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ABSTRACT / Uncertainty is an important consideration for
both developers and users of environmental simulation mod-

els. Establishing quantitative estimates of uncertainty for de-
terministic models can be difficult when the underlying bases
for such information are scarce. We demonstrate an applica-
tion of probabilistic uncertainty analysis that provides for re-
finements in quantifying input uncertainty even with little infor-
mation. Uncertainties in forest carbon budget projections were
examined with Monte Carlo analyses of the model FORCARB.
We identified model sensitivity to range, shape, and covariabil-
ity among model probability density functions, even under
conditions of limited initial information. Distributional forms of
probabilities were not as important as covariability or ranges of
values. Covariability among FORCARB model parameters
emerged as a very influential component of uncertainty, espe-
cially for estimates of average annual carbon flux.

Environmental decision-making commonly relies on
simulation modeling, yet deterministic models, which
are often first-pass attempts at assessment modeling,
usually lack the quantitative descriptions of uncertainty
necessary for decision-making. This is the case with
assessments of carbon storage in forests, or forest car-
bon budgets, which contribute information relevant to
managing national greenhouse gas inventories (Birdsey
and Heath 1995, IPCC/OECD/IEA 1997). Expected
effects of anthropogenic and climate influences are
often based on simulation modeling of alternate sce-
narios. Data limitations for modeling are reflected in
the scarcity of quantitative descriptions of uncertainty
in large-scale forest carbon budgets (Birdsey and Heath
1995, Turner and others 1995, Heath and others 1996,
Kurz and Apps 1996, Hamburg and others 1997). Un-
fortunately, simulation models lacking adequate repre-
sentation of uncertainty have limited value for environ-
mental assessments (Rowe 1994, Morgan and
Dowlatabadi 1996). The number of model variables
affected by uncertainty about their value can become
large; complete characterization of uncertainties can
be data-intensive and costly. Our objective is to demon-
strate how a relatively simple and flexible approach to
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quantitative uncertainty analysis can reduce the need
for all model variables to include accurate definitions
of uncertainty. This is demonstrated with a modified
deterministic forest carbon budget model and data for
Northeastern maple—beech-birch forests.

The increasing prominence of forest carbon budget
models in management or policy decision-making re-
flects the importance of forests as the largest terrestrial
biotic sink of an important greenhouse gas: carbon
dioxide (IPCC/OECD/IEA 1997). Estimates of carbon
stored in forests depend on the complex system of
biophysical and socioeconomic influences that ulti-
mately determines forest productivity. This complexity
contributes to uncertainty in such estimates. However,
forest carbon budget models ranging from landscape to
national scales generally do not present estimates of
uncertainty (Birdsey and Heath 1995, Turner and oth-
ers 1995, Heath and others 1996, Kurz and Apps 1996,
Hamburg and others 1997). The models are pragmatic
approaches to applying sparse data for understanding
processes and providing national assessments of green-
house gas inventories. Expressions of uncertainty play
important roles in development and analysis of model
behavior. Indeed, most of the forest carbon budget
publications cited above discuss aspects of uncertainty
within the systems modeled.

Deterministic simulation models contain uncer-
tainty, even if not explicitly represented. Model results
expressed as single numerical values fail to reflect use-
ful information about uncertainty. It is possible, how-
ever, to reformat a deterministic simulation to include
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uncertainty and produce model results that reflect un-
certainties in the model. A numerical approach to this
process involves probabilistic definitions of uncertainty
about specific model elements and Monte Carlo simu-
lation (Morgan and Henrion 1990, Vose 1996, Cullen
and Frey 1999). This method is most commonly applied
either to (1) propagate uncertainty to a total for results
or (2) identify important influences on model uncer-
tainty. Two caveats are immediately clear. First, quality
of results is a function of quality of inputs. Second,
establishing quantitative probabilistic definitions for
initial conditions or model inputs can be difficult when
information is scarce. Without adequate objective in-
formation, initial analyses thus must rely heavily on
preliminary valuation of input uncertainty, which can,
in turn, reduce confidence in model results.

We examine steps to refine initial values of input
uncertainty for a model originally developed in a de-
terministic form. The forest carbon budget model FOR-
CARB (Birdsey 1992, Plantinga and Birdsey 1993)
makes empirical estimates of carbon within discrete
pools. Model parameters were developed to estimate
individual carbon pools, which sum to total forest car-
bon per unit area. For example, carbon in above-
ground portions of trees is estimated from merchant-
able volume per unit area in older stands. To estimate
carbon budget uncertainty, we are interested in quan-
tifying uncertainties about the expected values of these
FORCARB model parameters from the deterministic
model. Unfortunately, uncertainties about model pa-
rameters are not well defined, and they are likely to
represent an aggregation of many uncertainties, such as
errors in both the independent and dependent vari-
ables used in establishing a model parameter. Addition-
ally, sampling error within a forest stratum and error in
extrapolating to other forest lands must be included in
parameter uncertainty. Uncertainty also extends be-
yond simple accumulation of statistical errors in mea-
surement, regression, and sampling. For example, tree
carbon parameters also must account for nontimber
trees, not a part of the sampled population (Birdsey
1992), and soil carbon estimates are further modified
by assumptions about soil carbon dynamics following
disturbance or land-use change. Thus, complete de-
scriptions of all uncertainties in each FORCARB model
parameter are likely to be computationally and data
intense.

