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7.0 SUMMARY 

This chapter focuses on the integration and development of environmental models that 
include human decision making. While many methodological and technical issues are 
common to all types of environmental models, our goal is to highlight the unique charac- 
teristics that need to be considered when modeling human-environmental dynamics and to 
identify future directions for human-environmental modeling. To achieve this goal, we 
have separated this chapter into several sections. First, we propose and define a conceptual 
framework for describing human-environmental models based on three critical dimen- 
sions: time, space, and human decision making. Second, using our framework, we summa- 
rize and compare whether and how different models (urban or rural systems, health, 
epidemiology, pollution, or hydrology) include space, time, and human decision making. 
This provides both an assessment of the models examined and a test of the framework. 
Third, we discuss the theoretical implications for linking human-environmental dynamics 
within the context of these three dimensions. Finally, we consider lessons learned and 
future directions for developing human-environmental models. 

This chapter is not a guide for readers to learn how to model human-environmental 
systems. Rathbr, readers will find this chapter useful for understanding the basic issues 
that models of human-environmental dynamics must address; for developing the ability to 
assess the strengths and weaknesses of various human-environmental models; and for 
identifying future directions in modeling human-environmental systems. Ultimately, we 
hope to convince readers that modeling human-environmental dynamics is a useful and 
exciting activity that can complement biophysically based models and provide understand- 
ing of human-environmental systems. s 
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7.1 INTRODUCTION 

Models are often simp1istic, but in many cases critical, abstract representations of the com- 
plex dynamics of human-environmental systems. They can be categorized in several ways. 
Models can focus on topics such as urban or rural systems, health, epidemiology, pollu- 
tion, or hydrology (Landis, 1995; White and Engeien, 1993). Models can be used for many 
purposes, such as research, decision making (policy, planning, and management), and edu- 
cation (Costanza and Ruth, 1998; Ford, 1999; Grove, 1999). Models can also be categori- 
zed by the methods and techniques used, which might range from simple regressions to 
advanced dynamic simulations (Agarwal et al., 2000; Clarke and Gaydos, 1997; Clarke 
and Gaydos, 1998; Lambin, 1994). 

I 

Given the possible variety and ever-growing number of human-environmental mod- 
els, we do not attempt to provide Noah's list of modeh. Rather, our goal in this chapter is 
to provide a framework for categorizing and summarizing models of human-environmen- 
tal dynamics that is both inclusive of purpose, method, and topic while permitting funda- 
mental comparisons of modeis along the dimensions of the,  space, and human decision 
making. The framework we propose is not an end in and of itself. We anticipate that rhis 
framework will provide the basis for assessing current progress in modeling human-envi- 
ronmentd dynamics and identlfy in g and prioritizing directions for model development in 
tenns of topic, purpose, and methods. 

This chapter is separated into the following sections. First, we propose and define a 
conceptual framework for descrihng human-environmental models based on critical 
dimensions of time, space, and human decision making. Second, using our framework, we 
summarize and compare different examples of models (urban or rural systems, he&, 
epidemiology, pollution, or hydrology) along these dimensions. This provides both an 
assessment of the models and a test of the framework. Third, we discuss the theoretical 
implications for linking human-environmental dynamics within the context of these three 
dimensions. Finally, we consider lessons learned and future directions for developing 
models of human-environmental dynamics. 

7.2 KEY FEATURES OF HUMAN-ENVIRONMENT MODELS 

7.2.1 Time, Space, and Human Decision Making: A Framework for Reviewing 
Human-Environmental Models 

We propose a framework based on three critical dimensions for categorizing and summa- 
rizing models of human-environmental dynamics. Time and space are the first two dimen- 
sions and provide a common context in which all biophysicd and human processes 
operate. In other words. models of biophysical and/or human processes operate in a tem- 
poral context, a spatial context, or both. When models incorporate human processes, a 
third dimension-what .we refer to as the human decision malung dimension-becomes 
important as well (Figure 7.1). 
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Figure 7.1 The three dimensions of human-environmentaI models. 

In reviewing and comparing human-environmental models along these dimensions, 
there are two distinct and important attributes that must be considered: model scale and 
model complexizy. We begin with a discussion of scale since it is a concept that readers 
will probably find most familiar from earlier parts of this book. 

Model Scale. Real-world processes operate at different scales (Allen and Hoekstra, 
1992; Ehleringer and Field, 1993). When we discuss the temporal scale of models, we usu- 
ally talk in terms of time step and duration. Time step is the smallest unit of analysis for 
change to occur for a specific process in a model. For example, in a model of forest 
dynamics, tree height may change daily. Duration refers to the length of time that the 
model is applied. Change in tree height might be modeled daily over the course of its life 
from seedling to mature tree by using a duration of 300 years. In this case, time step would 
equal one day and duration would equal 300 years. 

When we discuss the spatial scale of models, we talk in tern of resolution and 
extent. Resolution refers to the smallest geographic unit of analysis for the model, such as 
the size of a cell in a raster system. Extent describes the total geographic area to which the 
model is applied. Consider a model of individual trees in a 50-ha forested area. In this 
case, an adequate resolution for individual trees might be 5 m and the model extent would 
equal 50 ha. 

Most readers will find this discussion relatively straightforward and familiar. But 
how do we discuss human decision making in terms of scale? To date, the social sciences 
have not yet described human decision making in terms that are as concise and widely 
accepted for modeling as time step and duration, and resolution and extent. Like time and 
space, however, we propose that an analogous approach can be used to articulate scales of 
human decision making in terns of two components: agent and domain. 

Agent refers to the human actor(s) in the model who are making decisions. The indi- 
vidual is the most familiar human decision making agent. But there are many human mod- 
els that capture decision making processes at higher levels of social organization, such as 
household, neighborhood, county, state or province, or nation. These can all be considered 
agents in models and can be linked. For example, Figure 7.2 illustrates an example of a 
hierarchical approach to agents and domains for the study of urban ecosystems. While the 
agent captures the concept of who makes decisions, the domain describes the specific 
institutional and geographic context in which the agent acts. Representation of the domain 
can be articulated in a geographically explicit model through the use of boundary maps or 
GIs layers. 
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Figure 7.2 Multiple agents and domains (adapted from Grove et al., 2000). 
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Figure 7.3 Spatial representation of a hierarchal approach to modeling urban systems (Grimm et 
a1 ., 2000). Figure Shows three levels of spatial scale for the Central Arizona-Phoenix (upper) and 
Baltimore ecosystem (lower) studies. 
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In a model of farmer behavior (agent = individual) the farm is the domain within 
which farmers make decisions. In this example, we might also model other agents operat- .- 
ing in the same region (e.g., other parcels), such as nonfarming households, public land 
managers, or conservation groups, whose boundaries would also be depicted by the same 
domain map. Institutionally, agents overlap spatially, since the farmer might receive exten- 
sion advice about her livestock from an agent of the Department of Agriculture; have her 
cows inspected by the agent of an Department of Health; and receive financial subsidies 
from an agent of the Forest Service for planting trees in riparian buffer areas. 

