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ABSTRACT. In this article, the effect of sloping terrain on estimates in point and transect relascope
sampling (PRS and TRS, respectively) is studied. With these inventory methods, a wide angle relascope
is used either from sample points (PRS) or along survey lines (TRS). Characteristics associated with
line-shaped objects on the ground are assessed, e.g., the length or volume of downed logs. In their
basic forms, the methods only work in flat terrain, and thus bias is incurred under sloping conditions.

Two different possibilities to correct for bias due to slope are presented. The first one involves using
a slightly modified relascope device and making a measurement of the angle of inclination of each
sampled object. The second involves applyipg correction factors based on the steepness of the terrain
in the area surveyed. However, it is shown that moderate slopes cause only limited bias and in such
cases there is little need to adjust the measurement procedures or apply correction factors. For. Sci.
48(1):85-92.
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TRS, respectively), a wide angle relascope is used for

assessing characteristics associated with line-shaped
objects on the ground. In PRS, the relascope is used at sample
points, while in TRS it is used along survey lines. The
instrument is operated horizontally, and all line-shaped ob-
Jjects that fill the gap of the relascope are included in the
sample (Stahl 1998, Gove et al. 1999). Because the instru-
ment should have a wide angle, a standard Spiegel-relaskop
(cf. Bitterlich 1984, p. 82-85) can generally not be used when
applying these methods.

The primary use of PRS and TRS would probably be in
connection with the estimation of parameters related to fallen
trees and logging residue. The importance of these kinds of
assessments has increased as today’s forest management
acknowledges the preservation of biodiversity as an impor-
tant goal, and many organisms in the forest depend on dead
decaying wood for their survival (e.g., Kruys et al. 1999),

l N POINT AND TRANSECT RELASCOPE SAMPLING (PRS and

PRS is closely related to traditional “angle count sam-
pling” for stand basal area (Bitterlich 1984, p. 9-19). while
TRS can be regarded as a special case of line intercept
sampling (Warren and Olsen 1964, De Vries 1986, p. 242—
257). Both PRS and TRS can be used for the estimation of any
parameter that can be derived from the population of line-
shaped objects studied. If the characteristic of interest is the
sum of the objects’ lengths, a TRS estimate can be obtained
from a mere count of units included in the sample. Alterna-
tively, the sum of lengths squared can be estimated by a
simple count of objects in PRS.

Using either of the methods under horizontal conditions,
the inclusion zone around an object is the union of two
equally large intersecting circles. The size of the circles
depends on the length of the object and the angle of the
relascope. Figure 1 depicts the inclusion zone for each line-
shaped object, which provides the basis for estimation in PRS
and TRS.
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Figure 1. Line-shaped objects and their inclusion zones in PRS
and TRS (flat terrain). The acute angle between the inventory line
and the object is denoted w;, /;is the length of the object, v the
fixed angle of the relascope, CA;the area of the inclusion zone, h;
the width of the vertical projection of the inclusion zone, and L
the width of the forest area perpendicular to the survey line.

If one PRS sample point is randomly laid out, the probabil-
ity, u;, of including a particular object in the sample is given
as the area, CA,, of the object’s inclusion zone over the total
area (ignoring boundary overlap problems):

CA, T—v+sinvcosy
= S50 o TOUAGIVEGH g (1)
I 2Tsin“v

Here, v is the angle of the relascope (in radians), T the area of
the forest surveyed, and /; the length of the object. Details of
the derivation of this formula, including the treatment of
boundary overlap, are given in Gove et al. (1999).

If one TRS survey line is randomly laid out in a top-down
direction somewhere along the baseline in Figure 1, again
ignoring problems with boundary overlap, the probability of
including a particular object in the sample is

I/sinv + cotv cosw;
ty S e z ! )

where h; is the width of the projection of the inclusion zone,

w; the (acute) angle between the object and a survey line, and
L the length of the baseline. Details are given in Stahl (1998).

