two of the

authors, and both analysts reviewed all classifications.

4.3. Spectral signature identification

In order to implement the land-cover allocation process,

we required spectral– temporal signatures for our target

classes. These were derived on the basis of a version of the

unsupervised classification described above, modified to

account for the spectral limitations of AVHRR data.

Because urban development is not generally replaced by

agricultural or forest land over time, we reclassified as

urban all pixels that were labeled urban in the rasterized

1980 land-cover dataset, but not classified as urban in the

2000 unsupervised classification. We also found that

AVHRR data could not consistently distinguish non-

forested wetlands from other classes due to their small

size, patchiness, or confusion with other classes (Gaston et



K.M. Bergen et al. / Remote Sensing of Environment 97 (2005) 434–446440
al., 1994; Muller et al., 1999), and that the barren class

was very small and isolated (e.g., dunes occurred in

narrow, non-continuous strips along the Great Lakes

shorelines). Consequently, the few clusters that were

clearly non-forested wetland or barren were labeled as

such, and clusters that were mixed or confused were

labeled as urban, agriculture, or forest, depending on the

dominant class present in the mixture. The non-forested

wetlands and barren pixels in the unsupervised classifica-

tion were supplemented with all pixels labeled as these

two classes in the 1980 LUDA data set to ensure enough

pixels for signature generation. Temporal–spectral signa-

tures for the five land-cover categories were extracted

using the classification results supplemented by appropriate

pixels from the 1980 land-cover data as described above

(the combination of which is hereafter referred to as the

unsupervised classification).

4.4. Spatial allocation of land covers

The spectral– temporal signatures were used to generate

five raster probability maps, one for each land-cover and

representing the probability that each pixel belonged to that

class based on Mahalanobis distance (Eastman, 2001).

Because the Idrisi classification program we used allowed

only seven bands to be used, we used the best seven bi-

weekly composite images for each sub-region that also

formed a good time-series over the growing season. To

ensure that areas identified as urban in 1980 remained urban

through subsequent processing, these pixels were given an

urban probability of 100% and a probability for other

classes of 0%. The probability maps were converted to rank

maps, in which all pixels were rank-ordered based on their

calculated probability of belonging to the land-cover class

(i.e., the pixel with the highest probability in a given class

was ranked one, etc.).

The Multi-Objective Land Allocation (MOLA) algo-

rithm seeks to assign a predetermined number of pixels

to each class based on the set of pixels that maximizes

the collective probability of pixels assigned to each class

(Eastman et al., 1993; Eastman, 2001). The five land-

cover classes were input as equally weighted objectives

for the MOLA procedure. Each objective (e.g., a land

cover) was defined using its corresponding ranked

probability map and also was given the expected number

of pixels, derived from the NRI statistical data in the

process described above. MOLA is an iterative process

that allocates the highest ranked available pixels to each

land-cover until it reaches the expected number of pixels

for that land-cover. When a pixel that is the next highest

ranked available for more than one class, it is assigned to

the class in which its rank is highest. The MOLA

procedure was run for every sub-region separately and

the results were combined to produce a raster map

showing 2000 land-cover in the entire region (hereafter

referred to as the MOLA classification).
4.5. Land-cover accuracy assessment

In order to assess the accuracy of the products resulting

from both the unsupervised classification and MOLA

processes, we first used our sampled set of aerial photo-

graphs. The photos we acquired were scanned at 800 dpi

and georeferenced to the digital orthophotoquads from the

various state agencies, with RMS errors of less than 5 m.

The land-cover polygons from the 1980 dataset (i.e.,

LUDA) were overlaid on the georectified 2000 photos, the

2000 land-cover interpreted from the photos, and the 1980

polygons edited to reflect interpreted 2000 conditions. Our

photo interpretation process followed the same protocol and

class definitions used to create the 1980 LUDA data set

(Anderson et al., 1976; U.S.G.S., 1990). As with the LUDA

data set, each updated land-cover polygon had to meet the

minimum area requirement of 40 acres for all classes except

urban and barren lands, which had a minimum mapping unit

of 10 acres. Minimum polygon widths of 200 m for urban

and barren and 400 m for other classes were also enforced in

accordance with the protocol. All 86 aerial photographs

were interpreted by trained remote sensing analysts and

verified by a second and lead interpreter to ensure that all

change areas were detected. The output of this process was a

set of new vector-digitized land-cover maps representing

2000 conditions in an identical manner to the LUDA data

set, which represents 1980 conditions.

The vector land-cover polygons for both dates were

rasterized to a 1-km grid, to match the resolution of the

AVHRR data and the rasterized version of the LUDA data.

