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A finite mixture of two Weibull distributions for 
modeling the diameter distributions of rotated- 
sigmoid, uneven-aged stands 

Lianjun Zhang, Jeffrey H. Gove, Chuangmin Liu, and William 6. Leak 

Abstract: The rotated-sigmoid form is a characteristic of old-growth, uneven-aged forest stands caused by past distur- 
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bances such as cutting, fire, disease, and insect attacks. The diameter frequency distribution of the rotated-sigrnoid form 
is bimodal with the second rounded peak in the midsized classes, rather than a smooth, steeply descending, monotonic 
curve. In this study a finite mixture of two Weibull distributions is used to describe the diameter distributions of the 
rotated-sigmoid, uneven-aged forest stands. Four example stands are selected to demonstrate model fitting and compari- 
son. Compared with a single Weibull or negative exponential function, the finite finite mixture model is the only one 
that fits the diameter distributions well and produces root mean square error at least four times smaller than the other 
two. The results show that the finite mixture distribution is a better alternative method for modeling the diameter distri- 
bution of the rotated-sigmoid, uneven-aged forest stands. 

RCsumC : La forme sigmoi'de inversee est caractkristique des peuplements inkquiennes de vieille foret. Elle est causke 
par les perturbations passees telles la coupe, le feu, les maladies et les attaques d'insectes. La distribution de frequence 
diametrale de forme sigmoyde inverske est bimodale avec le deuxikme mode situe dans les classes intermediaires de 
diametre, plutat qu'une courbe lisse, monotone et avec une forte pente negative. Dans l'etude, un melange fini de deux 
distributions de Weibull est utilisk pour dkcrire la distribution diamktrale des peuplements inkquiennes de forme sig- 
moide inversee. Quatre peuplements sont sklectionnQ a titre d'exemple pour demontrer l'ajustement et la comparaison 
du modele. Par rapport a la fonction simple de Weibull ou a la fonction exponentielle negative, la fonction de melange 
fini est la seule qui s'ajuste bien a la distribution diametrale et qui engendre une erreur standard au moins quatre fois 
plus petite que celles des deux autres fonctions. Les resultats montrent que la fonction de melange fini constitue un 
meilleur choix pour modtliser la distribution diametrale des peuplements inkquiennes de forme sigmo'ide inverske. 

[Traduit par la Redaction] 

Introduction search studies on the structural dynamics of uneven-aged 
forest stands and the notion of a sustainable equilibrium 

The diameter-class distribution (as given by the plot of state (e.g., Leak 1964; Adams and Ek 1974; Adams 1976; 
tree frequency and diameter) is one of the four interrelated Alexander and Edminster 1977; Ham and Bare 1979; 
components, i-e-, species composition, quality, volume, and Lorimer and Frelich 1984; Leak and Gottsacker 1985; 
diameter distribution, of uneven-aged forest stands (Leak Hansen and Nyland 1987; Gave and Fairneather 1992; 
1964). Meyer (1950) defined a balanced, uneven-aged forest Baker et 1996). as one where an essentially constant yield can be removed 
periodically while maintaining the structure and volume of Although the reverse J-shaped form has been traditionally 

the forest. Leak (1996) pointed out that the balance concept an feature of uneven-aged 
means a diameter distribution and density that will be main- diameter distributions (Meyer 1950; Leak 1965), deviations 

tained over time in an unmanaged stand through mortality or from this descending, monotonic curve have also been rec- 

a distribution and density that can be maintained through ognized and studied. For example,   off and west (1975) 
cutting that the stand stmcture can be reconstructed noted that in old-growth stands with moderate or severe past 

again and again with essentially constant yields from each disturbances, the vigorous and mature trees just entering the 