We present an analysis that begins with a number of
preliminary definitions of parameter uncertainty and
reduces the number of candidate uncertainties. Our
approach is based on the idea that for most simulation
models, not all uncertain values are equally likely to
influence model results (Morgan and Henrion 1990). A

series of “what if” analyses may identify those quantita-
tive definitions of uncertainty that most affect FOR-
CARB results. Thus, useful uncertainty analyses may be
possible even under conditions where very little is
known about the underlying uncertainty. These results
are then an initial step in the iterative process of data
collection and model refinement. Results are presented
in three parts: basic Monte Carlo simulation results, a
comparison of two indexes used to identify the influ-
ence of input parameter uncertainties, and an exten-
sion of the uncertainty analysis that describes sensitivity
of results to components of parameter uncertainty. We
end with a brief discussion of the usefulness of this
approach.

Methods

An uncertainty analysis identifies effects of uncer-
tainty within a given system (Morgan and Henrion
1990, Rowe 1994, Cullen and Frey 1999). The goal here
is to provide a useful analysis where only preliminary
values are known for uncertainties. The form of an
uncertainty analysis partly depends on data available,
model used, and the appropriate definition of uncer-
tainty. As such, a presentation of methods necessarily
includes some brief discussion of the rationale for the
approach chosen.

Carbon Accounting and the Model FORCARB

The forest carbon accounting model FORCARB was
developed to estimate carbon budgets of US timber-
lands (Plantinga and Birdsey 1993) and is an essential
element in USDA Forest Service projections of carbon
for US forests. The model is linked with the forest
sector model TAMM/ATLAS, which provides periodic
estimates of area and inventory volume according to
classifications of forest type, age, and management in-
fluences (Adams and Haynes 1980, Mills and Kincaid
1992). Periodic model revisions reflect changes in avail-
able information, and work is underway to link to a
larger system of models that represent external influ-
ences and sources of uncertainty. The basic FORCARB
model as well as a number of regional-scale carbon
budgets are detailed elsewhere (Plantinga and Birdsey
1993, Birdsey and Heath 1995, Heath and others 1996).

Forest carbon is modeled as an aggregate of discrete
pools of carbon, each estimated according to empirical
relationships. Simulations by FORCARB associate pa-
rameterized estimators for each carbon pool with ap-
propriate subsets of forest projected by TAMM /ATLAS.
Briefly, the model estimates pool sizes, or carbon in-
ventories, for large-scale areas (10°-107 ha) of forest;
these include above-ground portions of hardwood and



Table 1
beech-Dbirch forests in northeastern United States®
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Parameter values and associated uncertainties used in FORCARB model estimates of carbon in maple—

Parameter

Expected value

Range of uncertainty in 1990

Softwood carbon in merchantable
volume (kg C) estimated from
merchantable volume® (V)

Total above-ground carbon in
softwood trees (kg C) estimated
from carbon in merchantable
volume (C))

Hardwood carbon in
merchantable volume (kg C)
estimated from merchantable
volume (V)

Total above-ground carbon in
hardwood trees (kg C)
estimated from carbon in
merchantable volume (C,)

Understory carbon (metric tons®/ 4.98 + 0.249Y
ha) for stands up through 15
years estimated from stand age

Y

199.8 X V.,

2.193 X C,

298.6 X V,

2.14 X C,

Understory carbon (metric tons/ 6.15 + 0.275V — 0.000531V2

ha) for stands older than 15
years estimated from total
merchantable volume (V)
Floor carbon (metric tons/ha) for 2.07 — 0.00997Y
stands up through 15 years
estimated from stand age (Y)

Floor carbon (metric tons/ha) for 2.06 — 0.0216V + 0.00031012

stands older than 15 years
estimated from total
merchantable volume (V)
Soil carbon® (metric tons/ha) for 145 — 1.43Y
stands up through 15 years
estimated from stand age (Y)

Soil carbon® (metric tons/ha) for 113 + 0.979V — 0.00082412

stands older than 15 years
estimated from total
merchantable volume (V)

+7%

+13%

7%

+10%

+25% for youngest stands, linearly adjusted to
+10% at age 50 years

+25% for youngest stands, linearly adjusted to
+10% at age 50 years, and constant at that
value above 50 years

+50% of youngest stands

+50% of youngest stands

+15% for youngest stands and linearly adjusted
to £25% at age 15 years

+25% at age 15 years, linearly adjusted to £10%
at age 50 years, and constant at that value
above 50 years

“Uncertainty in a parameter value was defined as a range of values about an expected value (*percent of mean). Uncertainty was modeled in this
table as a normal distribution with the 5th and 95th percentiles corresponding to this range. Standard deviations were set to increase 0.5% per

year. Probability distributions were independently sampled across the 10 parameters and identically sampled across the simulated years.

PMerchantable volume (m?®), metric ton (10% kg).

“Intercept values for soil carbon are for 1990 only; estimates in subsequent years are adjusted to reflect effects of subsequent growth and harvest

intervals.

softwood trees, understory species, forest floor, and soil
carbon. Estimates for each of these components of total
carbon are based on parameterized relations between a
composite measure of a subset of forest (for example,
merchantable volume) and the expected size of each
carbon pool (for example, total carbon corresponding
to the given volume).