These data were then compared with the unsupervised and

MOLA classifications to extract accuracy statistics.

Producer_s, user’s and overall accuracy, and the Kappa

coefficient were calculated for each land cover.

We also analyzed patterns in each individual sub-region

to determine if any were particularly problematic, in terms

of containing too much heterogeneity to have achieved

adequate classification accuracy. One test of this was to

calculate land-cover percentages at the state level, i.e., to

summarize results on these strata not used in the classi-

fication process. This analysis indicated that several very

large sub-regions had low-levels of accuracy even though,

in the case of the MOLA classification, their percentages for

each land cover were accurate. To address this problem, we

split five of the 35 sub-regions at state boundaries resulting

in 42 sub-regions total (as two of the split MLRAs spanned

more than two states). All other sub-regions remained

unchanged. We then repeated all previous processes to

recreate the unsupervised and MOLA classifications on

these slightly revised sub-regions, including summarizing

the NRI statistics by these units. Although NRI protocols

caution against analyzing NRI data by very small units such

as counties (U.S.D.A., 2001), the split sub-regions were still

quite large (i.e., they included many counties). The final

results and accuracy figures for the land-cover classifica-

tions include these improvements.



K.M. Bergen et al. / Remote Sensing of Environment 97 (2005) 434–446 441
4.6. Land-cover change

For several reasons it may not be advisable to directly

analyze change in land-cover data from heterogeneous

sources on a pixel-by-pixel basis, even with the method

we developed to improve comparability. First, the under-

lying spatial scales of the two datasets were different. The

data representing land cover in 1980 were vector-digitized

using a minimum mapping unit and then aggregated to 1

km, while the AVHRR data were collected for 1-km pixels.

Second, the spectral characteristics of the two datasets were

different; one was interpreted from the visible spectrum

(0.4–0.7 Am) and the other was an index derived from a

combination of the green-red (0.58–0.68 Am) and near-

infrared (0.725–1.1 Am) band. Third, the signal in any

given AVHRR pixel may actually include some ‘‘bleeding’’

or contamination from adjacent pixels (Goward et al., 1991;

Huang et al., 2002). Fourth, some spatial mis-registration

may occur between two datasets.

To reduce the effects of these problems, we suggest that

it may be necessary to either (a) perform the change analysis

using data aggregated to a slightly coarser resolution, which

would require an analysis of change in land-cover percen-

tages within each larger (and mixed) pixel, or (b) analyze

change at the pixel level, but aggregate and present the

results at larger pixel sizes. Choosing the former approach,

we (1) aggregated 1-km classifications from each method

for each date by calculating the percentage of each 5-km

pixel in each land-cover class and (2) calculated the change

in land-cover percentages within each 5-km pixel as our

measure of change. Although small-scale changes (i.e.,

those occurring over a single pixel or pair of pixels) are

obscured by aggregation, the results serve to identify the

areas within the region of high rates of change relative to

other areas.

4.7. Land-cover change accuracy assessment

We assessed accuracy of the change maps, and tested the

potential improvement of the MOLA method over the

(augmented) unsupervised method at three aggregate levels.

First, we compared changes in the percentages of agricul-

ture, urban, and forest land covers estimated using the

LUDA data set for 1980 and the unsupervised and MOLA

results for 2000 to the air-photo-interpreted land-cover

maps. Second, we compared the changes in the percentages

of agriculture, urban, and forest land covers estimated using

the LUDA data set for 1980 and the unsupervised and

MOLA results for 2000, to the changes calculated from the

statistical NRI data, summarized at the level of sub-regions

and also by state. In order to make the comparisons with the

NRI data, however, the proportions calculated from the

LUDA data and the unsupervised and MOLA classifications

were multiplied by scaling factors calculated to relate the

NRI statistical and LUDA classifications at both the sub-

region and state levels (based on the comparison of 1982
statistical data and the c. 1980 LUDA classification, and

described in the section on Estimating land-cover propor-

tions). We calculated and report the root mean squared error

(RMSE) in the estimated change in land-cover percentages

within the 5-km pixels, sub-regions and states.

For the 5-km pixels that fell within our sampled photos,

we estimated the actual changes in land-cover percentages

by comparing the rasterized LUDA data with a rasterized

version our land-cover maps interpreted following the

LUDA protocols. These figures were used to assess the

accuracy of the respective change maps derived by

comparing the rasterized LUDA data to the unsupervised

and MOLA classifications, as described above. To reduce

edge effects due to the small size of our sampled photos,

only those 5-km cells that had at least 66% coverage of 1-

km cells within the photo areas were used.