Using another example and a different scale of human decision making, consider a 
state forester (agent = state) who writes the forest management plan for the state forest 
(domain = state boundary) and prescribes how often trees (resolution) in different forest 
stands (extent) should be harvested (time step) for a specific period of time (duration) 
within state-owned property. In this case, the human decision making component to the 
model might include the behavior of the forester within the organizational context of the 
state-level naturd resource agency. 

Model Complexity. The second important and distinct attribute of human-environ- 
mental models is the approach(s) used to address the complexity of time, space, and 
human decision making found in real-world situations. We propose that the temporal, spa- 
tial, or human decision making (HDM) complexity of any model can be represented with 
an index, where a low score signifies only simple processing and a high score signifies 
more complex behaviors and interactions. Consider an index for temporal complexity of 
models: A model that is low in temporal complexity is a model that has one, or possibly a 
few, time steps and a short duration. A model with a middle to high score for temporal 
complexity is one that has many time steps and a longer duration. Models with a high 
score for temporal complexity are ones that have a large number of time steps, a long dura- 
tion, and the capacity to handle time lags or feedback responses among variables, or have 
different time steps for different submodels. 

An index of spatial complexiry would represent the "spatial explicitness" of a model. 
There are two general types of spatially explicit models: spatially representative or spa- 
tially interactive. A model that is spatially representative can incorporate, produce, or dis- 
play data in at least two and sometimes three spatial dimensions-northing, casting, and 
elevation-but cannot model topological relationships and interactions among geographic 
features (cells, points, lines, or polygons). In these cases, the value of each cell may 
change or remain the same from one point in time to another, but the logic that makes the 
change i s  not dependent on cells neighboring it. In contrast, a spatially interactive model 
is one that explicitly defines spatial relationships and their interactions (e-g., among neigh- 
boring units) over time. A model with a low score for spatial complexity would be one 
with little or bo capacity to represent data spatially, a model with a medium score for spa- 
tial complexih would be able to represent data spatially, and a model with a high score 
would be spatially interactive in two or three spatial dimensions. 

What might we use to characterize an index for model complexity of human decision 
making? We use the p m e  HDM complexizy to describe the capacity of a human-environ- 
mental model to handle decision making processes. In Table 7.1, we present a classifica- 
tion scheme for estimating HDM complexity using an index from 1 to 6. A model with a 
low score for human decision making complexity (1) is a model that does not include any 
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Table 7.1 Six levels of Human decision making Complexity 

Level 

1 No human decision making - only biophysical variables in the model 

2 Human decision making assumed to be deterrninately related to popuidon 

size, change, or density 

3 Human decision making seen as a probability function depending on socio- 

economic and/or biophysical variables beyond population variables without 

feedback from the environment to the choice function. 

4 Human decision making Seen as a probability function depending on socio- 

economic and/or biophysical variables beyond population variables with 

feedback from the environment to the choice function. 

5 One type of agent whose decisions are overtly modeled in regard to choices 

made about variables that affect other processes and outcomes. 

6 Multiple types of agents whose decisions are overtly modeled in regard to 

choices made about variables that affect other processes and outcomes. The 

model may also be able to handle changes in the shape of domains as time 

steps are processed or interaction between decision making agents at 

multiple human decision making scales 

human decision making. In contrast, a model with a high score (5 or 6) is a model that 
includes one or more types of actors explicitly or can handle multiple agents interacting 
across domains, as shown in Figures 7.2 and 7.3. In essence, Figures 7.2 and 7.3 represent 
a hierarchical approach to social systems where lower-level agents interact 
to generate higher-level behaviors and higher-level domains affect the behavior of lower- 
level agents (Grirnm et al., 2000; Grove et al., 2000; Vogt et al., 2000;). 

7.2.2 Application of the Framework 

The three dimensions of human-environmental models-space, time, and human 
decision making-and two distinct attributes for each dirnensiorr--scale and complexi- 
ty-provide 'the foundation for comparing and reviewing human-environmental models. 
Figure 7.4 presents the framework with the three dimensions represented and the models 
Iocated in terms of their spatial, temporal, and HDM complexity along each axis. 

Human-environmental models can be placed somewhere within the three dirnen- 
sional space of Figure 7.4 to represent graphically their comparative focus, strengths, and 
abilities. Consider a time series modeling effort. Suppose a hydrologist is interested in 
modeling the quantity of water held in a city's reservoir over time and wants to use historic 
data on reservoir levels and other relevant information to forecast levels in the future. 
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Figure 7.4 A framework for reviewing human-environmental models. 

He or she may decide that the appropriate analytic technique for this question is to 
develop a regression or autoregression model. Often, time series statistical analyses focus 
on variations over time (such as reservoir water levels) without considering spatial or 
human decision making complexity. Such modeling approaches might have a high score 
for temporal complexity but would have a low score for spatial or human decision making 
complexity (Figure 7.4, A). Continuing with our reservoir example, a time series model 
that explicitly included human decision making, such as household decisions over water 
consumption in response to changes in water costs or to drought-based conservation prac- 
tices, would have a higher complexity score along the human decision making axis (Figure 
7.4, B). 

A modeling approach that would have a high score for temporal complexity is based 
on dynamic systems software (for example, STELLA, ModelMaker, Powersim). This type 
of software allows a modeler to represent systems as stocks, flows, and processes and to 
run the model overr a series of time periods (Costanza and Gottlieb, 1998; Hannon and 
Ruth, 1997). STELLA does not have its own spatial modeling capabilities; and if a model 
based on STELLA does not include a human component, it would have a low score for 
both the spatial and human decision malung complexity (Figure 7.4, A). STELLA modeis 
have the capacity to explicitly model human decision making; consequently, the complex- 
ity score for any STELLA model along the human decision making axis depends on the 
specific processes included in the model. 
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Geographic information systems (GIs) are the obvious spatial modeling technology 
and models that include GIs have high scores for spatial complexity. Many GIs applica- 
tions in the 1970s, 1980s, and early 990s  have low temporal and human decision making 

- scores (Figure 7.4, C) because most GIS applications developed during that period used 
data layers developed for only one or possibly two time points and concentrated on the 
heterogeneity of biophysical, landscape characteristics. Similar to statistical modeling, 
however, GIs has powerful abilities and can, in some applications, have high scores for 
temporal and/or human decision making complexity. For example, cellular automata (CA) 
models (Clarke et al., 1997; Clarke and Gaydos, 1998) are one special type of raster-based 
modeling that explicitly captures change over time in a spatial context. CA models have 
higher scores for temporal complexity than standard GIs systems (Figure 7.4, D). Similar 
to STELLA modeling, the relative location of a CA model along the human decision mak- 
ing axis depends on the specific social processes included in the model. 