Separate parameterizations are made by forest type
by region. The identities of the ten model parameters
assigned uncertain values for the maple—beech-birch
example presented here are listed in the first column of

Table 1. Expected values for the parameterized rela-
tions are listed in the second column. Carbon content
of trees is determined in two consecutive steps: biomass
is estimated from merchantable volume, followed by an
estimate of total tree carbon. Pools for understory,
floor, and soil carbon are each formed from separate
estimators based on age or volume, depending on stand
age class. These are then summed according to total
area for each age class to provide an estimate of inven-
tory. Periodic average annual net flux is the difference
between two successive estimates of inventory divided
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by the length (in years) of the intervening period [for
example, carbon fluxyyg = (inventorygy; g —

IYo000) / 10].
FORCARB Uncertainty Defined for This Example

Uncertainty usually implies a lack of knowledge or
the absence of information that may or may not be
obtainable (Morgan and Henrion 1990, Rowe 1994).
Further refinement of the definition often depends on
the particular applications or objectives (Hattis and
Burmaster 1994). For this reason, model-specific defi-
nitions generally are more useful than a comprehensive
definition. We employ the simple definition of uncer-
tainty as the inability to confidently specify single-val-
ued quantities. Carbon content of a spatially and tem-
porally defined portion of a forest is such a single value;
uncertainty in a simulation model is a function of the
information available to specify a variable with a single
value.

We employ probability density functions (PDFs) to
quantify uncertainty about model parameter values.
Alternate methods are available to quantify uncertainty
about values within a model, including the use of prob-
ability bounds and fuzzy numbers (Morgan and Hen-
rion 1990, Kosko 1991, Ferson and Long 1995). Choice
of a numerical representation for uncertainty can
largely depend on both appropriate qualitative charac-
teristics assigned to a definition of uncertainty and
available data. We assume uncertainty about expected
values for parameters; this implies greater information
than simply placing bounds on possible values. We
further assume that uncertainty is inversely propor-
tional to available information. Probabilistic definitions
of uncertainty may be more appropriate than fuzzy-
number sets where uncertainties are thought to de-
crease with additional information (Kosko 1991). Thus,
we use PDFs, which describe both ranges of possible
values and relative expectation that those values may
occur.

FORCARB was initially developed as a deterministic
model, and we retain the basic characteristics of that
model. Uncertainty for each of the ten parameters is
characterized by assigning a PDF of likely values around
the expected value of that parameter. Initial values for
parameter uncertainties are given in Table 1. They
were based on a subjective evaluation of available data
and represent preliminary estimates. The model and
analyses presented here address internal FORCARB
uncertainties on modeled carbon budgets. This is pre-
liminary to incorporating exogenous uncertainties
through links with associated models (Birdsey and
Heath 1995). Examples of external uncertainties in-
clude projections of inventory, growth, and harvests.

invento-

Although exact numerical values for parameter uncer-
tainty differ with forest type, results presented here are
not qualitatively different among types. Thus, results
from a single forest type are sufficient for presenting
these methods. Simulations used data for forest indus-
try maple—beech-birch forests in the northeastern
United States from the base model of the 1993 Re-
sources Planning Act (RPA) assessment timber update
(Birdsey and Heath 1995, Haynes and others 1995).

Monte Carlo Simulation of Uncertainty

Concerns about model development, system optimi-
zation, and decision-making have been principal moti-
vations for incorporating estimates of uncertainty in
forest simulation models (Gertner 1987, Dale and oth-
ers 1988, Mowrer 1988, Luxmoore 1992, van der Voet
and Mohren 1994, Gertner and others 1996, Pacala and
others 1996). Monte Carlo simulation is a numerical
approach to propagating model uncertainty. It is char-
acterized by two distinct advantages for the analysis of
interest: identification of influences and minimal im-
position of assumptions. Model results in the form of
PDFs are produced through Monte Carlo simulation,
which involves a large number of iterations of the basic
deterministic model (Morgan and Henrion 1990, Vose
1996, Cullen and Frey 1999). Random selections of
values are made for each probabilistically defined vari-
able for each iteration of the model. The outcome of
each iteration will differ slightly depending on random
selections among the probabilistically defined variables.
In this way, a frequency distribution will form as the
resulting model prediction. Latin hypercube sampling
was used. It is a stratified sampling procedure within a
Monte Carlo simulation that draws samples from equal-
probable intervals, without replacement, from each
PDF (Iman and Shortencarier 1984). Advantages of
Latin hypercube sampling include the ability to more
precisely specify joint probability distributions among
variables, where such covariability exists, and a reduc-
tion in computational effort, since simulations require
fewer repetitions of sampling before achieving a stable
output distribution. The Monte Carlo simulation pro-
duces results that reflect the joint uncertainties of all
parameters by simultaneously sampling from all speci-
fied PDFs.