The accuracy of change estimates from the MOLA and

unsupervised methods was calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~
n

i¼1

actualchange� classifiedchangeð Þ2

n

vuut
ð1Þ

where n is the total number of 5-km pixels (i.e., across all

sites), actualchange was the difference between 2000 and

1980 land-cover percentages, calculated using the photo-

interpreted land covers for 2000 and the 1980 land-cover

data (i.e., LUDA), and classifiedchange difference in land-

cover percentages calculated using one of the two classi-

fication methods in comparison with the 1980 data (i.e.,

LUDA).

Given the small areal coverage provided by our photo

validation sites, we also sought to compare our classifica-

tions with statistical data collected from across the region,

but aggregated to larger spatial units (i.e., sub-regions and

states). In order to calculate and compare the accuracy of

estimates of the change in land-cover percentages within

sub-regions and states, we calculated the actual difference in

the percentages of agriculture, urban and forest within these

regions from the 1997 and 1982 NRI statistical data. Next,

we calculated the comparable changes based on sub-

regional and state-wide estimates of land-cover percentages

in 2000 from the unsupervised and MOLA classifications,

compared to percentages from the 1980 LUDA classifica-

tion. The accuracies of sub-regional and state-wide changes

based on these two classifications were then estimated using

the RMSE (Eq. (1)).

The by-state stratification tests the robustness of the

classifications to an alternative aggregation. This is impor-

tant because, in the case of the MOLA results, comparing

them to NRI data for the original units of classification

achieves a nearly exact match, as the MOLA process was

constrained by the land-cover proportions reported in the

NRI data. Comparison of state-level estimates tests whether

this improvement as compared with the unsupervised

method is retained when the results are aggregated by units
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that were not used as absolute constraints in the MOLA-

based classification process. Note that though we split five

large sub-regions of the 35 sub-regions at a state boundary,

sub-region boundaries did not otherwise follow and did not

nest within state boundaries.
5. Results

5.1. Land-cover classifications

Visual (Fig. 5) and quantitative (Table 4) comparisons of

MOLA and unsupervised classifications confirmed the

effectiveness of the classification methods. Though many

1-km pixels were actually composed of a mixture of land-

cover classes, we classified the dominant cover class and

used accuracy and change assessment methods appropriate

to these discrete categories. So, some misclassifications are

inevitable. The overall accuracy of the 1-km MOLA

classification (85%, with a kappa of 73) compared favorably

with the value for the unsupervised classification (82% with

a kappa of 71). Though the results were fairly similar, the

MOLA approach resulted in a small improvement in overall

classification accuracy over the unsupervised classification

approach. Recall that the unsupervised classification was

adjusted to include ancillary data for the urban, non-forested

wetlands, and barren categories.

Evaluation of the user’s and producer’s accuracies

provides some indication of the strengths and weaknesses

of the results. The relatively low producer’s accuracy for

Urban (73%) was a result of confusion between the urban

and agricultural classes that is consistent with the presence

of mixed urban-agriculture pixels in developing urban fringe

areas. More pixels should have been assigned to Urban, but

those classed as Urban were very likely (94%) to be Urban

in the air-photo classification.

Though Agriculture was classified at consistent and

relatively high levels of accuracy (90% producer’s, 86%

user’s), the relatively lower producer’s and user’s accuracies

for Forest (i.e., at 79% and 79%) resulted from confusion

with agricultural land covers. This is probably because of

mixed pixels and areas of transitioning young–shrubby

vegetation where agricultural lands are more recently

abandoned, a significant land-cover change phenomenon

in the region.

There are two types of non-forested wetlands in the

region: (a) small scattered wetlands that may be subject to

change but have little or no effect on the classification at the
Table 4

Accuracies of the unsupervised and MOLA classifications created using 2000 AV

Procedure Urban Agriculture Forest Non-f

Unsupervised 83 /80 83 /90 82 /73 95 /67

MOLA 73/94 90 /86 79 /79 90 /91

Reported are producer’s/user’s and overall accuracies by land cover in percent,

classifications.
1-km scale, and (b) more extensive wetlands (in particular in

northern Minnesota, Wisconsin, and Michigan) that are not

subject to significant rates of land-cover change. The high

levels of accuracy of Non-Forested Wetlands (90% produc-

er’s, 91% user’s) in the MOLA classification, compared

with the unsupervised classification, where user’s accuracy

was only 67%, was the likely result of the MOLA method

improving on the unsupervised classification in capturing

the 2000 Non-Forested Wetland pixels (even though the

unsupervised classification had been supplemented by

known Non-Forested Wetland regions based on both the

1980 LUDA and 2000 AVHRR). MOLA was able to

allocate the correct number of wetland pixels and to allocate

them in the place where they had the highest probability of

being correct.