cut. Much effort has been invested in field and simulation re- upper canopy have higher growth rate and rela- 
tively lower mortality rate for a period of years. Subse- - 
quently, these trees slow down in growth as they approach 
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lowed by a nearly horizontal trend in the middle portion of 
the curve, and a sharp decline in the large size classes. They 
stated that the rotated-sigmoid form is biologically more rea- 
sonable as the characteristic equilibrium population structure 
in smaller or structurally uniform old-growth stands. 
Lorimer and Frelich (1984) simulated the diameter distribu- 
tions of old-growth, uneven-aged stands of sugar maple 
(Acer saccharurn Marsh.) in upper Michigan and indicated 
that, while these stands deviate markedly from traditional re- 
versed J-shape and resemble rotated-sigmoid form, this may 
not be the long-run equilibrium structure for the stand. 
Schmelz and Lindsey (1965) showed that the rotated- 
sigmoid form in midwestern old-growth hardwoods was due 
to early disturbances. Recently Leak (1996) studied the 
long-term structural change in uneven-aged northern hard- 
woods. He concluded that the rotated-sigmoid characteristics 
of these stands 35 years after cutting treatments are caused 
by disturbances, possibly accompanied by an increase in tol- 
erant softwoods. 

The oldest mathematical model used for balanced, 
uneven-aged diameter distribution is the negative exponen- 
tial (de Liocourt 1898; Meyer and Stevenson 1943). An im- 
portant characteristic of this distribution is the constant 
reduction rate in number of trees from one diameter class to 
the next with increasing tree size. On a semilogarithmic plot 
of number of trees versus diameter classes, the negative ex- 
ponential distribution yields a straight line of negative slope. 
Hett and Loucks (1976) argued that the constant mortality 
rate was not realistic and proposed a negative power func- 
tion as an alternative model, which implies a continuously 
decreasing rate of attrition as tree size increases. Bailey and 
Dell (1973) used the Weibull function to fit uneven-aged 
shortleaf pine (Pinus echinata Mill.) - loblolly pine (Pinus 
taeda L.) - mixed hardwood stands, both before and after 
management, on the Crossett Experimental Forest in Arkan- 
sas (data from Davis 1966, p. 216). However, a single 
Weibull function did not reflect the observed rotated- 
sigmoid projection (Goff and West 1975). In their paper, 
Bailey and Dell (1973) also suggested a mixture of Weibull 
distributions should be considered when a stand has bimodal 
diameter distribution whose elements were not classified 
during data collection. Goff and West (1975) concurred that 
the rotated-sigmoid form of the diameter distribution could 
be fitted with a mixture of Weibull functions. 

Recently, Liu et al. (2001) introduced the use of finite 
mixture distributions to model the bimodal diameter distri- 
bution arising from certain mixed-species forest stands in the 
Northeast. The Weibull function was assumed as the compo- 
nent probability density function (pdf) in the finite mixture 
model. They found that the finite mixture model was flexible 
enough to fit irregular, multimodal, or highly skewed diame- 
ter distributions. To date, however, no work that we are 
aware of has been published based on the suggestions of 
Bailey and Dell (1973) and Goff and West (1975), i.e., mod- 
eling the rotated-sigmoid diameter distribution form of 
uneven-aged stands using finite mixture models. Therefore, 
the purpose of this study is to demonstrate the usefulness of 
the finite mixture of two Weibull distributions using four 
stands as examples. The model fitting is evaluated and com- 
pared with fitting (i) a single Weibull pdf and (ii) a single 
negative exponential pdf, to the example stands. 

First, however, it will be beneficial to briefly review the 
concept of the finite mixture distribution; more detailed in- 
formation can be found in Liu et al. (2001). Assume a finite 
mixture distribution consists of k individual pdf components; 
then the distribution of the ith individual component is de- 
scribed by a specific pdf, J(x); thus, the overall pdf, Ax), for 
the mixture distribution can be expressed as 

where pi is the relative abundance of the ith component as a 
proportion of the total population and must satisfy the con- 
straints 0 _< pi _< 1 and ~ f = ,  pi = 1. Exposition is restricted here 
to the simplest case, where fi(x), f2(x), . . ., f k ( X )  have a com- 
mon pdf with different means and, possibly, different vari- 
ances. 