Monte Carlo simulations are relatively straightfor-
ward and are flexible means of incorporating probabi-
listic values in a numerical simulation model such as
FORCARB. Modification and reanalysis can be accom-
plished simply and quickly, and this readily facilitates
comparison of alternate forms of a model. Other means
of determining results in the form of distributions that
reflect effects of input distributions also can be em-



ployed, most notably methods that are termed first-
order approximations (Beck 1987, Iman and Helton
1988, Bobba and others 1996). Monte Carlo simula-
tions, however, are less reliant on assumptions about
distributions, such as a need to know central moments.
Bayesian methods also have been applied to the prob-
lem of improving estimates of input or model parame-
ter uncertainty (Green and Strawderman 1985, Lexer
and Hoenninger 1998). We have not pursued these
methods with FORCARB because of the scarcity of
information to establish a likelihood given a prior esti-
mate of uncertainty, and the ease and rapidity of each
Monte Carlo simulation. The merits of alternate ap-
proaches to simulating model uncertainty have been
compared by a number of researchers (Morgan and
Henrion 1990, Guan and others 1997, Cullen and Frey
1999). Tractable use of “what if” scenarios makes
Monte Carlo simulation the choice for our application.

This application of Monte Carlo uncertainty analysis
is useful at an early stage of model implementation.
Because the parameter PDFs are only preliminary val-
ues, we extend the analysis to individual components of
the PDFs in addition to whole distributions, which is
more commonly the case. We define these components
as the range of values, the likelihood of values along
that range, and the covariability among PDFs. The
range and likelihood can be considered the marginal
uncertainty, and the covariability describes joint uncer-
tainty among FORCARB parameters. Our analysis as-
sumes that methods of identifying influences of whole
PDFs can also identify influences of the components of
PDFs.

Measuring Influence of Parameter Uncertainty

Not all uncertain values affect results equally, and
not all uncertain values are equally well defined. A goal
of this analysis is to identify influences of whole PDFs as
uncertain input values and extend the same analyses to
components of PDFs. Uncertainty in some model pa-
rameters may have a large effect on uncertainty in
results, yet even large uncertainties in other parameters
may have negligible effects on uncertainty in results.
Similarly, everything that goes into defining a PDF may
not be equally important in affecting model results. To
this end, we employ measures of parameter influence
that are sensitive to how uncertainty is defined and are
amenable to iteratively developing those definitions of
uncertainty. These measures include two simple and
commonly used indexes to express influence of model
PDFs on result PDFs; we label these the “importance
index” and “contribution index” for this manuscript.
These methods are not dependent on assumptions
about the respective distributions.
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The importance index is the coefficient of rank
correlation (Vose 1996, Cullen and Frey 1999), which
reflects relative influence of model parameters on total
uncertainty in results. Random samples taken from
parameter distributions during the Monte Carlo simu-
lation will differ in their degree of influence on model
results. The cumulative effect of all such samples is
reflected in the output distribution of the simulation.
The relative influences of each parameter distribution
on model output can be identified by means of partial
nonparametric correlations (Morgan and Henrion
1990). The nonparametric Spearman coefficient of cor-
relation (Conover 1971, p. 244) between two distribu-
tions is based on the rank order of samples drawn from
a parameter distribution and those resulting in the
output distribution. We determine an estimate of the
partial correlation between a parameter and model
output in cases where the distribution of values calcu-
lated from one parameter are dependent on another
parameter (Conover 1971, p. 254).

Importance index values range from —1 to +1.
Greater absolute values indicate a greater degree of
influence and values approaching zero indicate de-
creasing influence. These values incorporate the effect
of both the median value and the dispersion of each
parameter by allowing simultaneous changes in all such
sampled parameters. That is, model results reflect ef-
fects of joint probability among parameter distribu-
tions, yet the importance index identifies only the
added effect of individual parameters during simulta-
neous sampling among all parameters.

The second index, the contribution index, allocates
total uncertainty among the parameters as a percentage
contribution to the total (Vose 1996). This is based on
selecting a common measure of uncertainty for param-
eter and inventory distributions; we use the difference
between the 95th and 5th percentiles of each distribu-
tion. The effect of uncertainty in a given parameter is
determined by two separate simulations: one with the
parameter defined precisely (single value) and one
with the parameter defined as a PDF. The difference in
model uncertainty between the simulations represents
the effect of that parameter on total uncertainty. This is
repeated, in turn, for all parameters, and the ratio of
the individual contribution to the sum of contributions
is expressed as a percentage. These can be a positive or
negative value for each parameter, yet the total for all
parameters sums to 100%.

Extending the uncertainty analysis to components of
parameter PDFs is accomplished by systematically alter-
ing the shape of PDFs, covariability among PDFs, and
range of PDF values. The sensitivity of projected inven-
tory uncertainty to such changes is reflected in index
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Figure 1. Model estimates of average annual carbon flux for
projection years 2000, 2010, 2020, and 2030 described as
probability densities (PDFs) obtained from Monte Carlo sim-
ulation of the FORCARB model. Note that the area under a
PDF sums to 1.

values. Uncertainty in estimates of average annual net
flux are subject to influence by similar components of
carbon inventory PDFs. Sensitivity analyses are em-
ployed to examine effects of these simulated interme-
diate PDFs on uncertainty of projected flux.