What about models with high scores for human decision making complexity? Econo- 
metric models are one type of modeling approach that would rank higher in this dimension 
because they often explicitly try to model human behavior (Figure 7.4, E). For instance, in 
political science or sociological research, surveys and regression analysis are often used to 
understand better how various factors influence individual behavior. Most of these types 
of regression models would have low scores for temporal and spatial complexity unless 
the modeler explicitly included spatial or temporal parameters (for an example of regres- 
sion integrated with spatioternporal modeling, see Veldkarnp and Fresco, 1996). 

Game theoretic modeling is another approach that models human decision making 
complexity very well (Figure 7.4, E). Game theorists explicitly try to understand why 
humans behave the way they do under certain bargaining or collective action situations 
(see, for example, Roth, 1985; Ostrom et al., 1994). This modeling approach can include 
some temporal complexity. For example, there has been substantial work by experimental 
economists who have developed predictive models of repeated human decision making 
over severai time periods (Kagel and Roth, 1997; Smith et al., 1994). 

Combinations of techniques to model all three dimensions have begun to emerge 
(Figure 7.4, F). For example, Swarm, is an agent based modeling framework that can han- 
dle temporal, spatial, and human decision making complexity (see, for example, Popper 
and Smuts, 1999; http://www.swarm.org). Swarm is a software package that allows for the 
development of multiagent simulation of complex systems and has the capacity to develop 
spatiotemporal models of human decision making. Recently, Swarm has been used to 
model agents in various economic decision making scenarios (Luna and Stefannson, 
2000). These agent-based approaches can span space, time, and decision making dimen- 
sions and cross social and biophysical scales by modeling agents at different scales. 

The Recreation Behavior Simulator, or RBSim, developed by Itami and Gimblett, 
provides another exwpie of modeling in all three dimensions. RBSim combines GIs and 
autonomous human agents to simulate human decision making and movement over geo- 
graphic space and time (Gimblett et al., 1998; see also bttp://www.dlsr.com.au/software/ 
rbsim). In these models, programs are written to capture the logic or decision rules of var- 
ious types of decision makers or agents. 

Finally, Costanza and colleagues' Spatial Modeling Environment (SME) combines 
GIs capabilities with STELLA to create a system to model landscape change in a fashion 
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similar to cellular automata (http://kabir.cbl.umces.edu/SMP/MVDISMEl.html). With the 
STELLA modeling embedded in SME, it is possible to model human decision making 

z using the STELLA stock-flow-process environment. SME models with human decision 
making would also have high scores for all three dimensions of complexity. 

We try to compare different types of models, but we should note that when two mod- 
els are compared side by side, they might have identical scores of complexity for each 
dimension (Figure 7.4) even though they operate at different spatial, temporal, or human 
decision making scales. Alternatively, two models operating at identical scales could have 
different scores of complexity for each dimension. Thus, it is important to consider both 
sets of model attributes-scale and model complexity-when assessing whether human- 
environmental models are comparable. 

The utility of this three-dimensional framework is that, first, it forces us to consider 
and clearly articulate the two important attributes of models: scale and complexity. Fur- 
ther, the framework encourages developers of human-environmental models to consider 
the appropriate scale(s) and levels of complexity necessary to address the problem or sys- 
tem they want to model. The following section considers how models of three different 
types of human-environmental systems relate to this framework. 

7.3 EXAMPLES OF HUMAN-ENVIRONMENT MODELS 
Researchers from a variety of disciplines have modeled a vast array of human-environ- 
mental systems. These various types of models differ in structure and design because of 
the nature of the systems being modeled, the methodological and disciplinary background 
of the modelers, and the different purposes of various models. Here we provide examples 
from three broad areas of human-environmental modeling in order to demonstrate the 
approaches that have been used to model human decision making; the effect of human 
populations on the environment; and the effect of the environment on human populations. 
This section discusses only a small, representative subset of different types of human-envi- 
ronmental models and is limited to models with (1) a substantial interface with the bio- 
physical environment, and (2) some ability to represent spatial relationships. Elsewhere, 
several sources provide comprehensive reviews of various types of human-environmental 
models (Johnston and Barra, 2000; Southworth, 1995; Webster and Pauley, 1991; Wege- 
ner, 1994; Wilson, 1998) 

The basic systems models discussed here deal with urban systems, land usenand 
cover change, and models related to environmental health. It should be noted that there is a 
considerable amount of content overlap among these three categories. The models 
described here can be distinguished in their focus, or more specifically, to what degree 
each model adds complexity or simplifies different model components. For example, both 
the ~alifomia'urban Futures model (CUF) and the Agricultural Nonpoint Source Pollu- 
tion model (AGNPS) deal with agricul~ral land use in some way. However, the AGNPS 
model has much more complexity for the ecological function of the agricultural system 
than the CUF model, and the CUF model has more complexity for location-economics, 
where the AGNPS has no. content. This is natural since these two models were designed 
for entirely different purposes. These two examples illustrate how the purpose of a model 
determines how a particular system is modeled and which components are included in dif- 
ferent models of similar systems. 
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7.3.1 Urban Systems Modeling 

A significant problem for urban planners in the 1970s and 1980s was the process of rapid 
urbanization and suburbanization. Even prior to the advent of GIs technologies, planners 
used overlay techniques with mylar maps to examine the spatial chancteristics of urban 
areas. As GIs tools and techniques were developed and distributed in more user-friendly 
software platforms, GIs became a natural tool to model processes of urban growth. 
Because of these conditions, GIs was rapidly adopted within urban planning as a visual- 
ization and modeling tool. A large number of models of urban change were developed in 
the late 1980s and early 1990s. These models were used for simulation and scenario test- 
ing, allowing policy makers to observe the predicted effects of various policy prescriptions 
as well as different population growth and development scenarios. Here we present three 
urban growth models that can be differentiated by the following characteristics: spatial 
unit of analysis, data visualization, model complexity, choice of exogenous factors, and 
calibration/validation tools. 