The Barren class occupied very little area, but because

these pixels could not be classified into one of the other

classes it was necessary to retain the class. Though we

report the user’s and producer’s accuracy for Barren in Table

4, the small sample size was not adequate for us to draw

conclusions or compare the classification methods on the

basis of them.

Because of the bias towards selecting validation photos

in areas of change, our accuracy results (Table 4) should be

interpreted as representing accuracy for areas undergoing

significant change and is probably lower than the accuracy

of the areas of little change. Many of our validation photos

represented the most difficult cases to correctly classify. For

this reason, we believe that the results in Table 4 are

conservative estimates of the accuracies of the classifica-

tions of the entire region.

5.2. Regional change maps

Two maps illustrate the spatial patterns of the two

dominant land-cover change trajectories in the North

Central Region: 1) percent change to forest, and 2) percent

change to urban (Fig. 6). The maps in Fig. 6 show several

distinct patterns and highlight the locations of rapid land-

cover change in the region. The urban-change map high-

lights areas around urban cores—e.g. Minneapolis, Detroit,

Chicago, etc. Other smaller cities are also showing

significant change. In the change to forest map, the primary

agricultural belt shows only scattered change. Instead, most

of the forest change is in the urban–rural fringe and near the

transition zones between predominantly agricultural and

predominantly forested areas in both the northern and

southern parts of the region.
HRR data

orested wetland Barren Overall accuracy Kappa

60 /17 82 71

20 /7 85 73

plus the Kappa coefficient, for both the unsupervised and MOLA 1-km



Fig. 5. Land cover in 1980 and 2000: A) 1980 land cover from LUDA, B) 2000 land cover from AVHRR.

Fig. 6. Change maps showing A) percent change to forest, and B) percent change to urban. Pixel colors represent the change in percentage of pixels within the 5

km pixels that were in forest or urban. Gray represents no change, cool colors (blue) represent small increase, warm colors represent significant increase, and

red represents 80% or greater increase.
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The accuracy assessment of the change information

indicates that the MOLA classification improved on the

unsupervised approach in every test (Table 5). The RMSEs

can be interpreted as the error in the estimated change in

percentages within the 5-km pixels. Comparing the change

in land-cover percentages over the 5-km pixels that covered

our photo validation sites, the RMSEs from the MOLA

method were lower (better) than those of the unsupervised

classification. The improvements were only slight, but the

consistency of the improvement of the change estimates is a

good sign. The small size of the photo sample, again, limits

the power of our accuracy estimates. It should also be

remembered that the raw unsupervised classification was

augmented with ancillary data to improve its accuracy and it

is the augmented unsupervised classification compared here.

Comparing the accuracy of estimates of percentage

change in land-cover proportions at the sub-region and

state levels produces much more striking evidence of the

improvement that the MOLA approach provides, over the

more traditional unsupervised approach. Starting with

estimates of change at the sub-region level, the RMSEs on

the MOLA estimates were an order of magnitude lower than

the results from the unsupervised method for forest and

agriculture. Note, however, that the error in the MOLA

estimates should theoretically be 0.0, because the propor-

tions used in the classifications by sub-region were derived

from the same NRI data used to assess accuracy. That the

estimates of change in percent were slightly non-zero is

most likely due to minor effects introduced in the multiple

steps of preparation and analysis of the spatial datasets.

The more useful test, perhaps, is the comparison of

percentage change estimates made at the state level, because

the states were not used or used only in a minimal way in

the stratification of the classification process. Significantly,

the RMSEs of percentage change in the percentages of each

land-cover category at the state level were still significantly

lower for the MOLA-based analysis versus that based on the

unsupervised classification. These results demonstrate that

the method developed here, using an independent statistical

dataset to constrain a classification in a land-allocation
Table 5

Results and comparisons of change maps based on the unsupervised and

MOLA classifications summarized in three ways: a) change in the

percentage of 5-km pixels in each land-cover type, b) change in percentage

of land-cover types over sub-regions, and c) change in land-cover

percentages over states

Summarization Method Urban Agriculture Forest

a) 5-km pixels Unsupervised 9.90 16.62 15.66

MOLA 8.77 14.97 11.68

b) Sub-region Unsupervised 5.75 6.53 8.51

MOLA 0.21 0.90 0.43

c) State Unsupervised 3.53 2.64 2.77

MOLA 0.27 0.77 0.40

All numbers reported are Root Mean Squared Errors (RMSE) calculated for

each change estimate, compared with aerial photo interpretation (for 5-km

pixels) or NRI data (for sub-regions and states).
algorithm (MOLA) for comparison with an earlier land-

