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Abstract. High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test
methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub,
grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such
as shadow effect and similarity in spectral response between classes were found. Classification confusion among
objects with similar spectral responses occurred between water and dark impervious surfaces, concrete and bare-
soil, and grass/herbaceous and trees/shrub. Methods of incorporating texture, band ratios, masking of water objects,
sieve functions, and majority filters were evaluated for their potential to improve the classification accuracy. After
combining these various techniques, overall cover accuracy for the study area was 81.75%. Highest accura-
cies occurred for water (100%), tree/shrub (86.2%) and impervious surfaces (82.6%); lowest accuracy were for
grass/herbaceous (69.3%) and bare soil (40.0%). Methods of improving cover map accuracy are discussed.
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Introduction

Understanding the structure of urban cover is very important to urban management for
reasons such as runoff control, urban forest planning, air quality improvement, and mit-
igation of global climate change. Accurate maps of urban tree and other surface cover
types can provide critical information to better understand urban ecosystems and help im-
prove environmental quality and human health in urban areas. Urban tree cover analyses in
the past were often conducted using medium to small scale aerial photographs. Although
these tree cover analyses of individual cities still provide essential data for understand-
ing urban forest structure and quantifying vegetation functions, the spatial scale provided
limited detail about tree cover characteristics (Nowak et al., 1996) and the methods are
inefficient in terms of resources and personnel. An efficient way to get an urban cover map
is to classify digital remote sensing imagery.
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Digital image analysis techniques can assist in identifying and mapping various cover
maps over large areas. Common sources of imagery for urban cover delineation are Landsat
Thematic Mapper (TM) imagery, and the Systeme Pour l’Observation de la Terre (SPOT)
satellite imagery. Also, for national or continental scale land cover mapping, analysts have
used Advanced Very High Resolution Radiometer (AVHRR) imagery. More recently, dif-
ferent sources of imagery such as radar or LIDAR (LIght Detection And Ranging) are being
used for urban analysis (Dong et al., 1997; Priestnall et al., 2000; Gamba and Houshmand,
2001). The usage of remote sensing for urban land use analysis has been examined by many
researchers (Jensen, 1983; Harris and Ventura, 1995; Ridd, 1995; Jensen and Cowen, 1999;
Barr and Barnsley, 2000; Stefanov et al., 2001; Lo and Yang, 2002).

Moderate resolution imagery such as TM or SPOT images have been widely used to
understand the characteristics of urban surfaces in various areas (Baraldi and Parmiggiani,
1990; Harris and Ventura, 1995; Gluch, 2002; Zhang et al., 2002; Shaban and Dikshit, 2002).
In addition, recently, a national assessment of urban tree cover in the United States was
conducted using AVHRR data with a 1.1 km pixel resolution (Dwyer et al., 2000; Nowak
et al., 2001). Results from this assessment revealed that urban tree cover in the lower 48
United States averaged 27.1%, with urban tree cover highest in forested regions (34.4%),
followed by grassland areas (19.8%), and deserts (9.9%). The national urban tree cover
data were combined with field data to estimate national urban tree structural value (Nowak
et al., 2002), and national urban forest carbon storage, sequestration, and value (Nowak
and Crane, 2002). However, images like AVHRR data, TM or SPOT provide information
of very limited use at the scale of an individual neighborhood in the city.

For improved land and urban forest planning and management at the neighborhood
scale, high-spatial resolution imagery is more valuable and appropriate. The recent advent
of relatively low-cost digital high-spatial resolution color-infrared aerial images allows
developing urban cover maps with detailed information at the local scale. These maps can
be integrated within Geographic Information Systems (GISs) and can provide a wealth of
information to managers, planners, and scientists to improve urban vegetation management
and understanding of urban ecosystems. Analysis of high-spatial resolution digital images
for a small section of Berlin and Duisburg, Germany revealed that these data can be used
to produce relatively accurate cover maps (Zhang, 2001). This article reports the results of
using high-spatial resolution (0.61 m ground resolution) digital color-infrared aerial imagery
to identify five cover classes (tree, grass, bare soil, impervious surface and water) across an
entire city (Syracuse, NY) using common digital image analysis techniques and provides
initial information about using such high-spatial resolution imagery with established image
classification protocols within the context of urban forest assessment and monitoring. This
project tested high-spatial resolution in preparation for possible wider application and to

• Assess operational approaches to classification of high-spatial resolution imagery.
• Evaluate additional, but straightforward enhancements (specifically NDVI and texture) to

deal with the limited number of spectral bands and other unique challenges of high-spatial
resolution imagery.

