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Abstract

The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus
poorly understood, due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major com-

ponents. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance have not
been examined. We applied pyrolysis molecular beam mass spectrometry (py-MBMS), which provides rapid characterization of
SOM of whole soil samples, to the Tionesta soil samples described by Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon

content and character in an old growth forest in northwestern Pennsylvania: a case study introducing molecular beam mass spectro-
metry (PY-MBMS). Environmental Pollution 116 (Supp.1), S269–S278. Our goals in this work were to: (1) develop and demonstrate an
advanced, rapid analytical method for characterizing SOM components in whole soils, and (2) provide data-based models to predict soil

carbon content and residence time from py-MBMS analysis. Using py-MBMS and pattern recognition techniques we were able to sta-
tistically distinguish among four Tionesta sites and show an increase in pyrolysis products of more highly decomposed plant materials at
increasing sample depth. For example, all four sites showed increasing amounts of older carbon (phenolic and aromatic species) at
deeper depths and higher amounts of more recent carbon (carbohydrates and lignin products) at shallower depths. These results indicate

that this type of analysis could be used to rapidly characterize SOM for the purpose of developing a model, which could be used in
monitoring the effect of forest management practices on carbon uptake and storage. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Forest soil carbon is one of the most poorly under-
stood global carbon pools. This is partly due to the dif-
ficulty and expense of current techniques available to
measure soil carbon components and soil carbon chan-
ges and partly due to spatial variability and the diffi-
culty of obtaining representative samples. As a result,
the uncertainty in soil carbon knowledge is so great that
opposition exists to giving credit for forest soil carbon
sequestration in international greenhouse gas negotia-
tions. The perception is that it will be difficult, if not
impossible, to verify claims that carbon is actually being
absorbed and retained in soils, a problem that is com-
pounded by the fact that the dynamics and chemistry of
soil organic matter (SOM) are not well understood. The
work described here begins to address the need to
develop and demonstrate analytical techniques that

can rapidly provide information on soil carbon con-
centration and chemistry, information that is crucial to
verifying carbon uptake and storage in the largest ter-
restrial pool–soil (Rosenberg et al., 1998).

A primary component of soil organic matter comes
from the decomposition of biomass-derived materials.
The resulting humic substances vary greatly in their
decomposition rates, and when accurately measured,
provide a foundation for estimating the uptake of carbon
in soils. Separating and measuring these components
with classical techniques is both difficult and complex.
Most soil analyses require mechanical preparation,
extraction and one or more chemical analyses; processes
which are time consuming and labor intensive. Such
methods include wet chemical digestion, extraction, and
instrumental analyses for mineral, metal, and organic
species; thermoanalytical techniques for moisture,
nitrogen, carbon, and sulfur content (Schepers et al., 1989;
Beyer et al., 1998), and physical characterization of sur-
face area, particle fractions, and adsorbents. Wet chem-
ical and instrumental methods have been developed for
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separating and quantifying fulvic, humic, and lignin soil
fractions (Ogner and Schnitzer, 1971; Tao et al., 1997).
The 14C/12C ratio can be used to estimate organic con-
tent age (Scharpenseel, 1975). Taken together, these
analytical techniques can comprehensively describe soil
samples, though the time required is significant and not
easily done on large numbers of samples. Moreover,
some analyses may not be representative of the original
material due to the harsh chemical separations used.

Recent applications of spectroscopic methods to soils
have begun to address the need for comprehensive SOM
analysis. Specific techniques include near infrared (NIR)
spectroscopy, pyrolysis-gas chromatography mass spec-
trometry (py-GC/MS), and pyrolysis field ionization
mass spectrometry (py-FIMS). NIR is a fast technique
that can determine total carbon and moisture but it
cannot speciate soil carbon compounds, which are use-
ful for verifying soil carbon uptake (Salgo et al., 1998;
Reeves et al., 1999). Py-GC/MS has been used to inves-
tigate a wide range of plant materials and humic sub-
stances, though few investigations of whole soils have
been reported. Recent work has cataloged individual
pyrolysis mass spectra obtained from py-GC/MS of the
protein, carbohydrate, and humic fractions of soil
organic carbon (Stuczynski et al., 1997). Tresar-Cepada et
al. (1994) used py-GC/MS to characterize extracted humic
and fulvic species from 4- and 7-year-old lignite mine soils
and found that with soil age there is a marked decrease in
mineralizable substances (carbohydrates and lignins) and
an increased concentration of aromatic substances
(benzene and toluene). This shows that the degree of
humification of organic matter increases progressively.