Knowing the probability of inclusion of objects, design-
unbiased estimators of any population total, Y, can be estab-
lished using the Horvitz-Thompson estimator (e.g., Cochran
1977, p. 259-261):

o SN

Here, y; is the value of the variable of interest on object i, and n
is the number of units included in the sample. When more than
one sample point or line is selected, the right-hand side of (3)
must be divided by the actual number of points or lines (and the
estimator is no longer a pure Horvitz-Thompson estimator).
Also, the TRS estimator outlined can be improved on in the more
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realistic case where the study area is not rectangular; however,
for the purpose of this study, Formulas 2 and 3 are sufficient.

The above formulas hold in cases when the relascope is
operated horizontally and the line-shaped objects extend in
the horizontal plane. In case of hilly terrain, a pragmatic
approach to avoid bias is to subjectively judge what would be
the extension of an object in the horizontal plane, and then
include or exclude the object accordingly. More dogmatic
approaches would be either to use measurement procedures
that automatically correct for slope, or to calculate correction
factors that can be applied to estimates obtained from surveys
in hilly areas. The aim of this article is to develop the
methodology in these respects and also to provide results on
the bias in PRS and TRS when no corrections are made. As
a matter of simplification, hereafter all line-shaped objects
considered will be referred to as downed logs or just logs.

Two different approaches to avoiding bias due to slope in
PRS or TRS surveys will be described. The first is similar to
the way this problem is handled in standard relascope sam-
pling, where correction for slope is often built in to the
relascope instrument (Bitterlich 1984, p. 80). However, in
PRS and TRS. modifying the instrument alone is not suffi-
cient, since an additional measurement on the logs is required
(see below). The second approach is to compute correction
factors that depend on the slope in the area surveyed. These
correction factors also tell the magnitude of the bias incurred
in the case where no corrections are made.

Adjusting the Measurement and Estimation Procedures

In Figure 2, the kind of instrument often used in PRS and TRS
is shown. The ring is to be held close to the eye of the surveyor,
and the angle of the relascope is determined by the delimiters at
each side of the solid bar of the instrument. When the instrument
is operated horizontally, probabilities of inclusion in PRS and
TRS according to Formulas (1) and (2) are obtained. Problems
arise when alog is situated at another elevation than the surveyor.
However, by extending the delimiters both upwards and down-
wards (vertically), the surveyor will be able to judge whether or
not logs located at another elevation should be included, even
though the bar of the instrument is kept horizontally. As will be
shown, when using extended delimiters it does not even matter
whether the two endpoints of the log appear at different eleva-
tions. The principles behind this method are outlined below.

First, consider two imaginary vertical lines that extend both
upwards and downwards from the two endpoints of a downed
log. When addressing these (imaginary) lines with the relascope
in the horizontal plane, the log should be counted as “in” when
the lines appear further apart than the delimiters of the instru-
ment. In three dimensions, the log’s inclusion space can be
described as the union of two cylinders (Figure 3). The surfaces
of the two cylinders coincide along the two lines (see Figure 3).
Thus, the two lines define a belt-shaped (unbounded) planar
region between them, which has the same width, m,, at any
elevation. The width is related to the length of the log, [;, as:
m; = [; cos z;. where z; is the log’s angle of inclination from the
horizontal plane.

If it were possible to make use of the imaginary lines during
the inventory. a standard relascope operated in the horizontal



Figure 2. Awide-angle relascope that can be usedin PRS and TRS
surveys. This instrument is not adjusted for surveys in steep
terrain.

plane would be sufficient in order to obtain unbiased estimates,
provided m; is used instead of /; in Formulas (1) and (2). This
requires that the angle of inclination of each sampled log be
measured. However, in the field it would be very difficult to aim
at imaginary lines, and this problem is avoided if the modified
relascope is used. With this instrument, the extended delimiters
of the scale also form a belt-shaped region analogous to the one
obtained between the two imaginary lines extending from the
end-points of the log (Figure 3), except that the two imaginary
lines may be located at different distances from the surveyor.
~ When standing at the perimeter of the inclusion zone of alog, the
two belt-shaped regions will overlap exactly when looking
through the relascope. Consequently, it does not matter whether
the surveyor looks horizontally towards the imaginary lines or
directly at the endpoints of the log. The judgment about whether
or not to count the log will be the same in both cases with the
modified relascope.