• Evaluate and compare a few common post-processing methods for their effectiveness in
high-spatial resolution imagery for improving the classification results.

This initial experience was needed in preparation for detailed analysis of additional cities.
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Methods

Around 0.61 m ground resolution color-infrared (near infrared, red, and green bands) digital
aerial images for Syracuse, NY were collected by Emerge©R on 13 July 1999. Quackenbush
et al. (2000) include a description of the sensor system. The images were orthorectified
using direct positioning photogrammetric methods (Kinn, 2002) to reduce terrain and tilt
displacements and combined into a mosaic of 31 tiles. Six image tiles that encompassed
all five cover classes were used to develop and test the classification methods. These meth-
ods included the use of normalized difference vegetation index (NDVI), texture analy-
sis, and different post-processing methods. The project evaluated six different classifica-
tion approaches that used: (a) only the original three bands, (b) three bands, plus NDVI
and texture, (c) three bands, NDVI, texture, with post-processing using a sieve function,
(d) three bands, NDVI, texture, with post-processing using a majority filter, (e) three bands,
NDVI, texture, with post-processing using a sieve function and a majority filter, and (f) three
bands, NDVI, texture, with post-processing using a majority filter applied twice. To reduce
the confusion between water and dark impervious materials, water areas were manually
masked out using the images and topographic maps. The following sections describe the
key aspects of implementing the six classification approaches.

Vegetation index

NDVI is a commonly used vegetation index based on the reflectance properties of leaves
in red and near-IR wavelengths. Green plant leaves typically have low reflectance in the
visible regions of the electromagnetic spectrum due to strong absorption by leaf meso-
phyll. Meanwhile, in the near infrared region, leaves exhibit high reflectance due to ex-
tensive scattering effects in these wavelengths (Tucker and Sellers, 1986; Tucker, 1979;
Knipling, 1970). NDVI is based on these properties and generally provides high values
for vegetated areas. In addition, NDVI helps compensate for image variations caused by
changing illumination conditions, surface slope and aspect (Lillesand and Kiefer, 2000;
Quackenbush et al., 1999). Therefore, NDVI was used to mitigate the shadow effect of
high-spatial resolution imagery and to improve the classification of vegetated areas. NDVI is
computed as:

NDVI = (near IR band − red band)

(near IR band + red band)

NDVI for a given pixel always results in a number that ranges from −1 to +1. Generally,
non-vegetated areas give values close to zero and vegetated areas give values close to one
indicating the high possible density of green leaves. Therefore, NDVI is an efficient index
in differentiating vegetation and non-vegetation classes.

Texture analysis

Evaluations of the imagery revealed spectral confusion between vegetation classes, but
distinguishable spatial variability in tree cover relative to grass areas. This variability
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within tree cover provided a visual texture that could be used to help differentiate be-
tween classes by considering the spatial relationship of adjacent pixels. Texture is related
to the frequency of tonal change on imagery and has high values when areas are hetero-
geneous and low values when homogeneous. Texture analysis uses the spatial distribu-
tion of scene reflectance, and shading and shadows to describe the visual roughness of
the surface (Schowengerdt, 1997). Integration of textural information with spectral infor-
mation has been tested by previous researches (e.g., Berberoglu et al., 2000; Stefanov
et al., 2001; Ryherd and Woodcock, 1996). This study used a semivariogram approach to
measure textural variability between tree/shrub and grass/herbaceous cover types. Semi-
variograms use variance and sampling size to determine the spatial dependence of a pixel
relative to neighboring pixels (Curran, 1998). Image texture can be estimated by many
measures over various window sizes. In this study, a simple approach was adopted where
texture was estimated by computing the variance of a 15 by 15 pixel window. Win-
dow size was determined by the semivariogram using Variowin (Pannatier, 1996) and
also by considering the size of typical tree crowns and other urban features such as
houses.