In this study we assume that the component pdf in the fi- 
nite mixture distribution of a random variable X (i.e., tree di- 
ameters) is a three-parameter Weibull function (X - Weibull 
(a, P, Y)) given by 

where 0 = (a, p, y)' and a, p, and y are the location, scale, 
and shape parameters, respectively. The associated cumula- 
tive distribution function (cdf) for the three-parameter 
Weibull is 

In a special case, the Weibull becomes the negative expo- 
nential when the shape parameter ? = 1, such that 

Since we only consider a h i t e  mixture distribution with 
two components following the Weibull distribution in this 
study, the pdf of the mixture distribution is 

where v = @, el, %) with Oi = (q, pi, yi)', and i = 1 and 2, and 
0 I p I 1. Similarly, the corresponding cdf of the mixture 
distribution is 

Therefore, this particular mixture distribution is character- 
ized by seven parameters, a location, shape, and scale 
parameter for each of the two components (i-e., al, pl, yl, q, 
&, and y2) and a parameter (i.e., p) characterizing the opti- 
mal mixture. 

Data and methods 

Two published data sets of uneven-aged stands were found in 
Davis (1966, p. 216) and used by Bailey and Dell (1973). The data 
were from a shortleaf pine - loblolly pine - hardwood stand on the 
Crossett Experimental Forest in Arkansas. The two data sets were 
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the same stand before (stand 1) and 10 years after (stand 2) man- 
agement and evidently followed the rotated-sigmoid form of 
uneven-aged stands. Because the numbers of trees by diameter 
class were so low in the actual data, each number was multiplied 
by 10 before estimating the model parameters as in Bailey and 
Dell (1973). The third data set was from a loblolly-shortleaf pine 
stand (stand 3) published in Murphy and Fanar (1981). The data 
for stand 4 was recently collected from compartment No. 42 on the 
Bartlett Experimental Forest, New Hampshire. Stand 4 is a man- 
aged uneven-aged northern hardwood stand and part of its past his- 
tory is described by Filip (1978). 

The empirical diameter distributions for the four example stands 
were fitted using the three models described above: (i) a single 
Weibull distribution (eq. 1); (ii) a single negative exponential dis- 
tribution (eq. 2); and (iii) a finite mixture of two Weibull distribu- 
tions (eq. 3). The lower bound of the smallest observed diameter 
classes (i.e., 3.5 in. for stands 1, 2, and 3 and 5.0 in. for stand 4; 1 
in. = 2.54 cm) was used as the estimate for the location parameter 
a. In this study, the program MIX (Macdonald and Pitcher 1979; 
Macdonald 1987; Haughton 1997) was used to estimate the param- 
eters for the three models. The key features of this commercial 
software include fitting the grouped data of mixture distribution by 
maximum likelihood (ML), for distributions of up to 15 compo- 
nents and 80 class intervals, with component distributions of nor- 
mal, lognormal, gamma, exponential, or Weibull. The MIX is an 
interactive, menu-driven program and easy to use. The input is in 
the form of histogram frequencies with a maximum of 80 bins, and 
the user needs to provide initial values for the parameters (mixing 
proportions and the means and standard deviations of the compo- 
nent distributions). The output includes parameter estimates and 
their standard errors, good-of-fit test, and easy-to-print high- 
resolution graphics. 

The criteria used for model comparison were the root mean 
square error (RMSE) and x2 goodness-of-fit test. Let the model re- 
sidual (Rj) be defined as the difference between observed and pre- 
dicted number of trees for each diameter-class in a plot; then: 

where A$ and $ are observed and predicted number of trees, re- 
spectively, in the jth diameter class. Positive residuals represent 
underprediction by the model, and negative residuals represent 
overprediction by the model. Then, the RMSE was computed as 
follows: 

where m is the number of diameter classes. The likelihood-ratio x2 
test was chosen for testing "goodness of fit" (Macdonald and 
Pitcher 1979) such that 

where x2 has (m - q - 1) degrees of freedom and q is the number 
of estimated parameters. 