The conclusion is that design-unbiased estimates can
always be obtained in PRS and TRS if an instrument with
extended delimiters is used, and if the angle of inclination,
z;, or, alternatively, the projected length in the horizontal
plane of each sampled log, is measured. Substituting m, for

Figure 3. A log’s inclusion space in three dimensions. If the
surveyor aims, horizontally, at the imaginary lines extending
from the endpoints of the log, unbiased estimates canbe obtained
if m;=I.cos Bis usedinstead of /, the length of the log, in Formulas
(1) and (2). The angle of the relascope is denoted v, and z; is the
angle of inclination of the log from the horizontal plane.

[;in Formulas (1) and (2) is required for unbiasedness. Any
other measurements based on length that are used to
calculate the quantity of interest, y; in (3), would use /; as
usual, however.

Computation of Correction Factors

Correcting for bias according to the above method re-
quires using a slightly more awkward instrument and an
additional measurement on each log sampled. Moreover,
straightforward estimates of the sum of log lengths (in TRS)
or the sum of lengths squared (in PRS) cannot be obtained by
only counting the logs included as is otherwise the case
because of the substitution of m;, for /; in (2) and (3). These
facts motivate studies on the extent of the bias incurred under
sloping conditions in case nolattempt is made to avoid it. If the
resulting bias is mostly limited, it could be argued that there
is no reason to abandon the standard methods, or that simple
correction factors be used based on the average slope in the
area surveyed.

Two cases will be discussed. The first is when a modified
relascope is used (according to the principles given above)
without any additional measurements of inclination angles or
projected lengths on the logs. The second case is when a
standard relascope is used (cf., Figure 2), although rather than
being operated horizontally, in hilly terrain the instrument is
tilted so that the bar of the device is always held parallel with
the slope plane.

In both cases, the bias is derived for different slopes.
given certain model assumptions regarding the population
of logs. The model assumptions are introduced since the
bias will depend on the orientation of the logs in.relation
to the slope. For a treatment of model-based approaches to
inference in forest survey sampling, see Gregoire (1998).
It is assumed that the acropetal orientations of the logs
follow a uniform distribution in the interval 0 to 27 radians
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in the horizontal plane. Regarding the length of logs (and
the orientation of survey lines in TRS), no distributional
assumptions need to be made, since they will not affect the
results.

Ratios, R, were calculated for both PRS and TRS accord-
ing to Formula (4). The expected value of the Horvitz-
Thompson estimator, using noncorrected inclusion prob-
abilities, appears in the numerator. In the denominator, the
corresponding estimator with slope-adjusted inclusion prob-
abilities 1s inserted. Principally, expectations are taken over
the sample, the orientation of logs, the length of logs, and in
TRS also over the orientation of survey lines. However, as
will be shown later, simplifications can be made in the
different cases where R is calculated, and the expectations
need not consider all these factors.

oy (4)

The relative model bias of PRS and TRS under sloping
conditions is given by R — 1. Consequently, if R is close to 1,
it is safe to proceed in the standard way, without correcting
for slope. However, when R deviates substantially from 1, an
alternative to using modified measurement procedures would
be to compute slope-corrected estimates by dividing the
standard estimates with R.

In Formula (4), it can be seen that the main problem of
deriving R consists of determining ¢, the slope-adjusted
probability of inclusion of a log. Therefore, in the following
sections the focus will be on deriving 7, for the different cases.