Analytical pyrolysis (py) has been widely applied to
structural studies of synthetic and biologic macro-
molecules. The transfer of thermal energy to the poly-
meric network or macromolecule causes physical
cleavage of the chemical bonds and yields pyrolysis
products that are characteristic of the original struc-
tures. Schulten has extensively developed py-FIMS for
the study of whole soils and soil fractions (Schulten,
1996; Schulten and Leinweber, 1999). This method has
been applied to structural investigations of plant and
litter components and organic matter in varied soils.
The FIMS method is not suited for rapid analyses as
each sample must be inserted into the ionization region
of the mass spectrometer and individually analyzed. In
addition, the microgram quantities typically used may
not allow whole (unprepared) soil samples to be ana-
lyzed without significant sample preparation.

An early py-FIMS application assessed forest man-
agement practices by analyzing differences in the dis-
solved organic matter in soil leachates from under pine
and oak forests (Hempfling and Schulten, 1990). Py-
FIMS has been used to study short-term (seasonal)
SOM dynamics in whole soil samples with spectra
clearly showing qualitative changes in the SOM com-

position during the growing season. Variations in
the abundance of signals for carbohydrates and
nitrogen-containing compounds occurred during periods
as short as a few weeks and were more pronounced in
fertilized soils (Leinweber et al., 1993). This work indi-
cates that mass spectroscopic techniques can be applied
to studying carbon uptake in soils actively managed for
carbon storage in the time frame of months to years.

Very recent work has combined wet chemistry, 13C
NMR spectroscopy and py-FIMS with multivariate
statistical analysis to characterize whole soils from nine
different podzol B-horizons. Chemometric analysis of
the pooled data showed that only py-FIMS dis-
tinguished the B-horizons according to SOM composi-
tion (Wilcken et al., 1997). Py-FIMS can be used with
other analytical techniques to monitor molecular che-
mical changes of SOM composition and stability in soil
chronosequences (Leinweber et al., 1996). Other work
has compared SOM in co-located forest and agri-
cultural soils. Gregorich et al. (1996) used 13C NMR
and py-FIMS to characterize plant tissue, isolated soil
fractions, and whole surface soils and subsurface soils
from a forest system and a maize system. Both techni-
ques indicated that the plant material entering the soil in
forest and maize-cropped soil was chemically different.
The work presented here builds on the results of soil
analysis with py-FIMS by coupling the pyrolysis tech-
nique with molecular beam mass spectrometry and
multivariate statistical analysis to rapidly and accurately
characterize forest soil carbon content, species, and age.

2. Materials and methods

Mass spectrometry is a technique for materials analy-
sis that relies on conversion of a sample into a gaseous
ionic form, followed by separation of the ions according
to their mass-to-charge ratio (m/z). The information
produced from this technique is presented as a mass spec-
trum, which shows the relative amounts of different ions
formed in the spectrometer under specific conditions.

A typical mass spectrometer consists of an ion source,
where the sample is introduced as a gas or converted
into the gas-phase by heating and then ionized. In the
next section, the mass analyzer, the ions produced in
the ion source are sorted into beams of ions of the same
mass-to-charge ratio. In the detection system, the mass
sorted ions are electronically detected.

The most useful applications of mass spectrometry are
molecular weight determinations of volatile compounds
and structural analysis from the distribution of peak
heights at different mass-to-charge ratios. Quantitative
analysis of solids and liquids can also be performed with
various methods for ionizing the material to be analyzed.

