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Scientists have been studying hydrological processes
within a watershed context for hundreds of years.
Throughout much of that history, little attention was paid
to the significance of ground water; in nearly all early stud-
ies, ground water was never considered. In many recent
studies, ground water fluxes are assumed to be insignifi-
cantly small. The following is a brief history of the evolu-
tion of watershed studies, including the recent increase in
interest regarding the influence of ground water on the
hydrology and geochemistry of research watersheds.

In 1580, Bernard Palissy, a Frenchman born in
poverty and a self-taught observer, boldly challenged the
philosophy of educated Roman citizens. He concluded
from his observations that rain supplies springs (Palissy
1580). This was perhaps the first published evidence that
ground water originates from precipitation. In the late
1600s, two other Frenchmen actually measured a crude
water balance for the Seine River in Burgundy (Pierre Per-
rault) and Paris (Edmé Mariotté). A third (Edmund Halley)
measured evaporation from seawater. Their conclusions
were that evaporation from the sea is enough to equal
falling rain and that falling rain is enough to supply the
combined discharge of streams and springs. Mariotté’s
work, published posthumously in 1684, defended Palissy’s
infiltration theory and maintained that water derived from
rain and snow penetrates into the pores of the earth, perco-
lates downward to rock, and then laterally in amounts suf-
ficient to supply springs. He further observed that spring
flow increases or decreases in wet and dry periods, respec-
tively, and perennial springs are supplied from larger
underground reservoirs. 

Even though Palissy’s explanation of ground water
had existed for 337 years, the importance of ground water
to streamflow still was not fully appreciated in the early
1900s, when statements such as this were promulgated: 

“ . . . [I]t becomes apparent that the aggregate amount of
deep seepage, in so far as abstractions or additions to the
flow of streams is concerned, is inconsequential . . . “
(Meyer 1928). This conclusion was reached based on lab-
oratory measurements rather than field studies. During the
early 1900s, ground water flow data were largely limited
to laboratory measurements of flow in media with various
pore sizes. 

In 1912, Raphael Zon (first director of the Lake States
Forest Experiment Station in St. Paul, Minnesota) published
a world literature review considering the relation of forests
to water supply. Zon’s paper was published as a U.S. Senate
document, but was not widely available until 1927, well
after World War I. The relationship of forests to erosion,
temperature inside the forest stand, climate, and snowmelt
was accurate; however, one conclusion suggesting forests
regulate the flow of water to springs was largely false. The
evidence cited was the lowering of the water table 13.8 feet
in the midwestern United States (an average from more than
9000 wells) during the previous 80 years since European
settlement began. The drawdown, however, was actually
caused by wholesale conversion of central hardwood forests
to agriculture and associated installation of extensive land-
drainage systems (Verry 1986).

In 1953, Professor E.A. Colman at Berkeley summa-
rized how vegetation affects water yield. He reviewed a
few of the first small watershed experiments to use paired
watersheds. In this approach, two watersheds similar in
size and geology, and usually adjacent, are measured for
precipitation and streamflow during a calibration period.
After a five- to 15-year calibration, an equation is devel-
oped to predict streamflow on the “treatment” watershed
(usually a tree harvesting treatment) from the “control”
watershed streamflow where mature forests remain. The
excess of streamflow on the treatment watershed above
that predicted from the control is assigned to the treatment
effect (tree harvesting), and the predicted treatment water-
shed streamflow to variation in precipitation. The first
paired watershed experiment in the world began in 1911 at
Wagon Wheel Gap, Colorado (Bates and Henry 1928).
Bates and Henry harvested aspen in 1918, after collecting
seven years of calibration data to predict the flow of the
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treated watershed from the control watershed; however,
neither the work at Wagon Wheel Gap nor Colman’s text
reported the impact of vegetation change on ground water
yield. 

The discipline of forest hydrology crystallized with
the International Symposium on Forest Hydrology (1965)
at Penn State University (Sopper and Lull 1967). At this
symposium, A.R. Hibbert (1967) presented a seminal
paper titled “Forest Treatment Effects on Water Yield”
summarizing the results of paired watershed experiments
where one of the paired basins is harvested of trees.
Results of watershed reforestation were also reported. The
data proved mature forests reduce annual streamflow. The
small research watersheds included in Hibbert’s summary
were the U.S. Forest Service experiments at: Wagon
Wheel Gap, Fraser, and Meeker, Colorado; Coweeta,
North Carolina; Fernow, West Virginia; H.J. Andrews,
Oregon; San Dimas, California; and the Sierra Ancha
Experimental Forest in Arizona. Reforestation experi-
ments included work in USGS watersheds in central New
York, Agriculture Research Service watersheds in
Coshocton, Ohio, TVA’s Pine Tree Branch and White
Hollow in Tennessee, and Syracuse University’s Sacan-
daga River in the Adirondacks, New York. However, none
of these studies reported impacts to ground water. Penman
(1963) had listed and discussed (without an analysis of the
combined data) many of the same experiments along with
others in Japan, Europe, and Africa.