The CUF model (Landis, 1995; Landis and Zhang, 1998) was originally developed to 
predict urban development in a 14 county area in Northern California but has since been 
applied to a variety of urban areas for urban development predictions under different sce- 
narios. The CUF-1 model uses a bottom-up approach: Population growth is modeled for 
individual subareas (incorporated cities/counties and developable land units [DLUs]). 
Since the initial CUF model was designed, the model has been revised (CUF-2) to include 
multiple land uses and calibrates model output from more recent data. The CUF-2 model 
dso uses a smaller spatial unit of analysis (100m * lOOm cells) than the CUF-1 model, 
which used only several hundred DLU areas to model a 14 county area in Northern Cali- 
fornia 

One of the most widely applied urban systems models is the Metropolitan Integrated 
Land Use system (METROPILUS) (Putman, 1983; 1992). The METROPILUS model is 
actually the integration of a series of model components, each focused on a particular 
aspect of land usenand cover chahge processes. Development began in the 1970s and the 
latest incarnation includes a user-friendly graphical user interface linked to Arcview GIs 
software package. The main model components are a residential allocation component, an 
employment allocation component, and a land use change component. The residential and 
employment model components can be used to predict population changes, and the land 
use change component estimates changes in land cover based on the demands placed on 
the landscape by the residential and employment components. This compartmentalized or 
modular approach to modeling is a common approach in human-environmental modeling 
as well as ecosystems modeling. 

An alternative approach applied in the late 1980s and 1990s was the use of cellular 
automata, where the state of each unit of analysis is a function of three factors: ( I )  the 
cell's prior state, (2). the neighboring area, and (3) a series of state transition rules (Dead- 
man et al., 1993). Examples of cellular automata models applied to urban areas include 
White and Engelen (1993), Batty and Xie (1994% 1994b, 1994c) and Clarke (Clarke et al., 
1997; Clarke and Gaydos, 1998). In the case of White and Engelen and Batty and Xie, an 
urban area is represented by a raster data structure of cells where the state of each cell at a 
specific time point is the product of the state of that cell at the prior time point and the 
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states of cells in a neighborhood surrounding that cell. These researchers have used this 
approach to model the affect of different policy prescriptions and scenarios, such as differ- 
ent population growth rates, zoning restrictions, and various economic development 

I assumptions. 

7.3.2 Rural Systems Modeling 

Rural land use/land cover change or rural systems modeling is another major area of 
human-environmental systems modeling. This area of modeling overlaps with urban sys- 
tems modeling in that the rural-urban interface is often an important factor in many urban 
and rural environments. However, rural systems modeling most often focuses on areas 
where agriculture and forest predominate and there is little direct effect from the encroach- 
ment of urban areas. These rural systems models can be differentiated from urban systems 
models in their focus and component complexity. In particular, rural systems models have 
more complexity in specifying the dynamics of agriculture and forestry land uses. A 
review of urban and rural systems models shows that most urban systems models focusing 
on urban expansion and land use change are concerned with the provision of services (e.g., 
transportation infrastructure) ( Johnson and Barra, 2000; Wegener, 1994). The exceptions 
are models of urban climates. In contrast, rural systems models have included more 
explicit linkages between land use decisions and landscape outcomes associated with envi- 
ronmental effects (e-g., carbon sequestration, groundwater contamination, biodiversity). 
For example, the CUF-2 model (Landis and Zhang, 1998) includes multiple land uses in 
modeling urban growth, but only one class is used to represent all agricultural land uses 
(crops, pasture, and forest land) while there are six classes of urban land uses. Further- 
more, the CUF-2 model does not distinguish between crops or stages of forest growth. 

Recently, rural systems models or land usenand cover change (LUCC) models have 
been the focus of researchers examining global change issues including deforestation/ 
reforestation, biodiversity, carbon sequestration, and other land-atmosphere exchanges. 
(For a review, see Aganvai et d., 2000.) These models include spatially explicit models of 
land cover change, dynamic systems models, and models that predict emergent behavior in 
human sys terns. 

One method of modeling LUCC is through the use of spatially explicit dynamic sys- 
tems models. Costanza and colleagues have developed such a model for the Patuxent 
watershed by integrating a general ecosystem model with economic decision making (Voi- 
nov and Costanza, 1999; Voinov et al., 1999). This model has been implemented for the 
Patuxent watershed using the spatial modeling environment (SME), developed by the 
authors and colleagues. Originally focusing on hydrology and the surface and subsurface 
exchange of nutrients, the model uses the specification of economic development to incor- 
porate land use change in the model rather than using land use change as an exogenous 
factor affecting the hydrological system. This dynamic approach provides powerful cou- 
pling techniques whereby. feedbacks in each modei component can be linked to other 
model components and provide a more realistic representation of human-environment 
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interactions. 
There are many models that predict the behavior of rural systems from an ecosystem 

perspective. These models generally treat land use decisions as exogenous drivers to the 
model rather than modeling the land use decision making process itself. Various models 
have been developed for a range of different ecosystem types and for applications such as 
predicting crop productivity and forest succession in publicly managed lands. 

One such model is the LAMIIS model (He and Mladenoff, 1999; He et al., 1999% 
1999b; Mladenoff and He, 1999), which was developed to simulate forest landscape 
change under different harvesting and disturbance regimes. The LANDIS model uses a 
spatially explicit raster structure to simulate spatial interactions, such as seed dispersal, 
and produces a species-level output assuming different management practices and distur- 
bances. The creators of this model stress that the LANDIS model is most useful as a tool to 
project plausible landscape outcomes under certain conditions rather than as a spatially 
explicit prediction tool (Mladenoff and He, 1999). This is an important concept in human- 
environmental dynamics and ecosystems modeling. Data availability limits the ability to 
predict the behavior of systems even if models exist to properly simulate those systems. 