We have developed the pyrolysis-molecular beam
mass spectrometer (py-MBMS) technique for analyzing
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a wide range of large and complex biomolecules that
include lignins, cellulosic materials, plastics, and poly-
mers. This work applies the technique to whole soils.
The method we used consists of rapidly heating soil
samples (0.1 g) in an inert, helium atmosphere at 500 �C.
This process takes place at ambient pressure in a quartz
reactor, which is connected to the inlet of the MBMS
(Fig. 1). The generated pyrolysis products are sampled
directly in real time by expanding through a sampling
orifice with subsequent formation of the molecular
beam, which provides rapid sample quenching and
inhibits sample condensation. These sampling char-
acteristics are important for analyzing complex mole-
cules because they retain the chemical structure of large
fragments of the original chemical species. The details
of this type of sampling are discussed in several papers
(Milne and Soltys, 1983; Evans et al., 1986; Evans and
Milne, 1987) The mass spectrometer provides universal
detection of all sampled products and the molecular
beam sampling ensures that representative products
from the original molecules are detected. For this work,
we used a mass range of 15–350 amu. The molecular
beam method of sample generation is rapid (1–5 min)
and provides sample throughputs of 100–200 samples
per day depending on analytical conditions.

To demonstrate the feasibility of this technique for
soil carbon analysis, we analyzed whole soil samples,
taken from four sites at three depths, from the Tio-
nesta Scenic and Research Natural Areas of the Alle-
ghany plateau of northwestern Pennsylvania. These
sites, where major stand replacing wind events of the
original 600-year-old virgin beech hemlock stands have
occurred at approximately 100-year intervals, were
chosen to determine if py-MBMS could distinguish
carbon content and speciation for both site (varied
vegetation) and sample depth. The samples were also
analyzed with combustion MBMS for total carbon
content. Combustion results are presented in Hoover et
al. (2002).

The sampling protocol is only summarized here. In
each of the 1808, 1872, and 1985 blowdown areas, and
in an intact virgin beech-hemlock stand, a 0.2 ha plot
was established. In each study plot, 16 soil cores were
collected on a systematic grid; forest floor material was
removed and only mineral soil was sampled. Cores were
5 cm in diameter, and were divided into 0–5, 5–15, and
15–30 cm depth increments. The 16 cores were compos-
ited in the field by depth increment to form four samples
per depth increment per plot for analysis. Samples were
dried and sieved through a 2-mm screen prior to send-
ing to NREL for MBMS analysis.

Soil samples (�0.1 g) were weighed in quartz boats in
triplicate and pyrolyzed in a reactor consisting of a
quartz tube (2.5 cm inside diameter) with helium flow-
ing through at 5 l/min (at STP). The reactor tube was
oriented so that the sampling orifice of the MBMS
was inside the end of the quartz reactor. We used a
molecular beam system comprised of an ExtrelTM
Model TQMS C50 mass spectrometer for both pyrolysis
and combustion vapor analysis. The reactor was elec-
trically heated and its temperature maintained at 500 �C.
Total pyrolysis time was 5 min. The residence time of
the pyrolysis vapors in the reactor pyrolysis zone was
estimated to be �75 ms. This residence time is short
enough that secondary cracking reactions in the quartz
reactor are minimal. Mass spectral data from 15–350
amu were acquired on a Teknivent Vector 2TM data
acquisition system using 22 eV electron impact ioniza-
tion. Data acquisition was continuous, through digiti-
zation of electron-multiplier signals from the arrival of
positive ions and programmed storage in an IBM PC
computer. Repetitive scans (typically one 300 amu scan/
s) were recorded during the evolution of a pyrolysis
wave from each soil sample. The stored spectra could be
manipulated to give average spectra, subtracted spectra,
or time evolution of different masses. Using this system,
both light gases and heavy molecules are sampled
simultaneously and in real time. The mass spectrum of

Fig. 1. Schematic representation of the molecular beam sampling mass spectrometer (py-MBMS) system. The soil samples were introduced into the

heated quartz reactor for pyrolysis and combustion analysis.
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the pyrolysis vapor provides a rapid, semiquantitative
picture of the molecular fragments (Evans and Milne,
1987; Tuskan et al., 1999).

The resultant pyrolysis mass spectra are very com-
plex. We used multivariate data analysis (pattern
recognition) to handle this large data set and identify
trends to discover the underlying chemical changes that
may not be obvious by comparison of such complex
mass spectra (Windig et al., 1987; Agblevor et al., 1994).