Results and discussion 
Table 1 presents the estimated parameters for each of the 

three models and four example stands. Note that the esti- 
mates of the p parameter for the negative exponential model 
were close to those obtained by Bailey and Dell (1973) for 

stands 1 and 2 (given a = 3.5 and y = 1). The predicted fie- 
quencies by diameter classes were obtained from each model 
for each stand. Then, the predictions fiom each model were 
compared with the observed fiequencies. The RMSE, x2, 
and p value for the x2 test were computed for each model 
and each stand (Table 2). 

It appears that the finite mixture model was the only one 
to fit all four example stands well based on the p values of 
the x2 tests (Table 2). Neither the Weibull nor exponential 
models fit the four diameter distributions (the p values of the 
x2 tests were all less than 0.05). The RMSE of the finite 
mixture model was at least four times smaller than those of 
the Weibull and exponential models for the stand 1 and was 
at least six times smaller than those of the Weibull and expo- 
nential models for the stand 2. Similarly, the finite mixture 
model produced the RMSE at least five times smaller than 
those of the Weibull and exponential models for the stand 4. 
In an extreme case (stand 3), the RMSE of the finite mixture 
model was 3 1 times smaller than that of the Weibull model 
and 202 times smaller than that of the negative exponential 
model (Table 2). The observed frequency distribution (histo- 
grams) and the three prediction curves for each stand are 
given in Fig. 1. 

The residuals computed across diameter classes for the 
three models are shown for each stand in Fig. 2. It is evident 
that the Weibull and negative exponential models overpredict 
the frequencies for small-sized trees (e.g., 15-25 cm diame- 
ter classes) as well as large-sized trees (e.g., >50 cm diame- 
ter classes) and underpredict the frequencies for midsized 
trees (e.g., 30-45 cm diameter classes). It is clear that both 
Weibull and negative exponential models may adequately fit 
the smooth, steeply descending, monotonic reverse J-shaped 
distribution typical of the quintessential balanced uneven- 
aged diameter distribution of de Liocourt (1898). However, 
the inherent flexibility of the finite mixture model is a better 
choice for fitting the rotated-sigmoid diameter distributions 
that have been shown to be widespread in many managed 
and unrnanaged stands. 

Rotated-sigmoid stand structures have been previously 
presented most often in the form of the semilogarithmic plot 
(e.g., Goff and West 1975; Leak 1996). Thus, for complete- 
ness, and to allow comparison of stand structures used in 
this paper with those of previous authors, Fig. 3 shows the 
observed diameter distributions and the predictions fiom the 
three models for each of the four stands as a semilog plot 
(logarithm of trees per hectare against diameter classes). No- 
tice the observed distributions of the four stands show the 
plateau (nearly level or slightly negative slope) in the middle 
of the diameter at breast height classes (Leak 1996). Predic- 
tions fiom the finite mixture model closely followed the 
observed rotated-sigmoid curves, while both Weibull and 
negative exponential models produced straight lines (Fig. 3) 
as discussed in the literature. 

Conclusion 
For several decades now, silviculturalists have recognized 

that strict adherence to one given q distribution over multiple 
cutting cycles is unnecessary and can even be detrimental. 
Indeed, there is evidently a range of sustainable distributions 
available for a given stand that obviates the need for strict 
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Table 1. Parameter estimates of the three models for the four example stands. 

Weibull Exponential Finite mixture 

Example stand a P Y a P P a1 P 1 Y1 a2 P 2  Y2 

Stand 1 8.89 13.94 1.16 8.89 13.26 0.66 8.89 8.08 1.15 8.89 26.67 3.16 
Stand 2 8.89 14.88 1.06 8.89 14.58 0.58 8.89 6.93 1.01 8.89 28.42 2.80 
Stand 3 8.89 8.19 0.74 8.89 9.80 0.65 8.89 3.12 1.09 8.89 25.17 2.46 
Stand 4 12.7 14.40 1.10 12.7 13.87 0.48 12.7 5.18 0.99 12.7 24.49 2.30 

Table 2. The root mean square error (RMSE) and x2 test of the three models for the four example stands. 