Classification of image

A “hybrid” or “guided clustering” method (Bauer et al., 1994) was used to classify the
imagery based on the original three bands imagery. The same method was applied to the
original three bands of the imagery, NDVI, and texture information. This “hybrid” method
combines both unsupervised and supervised classification approaches in an attempt to
gain the strengths of each approach. In this method, the analyst outlines sample areas
of the main classes that are then divided into subclasses using unsupervised classification.
Statistics generated from these subclasses were used to classify the entire image based on
the maximum likelihood decision strategy. Reference data for each class were provided by
photo interpretation and field visits.

Post-processing — Sieve function and majority filter

After classification of an image on a per-pixel basis, there is often a “salt and pepper”
appearance caused by spectral variation among pixels that can cause individual pixels to
look different from a neighboring pixel of the same class (Lillesand and Kiefer, 2000).
Post-processing methods such as majority filtering and sieve functions can be used to
reduce this speckled appearance and improve object integrity and usually classification
accuracy. Generally, the improved object integrity and reduction in noise outweigh the
instances where the post-processing causes misclassification. This type of post-processing
might also cause a shift or removal in certain (usually linear) features. However, major
features in this project should not be affected this way because of the very high-spatial
resolution.

Sieve functions identify homogeneous clumps up to maximum number of pixels, and then
reclassify these small clumps to the surrounding pixels usually with a majority approach.
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The sieve function was set to find clumps of three pixels or less which were then reassigned
to the class that made up the majority of the neighboring pixels.

Majority filtering passes a moving window over the classified image and determines the
majority class within the window. If the center pixel in the window is not the majority
class, its final classification is changed to the majority class. In this project, the majority
filter approach used a 3 by 3 window and was applied either once or twice to the classified
imagery.

Accuracy assessment

Classification accuracy was determined using an error matrix or contingency table. These
tables compare known reference data to the corresponding classification results (Story
and Congalton, 1986). In this study, accuracy assessment was employed in two stages.
The first accuracy assessment was performed to provide information on the accuracy of
each of the classification and post-processing methods for comparison purposes. This first
accuracy assessment was conducted on the sub-sample of image tiles used to develop and
test the individual methods. A stratified random sample of 50 reference sampling points was
selected in each of the five cover classes (based on the original three band classification)
to estimate accuracy with reasonable precision (Stehman, 1999). When stratified sampling
is used in accuracy assessment and the sample size is equal for each mapped land-cover
class (equal allocation for each stratum), the analysis must take into account that the strata
are not sampled with equal intensity (i.e., rare strata are sampled with higher intensity).
If this difference is not accounted for in the analysis, the resulting accuracy estimates for
producer’s and overall accuracy will be biased (Stehman, 1995). Therefore, for Tables 1
to 3, the error matrices were constructed using the proper weighting of data from each
stratum (Stehman, 1995). Ground visits and image interpretation provided the reference
information for the 250 sample points.

The second accuracy assessment was performed on the final image classification
of the entire city based on a simple random sampling of 400 individual pixels over whole
study area. These 400 reference points were verified using field visits and image
interpretation.

Results

Overall accuracies increased from the original three-band classification (78.2% accuracy)
when NDVI and texture analysis were included (83.2% accuracy) and also increased (84.8%
accuracy) when a majority filter was applied twice as a post-processing method (Tables 1, 2
and 3). Applying the post-processing method of the majority filter slightly increased overall
accuracy, while the sieve function had no effect on overall accuracy (Table 4). Applying
the majority filter once increased accuracy from 83.2 to 84.5%, while applying the filter
twice increased the accuracy to 84.8%. Although the statistical improvements were small
with the majority filter, visual image inspections revealed that majority filters improved the
classification results by removing isolated pixels (figure 1). As the majority filter applied
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Table 1. Error matrix for the preliminary classification that used only the original three bands of the image.
Error matrix entries are proportion of area times 100

Reference

Tree/ Grass/ Impervious Row User’s
Class name shrub herbaceous Bare soil Water surface total accuracy (%)

Classified

Tree/shrub 14.74 0.61 0 0 0 15.35 96.00

Grass/herb 10.68 20.65 2.14 0 2.14 35.60 58.00

Bare soil 0 0.40 1.34 0 4.94 6.68 20.00

Water 0 0 0 0.68 0.01 0.69 98.00

Impervious 0 0.83 0 0 40.84 41.67 98.00

Column total 25.42 22.50 3.47 0.68 47.93 100

Producer’s 57.98 91.78 38.47 100.00 85.20 57.98 Overall
accuracy (%) 78.24

Table 2. Error matrix for the preliminary classification that used the original three bands, NDVI, and texture.
Error matrix entries are proportion of area times 100