The first step in data processing was to average the
20–30 spectra that were accumulated while each sample
pyrolyzes. The time-resolved information is not used for
these analyses, although it will likely reveal additional
information. The average spectra are then normalized
to 100% total ion intensity, which corrects for differ-
ences in sample size and organic matter content of the
samples. This means that the py-MBMS comparisons in
this paper are based on the composition of the organic
SOM.

The matrix of normalized data is then scaled such that
each mass has an equal variance. This means that in
factor analysis small masses are equally weighted as
large ones. This is done by dividing each mass variable
intensity by the standard deviation for that mass vari-
able for all samples. The ISMA (Interactive Self-
Modeling Multivariate Analysis) program was used for
factor analysis (Windig et al.,1987). Factor analysis is
performed on the correlation around the origin matrix
in ISMA for the resolving of components from complex
mixtures where standards and calibration references are
not available. This is further discussed in Section 3.

Other statistical analyses were performed using an
SPSS Base 10.0 statistical analysis program for the PC
(SPSS, 1999). This included univariate, ANOVA, cor-
relation, regression and discriminant analyses. Dis-
criminant analysis is a method of classification where
multivariate data on replicated samples is used to define
models that optimally separate classes of samples. In
this case, the factor scores that resulted from factor
analysis were used as the multivariate data for dis-
criminant analysis. The factor scores are ideally suited
for discriminant analysis since they are orthogonal
(uncorrelated) by definition. Each sample group is
defined by a discriminant function which is a linear
combination of the factor scores that maximizes the
ratio of the between groups to within group variances.
The results can then be tested to see how well it predicts
the classes of the data set.

3. Results and discussion

A typical profile of soil pyrolysis product evolution is
shown in Fig. 2 where eight samples were run in a per-
iod of 14 min. A measure of the total ion intensity (TII)
is plotted and the total organic carbon values are indi-
cated above each sample. The overall correlation coeffi-
cient between TII and total organic carbon is r2=0.9
but for low amounts of carbon the correlation is less
favorable since there is likely a higher amount of carbon
that is converted to nonvolatile products. For the com-
parisons in this paper, the spectra were integrated for

Fig. 2. A typical profile of soil pyrolysis product evolution for eight samples run in a period of 14 min. Total ion intensity, the sum of all ions for

each mass spectrum, is plotted.
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each sample and the distribution of masses presented as
the % of TII. Each sample is treated equally in the
subsequent analysis by using this normalized data
regardless of its carbon content or relative TII. The
samples shown in Fig. 2 were part of the 107 samples
included in this work. The short timeframe shows the
rapid nature of this analysis and the potential for
screening large number of soil samples for characteriz-
ing organic carbon species.

Two examples of integrated spectra are shown in
Fig. 3: (a) a 0–5 cm sample and (b) a 15–30 cm sample
from the 1985-blowdown series. The 0–5 cm sample has a
greater abundance of peaks attributable to recent bio-
mass, such as carbohydrate-derived peaks (m/z 60, 73,

98, 126) and lignin-derived peaks (m/z 124, 138, 150).
Major peaks at m/z 82 and 96 are sometimes due to
more severe thermal degradation of carbohydrates,
especially from the pentosans in the hemicellulose frac-
tion of wood (Evans and Milne, 1987). The major peaks
at m/z 110, 122 and 136 are derived similarly from the
more severe thermal degradation of lignin (Evans and
Milne, 1987). These changes can be achieved by treating
the initial pyrolysis products to additional gas phase
pyrolysis or by pretreating the solid at lower tempera-
ture before exposing it to high temperature. This sug-
gests that the predominance of these mass peaks (m/z
82, 96, 110, 122, and 136) over the more typical primary
pyrolysis products (m/z 60, 73, 98, 124, 126, 138, and

Fig. 3. Integrated spectra for (a) 0–5-cm and (b) 15–30-cm samples from the pyrolysis molecular beam mass spectrometry (py-MBMS) analysis of

the 1985 blowdown series. The mass spectra that occurs over pyrolysis molecular beam mass spectrometry the pyrolysis wave for each sample are

averaged. Higher mass ranges are shown in the inset of (b).
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150) is an indication that the same type of dehydration,
decarbonylation, and condensation reactions has
altered the organic matter in the soil, probably by
microbial processes over time. The spectra from these
soils are more complicated than those observed for
wood, and many of the major peaks in the higher mass

range in Fig. 3a are not attributable to known biopoly-
mer pyrolysis, such as m/z 280, 308, and 340. They are
not typical of distributions observed from lignin or
wood, nor are they similar to other major compound
classes that may be associated with unaltered soil
organic matter constituents, such as lipid materials.

