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Abstract

Point pattern analysis of forest inventory stem-maps may aid interpretation and inventory estimation of forest attributes. To

evaluate the techniques and benefits of conducting point pattern analysis of forest inventory stem-maps, Ripley’s K(t) was

calculated for simulated tree spatial distributions and for over 600 USDA Forest Service Forest Inventory and Analysis (FIA)

plots in Minnesota and Wisconsin. A new technique for calculation of Ripley’s K(t) for cluster plot stem-maps was proposed that

involves the truncation and combination of clustered, circular sub-plots (0.01 ha) into one square (0.04 ha) for each inventory

plot. For Poisson and uniform simulated tree spatial distributions, combined sub-plots may possess nearly the same spatial

properties as the entire plot area from which they were sampled. Although sub-plots may be too small for meaningful spatial

analysis, combined sub-plots may permit spatial analysis regardless of how sub-plots are combined. The step-size (t) at which

stem-map point patterns were most discernible as either clustered or uniform varied by forest type. Additionally, stand

disturbances may increase K(t). Although limitations exist, point pattern analysis of forest inventory stem-maps may permit

refined ecological analysis of forest inventories.
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1. Introduction

The sampling designs commonly employed in for-

est inventories often reflect the user-group objectives

of estimating volume, species composition, and

growth/mortality rates. Many of the analyses resulting

from conventional forest inventories such as

these often lack quantification of stand-level spatial

attributes. Although numerous inventories map the

locations of all sample trees, this information is pri-

marily used to facilitate tree identification during

remeasurements and has rarely been used for indivi-

dual tree spatial pattern analysis. These stem-maps

may provide data for a point pattern analysis of forest

attributes across forest ecosystems.

Point pattern analysis, a branch of spatial statistics,

can be used to quantify the spatial pattern of plant

communities (Cressie, 1993). Information on the spa-

tial pattern of individual plants within forests may

refine our understanding of ecological processes such

as forest establishment, growth, competition, repro-

duction, and mortality (Legendre and Fortin, 1989;
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Hasse, 1995; Dale, 1999). Spatial point pattern ana-

lysis can be used to investigate stand disturbance

histories (Moeur, 1997; Mateu et al., 1998; Harrod

et al., 1999; Mast and Veblen, 1999) and to describe

the competitive interactions between trees in mixed-

species forests (Duncan, 1991; Szwagrzyk, 1992;

Ward et al., 1996). It may also offer an alternative

to the traditional broad population density investiga-

tions (Weiner, 1982). In the temperate conifer-hard-

wood forests of Minnesota and Wisconsin, spatial

analyses of regional forests have advanced succes-

sional theories and refined stand disturbance dynamics

theories (Frelich and Reich, 1995; Frelich, 2002).

However, to date most point pattern analysis of Min-

nesota and Wisconsin’s forests have occurred outside

of traditional forest inventories. Therefore, the poten-

tial exists to augment regional forest analyses in the

upper Midwest by developing methodologies to con-

duct point pattern analysis of existing forest inven-

tories.

The greatest obstacles to conducting point pattern

analysis of inventory stem-maps are usually the sam-

pling designs. Often, the relatively small size of most

forest inventory plots and sometimes spatially dispa-

rate sub-plot sampling designs severely limit point

pattern analysis. With this in mind, the goal of this

study was to evaluate a new technique for conducting

spatial point pattern analysis using the Ripley’s K(t)

statistic on inventory data for the states of Minnesota

and Wisconsin from the Forest Inventory and Analysis

(FIA) program of the USDA Forest Service. FIA

sample plots consist of four 7.31 m radius circular

sub-plots configured as one central sub-plot and three

peripheral sub-plots with centers located at 36.58 m

and azimuths of 0, 120, and 2408 from the center of the

central sub-plot. The FIA program currently maps

the location of every tree (diameter at breast

height � 12:7 cm) by bearing and distance from each

sub-plot center. However, since FIA inventory plots

are a configuration of four of these spatially disparate

sub-plots, a new methodology consisting of sub-plot

truncation and combination was employed and eval-

uated using both simulated and actual inventory data.

The Ripley’s K(t) statistic was then assessed in terms

of reflecting forest type and stand disturbance attri-

butes of FIA plots.

2. Methods

2.1. Data

To investigate the effects of the sub-plot truncation

and combination methodology proposed for Minne-

sota and Wisconsin forest inventories, tree locations

were simulated (649 tph) for an entire square plot

(87:8 m � 87:8 m, 0.77 ha) containing the FIA field

plot sample design for three spatial distributions (250

plots each): uniform, Poisson, and clustered (Fig. 1).