Results and Discussion

Basic Simulation Results

Probability distributions describing likely forest car-
bon inventory and average annual net carbon flux were
the initial products of Monte Carlo simulations. These
PDFs approximated normal distributions (Figure 1),
with the 5th, 50th, and 95th percentiles given in Table
2. A positive value for flux reflects a net gain in forest
carbon inventory over the period simulated. The me-
dian values presented here approximately equal the
analogous deterministic estimates of FORCARB simu-
lations performed to produce regional carbon budgets
in conjunction with the base scenario for the 1993 RPA
timber assessment update (Birdsey and Heath 1995,
Haynes and others 1995). We use the range of the
central 90% of the result PDF simply as a convenient
summary of uncertainty. This also can be expressed as
plus or minus a percentage of the median for the
symmetrical distributions produced here.

The proportion of total carbon inventory con-
tained in soils and trees (softwood plus hardwood)
remained at about 66% and 26%, respectively, for all
simulations. Uncertainty in soil carbon inventory for
2010 was about *10% of the median (5th-95th per-
centile), and that for hardwood carbon was about
*+13% of its median (data not shown). These con-
tributed to an uncertainty for total carbon inventory
in 2010 of just over =7% of the median (Table 2).
Uncertainty for projected flux at 2010 was about

+20% of the median. Note that relative uncertainty
did not increase as separate soil and tree (and other)
inventories were summed. Summing independent
distributions in a Monte Carlo simulation will tend to
decrease relative dispersion of values in the resulting
distribution. In fact, this characteristic of the central
limit theorem contributes to the same effect in forest
inventory sampling statistics, which are considered
increasingly precise as larger areas of inventory are
considered (Hansen and others 1992). The same is
true for pooling separate forest groups. Aggregate
values are relatively more precise, to the extent that
they are independently estimated. For this reason,
preliminary estimates of uncertainty for maple-
beech—birch forests should not be considered repre-
sentative of uncertainty for the region, which is likely
to be relatively smaller.

The choice of number of iterations to include in the
simulation depends on the purposes of the model.
Variance and fractile values of the output distribution
will change with each successive iteration. Stability of
distributions increases with number of iterations, with a
greater number required to stabilize extremes (or
tails). We are concerned with the range of most likely
values. Five hundred iterations produced carbon inven-
tory distributions that differed by less than 5% (that is,
95th minus 5th percentiles, as in Table 2) as the entire
simulation was repeated with different random sam-
pling sequences. This level of precision resulted in
stability in the indexes of parameter influence we chose
to employ for our uncertainty analysis. Models with a
focus on precision of estimated probability in the tail
regions of output distributions (that is, small probabil-
ities of extreme events) may require hundreds to thou-
sands of iterations, depending on individual standards
set for confidence (Iman and Helton 1988, Morgan and
Henrion 1990, Cullen and Frey 1999). Simply put, the
sensitivity of the result should dictate number of itera-
tions.

A number of approaches exist for propagating
uncertainty through simulation models (Morgan and
Henrion 1990, Cullen and Frey 1999). Error propa-
gation methods can produce results that reflect input
uncertainties. Without a high degree of confidence
in the input uncertainty, however, error propagation
alone has limited value. Thus, we focus on the rela-
tion between how these input uncertainties are ini-
tially defined and the overall model results. We next
examine alternate indexes of parameter influence on
result uncertainty, and we then focus on how indi-
vidual components of PDFs might contribute to over-
all uncertainty.
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Table 2 Median values (50th percentile) of simulated carbon inventory (million metric tons carbon) and average
annual net carbon flux (million metric tons carbon per year) with 5th and 95th percentiles of distributions indicating
range of modeled results, which encompass 90% of the distribution

Carbon inventory

Average annual net carbon flux

Year of simulation 5th 50th 95th 5th 50th 95th

1990 430 465 496

2000 454 490 522 2.0 2.5 3.0

2010 471 510 545 1.6 2.0 2.4

2020 479 522 561 0.7 1.2 1.7

2030 484 530 573 0.4 0.8 1.2
Indexes of Parameter Influence Identify Sources of Table 3 Importance index (rank correlation

Carbon Budget Uncertainty

Monte Carlo simulation is ideally suited for examin-
ing the consequences of all or a selected part of the
PDF defining uncertainty about a FORCARB parameter
(Morgan and Henrion 1990, Vose 1996). The influence
of uncertainty in a particular parameter on overall
model results will be modified by uncertainties in other
parameters. The two indexes of parameter influence we
employ for analysis reflect the strength of the parame-
ter-to-result relation under conditions of simultaneous
uncertainty in other variables.

Importance index values for the effect of ten FOR-
CARB parameters on carbon inventory projected for
2010 are shown in Table 3. Pools of tree carbon for
both softwood and hardwood species are each based on
two parameters applied in sequence. The indexes pre-
sented for the expansion to total aboveground carbon
therefore represent partial correlations after having
removed the effect of uncertainty of carbon in mer-
chantable volume. Clearly, uncertainty in parameter-
ized estimates of soil carbon, with an importance index
of 0.833, had the greatest importance in determining
uncertainty in total inventory. Estimates leading to pro-
jections of hardwood tree carbon had the second great-
est importance in these maple—beech-birch forests.
Uncertainty in understory carbon had effectively no
influence.