Fig. 4. Results of factor analysis: (a) the factor score plot for the 107 samples in the database. Factors one and two explain 35 and 11% of the

variance, respectively. (b) The mass-variable coefficients (loadings) for the two factors plotted in (a).
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In the 15–30 cm sample shown in Fig. 3b the pyrolysis
products are dominated by water (m/z 18) and CO2 (m/z
44). The higher mass range is shown expanded in the
insert and we see the predominance of monoaromatics
(benzene, 78; toluene, 92; and xylene, 106), phenolics
(phenol, 94; cresol, 108; catechol, 110); and polyaro-
matics (naphthalene, 128; and methylnaphthalenes, 142,
156, 170). Nitrogen-containing aromatics (e.g. indole,
117) are also present.

For such complicated data sets, simple data analysis
by the comparison of two spectra is of limited use.
Multivariate analysis, proven to be an important tool
for pattern recognition in pyrolysis mass spectrometry,
shows both the similarities and differences between
samples, and additionally shows correlated behavior
among the mass variables (Evans and Milne, 1987). We
used this approach, first to evaluate the structure of the
data set and determine the extent to which the patterns
associated with site and depth are observable, and then
to calculate the subspectra responsible for differences
that could be interpreted chemically. Factor analysis
was performed using the average mass spectra for each
sample. Fig. 4a shows the factor score plot for the 107
samples in the database. The factor scores are weighted
combinations of the relative abundances, in which each
mass is weighted by its correlation coefficient with the
factors. The factors are orthogonal to each other and
calculated to explain the maximum amount of variance
in the data set. In this data set the first four factors
explain 35, 11, 6.5 and 3.7% of the variance, respec-
tively. The score plots are an efficient way to show the
variance in the data set and the differentiation of classes
of samples based on the py-MBMS results. Fig. 4a
shows that the first two factors can differentiate the
samples based on site and depth. The three ellipses show
the groupings for soil depths and the symbols show the

different sites (i.e. virgin forest and wind events in 1985,
1872, and 1808). Clearly, the differentiation of site can
be shown even in the top horizon.

To test the extent to which the replicated samples can
be discriminated by this characterization technique, the
factor scores were subjected to discriminant analysis.
Discriminant analysis is used to determine the ability of
the characterization variables and the factor scores to
predict the classification of samples. Twelve cases were
tested: three depths at four different sites. The results
are shown in Table 1. The misclassifications were either
at the same depth from the closest age site or as
the adjacent profile. These results are dependent on the
number of factors used. However if only three factors
are used instead of six, then the correct percentage only
drops from 76 to 64% and the misclassifications follow
the same trend as shown in Table 1. These results are
encouraging in that a model of organic matter, age, and
composition can be constructed based on py-MBMS
once the underlying chemistry has been understood.
This, however, is beyond the scope of this initial study.
For further discussion of the soil science implication of
this work, see the accompanying paper by Hoover et al.
(2002).

We can show the underlying chemistry that drives the
clustering of samples by looking at the masses that are
most important in defining factors one and two. Fig. 4b
shows the loadings for the two factors that are plotted
in Fig. 4a. This plot shows the underlying chemistry
that causes the separation of classes of samples. Fig 4a
indicates that the major source of variance in factor one
is due to sample depth. Fig 4b provides a chemical
explanation by the presence of higher amounts of aro-
matics and nitrogen-containing aromatics in the pyr-
olysis products for the 15–30 cm depth samples, and
higher amounts of primary pyrolysis products from