Weibull Exponential Finite mixture 

Example stand RMSE x2 P RMSE x2 P RMSE x2 P 

Stand 1 90.72 66.80 <0.0001 82.73 85.60 <0.0001 19.54 9.50 0.80 
Stand 2 147.95 95.27 <0.0001 11 8.78 98.46 <0.0001 18.61 8.71 0.92 
Stand 3 5224.92 655.9 <0.0001 33 988.5 1209.6 <O.OOO 1 21.51 0.12 168.08 
Stand 4 24.43 15.43 0.0308 19.22 16.84 0.03 18 3.55 3.73 0.44 

Fig. 1. Model comparison for the four example stands. The histogram represents the observed diameter distribution, with the finite 
mixture model (solid line), a single Weibull function (long dashes), and negative exponential distribution (short dashes). 
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marking guides. This range of distributions encompasses not bution may occur more frequently than previously thought. 
only a range of familiar q structures but also includes depar- Such stands do not lend themselves to the traditional, simple 
tures from q in the form of rotated-sigmoid structures. For reverse J-shaped diameter distribution model that has been 
example, Adams and Ek (1974) presented a range of stand used as the primary paradigm for over 100 years. More flex- 
structures that encompassed both reverse-J and rotated- ibility is required to fit the rotated-sigmoid stand condition 
sigmoid forms. The differences were based on the desired and the finite mixture distribution is a promising alternative 
objective to be maximized. Similarly, Martin (1982) found a method for modeling the diameter distribution of such 
range of structures conforming to q for his guides. In both uneven-aged stands. Advantages of finite mixture distribu- 
cases, the diameter distributions derived were not only opti- tions include not only this inherent flexibility over unimodal 
ma1 but also sustainable. pdfs, but their use also avoids the necessity of classifl the 

In natural stands and in stands that have been two or more components of a rotated-sigmoid or multimodal 
silviculturally manipulated by management activities, the distribution a priori during data collection. However, the 
rotated-sigmoid forms of the stand diameter frequency distri- number of component distributions must be decided upon 
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Fig. 2. Residuals produced by the three models across diameter classes for the four example stands with the finite mixture model 
(solid line), a single Weibull function (long dashes), and negative exponential distribution (short dashes). 
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Fig. 3. Plot of logarithm of trees per hectare against diameter classes for the four example stands with the observed diameter distribu- 
tion (solid line with points), the finite mixture model (thick line), a single Weibull function (long dashes), and negative exponential 
distribution (short dashes). 
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when specifying the underlying model to be fitted by ML, fit statistics. Commercially available software such as the 
but this can be done in an exploratory way by fitting several program used here makes this a relatively simple task for the 
finite mixtures and settling on the one with the best inherent modeler of stand structure. 

O 200 1 NRC Canada 



Notes 1 659 

Acknowledgments Haughton, D. 1997. Packages for estimating finite mixtures: a re- 
view. Am. Stat. 51: 194-205. 

The authors thank the Associate Editor, Dr. Mark J. Hett, J.M., and Loucks, O.L. 1976. Age structure models of balsam 
Ducey, University of New Hampshire, and an anonymous re- fir and eastern hemlock. J. Ecol. 64: 1029-1044. 
viewer for their constructive comments and suggestions. Leak, W.B. 1964. An expression of diameter distribution for unbal- 

anced, uneven-aged stands and forests. For. Sci. 10: 39-50. 
References Leak, W.B. 1965. The j-shaped probability distribution. For. Sci. 

Adams, D.M. 1976. A note on the interdependence of stand struc- 
ture and best stocking in a selection forest. For. Sci. 22: 180-1 84. 

Adams, D.M., and Ek, A.R. 1974. Optimizing the management of 
uneven-aged forest stands. Can. J. For. Res. 4: 274-287. 