The Penn State symposium also marked the end of the
exclusion of ground water from small watershed studies.
Of 78 papers presented at the symposium, five considered
changes in measured water yield as ground water recharge
or discharge. Analyses of well records were used to
explain ground water recharge and discharge in Michi-
gan’s sandy outwash plains (Urie 1967), the peatlands of
northern Minnesota (Bay 1967), the peatlands of Finland
(Heikurainen 1967), the Mediterranean hills of Israel (Sha-
chori et al. 1967), and the high-water table beech forests in
Denmark (Holstener-Jorgensen 1967).

Urie’s analysis of forested ground water basins bene-
fited greatly from a series of ground water studies in the
late 1950s and early 1960s. These included the analysis of
Meyboom (1961) of streamflow hydrographs to estimate
ground water discharge, Meyboom’s ground water system
model (1962) for the Canadian prairie pothole region, and
Toth’s theory (1962) and analysis (1963) of ground water
motion in small drainage basins in Alberta, opening the era
of ground water modeling.

The first application of an electric analog model to a
small research watershed in the United States was in 1967
at the U.S. Forest Service, Marcell Experimental Forest in
north-central Minnesota. Streamflow emanating from a
forested fen wetland in watershed No. 3 was 10 times
greater than its surface watershed could possibly produce
from rain alone. The ground watershed was 10 times larger
than the surface watershed (Sander 1971)! 

Since the late 1960s, small research watersheds have
been used to define nutrient cycling (Likens et al. 1970,
1977; Swank and Crossley 1988; Verry and Urban 1992;
Urban et al. 1995). Even today, the direct accounting of
water and nutrients flowing to deep seepage is rarely

accomplished even though broader comprehensive treat-
ments of nutrient cycling now often include the ground
water portion (Rankama and Sahama 1950; Stumm and
Morgan 1970; Moore and Bellamy 1974; Bowen 1979;
Fortesque 1979).

We have taken giant steps in our understanding of the
ground water system in watersheds in the last century.
Surely, no one today would accept Meyer’s (1928) con-
clusion that ground water below the stream level has little
to do with regulating flow in the stream; however, the fact
that ground water is important to studies of nutrient flux is
not sufficiently recognized. Many evaluations of water
yield change in response to vegetation change, or of nutri-
ent cycles, have assumed the stream gauge represented all
the water in the watershed.

Watersheds in virtually all paired-watershed studies
are selected on the assumption that foundation walls hold-
ing the weir or flume are deep enough to cut off seepage
beneath the stream gauge. It is assumed the stream gauges
are sealed to a confining layer and that all seepage into the
watershed overburden exits through the stream at the
gauge. In 1963, however, Penman stated that deep seepage
(ground water passing beneath the streambed, beneath the
surface water control structure, and out of the watershed)
“ . . . is frequently ignored altogether in catchment studies
in the quiet hope that it is, in fact, zero.” We suspect, rather
than zero, it is a significant component of many small
watershed studies, which is unfortunately overlooked in
evaluations of water and nutrient budgets. In 1982, Bosch
and Hewlett completed a second summary of tree harvest-
ing impacts on water yield for 61 watersheds (paired with
a control watershed) ranging from 1 to 694 ha. They also
reported on abandoned farm watersheds replanted to trees
and on tree regrowth following fire- or insect-caused tree
mortality on 33 basins ranging from 26 to 197,400 ha.
None of the experiments considered recharge to ground
water. Verry (2003) shows that in a compilation of 32
watersheds, seven of the investigators were fully justified
in their quiet hope that deep seepage was zero, 10 were
justified in the statistical sense, and 13 may have quietly
hoped ignorance really is bliss. 

Few studies have quantified ground water recharge
within long-term, experimental watersheds. Recent studies
at the Hubbard Brook Experimental Forest in New Hamp-
shire (Tiedeman et. al. 1997; Rosenberry and Winter 1993)
and at the Marcell Experimental Forest in Minnesota
(Nichols and Verry 2001) suggest ground water recharge
may be as little as 3 cm/year in fractured granite and schist
bedrock (Tiedeman et al. 1997; Rosenberry and Winter
1993) or 3 to 20 cm/year in glacial tills (Nichols and Verry
2001). Pint et al. (2003) indicated that recharge to Allequash
Creek, a subwatershed of the Trout Lake experimental
watershed in northern Wisconsin, is 25 cm/year in glacial
sands. Urie (1967) showed recharge of 25 to 46 cm/year in
the deep sands of central Michigan’s Udell Experimental
Forest. Numerous methods now exist for quantifying
ground water recharge (Scanlon et al. 2002), and application
of these methods is becoming more common.

The evidence from many recent studies clearly indi-
cates that ground water is an important source of water to
streamflow in most watersheds, and loss of water via deep
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seepage also is a significant component of flow. The use of
well networks and the evaluation of hydrographs of
ground water levels, or the use of ground water flow mod-
els to estimate deep seepage from small research basins,
are highly recommended. Future investigators have many
tools with which to account for water and nutrients that
move through, and out of, a watershed and have no need to
quietly assume that ground water recharge, ground water
flow within the watershed, or deep seepage is zero.
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