Table 1

Classification results based on discriminant analysis of the top six factor scores for replicated pyrolis molecular beam mass spectrometry analyses

and multiple samples at each site for three depth profiles at the four sitesa

Site Depth Class Predicted group membership

1 2 3 4 5 6 7 8 9 10 11 12

Virgin 0–5 1 38 12 0.0 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5–15 2 0.0 75 0.0 0.0 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15–30 3 0.0 13 50 0.0 25 12 0.0 0.0 0.0 0.0 0.0 0.0

1985 0–5 4 10 0.0 0.0 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5–15 5 0.0 10 10 0.0 70 10 0.0 0.0 0.0 0.0 0.0 0.0

15–0 6 0.0 0.0 0.0 0.0 20 80 0.0 0.0 0.0 0.0 0.0 0.0

1887 0–5 7 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0

5–15 8 0.0 0.0 0.0 0.0 0.0 0.0 25 50 25 0.0 0.0 0.0

5–30 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0

1808 0–5 10 0.0 0.0 0.0 0.0 0.0 0.0 12 0.0 0.0 88 0.0 0.0

5–15 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

15–30 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 0.0 0.0 75

a Seventy-six per cent of the original grouped cases were correctly classified. If only three factor scores were used, then 64% were correctly classified.
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recent biomass in the 0–5 cm depth. Variation in factor
two is responsible for the segregation of sites, with rea-
sonable distinctions between 1808, 1872, 1885 blow-
down sites and the virgin site. The virgin site is more
closely associated with the recent blow down site (1985)
at all depths. Factor two is most heavily influenced by
m/z 76 (Fig. 4b), which is not a common product of
recent biopolymer pyrolysis. One possibility is hydro-
xyacetic acid. Another important ion is m/z 46, which
could be formic acid.

The carbohydrate-derived primary pyrolysis products
occupy the same factor space as the 0–5 cm samples
(Fig. 4b). The separation of the carbohydrates from the

lignin-derived peaks is not as pronounced as would be
expected based on the hypothesis that carbohydrates
decompose more rapidly by microbial processes and
that lignin and its alteration products are the pre-
dominant starting materials of the humic fraction. To
the right of the lignin cluster in the loading plot are the
series of mass variables, m/z 96, 95, 82, 69, 70 and 68.
These are furan structures probably derived from
altered carbohydrates that have persisted in the soil by
cross-linking with the humic materials. Phenols are also
in this region of the loading plot, which are most likely
derived from lignin. Phenol, m/z 94, is to the right and
cresol, 108, methyl cresol, 122, and catechol, 110 are

Fig. 5. Component spectra two (a) and three (b), based on pure masses m/z 78 and 73, respectively.
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positioned to the left suggesting gradual changes in lig-
nin composition with soil matter maturation. However,
phenolics can also be formed from carbohydrates,
especially when furans are dominant (Evans and Milne,
1987).

The extreme points in the loading plot (Fig. 4b) are
used as targets to define new vectors, the component
axes, that are calculated from the original factor analy-
sis using the loading coefficients of the target mass. This
facilitates chemical interpretation of the resulting com-
ponents and allows scores for these components for
each sample to be calculated. The self-modeling techni-
que of Windig et al. (1987) was used for this and four

components were calculated in this data set. The term
‘‘self-modeling’’ is used because the determination of
components is done by the application of rules to the
data. To determine the purity of the target masses (i.e. a
mass which only has one source), the matrix of loadings
is searched to find the longest vector lengths in the
multidimensional loading matrix. This is confirmed
visually by inspecting the graphs, such as Fig. 4b. This
approach has advantages when working with data sets
for which model compounds are not available and
avoids problems associated with applying conceptions
of what the samples should contain, such as picking a
carbohydrate peak and a lignin peak, etc. There is little

Fig. 6. Component spectra one (a) and four (b), based on pure masses m/z 76 and 186, respectively.
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doubt that the selection of four components in this case
is an oversimplification of soil organic matter composi-
tion. However, considering the heterogeneity of soil
samples and the complexity of the product spectrum,
further analysis should be done before extending the
method to a higher number of components. Details and
examples of the self-modeling procedure can be found
in the references (Windig et al., 1987; Agblevor et al.,
1994).