Itis always assumed that the survey is conducted within an
area of constant slope, the angle of inclination from the
horizontal plane being denoted B. For many of the deriva-
tions, it is useful to conceive of coordinate systems in both the
horizontal plane and the slope plane, each system having its
x-axis parallel with the topographic lines of the slope. The
angle between the x-axis and the vector corresponding to tree
iisdenoted o, in the horizontal plane, and y;in the slope plane.
The angle, in the horizontal plane, between the x-axis and any
of the parallel TRS survey lines is denoted A.

Case 1. A modified instrument held horizontally.—In
this case, the slope-adjusted probability of inclusion will
generally be smaller than the standard probability of inclu-
sion. This follows from above, where it was shown how the
measurement procedure should be adjusted in order to ac-
count for slope. Instead of using /; in the formulas for the
probability of inclusion, /; cos z; should be wsed. Conse-
quently, the size of the potential bias depends on the orienta-
tion of the logs in relation to the slope. In the case where a log
extends parallel with the topographic lines, z; will be 0, and
thus there will be no bias. On the other hand, if a log extends
perpendicularly to the topographic lines z;, = B and the bias
will reach its maximum.

The slope-adjusted probabilities of inclusion in PRS and
TRS will be [cf. Formulas (1) and (2)]:
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Tree top

Projection of the tree top

Tree root

Figure 4. An illustration of the connection between a log’s angle
ofinclination, z, the angle between the projection of the downed
log and the x-axis in the horizontal plane, o, the corresponding
angle in the slope plane, v, and the angle of inclination of the
slope plane, §.

prs T —v+sinvcosy )
[ = —————(hoos 3,)%;
2Tsin“v
1/sinv + cotv cosw, (5)
1T = / L] cosz;
] L 13 1

The resulting ratios, derived according to the principle
outlined in (4), can be obtained as (see Appendix 1):

Rpps = E [c:os2 zl-];

Rips = E [cos z,-] ©)

The expectations only consider the orientation of the logs.
The angle of inclination, z;, of alog can be computed from the
slope and the log’s orientation. The angle is obtained as (cf.
Figure 4):

z; = tan”'(sinc, tanB) (7

Using (6), the R-values for different slope conditions, as
well as the most extreme R-values from calculations with
fixed o and A, were computed. The results are presented in
Table 1. A conclusion is that slope correction is more impor-
tant for PRS than for TRS.

Table 1. R-values in PRS and TRS when a modified instrument is
used together with non-adjusted estimators. The minimum and
maximum R-values were derived in calculations with fixed orien-
tations of logs (and survey lines).

Slope, B Point relascope Transect relascope
(radians and %) sampling (PRS) sampling (TRS)
w/18-18% 0.98 0.99
0.97-1.00 . 0.98-1.00
n/9-36% 0.94 0.97
0.88-1.00 0.94-1.00
n/6-58% 0.87 0.93
0.75-1.00 0.87-1.00
/4-100% 0.71 0.83
0.50-1.00 0.71-1.00




- Case 2. The instrument held parallel with the sloping

plane.—In this case, a standard wide-angle relascope is used
(Figure 2). In hilly terrain, it is slightly tilted so that the bar
of the instrument is kept parallel with the slope plane. It is
assumed that the logs extend in the slope plane, and that the
relascope is operated in the same plane; the surveyor is
assumed to aim at the objects at a height above the ground
corresponding to the height at which the instrument is held.
(A modified instrument operated in the slope plane works just
as well.)

The area of inclusion around an object is the union of two
circles of equal size in the standard horizontal PRS and TRS
cases (cf. Figure 1). This will also be the case in the slope
plane under the above assumptions. By projecting the inclu-
sion area vertically to the horizontal plane, the area of
inclusion will be the union of two intersecting ellipses. This
is illustrated in Figure 5.