The LANDIS model is most applicable to environments dominated by forest cover. 
A somewhat more complex system is an environment where there are a variety of land 
uses (e. g ., forestry, agroforestry, crops, pasture) and numerous actors. The LANDIS model 
has a great deal of complexity in terms of forest dynamics and deals with a specific type of 
ecosystem (largely, forested). Landscapes with a high degree of human activity are typi- 
cally characterized by a broad range of land uses (for example, forests, crops, pasture, res- 
idential). Models of these systems with a broader range of land uses often simpllfy 
different components in order to produce a model that performs acceptably for the 
research question at hand but lacks specificity in some areas. For example, Dale and col- 
leagues created a model of forest cover dynamics for a study in Rondonia, Brazil @ale et 
al., 1993,1994), but this model lacks the species level complexity of the LANDIS model. 
Using a spatially explicit approach, Dale and others (1993, 1994) modeled the effects of 
land cover change drivers under different management scenarios on spatial patterns and 
composition of land cover. This model was unique in that it linked a dynamic model of 
land cover change to a spatial representation where each parcel was composed of multiple 
cells rather than using a coarser unit of analysis (e.g., parcel, municipal area, or region). 
This approach allowed land use activities to be modeled at the household level, the same 
level at which land use decisions were made in the particular study area, and predicted 
specific la@ cover outcomes at a parcel or regional level. This model used a robust spa- 
tiotemporal.framework but treated land management scenarios as exogenous rather than 
modeling the occurrence of these land use activities. 

model integration one step further, some researchers have moved toward 
developing a modeling approach integrating land use, decision making, and ecologicai 
change in rural environments at fine spatial scales. One such effort is the Forest Land Ori- 
ented J3~~ource Envisioning System (FLORES), a model constructed from a muitidisci- 
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plinary team of researchers (Vanclay, 1998). During a three-week workshop in 1999, a 
team of researchers constructed a model of rural land use change for a test area in Indone- 
sia by including the following major model components: crops-soils, trees-forest, 

x 
household decision making, and biodiversity-fauna.. This integrated model was devei- 
oped using a dynamic modeling package and loosely coupled to a spatial information sys- 
tem. 

A loosely coupled model is where model components exchange data through input1 
output of different model components rather than operating in an integrated modeling 
framework. Future plans are to produce a model that more closely integrates the existing 
model components in a spatial framework that would allow more explicit spatial interac- 
tions to occur in the model. What was unique about the FLORES model was the effort to 
balance the complexity of the agriculture, forest ecology, and human decision making 
components within a spatial framework. In regard to the space-time-HDM modeling 
framework, the FLORES model is well developed in terms of the temporal dynamics and 
human decision making but currently is not well developed along the spatial dimension. 

7.3.3 Heaith, Epidemiology, Pollution, and Hydrology 

A natural interface of human-environmental modeling is in health-related applications 
such as disease contagion, environmental impact assessments, and poilution modeling. 
This is a vast area of research and modeling. Here we present a very limited set of exam- 
ples to demonstrate types of models that have been constructed for these applications. In 
particular, we present models from the areas of environmental impact modeling and spatial 
epidemiology. 

The Agricultural Nonpoint Source Pollution model (http://www.sedlab.olemiss.edu/ 
AGNPS98.html) has been widely used to predict nutrient and fertilizer passport in agricul- 
tural systems. It is a raster-based model that uses different exogenous land use decisions 
(e.g., fertilizer applications) and landscape characteristics (soil characteristics, topography, 
etc.) to predict soil erosion and nutrient transport in agricultural environments. The 
AGNPS model is an example of a spatially explicit model, including spatial interactions, 
that operates in a temporal framework. While the AGNPS model lacks a component to 
model land use decisions, the model. has the ability to examine the effect of different land 
use strategies by using them as model drivers. There are a tremendous number of modeis 
related to environmental health issues in agricultural environments, and AGNPS is a 
widely used model that is representative of this area of modeling. 

Agricultbral and hydrological models are less commonly referred to as human-envi- 
ronmental models because the model often treats human decisions as exogenous to the 
system (e.g., AGNPS). A variety of researchers have been successful in developing 
loosely coupled models linking existing social and biophysical models. A loosely coupled 
model can be referred to as a model where the data are exchanged between model cornpo- 
nents through input/output, but the model behavior is not integrated between the model 
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components. We would argue that a major research challenge facing the modeling commu- 
nity is in developing tightly coupled models that balance model complexity on both the 
social and biophysical sides. 

Other modeling applications related to the health aspect of human-environmental 
dynamics include the spaBraziltia1 modeling of diskase vectors and transmission (Smith 
and Harris, 1991). Much of this research involves spatial examination of a combination of 
features, and thus GIS provides an ideal framework for these applications. There is a wide 
literature related to the application of GIs to epidemiology, although most of this work is 
empirical rather than modeling based. However, some researchers are developing models 
as a tool for predicting risk and exposure to different disease vectors or to predict disease 
incidence. For example, Castro and Singer (2000) used a spatial model to examine the 
relationship between land cover and malaria incidence in the Rondonia, Brazil. Other 
examples include spatial epidemiological models of HIV incidence (Salzberg and Mac- 
Rae, 1993). Because their applications are more focused on exposure or threats to human 
population from some source, these models do not explicitly model human decision mak- 
ing. However, there is utility in this integration. One example would be a mode1 of rural 
land use expansion as it relates to the encroachment on malaria-infested areas. A dynamic 
simulation could model how the decision making process determines the spatial expansion 
of settlements and how the associated land cover changes might affect the habitat for mos- 
quitoes and, in turn, the exposure to malaria. 

7.3.4 Summary 

Figure 7.5 is an example of how some of the different models can be described in terms of 
spatial, temporal, and HDM complexity. As we have discussed previously, models that are 
positioned high on the space complexity axis are spatially explicit and allow for spatial 

Space (Y> 

Time 
(XI 

Figure 7.5 Positions of models in relation to space, time, and decision making. 



174 Modeling Human-Environmental Systems Chap. 7 

interactions. Models that are positioned high on the temporal complexity axis are dynamic, 
demonstrate feedbacks and equilibria in model states, and allow for varying time intervals. 
Models that are positioned high on the HDM complexity axis explicitly model agent deci- 
sion making based on a set of heuristics defined in the model at multiple institutional 
scales. Some models were not designed to address all of these axes. Therefore, a low posi- 
tion on one axis does not mean the model is not as well constructed as another model, just 
that it is not as complex for that axis. In addition, model positions are approximate and 
adjusted to make the figure more readable. Within the context of a model's purpose, an 
important goal of future human-environmental models is to specify and develop models 
that have as high a position on all three axes as necessary (the asterik in figure 7.5) 

7.4 MODEllMG COMPLEXlTY AND HUMAN-ENVIRONMENTAL DYNAMICS 
The physical and biological sciences have struggled to develop appropriate frameworks 
for environmental models at different spatial and temporal scales and levels of model com- 
plexity. The difficulty of this challenge increases greatly when theories of human decision 
making, scales, and complexity are included. As we noted earlier, scales and complexity 
of human decision making range from individuals to groups of increasingly large size until 
they encompass global networks. This section discusses specific theoretical issues for 
linking human-environmental dynamics within the context of space, time, and human 
decision making. Many of these issues have important implications for the complexity 
modelers might choose to include in their models. 