The four ‘‘pure masses’’ chosen to calculate the com-
ponent spectra for all of the samples in the data set were
m/z 76, 78, 73, and 186. M/z 186 does not appear to be
an extreme in Fig. 4b, but it has a high coefficient for
factor three. The component spectra are calculated by
first determining the length of each and every mass vec-
tor when projected on the pure mass vector. For exam-
ple, in Fig. 4b, the pure mass 73 vector lies from the
origin to the point labeled as 73. Other masses such as
60 and 114 will have shorter lengths when projected

onto that vector. This new transformed loading matrix
is essentially correlation coefficients ranging from �1 to
1. Each coefficient is then scaled to the standard devia-
tion so that high relative intensity masses will appear as
they do in the original data thus assisting visual inter-
pretation. This is why the y-axis in Figs. 5 and 6 are
labeled in covariance units.

Components two and three, based on m/z 78 and 73,
are easily interpretable and give the index that was the
goal of this work: to rapidly distinguish between recent
(component three) and humic organic matter (compo-
nent two) in soils. These two component spectra, which
are mathematically derived profiles of mass variables,
are shown in Fig 5. The largest mass peak in compo-
nent spectrum two is m/z 44, assumed to be CO2. Given
that the other products in the spectrum are pre-
dominantly aromatics, the source of the CO2 could be
aromatic carboxylic acids, which we assume to be pri-
marily derived from lignin precursors. Broadbent (1954)
observed the carboxyl content of oat straw lignin
increase from 80 to 140-meq/100 g over a year of incu-
bation, suggesting that decomposition of lignin can
result in increases in aromatic carboxylic acids.

The expanded upper mass range of component spec-
trum two is similar to the 15–30 cm spectrum shown in
Fig. 3b, with a predominance of monoaromatics (ben-
zene, 78; toluene, 92; and xylene, 106), phenolics (phe-
nol, 94; cresol, 108); and polyaromatics (naphthalene,
128; and methylnaphthalenes, 142, 156, 170). The major
nitrogen-containing compounds are pyrole, 67, pyri-
dine, 79, aniline, 93, and indole, 117. Component two,
therefore, appears to represent humified organic matter
in these soils.

In contrast, the spectrum of component three shows
peaks attributable to recent biomass, such as carbohy-
drate-derived peaks (m/z 60, 73, 98, 110, and 126) and
lignin-derived peaks (m/z 110, 124, 138, 150, 152
and 164). The major peaks in the 0–5 cm soil samples
(Fig. 2) at m/z 82 and 96 are not predominant in com-
ponent spectrum three because they are common to
both biopolymer and humic fractions. Two prominent

Fig. 7. Average component scores for the 12 groups of samples (four

sites�three depth increments). Error bars show the 95% confidence

intervals. Replication included both analytical and sampling variances.

Table 2

Pearson correlation coefficients (r) and significance level for n=90

F001 F002 F003 F004

F001 r 1.000

Sig. (two-tailed)

F002 r �0.105 1.000

Sig. (two-tailed) 0.324

F003 r �0.269* �0.674** 1.000

Sig. (two-tailed) 0.010 0.000

F004 r 0.139 �.0664** �0.048 1.000

Sig. (two-tailed) 0.193 0.000 0.656

* Correlation is significant at the 0.05 level (two-tailed).

** Correlation is significant at the 0.01 level (two-tailed).
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peaks in the higher mass range (e.g. m/z 278 and 308) are
not characteristic of primary biopolymer products. The
identification of these products is still to be determined.

Fig. 6 shows the other two component spectra, which
are not easily identified. Component spectrum one
(Fig. 6a) had m/z 76 as the pure mass and m/z 44 is
predominant in this spectrum (as it was in component
spectrum two). A possible structure for m/z 76 is
hydroxyacetic acid, which could explain the fragment
ion at m/z 31 (CH3O) and the correlation with CO2. The
significance of the product distribution in component
one is uncertain. M/z 65, an atypical fragment ion, also
had characteristics of a pure mass when a fifth factor
was considered. Therefore, component one may be
more easily interpreted if resolved into two components.
However, this was not done because of the uncertainty
of this pure mass. Noise peaks can have many of the
same characteristics of pure masses.