Since the inventory points or lines are laid out on a map,
their formal properties (length, direction. spacing) refer to
their properties in the horizontal map plane. In this plane,
however, the area of inclusion of an object is no longer the
union of two circles, which was the basis for the derivation of
Formulas (1) and (2). Consequently, use of Formula (3) leads
to bias both for PRS and TRS. The size of the bias depends on
the properties of the ellipses which, in turn, depend on the
slope and the properties of the downed logs and the relascope.

To calculate the slope-adjusted probability of inclusion of
an object in PRS, the area of the union of the two intersecting
ellipses in the horizontal plane must be determined. For TRS,
the width of the union of the two ellipses must be determined.
While the procedure is quite simple in the PRS case, it
requires slightly awkward derivations in the TRS case.

Correction Factors in the PRS Case

The area, CA,, of the union of the two intersecting circles
that constitute the inclusion zone in the slope plane is ob-
tained from Formula (1), as u; times T. To obtain the slope-
adjusted probability of inclusion, the area of the inclusion
zone projected onto the horizontal plane must be derived, and
be divided with 7. The area of the projection, denoted EA,, is
obtained simply as:

EA, = CA, cosP (8)

This follows since any area can be expressed as the
definite integral

X
j B(x)dx,
Xy

where B(x) is the width of the area at point x along the x-
axis. Now, if an area is defined in the slope plane, and we
want to determine the area of its projection in the horizon-
tal plane, note that regardless of the shape of the area the
projection of B(x) will be B(x) cos B. Thus, since cos B is
a constant that does not depend on x, it can be put outside
the integration and Formula (8) follows. As a conse-
quence, the R-values for the PRS case will always equal
cos B. Although possibly superfluous, the results are

Figure 5. Projection of the inclusion zone of an object from the
slope plane to the horizontal plane, leading to the inclusion zone
being the union of two intersecting ellipses.

presented in Table 2 for the sake of completeness. The R-
values turn out to be of similar size as the R-values in Case
1 (ct. Table 1). However, since they do not depend on any
model assumptions about the log population, one could
argue that this method is to be preferred if PRS is applied
without any slope correction.

Correction Factors in the TRS Case

In the case of TRS, the derivation of slope-adjusted
probabilities of inclusion turned out to be slightly compli-
cated, and an algorithmic approach based on analytic geom-
etry was adopted. Local coordinate systems are assumed to
have their origins at the center of each of the ellipses (circles)
forming the inclusion zone of a log. The ellipses are congru-
ent, the length of their semi-major axes is denoted a, the
length of their semi-minor axes b. Since the projection has no
effect on distances along the x-axis, the length, a, of the semi-
major axis willequal the radius of the circles: a = [ /(2sin v).
The length of the semi-minor axis, on the other hand, will be
affected by the projection, and thus it will be » = a cos .

Figure 6 illustrates what the projected inclusion zone
looks like (above) and what the corresponding reference
inclusion zone looks like (below). Unlike Figure 5, this
illustration is not intended to show what happens through the
projection, but rather what jthe adjusted and nonadjusted
inclusion zones look like for a log with a certain length and
orientation. In deriving a slope-adjusted probability of inclu-
sion, s; rather than h; should be used in (2). Therefore, the
determination of 5; will now be given attention. The steps of
the algorithm developed for the purpose are briefly outlined
in Figure 7.

The first step is to determine the coordinates of the points
of tangency between the ellipses and imagined lines parallel
with the survey lines. For this purpose, the ellipses are split
into upper and lower parts in order to express them as one-to-

Table 2. R-values in PRS when a standard instrument is oper-
ated parallel with the slope plane, together with nonadjusted
estimators.