The importance indexes (such as presented in Table
3) are produced by pairwise rank correlation of the 500
samples drawn from a parameter’s distribution with the
500 samples forming the model output distribution. As
such, these indexes are random variables subject to the
sampling of the 500 values from parameter distribu-
tions. To assess variability in this index, ten indepen-
dent Monte Carlo simulations were performed. Values
in Table 3 are means and standard deviations of the
resulting set of importance indexes. Variability in index
values was inversely proportional to absolute index val-
ues. Standard deviations are provided simply to illus-

coefficients) between total carbon inventory at 2010
and ten parameters with uncertainty as defined in
Table 12

Mean importance index

Parameter (standard deviation)

Soil carbon in older stands

Total aboveground carbon in
hardwood trees

Soil carbon in younger
stands

Hardwood carbon in
merchantable volume

Forest floor carbon in older
stands

Total aboveground carbon in
softwood trees

Understory carbon in older
stands

Softwood carbon in
merchantable volume

Understory carbon in
younger stands

Forest floor carbon in
younger stands

0.883 (0.012)
0.360 (0.031)

0.281 (0.039)
0.240 (0.031)
0.104 (0.033)
0.089 (0.041)
0.046 (0.042)
0.041 (0.034)
0.031 (0.046)

—0.011 (0.058)

“Values are means and standard deviations (in parentheses) of 10
Monte Carlo simulations.

trate variability of importance indexes, for we have no
reason to test for differences among the rank correla-
tions in the analyses we present here. Some test statis-
tics (Conover 1971, p. 248, Kendall and Gibbons 1990,
p- 74) have been developed for Spearman’s rho, which
is only slightly different from the calculation for our
importance index (see related discussion concerning
ties in rank ordering in Conover 1971). We do not
present estimates of variability with importance indexes
subsequent to Table 3 because the values are not means
and our purpose in presenting them is only to indicate
rank or relative degree of influence.

These indexes of parameter influence reflect the
effects of simultaneous uncertainties in all parameters
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Table 4 Importance index of major carbon pools estimated by FORCARB model parameters?®
Parameter distribution 1990 2000 2010 2020 2030
Carbon inventory
Total tree 0.38 0.43 0.44 0.42 0.40
Understory/floor 0.16 0.17 0.17 0.18 0.18
Soil 0.91 0.88 0.88 0.89 0.90
Average annual net carbon flux
Total tree 0.37 0.40 0.22 0.21
Understory/floor 0.07 0.15 0.16 0.12
Soil —-0.09 0.75 0.87 0.90

“Index values range from —1 to +1, with larger values expressing greater parameter influences on model estimates of uncertainty in carbon

inventory and average annual net carbon flux.

Table 5 Contribution index of major carbon pools estimated by FORCARB model parameters®

Parameter distribution 1990 2000 2010 2020 2030
Carbon inventory
Total tree 10.1 15.1 12.4 13.2 11.7
Understory/floor —-1.6 2.9 2.0 2.3 2.5
Soil 91.5 82.0 85.6 84.5 85.9
Average annual net carbon flux
Total tree 11.4 9.2 3.9 3.9
Understory/floor 1.2 —0.4 —-1.7 —-0.3
Soil 87.4 91.2 97.8 96.4

“Index expresses percentage of total uncertainty due to parameter influence on model estimates of uncertainty in carbon inventory and average

annual net carbon flux.

during simulation. This interdependence represents a
difference from information provided by a more con-
ventional sensitivity analysis (Iman and Helton 1988)
and implies that model changes to one variable may
also produce a measurable effect on the degree of
influence exerted by other variables. For example, re-
moving uncertainty from the parameter for soil carbon
for older stands would increase the importance for total
above-ground carbon in hardwood trees from 0.36 to
0.77 (Table 3). Thus, as uncertainties of one variable
are reduced, others can become very influential, even
without revising the level of uncertainty of the other
variables.

Total carbon inventory is the sum of five intermedi-
ate carbon pools that are, in turn, each predicted from
two FORCARB parameters. To simplify presentation of
the remainder of the results, we consider three pools of
carbon: tree, soil, and understory/floor (Table 4).
Clearly, soil carbon was most influential in contributing
to overall uncertainty for most years. This was due to
the relative size of the soil carbon pool. Understory and
forest floor carbon pools were consistently not influen-
tial, and reducing uncertainties associated with these
values will have little effect on estimated uncertainty for
total carbon budgets. Importance indexes in Table 4
were based on the aggregate effect of parameters in

producing the three intermediate carbon pools. That
is, rank correlations of model results were with the
three intermediate pools rather than the ten parame-
ters. Similarly, correlations to determine the impor-
tance index for the 2010 flux were based on correla-
tions of estimated flux with the three inventory pools
for 2010.

The index showing the contribution of PDFs to total
uncertainty is given in Table 5. These results corre-
spond to the importance index of Table 4; that is, the
index reflects the contributions of PDFs for the three
intermediate carbon pools. The two indexes are gener-
ally very consistent (Vose 1996). Notable exceptions
were values of flux for the interval between 1990 and
2000. Clearly the two methods differed in identifying
the contribution of soil carbon to the total flux. The
difference was based on the use of the three interme-
diate pools and the fact that underlying parameter
influences changed between 1990 and 2000. Relative
strength of volume and age contributions to soil carbon
changed considerably during that interval; this pro-
duced a change in the sampling sequence of the com-
bined pool. The importance index was sensitive to that
change, and the percentage contribution index was
not. Differences between indexes do not represent a



failure of one index or another, but rather, point out
slight differences in assumptions and sensitivities.