Reference

Tree/ Grass/ Impervious Row User’s
Class name shrub herbaceous Bare soil Water surface total accuracy (%)

Classified

Tree/shrub 21.35 2.04 0.71 0 0 24.10 88.59

Grass/herb 3.77 17.49 1.42 0 4.88 27.56 63.46

Bare soil 0 0 0.80 0 0.13 0.94 85.71

Water 0 0 0 0.68 0.01 0.69 98.00

Impervious 0.31 2.97 0.53 0 42.90 46.72 91.84

Column total 25.42 22.50 3.47 0.68 47.92 100

Producer’s 83.96 77.74 23.08 100.00 89.51 Overall
accuracy (%) 83.22

twice produced the best results, it was selected for the post-processing of the final image
classification for the entire city.

Final classification

The final classification of the entire city produced an estimate of overall accuracy of 81.75%
(Table 5). The producer’s and user’s accuracies for a grass/herbaceous and bare soil class
were problematic as discussed below. The final estimates of land cover percentage for the



URBAN COVER MAPPING USING DIGITAL IMAGERY 249

Table 3. Error matrix for applying the majority filter twice to the image evaluated in Table 2. Error matrix entries
are proportion of area times 100

Reference

Tree/ Grass/ Impervious Row User’s
Class name shrub herbaceous Bare soil Water surface total accuracy (%)

Classified

Tree/shrub 21.65 1.73 0.71 0 0 24.10 89.86

Grass/herb 3.46 18.63 0.71 0 4.88 27.69 67.30

Bare soil 0 0 0.80 0 0 0.80 100.00

Water 0 0 0 0.68 0.01 0.69 98.00

Impervious 0.31 2.14 1.25 0 43.04 46.73 92.10

Column total 25.42 22.50 3.47 0.68 47.93 100

Producer’s 85.17 82.81 23.08 100.00 89.79 Overall
accuracy (%) 84.80

Table 4. Overall accuracy comparison of different classification and post processing methods

Method Overall accuracy (%)a

Original three bands only (Table 1) 78.24

Three bands + NDVI + Texture (Table 2) 83.22

Sieve functionb 83.22

Majority filterb 84.49

Sieve function + majority functionb 84.49

Majority function twice (Table 3)b 84.80

aAlthough some accuracies are identical, classification results were different.
bMethod applied in addition to use of three bands, NDVI and Texture.

City of Syracuse were: 26.6% tree/shrub cover, 21.6% grass/herbaceous cover, 1.3% bare
soil, 48.1% impervious surface and 2.3% water cover (figure 2).

Discussion

In spite of numerous challenges inherent in high-spatial resolution imagery (compared
with moderate or low-resolution imagery), the methods successfully produced a general
cover classification for the City of Syracuse that is spatially detailed. The overall accuracy
exceeded 80% for the five classes of tree/shrub, grass/herbaceous, water, impervious, and
bare soil. Urban foresters consider the results to be very useful over areas as small as blocks,
census tracks, neighborhoods, and the entire city. However, there is room for improvement
in terms of the accuracy of site-specific individual pixels.

A number of specific difficulties arose as shown by relatively low individual accuracies
for a few classes. The classification using the original three bands of high-spatial resolution
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Table 5. Error matrix (pixel count) for the final classification of the entire city. Matrix entries are proportion of
area times 100

Reference

Tree/ Grass/ Impervious Row User’s Standard
Class name shrub herbaceous Bare soil Water surface total accuracy (%) error (%)

Classified

Tree/shrub 25 3.75 0 0 0.25 29 86.21 3.22

Grass/herb 3.5 13 0.75 0 1.5 18.75 69.33 5.36

Bare soil 0 0 0.5 0 0.75 1.25 40.00 24.49

Water 0 0 0 6.5 0 6.5 100.00 0

Impervious 2.25 4.5 1 0 36.75 44.5 82.58 2.85

Column total 30.75 21.25 2.25 6.5 39.25 100

Producer’s 81.30 61.18 22.22 100.00 93.63 Overall
accuracy (%) 81.75

Standard 3.53 5.32 14.70 0 1.96 Overall
error (%) 1.93

Figure 1. Visual comparison of classification results for an example area. (a) Original three-band image, (b)
classification three-band image, (c) classification of combined image (three bands with NDVI and texture), and
(d) majority filter applied twice to the combined image.
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Figure 2. The final classified image of Syracuse.