Slope, B (radians and %) R-value
m/18-18% 0.98
n/9-36% 0.94
T/6-58% 0.87
m/4-100% 0.71
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Direction of
survey lines

Figure 6. An illustration of the projected inclusion zone (above)
and the reference inclusion zone (below) for a log with a certain
length and orientation. The width of the prior zone is denoted s,
the width of the latter h;

one functions. The upper part of an ellipse can, in a local
coordinate system in the horizontal plane, be expressed as:

4 =—£1 a’-x* (9)

To determine the points of tangency, the problem is to
determine where a line with “slope coefficient” tan A will be
tangent to the ellipse. To do this, (9) is differentiated with
respect to x, and the formula obtained set equal to tan A (with
due respect to tan A having infinite value in some cases). The
equation is solved for x, and the corresponding y calculated.
The tangent point, in the upper part of an ellipse in the local
coordinate system, is (with k = tan A):

_ ka b’
[Ra?+b>  JkPa? +b7
3

(x.y) =

(10)

The corresponding point of tangency in the lower part of
anellipse is easily found using symmetry relations (reflection
through the local origin).

The next step is to set up acommon coordinate system for
the two ellipses (circles). To do this, the common coordinate
system in the horizontal plane is assumed to have its origin at
the middle point of the projection of the downed log. Conse-
quently, if the coordinates of the ellipse centers in the com-
mon system can be determined, the new coordinates of the
points of tangency can be determined by adding/subtracting
the coordinates obtained in (10).

Direction of
survey lines

Figure 7. An overview of the procedure for determining s. The
upper and lower tangent points of the ellipses and imagined lines
parallel with the survey lines are first located (points | and ll). A
tangent line through point | and a perpendicular line passing
through pointllare then established. The coordinates for pointlil,
inwhich the two lines intersect, are determined and the distance,
s, between Il and lll calculated using the Pythagorean theorem.
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The derivation of new coordinates will be made for the
center of the right ellipse in Figure 7. The coordinate of the
center of the left ellipse can be found from symmetry rela-
tions (reflection through the origin). In Figure 4 it can be seen
that the angle ¥, can be derived from o and P as:

¥, = tan"'(tan ot / cosP) (11)

The angle v, is needed in order to determine the coordi-
nate of the center of the ellipse in the common system in
the horizontal plane. This coordinate is determined by first
determining the coordinate of the center point of the
corresponding circle in the sloping plane, and then pro-
jecting this point. Since the projection only affects the
length along the y-axis, the new coordinate of the center of
the right ellipse will be:

(xg"’j, yé’”’") = (I, cot v siny;/2, =1 cot v cos y; cosP/2)
(12)

Parts of the derivations are illustrated in Figure 8, with regard
to the situation in the slope plane. To determine the points of
tangency on the ellipses in the common system, the local
coordinates of the tangency points are added to the coordi-
nates of the ellipse centers.

When this is accomplished, the next step (see Figure 7) is
to construct a tangent line through point I. This line has the
equation:

¥y, = k(x=x;)+y, (13)

Then, a line perpendicular to the line obtained in (13) is
derived. This line should pass through point II. The line’s
equation will be:

1
yp=_;(x_xy)+yu (14)

Next, Equations (13) and (14) are set equal, and the
coordinate of their intersection determined (point III in
Figure 7). Knowing the coordinates of points II and III, s,
can be obtained using the Pythagorean theorem. Thus, the

(0,0)

Figure 8. An illustration of parts of the determination of the
global coordinate of the center point of the right ellipse. The
coordinate of the center of the circle in the slope plane is first
determined, then projected to the horizontal plane.



Table 3. R-values in TRS when a standard instrument is operated parallel with the slope plane, together with
nonadjusted estimators. The minimum and maximum R-values were derived in calculations with fixed orientations

of logs and survey lines.

Slope, B Relascope angles, v (radians)

(radians and %) w6 /4 /3 w2

n/18-18% 0.99 0.99 0.99 0.99
0.98-1.01 0.98-1.01 0.98-1.00 0.98-1.00

n/9-36% 0.97 0.97 0.97 0.97
0.91-1.03 0.92-1.02 0.93-1.01 0.94-1.00

T/6-58% 0.94 0.94 0.94 0.93
0.81-1.07 0.82-1.05 0.84-1.03 0.87-1.00

n/4-100% 0.87 0.87 0.87 0.86
0.60-1.17 0.63-1.13 0.65-1.08 0.71-1.00

slope-adjusted probability of inclusion can be obtained. In
Table 3, the bias is presented in terms of R-values. Also,
the largest and the smallest R-values, obtained from “worst
case” orientations of logs and survey lines, are presented
for different combinations of relascope angles and slopes.
The principle used for deriving R-values was the same as
shown in Appendix 1.