cover map, improved the accuracy of the land-cover change

maps and estimates derived from it over a more standard

classification technique, even one that was supplemented

with ancillary data.
6. Discussion and conclusions

The overall goal of this research was to map land-cover

change between agriculture, forest, and urban land-covers

within the North Central Region of the U.S. at a coarse

spatial resolution. We developed a method that allowed us to

compare an automated classification of land cover in the

year 2000, based on spectral– temporal signatures derived

from bi-weekly composites of an AVHRR-derived vegeta-

tion index (i.e., NDVI), with an existing land-cover map

derived from vector-digitized land-cover polygons that had

been interpreted from aerial photographs taken in the period

1978–1982. Given the availability of a consistent multi-

temporal statistical data set, we used a land allocation

algorithm to classify land-cover classes in a way that

constrained aggregate land-cover proportions to those

reported in the statistical dataset.

The need for such an approach is that it facilitates

combination of heterogeneous data for land-cover change

studies. Such data integration is necessary, in that it allows

for extension of land-cover change studies in time, forward

through the use of satellite imagery and backward through

the use of archival sources. Our analysis of the statistical

output indicates that the refinement the AVHRR-based

classification produced better results for mapping land-

cover change, when compared to the 1980 Land Use Dataset

(LUDA) from the USGS, than did an unconstrained

unsupervised classification. The improvement was consis-

tent at all levels of analysis, but especially notable, i.e., the

refined land-cover classification was about an order of

magnitude better than the unsupervised classification, when

the analysis focused on estimating land-cover change over

areas within the region (i.e., MLRAs and states). The data

and methods limit the accuracy of an analysis of land-cover

change at the level of 1-km pixels. Nonetheless, the

accuracy of such an analysis, aggregated to 5-km pixels,

was improved by the method presented here.

The scope of our project (i.e., seven states) created some

challenges in implementation. Even after standard process-

ing of the AVHRR data into bi-weekly composites, there

were still anomalies in the AVHRR NDVI time series, such

as mosaicing and cloud influences that caused problems in

the classifications in isolated areas that could not be

removed. An additional source of error comes from the

size of the sub-regions of analysis (i.e., MLRAs), and the

variability within them that was not removed using this

stratification. Our analysis confirms that the pattern of

variability in the AVHRR data accounts for spatial

variations within the sub-regions and that, together, the
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pixel-level satellite data and the constraints on sub-regional

land-cover proportions provides a better representation of

region-wide land-cover patterns than the AVHRR data

alone. Nonetheless, stratification of the region into more

and smaller sub-regions would likely improve the classi-

fication accuracy. However, using much smaller sub-regions

requires statistical data that accurately estimate the land-

cover proportions for those sub-regions and finer-resolution

satellite data. Although incorporating such finer-level data

was beyond the scope and intent of this project, the methods

presented here could theoretically be used in the same way

with data at any level of detail.

Some refinements of the method may be of interest to

improve and generalize its applicability. We have suggested

that projection or interpolation of trends observed in the

statistical data might be useful in cases where statistical and

spatial data were not collected in exactly the same year. In

addition, the MOLA procedure could be implemented to

account for uncertainty in the sub-regional estimates of

land-cover proportions by assigning ranges for the numbers

of pixels assigned to each land-cover class instead of an

exact number or percentage. The methodology developed

here could also be used to combine data from other

platforms, for example MODIS (Moderate Resolution

Imaging Spectrometer), with archival data. Improved

remote sensing data, such as BRDF nadir-corrected

MODIS, may improve spectral consistency.

The 5-km change product for the region has been

incorporated into a web site that highlights changes in

several social and natural characteristics between 1980 and

2000 to identify those areas in which natural resources are

undergoing particularly dynamic changes (www.ncrs.fs.fe-

d.us/4153/deltawest). Together with demographic and forest

inventory information, the regional patterns of change in

land cover facilitate analysis and assessment at a regional

level. Without the development of the new method

presented here, which makes use of regional stratification,

summary statistics, and a land allocation algorithm to ensure

reasonable compatibility of heterogeneous remotely sensed

data sets, the comparability of multi-disciplinary data in this

assessment would have been undermined. The methods

should be more broadly applicable where inconsistent

remotely sensed data sets are available from multiple

sensors, but where statistical summaries can be used to

improve compatibility.
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