imagery revealed difficulty in identifying the five classes because some features have
similar spectral responses with other classes. Specifically, confusion occurred between
bare soil and certain impervious surfaces, grass/herbaceous and tree/shrub, and water and
dark impervious surfaces. These spectral similarities are especially evident when using only
three broad spectral bands. Increased spectral resolution would very likely clarify some of
the class confusion, but current technology limits the spectral capabilities when operating
with high-spatial resolution. There is a trade off between the need for spatial detail and
increased specificity of cover classes. Also, shadow effects cause trouble for classification
of spectral data, and shadows are distinct and endemic when using high-spatial resolution
imagery (Quackenbush et al., 2000). In high-spatial resolution imagery, as compared with
lower resolution images (e.g., Landsat Thematic Mapper 30 m pixels), shadow effects be-
come much more evident as individual pixels can be encompassed by shade, while larger
pixels integrate the shade with the pixel data.

A few techniques were found to assist the classification of high-spatial resolution im-
ages that have variations from shading and limited spectral content. Because shaded pixels
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will have shadow in each band, band ratios can be used to produce image values that are
less sensitive to shading and more consistently related to cover type (Quackenbush et al.,
1999). Using the NDVI helped compensate for shadow effects and improve the final clas-
sification result. Interestingly, the shadow effects can also help to separate different types
within the same general class. For example, shadow and other variables help to give trees a
more heterogeneous appearance than grass. Texture measures are designed to capture some
of this variability and use it within the classification routines. For the Syracuse images,
adding texture information especially improved classification between grass/herbaceous
and tree/shrub, and between bare soil and impervious surfaces.

The grass/herbaceous class confused substantially with the tree/shrub category. Grass
cover with shadow tends to be classified as tree class and tree canopy which has low texture
tends to be classified as grass. The inclusion of a texture measure reduced this confusion, but
the spectral similarity of the two vegetation classes still remains a concern. Other channels
of information (spectral or geometric) or supplementary processing (e.g., expert classifiers)
would further reduce the confusion between grass and trees. Finding local surface heights
(or height differences) might also help separate herbaceous cover from shrubs and trees.

The bare soil class also had low classification accuracy. However, the standard error
of bare soil was relatively large due to sampling limitations. Bare soil occurs relatively
infrequently in the Syracuse area, but in a couple of locations where there was extensive
exposed soil, the classification result was reasonable. The misclassification of soil occurred
mostly with grass or impervious surfaces. It is likely that the confusion between grass and
bare soil is because bare soil often exists within or near the grass cover type (e.g., thin
grass cover or pathways). Thus, the edge pixels located between grass and bare soil may
cause low accuracy of bare soil. Also, the reference pixels for grass and bare soil contained
varying levels of vegetation density leading to indistinct assignment to the discrete classes.
The confusion of bare soil with impervious surfaces is likely because urban bare soil usually
has a spectral response that is similar to concrete.

There were also classification problems with water. Even though the error matrices show
high accuracies for water, these accuracies are based on a masking process that was applied
to the imagery to stratify water and assure a good classification. This type of stratification
process is useful and acceptable when there is good ancillary information about the location
of water in the study area. However, this type of fusion impedes the use of imagery for
updating water information. The classification problem with water occurred because the
spectral nature of water was similar to the spectral nature of dark impervious surfaces. In
particular, dark rooftops were often classified as water. Apparently, asphalt-based surfaces
have spectral reflectance patterns similar to water (in the bands measured). In addition, there
may be lack of ability in the sensor to distinguish detailed levels of low radiance.