The three simulated spatial distributions were chosen

to reflect the range of spatial patterns common to

inventoried forests: uniform (even-aged plantations),

Poisson (random tree locations), and clustered (old-

growth/uneven-aged). Uniform spatial distributions

had tree locations spaced approximately 4 m from

each other with a random perturbation of up to

0.3 m. Poisson spatial distributions had tree locations

with randomly assigned coordinates. Clustered spatial

distributions had cluster centers (10 per plot) ran-

domly located within the square plot (0.77 ha). These

randomly located tree clusters contained 50 trees

randomly located within 4.9 m of the cluster center.

The random components of all spatial distributions

were derived from a uniform distribution. The clus-

tered and uniform spatial distributions were labeled

accordingly to reflect the dispersive (uniform) and

Uniform Poisson Clustered

Fig. 1. Simulated uniform, Poisson, and clustered spatial patterns of individual trees (FIA plot design superimposed).
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attractive (clustered) attributes of the spatial patterns,

although random components were inherently re-

quired in their creation.

Data from FIA plots from Minnesota (337 plots)

and Wisconsin (333 plots) measured in 1999 and 2000

were also used in this study. Only plots with all four

sub-plots entirely in forested conditions were included

in the study data set. Additionally, only plots in the

following common forest types were included in the

study data set: red pine (Pinus resinosa), black spruce

(Picea mariana), oak/hickory (Quercus spp., Carya

spp.), maple/beech/birch (Acer spp., Fagus grandifo-

lia, Betula spp.), and aspen (Populus tremuloides).

Two attributes of the current FIA sampling design

complicate point pattern analysis using the Ripley’s

K(t) statistic. First, the sampling design of four, spa-

tially disparate circular sub-plots does not allow for

toroidal edge correction. Second, the FIA sub-plots

may be individually too small to allow for robust

spatial analysis. Therefore, for this study, the sub-

plots for each FIA plot were truncated to a square by

excluding all tree locations outside a superimposed

square (Fig. 2A and B) and all four truncated sub-plots

were combined into one square for each FIA plot. This

truncation and combination method generates a larger

overall area providing more spatial information. First,

the locations (azimuth and distance from sub-plot

center) of trees within a superimposed square are

extracted from every sub-plot (Fig. 2A). Next, the

distance and azimuth from plot center to each tree

12.7 cm or greater in DBH are converted to x, y

coordinates (using the lower left corner as the origin).

Finally, the tree coordinates from each truncated sub-

plot are combined to form a larger square with the

lower left corner as the origin and 20.85 m sides

(Fig. 2B). Additionally, to investigate the effect of

the sub-plot configurations on Ripley K(t) values for

the entire combined plot, all 24 possible configura-

tions of sub-plots were created.

2.2. Ripley’s K(t)

Ripley’s K(t) is a widely used second order descrip-

tive statistic in two-dimensional point pattern analysis

(Hasse, 1995; Dale, 1999). The term ‘‘second order’’

refers to the analysis of all point-to-point distances, as

opposed to first-order analyses such as ‘‘nearest neigh-

bor’’ methods that use only mean inter-point distances

(Hasse, 1995; Dale, 1999). Mathematically, the edge-

corrected estimated Ripley’s K-function for detecting

departures from complete spatial randomness is

defined as

K̂ðtÞ ¼ l̂
�1Xn

i¼1

Xn

j¼1

i6¼j

wðSi; SjÞ�1
IðjjSi � Sjjj 
 tÞ

N; t > 0
(1)

where t is the step-size, N the number of trees in the

study area, |A| the size of the study area, l̂ ¼ N=jAj the

estimated tree density, wðSi; SjÞ the proportion of the

circumference of a circle centered at Si, passing

through Sj, and that is inside the study region A

(Cressie, 1993).