Both measures of uncertainty indicate the influence
of input parameter uncertainty on uncertainty in
model results. They are not qualitatively identical, how-
ever, as indicated by the occasional negative values for
percentage contribution of understory/floor (Table 5)
and the differences in soil flux for 2000 (Table 4).
Small pools of carbon can have a negative percentage
contribution on a sum. The negative value is not incor-
rect but is potentially confusing. The complete depen-
dence of the importance index on Monte Carlo sam-
pling (as rank correlation) of a single distribution
makes it dependent on only one of the inventories
contributing to the flux estimate and sensitive to
changes in sampling between the two. These measures
are both easy to apply to numerical simulations, flexi-
ble, and relatively free of assumptions. The importance
index is perhaps a simpler application in most cases
because the contribution index always requires two
simulations and the choice of a base model can become
difficult when making multiple comparisons.

Individual Elements in Definition of PDFs Can Affect
Parameter Influence

The same analysis to identify influential model pa-
rameters can be applied to improve parameter PDF
definitions. Low confidence in starting definitions for
uncertainty limits the value of simply propagating un-
certainty through a model. Because Monte Carlo sim-
ulation can be easily adapted to look at the effect of
selected parts of input distributions, we next examine
what aspects of defining uncertainty do and do not
make a parameter important in determining model
results. This can be viewed as part of an iterative process
of increasing precision in the PDFs used as inputs. We
systematically examined the response of model uncer-
tainty to changes in shape of the probability distribu-
tions, covariability among distributions, and range of
uncertainty surrounding the expected value. Results in
this section are limited to pooled effects of tree and soil
carbon parameters for the year 2010 to focus discussion
on potentially important influences.

The shape of a probability distribution used to de-
fine uncertainty about a parameter value implies an
expectation of the most probable values from among
the set of possible values (Seiler and Alvarez 1996, Haas
1997). Symmetrical distributions were assumed for pa-
rameter definition. Triangular and uniform distribu-
tions were defined for the ten model parameters such
that the 5th, 50th, and 95th percentiles corresponded
to the same values as for the normal distributions de-
fined in Table 1. The net effects of altering shape were
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differences in the concentration of possible values
around the median versus the tails; that is, differences
in level of information about the expected value, or
entropy in the sense of Shannon and Weaver (1949).
Results analogous to those in Tables 4 and 5 (but not
shown here) suggest that this level of varying shape of
parameter distribution had no real effect on the most
influential parameters.

Covariability, or joint probability, among PDFs can
influence simulation results (Ferson and Long 1995,
Vose 1996, Cullen and Frey 1999). Such specifications
are possible with Monte Carlo simulations irrespective
of the shape of the distribution (Iman and Conover
1982). We explored this effect with FORCARB param-
eters related to tree and soil carbon. Tree carbon is
determined by two successive parameterized conver-
sions from merchantable volume to total tree carbon,
for each hardwood and softwood. Specifying perfect
correlation in sampling among tree carbon probability
distributions increased the importance index of tree
carbon inventory and flux (Table 6, row 2). The corre-
lation effect on tree carbon inventory also resulted in a
slight decrease in influence of soil carbon inventory.
Similarly, perfect correlation in sampling the age- and
volume-based estimators for soil carbon increased soil
importance relative to tree.

The range of values included in a PDF (or in other
words a measure of its variance) is probably the most
obvious and direct influence determining importance
of a model variable. However, simply increasing the
dispersion of values alone does not automatically trans-
late into immediate increased importance of the pa-
rameter; it is still subject to the effects of other such
parameter specifications. For example, a doubling of
the relative range of tree carbon parameters was re-
quired before overall tree uncertainty had an impor-
tance index similar to soil carbon (Table 6, row 5).
Conversely, a reduction by one half in the range of soil
carbon parameters was required to achieve approxi-
mately the same effect. The effects of covariability and
relative size of distribution appeared to be additive in
affecting the importance index and relative uncertainty
(Table 6, row 7). The range and relatedness of param-
eter uncertainties can together affect uncertainty of
estimated carbon inventory.

Because we analyzed uncertainty in FORCARB pa-
rameters while excluding other exogenous uncertain-
ties, the importance index appeared to provide a sim-
ple quantitative restatement of the obvious: larger pools
of carbon with larger uncertainties had greater influ-
ence. As future model complexity increases by inclu-
sion of additional system uncertainties, however, all
newly considered effects can be represented as effects



262 J. E. Smith and L. S. Heath

Table 6 Comparison of effects of covariability among distributions and level of uncertainty (range of values) in PDFs
on influence of parameters on model results for 2010

Carbon inventory Average annual flux

Importance index Importance index

Model Model
Tree Soil estimate Tree Soil estimate
carbon carbon (%) carbon carbon (%)
Base model® 0.44 0.88 510 = 7 0.40 0.75 2.0 = 20
Covariability
Two steps to calculate tree carbon, 0.56 0.78 510 £ 8 0.52 0.67 2.0 =20
perfect correlation among
samples
Age and volume bases for soil 0.38 0.92 509 £ 9 0.31 0.95 2.0 = 26
carbon, perfect correlation
among samples
Both tree and soil estimates of 0.46 0.86 510 =9 0.37 0.91 2.0 = 26
carbon, perfect correlation
among samples
Level of uncertainty
2X uncertainty of tree carbon 0.70 0.67 510 =9 0.66 0.61 2.0 =24
0.5X uncertainty of soil carbon 0.69 0.66 509 £ 5 0.65 0.61 2.0x12
2X uncertainty of tree carbon with 0.79 0.54 512 =11 0.75 0.51 2.0 = 28
perfect correlation among tree
samples

“Importance indexes are for influences of tree and soil carbon pools. Median values of simulated inventory (million metric tons carbon) and
average annual net flux (million metric tons carbon per year) include the range of values (*percent of median) that encompasses approximately
90 percent of the distribution.