Many misclassified pixels occurred along the edge between vegetated and non-vegetated
areas. This misclassification reveals that high-spatial resolution imagery still has problems
with mixed pixels. This problem is an inherent limitation of raster-based data. Urban areas
contain one of the most complex cover types and therefore will exhibit higher proportion of
mixed pixels. When the edge/mixing problems result in isolated or small groups of pixels
with a distinct class, post processing can be used to decrease the misclassification. Post
processing also reduces isolated geometric or radiometric problems that cause a pixel to be



URBAN COVER MAPPING USING DIGITAL IMAGERY 253

different even though the cover class is the same as the surrounding pixels. Currently, there is
little objective information on the advantage of post-processing, especially for high-spatial
resolution imagery and there is no clear guidance for selecting a post processing method.
Therefore, several different post classification methods were compared by visual inspection
and statistical accuracy assessment. In the Syracuse images, both visual results and error
matrices show that post processing by applying the majority filter twice generated slightly
better results over both a single application and over a sieve function. However, users should
be cautious because this type of post processing can cause small shifts in the locations of
edges and some correctly classified pixels will be changed. These consequences will have
effects on very detailed pixel-level classification results. Users should be also cautious about
determining the window size of filtering, which must depend on the resolution of the input
imagery and the characteristics of study area. Study areas with more homogeneous cover
types have better results from filtering.

Older methods of estimating urban cover types using sampling of aerial photographs
provide estimates with known standard errors, but are also relatively time-consuming to
produce, subject to interpreter error, and do not provide the spatial resolution or geographic
positioning of the cover types that digital image processing can provide. Other digital data
sets (e.g., Landsat) can be used to produce cover maps for urban areas, but cannot provide
the spatial resolution of the high-spatial resolution (sub-meter) digital images. A perfectly
accurate digital cover map may never be attainable given current technologies, but future
high-spatial resolution imagery with more spectral content or the incorporation of other
image or spatial measurements may help increase overall cover accuracy. Localized height
information from LIDAR or photogrammetric processing could also enhance classification
accuracy. The local height information might help separate tree/shrub from ground-level
vegetation (grass/herbaceous) and dark rooftops from water.

Although there are inherent inaccuracies of developing digital cover maps for urban
areas, the results from this initial project are promising and offer an opportunity to enhance
research in urban ecology and improve management in urban areas. Overall accuracies of
greater than 80% are sufficient to aid in understanding the geography of urban elements
and to aid in integrating digital cover maps within urban GIS management layers. Although
some individual pixels may be misclassified, statistical aggregation of cover over wider areas
(e.g., census tracts) will yield improved accuracy of cover type estimates as classification
errors of commission tend to balance errors of omission. Thus, the individual location of
cover types may be in error, but assessments of larger areas (e.g., blocks or neighborhoods)
should yield more accurate results.

Digital urban cover maps can be used to better estimate spatially specific urban vegetation
functions (e.g., effects of trees on building energy use, air pollution removal, and hydrologic
effects). In addition, high-spatial resolution cover maps can help determine the best locations
with available space to plant trees and most important tree cover locations to preserve (e.g.,
trees in locations that offer the most environmental and human health benefits). Integration
of urban cover types into GIS offers the opportunity to develop spatially specific urban
models and management tools. This article reports classification results designed to explore
potential utility to urban forestry activities and represents only one study area. More areas
with various land use type and imagery of various resolutions should be tested in the future.
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As the development of urban cover maps from high-spatial resolution digital data is relatively
new, future research is needed to produce detailed maps more effectively and efficiently.

Conclusion

High-spatial resolution, digital, color infrared (3 band) aerial imagery was evaluated for
producing detailed urban cover information in Syracuse, NY. A multi-layered analysis ap-
proach using the original three bands, NDVI, texture analysis, and post-processing with
a majority filter twice provided the best results in classifying five general urban cover
types. For specific detailed reference locations, the overall accuracy was greater than 80%.
Other data or approaches, such as integrating more spectral bands or incorporating differ-
ential height information from LIDAR or photogrammetric processing, may help improve
the classification accuracy. Although there was some error in predicting individual pixels,
statistical aggregation of cover estimates over wider areas will improve accuracy as clas-
sification errors of commission tend to balance errors of omission. High-spatial resolution
digital imagery can provide accurate land cover information for urban areas using computer
classification routines. The advantages of this type of data include spatially-specific cover
data that can be useful for describing the cover types and locations within different areas
of a city. This type of information can aid in urban ecosystem research and management to
improve human health and environmental quality in cities.
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