Ripley’s K(t) estimates are evaluated with respect to

step-size distance values (t). Larger Ripley’s K(t)

values at a certain (t) may indicate attractive properties

(clustering) among individual trees, while smaller

Ripley’s K(t) values at the same (t) may indicate

Fig. 2. To allow buffer creation, all circular sub-plots are truncated to a square (A), then all square sub-plots combined to one square plot (B)

and all bearings and distances transformed to a coordinate system (x, y in meters).
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dispersive spatial properties (regularity) among indi-

vidual trees. Ripley’s K(t) is often determined using

toroidal edge corrections (Ripley, 1977; Boots and

Getis, 1988; Duncan, 1990; Mast and Veblen, 1999),

which involves wrapping the plot around a torus such

that opposite sides of the plot connect, creating a data

set with no boundary (Ripley, 1977; Hasse, 1995). The

common use of a torus assumption may validate the

truncation and combination idea explored in this

study. Moeur (1993), Hasse (1995), and Mast and

Veblen (1999) provide more detailed descriptions of

Ripley’s K(t), including its formulation and applica-

tion to forest stem-maps.

2.3. Analysis

For this study, Ripley’s K(t) was calculated for all

stem-maps, whether simulated or actual, using spatial

analysis programs written by Duncan (1990). Step-

sizes (t) used in these analyses were approximately

half the length of the smallest plot size used in each

analysis. Since some analyses required comparison of

Ripley’s K(t) values across various scales (t), a derived

Ripley’s (t) statistic was used where appropriate (2)

(Hasse, 1995):

Derived KðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðtÞ
p

� �s
� t (2)

Ripley’s K(t) values for simulated tree point patterns

were used to test the hypothesis that the combined sub-

plot spatial patterns may possess the same spatial

pattern as the forest it samples. Mean standardized

differences between Ripley’s K(t) values for the

entire simulated stem-map areas (0.77 ha), the com-

bined sub-plots (0.04 ha), and individual sub-plots

(0.01 ha) were examined using

Kdiff ¼
jKi � Kjj

Ki

(3)

where Kdiff is the standardized difference, Ki the

Ripley’s K(t) value for the total plot area, and Kj

the Ripley’s K(t) value for the associated combined

or individual truncated sub-plots.

Ripley’s K(t) results for actual inventory stem-maps

were examined in terms of variation among individual

inventory sub-plots and all possible configurations of

truncated sub-plots into the combined plots. First,

coefficients of variation were determined for Ripley’s

K(t) values between the four sub-plots of each inven-

tory plot. Second, coefficients of variation were deter-

mined for each of the 24 possible configurations of

sub-plots for each inventory plot. Lastly, mean Rip-

ley’s K(t) values and associated standard errors were

determined for each set of plots stratified according to

forest type (red pine, black spruce, oak/hickory,

maple/beech/birch, and aspen) and stand disturbance

history (disturbed or undisturbed).

3. Results and discussion

The study hypothesis was that the dispersive and

attractive properties of point patterns would be main-

tained during sub-plot truncation and combination.

For simulated uniform and Poisson tree spatial dis-

tributions, combined sub-plots may possess nearly the

same spatial character as the entire forest area from

which they were sampled (S.E.’s <0.015) (Fig. 3). For

clustered tree spatial distributions, there were larger

differences between Ripley’s K(t) values for the entire

forest area and the combined sub-plots indicating

possible bias (S.E.’s <0.018) (Fig. 3). Individual

sub-plots consistently had Ripley’s K(t) values far

different from the 0.77 ha plot values (Fig. 3). Based

on Ripley’s K(t) analyses using simulated spatial

distributions, the proposed methodology for conduct-

ing point pattern analysis of relatively small, spatially

disparate inventory sub-plots appears valid for

uniform and Poisson tree distributions. Although this
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Fig. 3. Mean standardized differences between K(t) for each plot

and the associated, combined sub-plots and individual sub-plots for

simulated distributions (t ¼ 4:88 m).
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proposed methodology may produce biased results for

some clustered tree distributions, these methods may

warrant future consideration in the analysis of forest

inventories.

Results using actual inventory data from Minnesota

and Wisconsin may further elucidate the behavior of

Ripley’s K(t) values among: individual sub-plots, the

24 possible configurations of combined sub-plots,

different forest types, and disturbed/undisturbed

stands. Among individual sub-plots, for each plot,

Ripley’s K(t) values varied by as much as 200%

(Fig. 4). Most plots had coefficients of variation

(CV) greater than 0.25 for their respective Ripley’s

K(t) values between sub-plots. The level of variation

among the sub-plots of any particular plot depended

on the number of trees within the plot (Fig. 4). All

plots with over 35 trees had CV’s less than 0.5 (Fig. 4).

It appears that as the number of trees increases per unit

area, the variation decreases in the possible spatial

patterns that trees can assume. There may be less

available room for spatial dissimilarity to be

expressed. Spatial investigations of forest inventory

plots of relatively small sizes may yield no meaningful

results other than displaying the wide variation in tree

spatial patterns at small scales.