7.4.1 General Issues 

As modelers work to develop human-environmental models, it is essential that they iden- 
t i fy the optimal scale(s) for their specific questions. In this context and because human- 
environmental dynamics are complex, it is important to recognize that certain human- 
environmental processes may be associated with speciik scales in some cases, while pro- 
cesses may occur across multiple scales in other cases. Further, human-environmental pro- 
cesses to be addressed by the model might not operate at the same scale(s), and linkages 
may have to connect across scales (Redman et al., 2000). 

7.4.2 Time 

Human and environmentai processes might work at different rates. Further, rates of 
change, such a t h e  land cover change shown in Figure 7.6, are not necessarily linear over 
time. Thus, modelers need to consider whether there are time lags, nonlinear relationships, 
defining events, and positive and negative feedback loops that affect the responses among 
social and environmental processes (Costanza and Ruth, 1998; Gladwell, 2000; Grove, 
1999). For instance, time lags might exist between changes in land use and transport of 
nitrogen in groundwater since groundwater flows might occur at a much slower rate than 
land use change from an agricultural to a residential land use. Similarly, forest stand char- 
acteristics (structure and composition) are more likely to reflect historic, selective harvest- 
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in: prcferenccs and prictices than cun-ent ownership preferences and practices. This is due 
to the fact chat changes in vegetation srowth. species dynamics, and soil fertility change at 

Figure 7.6 Perspective view of urban growth in Baltimore. Maryland. over 300 years (1792- 1991;). Yellow 
polygons are built-up areas as determined from historical maps and satellite imagery, green areas are forests, 
and blue areas are water tChesapeake Bay). Soulre: Penny Masuoka. UMBC. NASA Goddard Space Flight 
Center and Willintn Xcevedo. USGS. NASA Ames Research Center. 

much slower rates than land ownership. In both cases. human and environme~ltal legacies 
affect current hii~nan-environmentni dynamics. 

7.4.3 Space 

Studies ol' llow spatial characteristics affect ecological dyniimics. particulnrl!l with GIs 
and computer tnodeling. have heen an ru-ea of  great interest (Forrnan and Godmn. 1986; 
G~istat'son. 1998: Naveh and Lieberman, 1993: Pickett and Cadenasso. 1995: Turner, 
1989: Turner add Gurdner. 1990). Examples of types of spatial ~netrics iilclude measures 
of ( i landscape composition (for cxcunple. nuinber of categories. proportions. di\~ersity 
[evenness and richnessl). ( 2 )  landscape confi~uration (such as size. shape. density. con- 
nectivity. fractal. and patch i~eigl~borhood), and (3) scale/st~ucture (for instance. trendsur- 
face. sorrelosram. and s e m i ~ a r i o ~ r a ~ n )  (Gustafson. 1998: McCarigal and Marks. 19951. 
However. c.omp;lrabft: CIS and modeling efforts have not focused on how the spatial char- 
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actenstics of certain phenomena, such as adjacency, shape, and matrix, affect human pro- 
cesses and the relationships among human-environmental processes (Grove, 1999). For 
instance, spatial adjacency (neighborhood analysis) might be included in models of human 
decision making to account for whether neighboring industrial areas affect residential 
locational decisions. The size and shape of an area (spatial metrics of a patch) might affect 
human processes. For example, as people commute from one commercial area to another, 
are individuals more likely to travel across a narrow or a wide residential area? Finally, the 
location of an area within a regional matrix (patch matrix analyses) might affect human 
decision making. For instance, how does access to a diversity of work, recreation, and 
other leisure amenities affect residential choices made by single adults and retired couples 
in urban areas? Each of these spatial examples can have implications for modeling 
human-environmental dynamics. These spatial interactions are complicated further by the 
fact that boundary conditions of areas might need to be considered as well, since the per- 
meability of social and environmental areas might affect the flows of materials, nutrients, 
fauna, flora, persons, diseases, and ideas. 

7.5.4 Human Decision Making 

Coucelis (2001) has noted in Chapter 2 of this book that although human-environmental 
modeling might be primarily an applied field, it is not exempt from the need to be theoret- 
ically well grounded. It is too easy to develop models that look good but have an underly- 
ing ontology that is less plausible than a computer game. Since it is unlikely that we will 
ever have a "theory of everything" for human-environmental systems, we must develop 
our ability to assemble a wide variety of partial theories from the physical, biological, and 
social sciences. In other words, integrated approaches to human-environmental models are 
more than a matter of replacing integrated models with coupled models: rather, integrated 
approaches have to make sure that the assemblage of concepts, ontologies, approaches, 
theories, degrees of confidence, and spatiotemporal structures within a single framework 
respect the strengths and weaknesses of each part and yield a whole that is logically coher- 
ent (Coucelis, 200 1). 

This issue of an overall, coherent approach to modeling human-environmental sys- 
tems is critical. Coucelis (2001) cites Srnyth (1998, p. 192) to observe that it is convenient 
to think of the modeled world as a microworld defined by an ontology consisting of con- 
tents, spatial structure, temporal structure, "physics" (rules of behavior), and rules of infer- 
ence or logic. The notion of such a microworld is useful for reminding us that models are 
not the red thing and that they need to be internally consistent (Coucelis, 2001). 

We agree with Coucelis (2001) that human-environmental models often include a 
variety of disciglines and syntheses, which means that human-environmental models will 
assemble several'kinds of "physics," some based on causal hypotheses (A appears to cause 
B), some on statistical regularities (A is statistically associated with B), others on empiri- 
cal rules of thumb (when A, usually B), and others still on arbitrary rules of behavior spec- 
ified by the modeler (if A is the case, then do B). Combining such a variety of partial 
"physics" into a complete model that is free of internal contradictions is a challenge for 
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which few guidelines exist, and which becomes more difficult as the assemblage from dif- 
ferent domains become more remote from each other. While i t  might be challenging to 
link models of rainfall and runoff to determine the likelihood that an area will flood, it is 
quite another to link models of industrialization and species extinctions in order to under- 
stand the relationship between urbanization and biodiversity (Coucelis, 2001). 