Fig. 6b (component spectrum four) shows another
suite of products that are not attributable to known
starting biomass structures. Phenols could be respon-
sible for m/z 107, 108, 122 and 136. The pure mass and
largest peak is m/z 186, which could be C11H22O2,
a possible saturated fatty acid that could be part of a
series of organic acids at m/z 144, 158, 172, and 186
(C=8 to 11). The higher molecular weight peaks
are not attributable to known products or starting
materials. One possibility is that this component
includes the nonpolar materials, such as fats, waxes,

and resins, which are known to be constituents of
SOM (Schulten, 1996). It is also possible that compo-
nent spectrum one and four are the result of microbial
changes in humification. They may also be due to the
change in vegetation that the sites under went after
the wind event disrupted the virgin beech hemlock
forest system.

The relative amounts of the four components in the
sample set are shown in Fig. 7 for the virgin, the 1985,
the 1872 and 1808 sites as a function of depth incre-
ment. Error bars show the 95% confidence intervals,
which reflect both sampling and analytical uncertainties.
Component one (Fig. 6a) is a minor amount in all cases
and has a limited presence in the virgin and 1985 sites.
Higher amounts are observed in the 1872 and 1808 sites.
The relative amount of component one may increase
with depth but variability was great (r=0.46).

Component two (Fig. 5a), the aromatic humic pro-
ducts, increased with depth (r=0.89) and is significantly
higher in the virgin and 1985 sites versus the 1872 and
1808 sites. The stability of the material giving rise to this
component would be expected to be very high so its
systematic change may reflect the impact of changing
vegetation over time.

Component three (Fig. 5b), the recent biomass
products, is not significantly different between sites at
any depth increment. It significantly decreases with
depth (r=�0.87) with a reduction of 50% in the 5–15
cm depth and another 50% reduction in the 15–30 cm

Fig. 8. The average component scores for all runs at each depth and site.
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Fig. 9. Scatter plots showing comparisons between components (a) one and three, (b) four and three, and (c) two and three for all depths at all sites.

266 K.A. Magrini et al. / Environmental Pollution 116 (2002) S255–S268



depth, which is consistent with the characterization of
this component as recent organic matter.

Component four (Fig. 6b) does not vary system-
atically with depth (r=�0.09), but does vary with site;
higher values are observed for the 1872 and 1808 sites at
all depths. Unlike the other unknown, component one,
which was a minor fraction of the total, component four
accounts for a significant fraction of the soil organic
matter.

Fig. 8 shows the average for all runs at each depth
and site. This presentation makes the trends more visi-
ble. Table 2 shows the correlation coefficients and level
of significances for the four components across the
whole data set. Components two and three and two and
four are negatively correlated, but three is not corre-
lated with four.

The scatter plots in Fig. 9 show the bivariate compar-
isons relative to component three, the recent biomass
fraction. Sites are shown by symbols and sampling depth
by ellipses. These plots show the same type of class
separation as the factor score plot in Fig. 4a, but based
on the resolved components rather than the original fac-
tors. The recent material (component three) completely
separated the 0–5 cm depth interval, which is reasonable
since the top layer is more influenced by recent soil
organic matter than the other depths, either in the form
of recent litter or roots. The plot of component three
versus component two shows an inverse relationship
(r=�0.674) and hence may be a possible indicator of
recent versus humic materials in these soils. However,
when only samples within the 0–5 cm depth profile are
considered, there is no correlation between components
three and two (r=�0.10). In the plot of component three
versus four there is no correlation between component
three and four (r=�0.048) although when the 0–5 cm
class is considered alone there is a correlation (r=�0.55).
The plot of component three versus component one is
dominated by the 1808 site in the 15–30 cm depth profile.

4. Conclusion

The analysis of pyrolysis products of forest soil sam-
ples using py-MBMS and pattern recognition techni-
ques showed an increase in pyrolysis products of more
highly decomposed plant materials as a function of
increasing sample depth. Recent biomass is character-
istic of shallow samples and more aromatic species,
representative of more degraded biomass, are found in
the deeper samples. This technique could also distin-
guish among samples of different ecological sites. With
continued development, this rapid analytical technique
offers the opportunity to greatly increase our under-
standing of the role of SOM in carbon sequestration
and carbon cycling, and to assess how forest manage-
ment practices can enhance that role.
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