Alexander, R.R., and Edminster, C.B. 1977. Regulation and control 
of cut under uneven-aged management. USDA For. Serv. Res. 
Pap. RM-182. 

Bailey, R.L., and Dell, T.R. 1973. Quantifying diameter distribu- 
tions with the Weibull function. For. Sci. 19: 97-104. 

Baker, J.B., Cain, M.D., Guldin, J.M., Murphy, P.A., and Shelton, 
M.G. 1996. Uneven-aged silviculture for loblolly and shortleaf 
pine forest cover types. USDA For. Serv. Gen. Tech. Rep. SO-1 18. 

Davis, K.P. 1966. Forest management: regulation and valuation. 
2nd ed. McGraw-Hill, New York. 

de Liocourt, F. 1898. De l'amenagement des sapinieres, Soc. For. 
Franche-Comte Belfort Bull. 6: 1 169-1 1 84. 

Filip, S.M. 1978. Impact of beech bark disease on uneven-age 
management of a northern hardwood forest. USDA For. Serv. 
Gen. Tech. Rep. NE-45. 

Goff, F.G., and West, D. 1975. Canopy-understory interaction ef- 
fects on forest population structure. For. Sci. 21: 98-108. 

Gove, J.H., and Fairweather, S.E. 1992. Optimizing the manage- 
ment of uneven-aged forest stands: a stochastic approach. For. 
Sci. 38: 623-640. 

Hann, D.W., and Bare, B.B. 1979. Uneven-aged forest manage- 
ment: state of the art (or science?). USDA For. Serv. Gen. Tech. 
Rep. INT-50. 

Hansen, G.D., and Nyland, R.D. 1987. Effects of diameter distribu- 
tion on the growth of simulated uneven-aged sugar maple 
stands. Can. J. For. Res. 17: 1-8. 

11: 405409. 
Leak, W.B. 1996. Long-term structural change in uneven-aged 

northern hardwoods. For. Sci. 42: 160-165. 
Leak, W.B., and Gottsacker, J.H. 1985. New approaches to uneven- 

aged management in New England. North. J. Appl. For. 2: 28-3 1. 
Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., and Gove, J.H. 

2001. A finite mixture model for characterizing the diameter 
distribution of mixed-species forest stands. For. Sci. In press. 

Lorimer, C.G., and Frelich, L.E. 1984. A simulation of equilibrium 
diameter distribution of sugar maple (Acer saccharurn). Bull. 
Torr. Bot. Club, 111: 193-199. 

Macdonald, P.D.M. 1987. Analysis of length-frequency distribu- 
tions. In Age and growth of fish. Edited by R.C. Summerfelt and 
G.E. Hall. Iowa State University Press, Ames. pp. 371-384. 

Macdonald, P.D.M., and Pitcher, T.J. 1979. Age-groups from s i z e  
frequency data: a versatile and efficient method of analyzing 
distribution mixtures. J. Fish. Res. Board Can. 36: 987-1001. 

Martin, G.L. 1982. Investment-efficient stocking guides for all- 
aged northern hardwood forests. University of Wisconsin, Madi- 
son, Wis. Agric. Life Sci. Res. Rep. R3129. 

Meyer, H.A. 1950. Structure, growth, and drain in balanced, 
uneven-aged forests. J. For. 52: 85-92. 

Meyer, H.A., and Stevenson, D.D. 1943. The structure and growth 
of virgin beech-birch-maplehemlock forests in northern Penn- 
sylvania. J. Agric. Res. 67: 465484. 

Murphy, P.A., and Farrar, R.M. 198 1. A test of the exponential dis- 
tribution for stand structure definition in uneven-aged loblolly- 
shortleaf pine stands. USDA For. Serv. Res. Pap. SO-164. 

Schmelz, D.V., and Lindsey, A.A. 1965. Size-class structure of old- 
growth forests in Indiana. For. Sci. 11: 258-264. 

O 2001 NRC Canada 