We noted earlier that we are unlikely to have a "theory of everything" for human- 
environmental systems. However, many insights into the challenge of developing inte- 
grated approaches to human-environmental models that are based on different types of 
"physics" can be found in existing literature. Thus, we propose that the theoretical 
approaches to human decision making are most likely to be found among midlevel theo- 
ries and not grand, unified theories of human-environmental systems (Burch and Grove, 
1999; Ostrorn, 1998; Parker et al., 1999; Picken et al., 1999). This idea of midrange theory 
and its utility comes from Merton (1968, p.39), who notes that midrange theories "lie 
between the minor but necessary working hypotheses that evolve in abundance during 
day-to-day research and the all inclusive systematic efforts to develop unified theory that 
will explain all the observed uniformities of . . . behavior, .. . organization, and . . . change. 
Mid-range theories are empirically grounded theories-involving sets of confirmed 
hypotheses-and not merely organized descriptive data or empirical generalizations which 
remain logically disparate and unconnected." Midrange theories connect observations, 
inferences, hypotheses, and empirically based research. While midrange theories may not 
be logically derived from a single, all-embracing theory, they may be consistent with one 
(Merton, 1968). Finally, rather than deriving a model of human-environmental dynamics 
from a single, all-embracing theory, a midrange theory approach provides the basis for 
progressively developing a more general model that is adequate for consolidating groups 
of midrange theories. 

Many midrange theories that are appropriate for human-environmental modeling 
have been available for some time. For instance, social scientists have worked for a long 
time to include human-environmental interactions. Firey's (1990) comprehensive review 
of sociological work since 1926 demonstrates that substantial theoretical and empirical 
efforts have existed for some time and anticipated many of the concerns for integrating 
human-environmental dynamics. Firey's (1990, p.23) analysis of these works translates 
diverse terms into a unified lexicon. As he notes, 

When Mukerjee speaks of the "entire circle of man's life and well-being," he is plat- 
ing into a single system such diverse factors as social organization, flora, fauna, fertility, 
climate, and topography. When Vance refers to the "cotton system" he has in mind a 
"complex $hole" partaking of certain attributes of the physical environment-chemical, 
climatic, and gene~ic-and of certain attributes of the sociocultural order-structural, atti- 
tudina 1, and organizational. When Odum speaks of "balance, " Zimrneman of "real com- 
munities," Lundis of "patterns," Kaufinan of "stability," and Gibbs and Martin of 
"sustenance organization," there is implied some reference to a system whose components 
are not exclusively physical nor exclusively socia l or cultural. In these expressions there is 
a dual reference to two orders of phenomena, both of which have been articulated into a 
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single conceptual construct. This concept of a resource system has two features, which 
particularly recommend it as a point of departure forfirther sociological research on nat- 
ural resoutres. First, it is congruent with a great deal of important work that is being done 
in systematic sociological theory, centering on the coitcept of "social system." Second, it 
is noncommitta2 as to the mode of formulating causal relationships among the variables 
that enter into a system. In other words, either physical or sociocultural variables can be 
taken as independent, so that, with appropriate measures of both, a wide variety of hypoth- 
eses can be formulated and tested. 

We propose that many of these studies are relevant, informative, and important to re- 
discover for modeling the "physics" of different scales and levels of complexity of hurnan- 
environmental dynamics. For this integration of rnidlevel theory in human-environmental 
models to occur, however, it is crucial to link appropriate midlevel. physical, biological, 
and social theories (Pickett et al., 1999) to appropriate temporal and spatial scales and lev- 
els of complexity (Grove, 1999; Redman et al., 2000). 

7.5 LESSONS LEARNED AND FUTURE DIRECTIONS 
What then are the pressing needs related to future human-environmental modeling efforts? 
The preceding discussion proposed that much existing theoretical and empirical research 
on human-environmental systems is relevant and important to modeling efforts of human- 
environmental systems today. It also emphasized that human-environmental processes can 
be, and usually are, temporally and spatially complex as they interact with various scales 
of human decision making. Given the need to mine existing literature that might be rele- 
vant to specific human-environmental modeling questions, the following discussion 
focuses on three sets of activities or issues we think are particularly important in general to 
the development of future human-environmental models: (I) standard conventions for 
reporting scale across time, space, and human decision making, (2) closing the data gap, 
and (3) new forms of collaboration in the development of human-environmental models. 

7.5.1 Conventions for Reporting Scale and Complexity 

A significant hurdle we must overcome in the context of human-environmental modeling 
is the failure to articulate and document temporal, spatial, and human decision making 
scale(s). Many modeling techniques have the capacity to model across multiple scales of 
time, space, or human decision making. But in literature documenting applications of cer- 
tain models, even though it is possible to articulate the temporal and spatial scale of a 
model applicabon, we often find that many model summaries do not do this. Further, when 
models include* a human decision making component, we are constrained by the lack of a 
well-specified language of scale that researchers can agree on and consistently report. 

In our view, this failure to articulate and document the scale(s) of human-environ- 
mental models becomes problematic when we try to compare model results of similar sys- 
tems, since it is well known that relationships among variables change depending on the 
scale of analysis (Root and Schneider, 1995; Turner et al., 1989). If we unknowingly com- 
pare results of two models operating at different scales, we might draw incomplete or 
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incorrect conclusions that could lead to false theoretical understandings of the processes at 
work. 

We cannot stress enough the theoretical implications of this issue, since scale proba- 
bly drives many of the conflicts perceived to exist among different disciplines in the social 
sciences. For example, the arguments and differences existing among psychologists 
(Lynch, 1960; Sommer, 1969), sociologists (Bailey and Mulcahy, 1972; Canon, 1992, 
1994; Field and Burch, 1988; Firey, 1945; Schnore, 1958; Young, 1974, 1992;), geogra- 
phers (Agnew and Duncan, 1989), and political scientists (Masters, 1989) might be amib- 
uted more to the use of different scales and criteria (vis. Allen and Hoekstra, 1992) than 
questions of who is right or wrong. For instance, psychologists and sociologists argue 
about whether individual behaviors create social structures or whether social structures 
determine individual behaviors. Rather than seeing this as a mutually exclusive dichot- 
omy, it may be more appropriate to conceive of such a question as a matter of scale and to 
ask about the relative relationship between individual behavior and social structure for a 
given question (Vogt et al., 2000). With this approach, questions are more resolvable by 
actually promoting discussions among modelers of human-environmental systems. 

In the context of future modeling endeavors, we propose that any paper reporting 
model results should clearly report the scale(s) used. Temporal and spatial scale are rela- 
tively straightforward: Each of their scale components in Table 7.1 can be articulated 
clearly using generally accepted scientific measurements. This could be true as well for 
the scale components of human decision making if we can come to some agreement on a 
standard language and definitions for agent and domain. The terms we have proposed are 
our attempt to move us toward such a common set of terms. Regardless of the final set of 
terms, we propose that the clear articulation of temporal, spatial, and human decision mak- 
ing scaie(s) is as essential to a paper as the abstract or the list of keywords. 