Discussion

The results indicate that moderate slopes cause only
limited bias in PRS and TRS when standard instruments
are operated parallel with the slope plane and standard
estimation procedures are used. For example, a 36% slope
results in a bias of -6% in PRS and -3% in TRS. However,
in steep terrain the bias is more substantial. In such cases
itis recommended that measurement procedures that auto-
matically adjust for slope be applied. The procedure for
this resembles the correction technique used in standard
relascope sampling (Bitterlich 1984), although in the lat-
ter case, slope adjustments can be made without any
additional measurements on the sampled trees. In the case
of PRS and TRS, additional measurements of the angles of
inclination or the projected lengths in the horizontal plane
are required for all logs. Although the (model) bias is
generally limited, it can be seen in Tables 1 and 3 that the
worst cases, for certain log and survey line orientations,
often lead to substantial bias. For example, using a modi-
fied relascope (extended delimiters) but a nonadjusted
estimator in PRS, a 36% slope may lead to as much as -12%
bias if all logs are oriented perpendicularly to the topo-
graphic lines. The bias of TRS for the corresponding case
amounts to —6%, although with a standard instrument
operated parallel with the slope plane it may amount to
almost ~10%. With a standard instrument in PRS, the bias
will always be the same regardless of the orientation of the
logs.

In some extreme cases, sloping terrain may even cause
positive bias in TRS (Table 3), although standard instru-
ments and estimation procedures are used. This follows
since, for some combinations of log and survey line orien-
tations, the width of the inclusion zone given by the union
of the two ellipses is larger than the corresponding width
given by the union of the two circles.

Finally, since the results concerning slope correction
using R-values generally make distributional assumptions
regarding the orientation of logs and survey lines, an alterna-
tive would be to make a minimax bias correction. In this case,
the R-value used for the correction should be the average of
the two extreme cases. Using the average of the extreme cases
minimizes the maximum error in the correction. Minimax
methods are not without their shortcomings (Berger 1985, p.
371-372), but they do represent a risk-averse and distribu-
tion-free approach to the problem. Generally (cf. Table 1 and
Table 3), minimax corrections would be very similar to
corrections based on standard R-values. The similarity is
reassuring, in that the corrections based on standard R-values
are nearly minimax, and pose little risk of extreme bias.
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APPENDIX 1

Below, the derivations of R-values in Formula (6) are
presented. This concerns the case when a modified relascope
is operated horizontally, although /; is used rather than /, cos
z; in the estimation. For both PRS and TRS, R is the ratio
between two expected values. The expectations consider the
random samples and the random population, following from
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the model assumptions regarding the logs. First, the case of
PRS is described. The notations are the same as in the main
text. The indices s and pop denote the sample and the model
population, respectively, whereas n and N denote the sample
size and the fixed population size, respectively.
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izl ———————;
2Tsin’v !

R prs=
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The final result follows from an assumption of indepen-
dence between the quantity of interest of a log, y;, and the
log’s angle of inclination. It can be seen that all model
assumptions, except the assumption regarding the orienta-
tion of logs, are unnecessary for the derivation of R.

The same procedure is used to derive the R-value for TRS.

n
Fum | 3, v
5-pop 1/sinv+cotv-cosw; !
i=1
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n
o3
P00 1/sinv+cotv-cosw,
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Although not shown explicitly, the same basic principle
for the derivations was applied also in the case of TRS when
astandard relascope was operated in the slope plane (the basis
for the results in Table 3).

= pop[cos z)