There are 24 possible sub-plot configurations for

each combined plot stem-map (Fig. 2B). CV’s for

Ripley’s K(t) values, between all 24 sub-plot config-

urations for each plot, were all under 0.6 with the CV

decreasing exponentially as the number of trees

increased (Fig. 5). For each individual plot, there is

less variation in Ripley’s K(t) values between the 24

combined plot configurations than between individual

sub-plots. As long as plots had a minimum number of

trees, the effect of configuration of sub-plots was

deemed minimal. If computational resources allow,

a mean or median of all the 24 possible sub-plot

configurations for each plot may be preferable to

the selection of just one of the sub-plot configurations.

The variation in Ripley’s K(t) across various spatial

scales (t) and forest types was examined with the idea

that distinct point patterns may be most evident at

characteristic scales by forest type. Ripley’s K(t)
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statistics reached their largest values at differing spa-

tial scales by forest type (Fig. 6). Aspen and black

spruce forest types displayed their most attractive

spatial patterns at larger spatial scales (t), while red

pine, oak/hickory, and maple/beech/birch forest types

displayed similar attractive patterns at the smallest

spatial scales (t) (Fig. 6). When interpreting spatial

patterns across the myriad of stand conditions present

in the forest inventories of Minnesota and Wisconsin,

one may need to be cognizant of the scale of observa-

tion and the forest type. Spatial patterns may be more

discernible in a 0.1 ha plot in a red pine plantation than

in a 0.5 ha plot in an uneven-aged mixed-species

hardwood stand.

Using the following step-sizes for each forest type

where attractive spatial patterns were most evident

(aspen: 9.15 m, red pine: 7.32 m, black spruce:

1.83 m, oak/hickory: 1.83 m, and maple/beech/birch:

1.83 m), the difference in mean Ripley’s K(t) values

between plots with and without past disturbances were

examined. Plots with relatively recent stand distur-

bances (wind, fire, insect/disease, flood, snow/ice, and

harvest) had a larger mean, derived Ripley’s K(t) value

(�x ¼ 3:32, S:E: ¼ 0:51) than undisturbed plots (�x ¼
2:53, S:E: ¼ 0:14). It appears that stand disturbances

may increase the degree of clustering among indivi-

dual trees within a plot. Small-scale disturbances, such

as some wind and ice storms, may kill trees in random

clusters, resulting in an overall clustered spatial tree

distribution for entire stands.

Spatial analysis of forest inventory stem-maps,

using methodology described by this study, may

enhance inventory analyses. However, numerous lim-

itations and caveats must be observed. First, the actual

area of analysis is reduced, due to sub-plot truncation,

resulting in a substantial loss of data. Second, Ripley’s

K(t) may be calculated only on data from inventories

using fixed-radius plots. Third, for sampling designs

such as FIA’s, Ripley’s K(t) may be calculated only for

trees with a minimum DBH, prohibiting investigation

of the spatial dynamics of regeneration. Fourth,

because the study plots are a combination of spatially

disparate sub-plots, plots located in ecotonal/multi-

use areas may confound tree point pattern analysis;

e.g., where one sub-plot is located on cropland while

the other three are on forestland. Fifth, stand densities

may affect the efficacy of conducting point pattern

analysis of inventory plots with extremely low stand

densities. Six, the methodology of sub-plot truncation

and combination may produce misleading Ripley’s

K(t) output for clustered tree distributions. Finally, to

ease the data management requirements for spatial

analysis of large inventories, a single step-distance (t)

may need to be selected that may be most appropriate

for the inventoried forest ecosystem.

4. Conclusions

Stem-mapped inventory data, often collected strictly

for tree remeasurement, may provide a wealth of stand-

level spatial information for forests across large regions.

Unfortunately, inventory sample designs, such as FIA’s,

do not lend themselves well to point pattern analysis. As

showninthisstudy,relativelysmallsampleplotsmaynot

be of sufficient size to accurately estimate the point

patterns of forests in Minnesota and Wisconsin. How-

ever, this study’s methodology of sample plot truncation

and combination provided larger sample areas for more

accurate pattern analysis. Although constrained by

numerous limitations, point pattern analysis of forest

inventory stem-maps is feasible, expands the ecological

analysis capability of inventory data sets, and may

warrant future application and evaluation.
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