A similar argument could be made for documenting a model's complexity, but more 
discussion is probably needed to build consensus for indices of temporal, spatial, and 
human decision making complexity. Earlier, we presented an index for estimating human 
decision making complexity for individual models (Table 7.1). Similar indices need to be 
developed for estimating the temporal and spatial complexity axes of Figure 7.4. Once we 
come to some agreement about these measures of scale and complexity, we will have 
moved forward significantly in our ability to compare the results of models using similar 
scales and/or complexity and to know when not to compare results because of differences 
in scale and/or complexity. Further, we might be able to evaluate whether various models 
using different scales and complexity can be linked if we understand the location of a par- 
ticular model within the human-environmental modeling framework (Figure 7.4). This is 
crucial for developing multiscnle or hierarchical approaches to modeling human-environ- 
mental systems. 

b 

7.5.2 Closing the Data Gap 

An important challenge to modeling human-environmental systems is our lack of digitally 
available data. Several research organizations are starting to collect data for particular geo- 
graphic regions, and these data are purposefully relevant to human-environmental model- 
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ing (see, for example, the Human Dimensions of Environmental Change research program 
sponsored by the U.S. National Science Foundation at http://www.nsf.gov/sbekdgclhdgc- 
cntr.htrn, and the U.S. NSF funded Long-Term Ecological Research groups at http:// 
www.lternet.edu/ or the International Human Dimensions of Global Change research pro- 
gram at http://www.uni-bonn.ddihdp1). While these groups collect time-series, spatially 
distributed, physical, biological, and social data for their areas of geographic focus, data 
for many other areas are either dispersed or absent. This data gap can hinder many human 
environmental modeling efforts that are empirically based. 

With the tremendous advances made in the Internet (largely because of World Wide 
Web technologies), the sharing of data has become much easier. Recent endeavors such as 
the U.S. National Spatial Data Inventory (NSDI, located at www.fgdc.gov/nsdi/nsdi.html) 
and the Federal Geographic Data Committee (FGDC, located at www.fgdc.gov/fgdc/ 
fgdc.htm1) have made significant progress in establishing standards for documenting 
information about spatial datasets (commonly called metadata) and developing a network 
of spatial data clearinghouses (see www.fgdc.gov/clearinghouse/clearinghouse.html). 
These are important advances for modelers because they provide global access to well- 
documented data sets (i.e., usable) that might be available for a particular area. Further, we 
are beginning to see Internet browser technologies that allow people to search for spatial 
data for a particular geographic location (e.g., MapInfo's "metadata browser"). 

Finally, there have been several attempts recently to overcome the quantitative data 
gaps for modeling purposes by integrating statements about qualitative changes in human 
behavior and environmental impacts (trajectories) based on regional case studies. For 
example, see Kuipers (1994), Kasperson and others (1995), Petschel-Held and others 
(1999), and Petschel-Held and Liideke (2000). In short, important progress is being made 
for solving the data gap problem. While much of the effort has focused on complete spatial 
datasets, additional attention will need to focus on time series data and data related to 
human decision making. 

7.5.3 New Collaborative Forms for Development of Models 

Models involving time, space, and human decision making can be incredibly complex and 
depend on knowledge from many disciplines. Until now, most models have developed in 
isolation. This is related to the fact that modelers have been funded through grants or 
focused funds from a particular organization with an interest in human-environmentd 
modeling. Even in the context of large interdisciplinary research centers like the NSF net- 
works cited previously, their efforts have been constrained by funds, staff, and expertise. 

In contrast to traditionai approaches to model development, recent advances in Inter- 
net and Web technologies have created new types of opportunities for collaboration in the 
development of human-environmental modeling. Already, "open source" programming 
efforts have been used to solve complex computing problems (see, for example, Kiernan, 
1999; Leamonth, 1997; McHugh, 1998, and http://www.opensource.org). The principle 
of open source programming is based on a collaborative licensing agreement that enables 
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people to download program source code freely and utilize it on the condition that they 
agree to provide their enhancements to the rest of the programming community. There 
have been several very successful, complex programming endeavors using the open 
source concept, the most prominent being the Linux computer operating system. There 
have also been some open source endeavors that have failed. The Linux model has shown 
that extremely complex problems can be tackled through collaboration over the Internet 
and that this kind of collaboration can produce extremely robust results. For instance, 
Linux is known to be a very stable software program, and it is largely because of what is 
referred to as "Linus's Law" (Linus Torvalds is the initial developer of Linux): "Given 
enough eyeballs, all [problems] are shallow" (Raymond, 1999). In other words, if we can 
get enough eyes with various skills and expertise working on a problem, every problem, 
regardless of complexity, can be solved because an individual or a team of individuals will 
come up with elegant solutions. 

Yet how is an open source approach to computing connected to human-environmen- 
tal modeling? We pmpose that a similar approach to the development of human-environ- 
mental models provides the basis for focusing enough eyeballs on important human- 
environmental problems (Schweik and Grove, in press). A similar argument has been 
made for open source endeavors in other areas of sciendfiic research (Gezelter, 2000). Ini- 
tiating such an open source modeling effort will require three components: (1) a Web site 
to support modeling collaboration (e.g., data and interactions among individuals, such as 
bulletin boards and FAQs); (2) establishment of one or more modeling kernels (these 
would be core components of models using various technologes) that are designed in a 
modular fashion and allow relatively easy enhancements from participants; and (3) devel- 
opment of mechanisms for sharing model enhancements that encourage participation and 
provide incentives that are comparable and as valued as publishing in peer-reviewed jour- 
nals. 

We recognize that the application of the open source programming concept to 
human-environmental modeling might appear daunting and even seem radical. However, 
the Linux example shows how extremely complex problems can be solved when enough 
people look at them. Given the complexities involved in modeling time, space, and human 
decision making, the open source programming concept might be a vital modeling 
approach for creative solutions to difficult human-environmental modeling problems. 

7.6 CONCLUSION 

Our goal inathis chapter has been to contribute to the further development of human-envi- 
ronmental models. To achieve this goal, we proposed a conceptual framework for summa- 
rizing and comparing human-environmental models. We then reviewed several types of 
human-environmental models and related them, in a general way, to the framework. Based 
on these discussions, we identified some key issues that are inherent to modeling temporal, 
spatial, and human decision making scale and complexity. Finally, we discussed some new 
directions for modeling human-environmental dynamics. In the end, however, we have 
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only mapped some possibilities and ideas for modeling human-environmental dynamics. 
We hope that others will improve on this initial effort for two reasons. First, we believe 

a that modeling human-environmental dynamics is an interesting and exciting activity. Sec- 
ond, as the prevalence and significance of human-environmental interactions continue to 
grow, decision makers, researchers, and educators will find it increasingly important to 
have accurate, timely, and extensive information and understanding about the systems they 
inhabit and depend on for life. 
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