"Values in this row are repeated from Tables 2 and 4 to facilitate comparison of effects.

on size and dispersion of values for the major carbon
pools. That is, an additional contribution to total un-
certainty may affect a “balance” of magnitude and rel-
ative uncertainty between the tree and soil carbon
pools. This relation is shown in Figure 2. Inventory
estimates for 2010 were modified to produce the given
range in the ratios of expected values (x axis) and
relative uncertainty ( y axis, defined here as coefficients

Ratio of CV's (soil:tree)

of variation). Any point on the graph can be defined by

0-25 T T T 1
1 1.5 2 25 3

Ratio of expected values (soiltree)

the paired values: (relative parameter value, relative
parameter uncertainty). The area above the two lines
represents conditions where soil carbon uncertainty is
most important in affecting overall inventory, and the Figure 2. Plot identifying conditions in which soil carbon

area below the two lines represents conditions where uncertainty is more important in determining model uncer-

tree carbon uncertainty is most important. The area
between the two lines represents conditions where im-
portance indexes were not significantly different based
on paired ¢ tests of results from five sets of ten inde-
pendent simulations (o = 0.05). The X’s represent the
position of the five base model projections of carbon
inventory for 1990 through 2030 from Table 2. The O’s
represent the position of the carbon inventory esti-
mates made for Table 6.

The point of Figure 2 is to provide a chart of “what
if” analyses illustrating conditions where soil or tree
carbon uncertainty most contribute to total uncer-

tainty versus conditions in which tree carbon uncertainty is
more important in determining model uncertainty. Here,
importance in determining total uncertainty is expressed as a
function of magnitude of the carbon pools (x axis) and
relative uncertainty ( y axis). Importance of soil carbon uncer-
tainty increases as ratios indicate greater absolute amounts of
soil carbon or greater relative uncertainty in soil carbon—the
area above the two lines. Conditions for tree carbon control of
model uncertainty are below the lines. The area between the
lines represents no significant difference between the two.
The X’s represent the position of the five base model projec-
tions for 1990 through 2030. The O’s represent the position of
the inventory estimates made for Table 6.



tainty. Uncertainty in soil carbon inventory clearly has
the greater influence on most model projections. The
base model assumes that the four tree-carbon parame-
ters are independent values, yet if they covaried while
retaining the same values as in Table 1, uncertainty of
tree carbon would increase considerably. This would
move the ratio of coefficients of variation for the 2010
inventory from 0.867 to 0.532 (that is, change the po-
sition of an X along the y axis in Figure 2). Even this
significant change in assumptions about FORCARB pa-
rameters still would produce results more influenced by
uncertainty about soil carbon than uncertainty about
tree carbon.

Monte Carlo simulations may produce PDFs as in-
termediate values. Obviously, the same whole-PDF and
components-of-PDF analyses are possible with these val-
ues as well. A useful distinction here is that intermedi-
ate PDFs are partly determined by model structure and
assumptions in addition to influences of input PDFs.
We illustrate how components of intermediate PDFs
can reflect model assumptions by extending the above
analysis to estimates of average annual net carbon flux
based on differences between two projections of inven-
tory.

Flux uncertainty is dependent on factors not appar-
ent in simple expressions of inventory uncertainty. For
example, the same two inventory distributions for 2000
and 2010 in Figure 3A are used to produce the distri-
butions of estimated flux in Figure 3B. The differences
are based on assumed covariability, or correlation in
Monte Carlo sampling, of consecutive soil or tree car-
bon inventories. The narrowest distribution results
from assuming high correlation between the 2000 and
2010 inventories for both soil and tree carbon (that is,
the base model). The two wider distributions result
from reducing the covariability of the tree carbon or
soil carbon pools to a correlation coefficient of r = 0.6.
Further decreases in covariability will tend to further
disperse projections of flux. Thus, flux uncertainties
are strongly influenced by the relatedness of inventory
uncertainties, a relation highly dependent on modeling
assumptions.

Total flux, in the context of the FORCARB model
proper, is simply the sum of the component fluxes.
Thus, whatever influences the expected value and un-
certainty of these component distributions (for exam-
ple, tree or soil carbon flux) will be important in de-
termining overall flux uncertainty. Expected value of
flux depends on the difference between consecutive
inventories. Flux uncertainty depends on both relative
uncertainty and covariability between two consecutive
inventories. We compared response of flux uncertainty
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Figure 3. Base model projections of (A) carbon inventory for
projection years 2000 and 2010 and (B) estimates of average
annual flux derived from the two inventory distributions un-
der different assumptions of covariance between constituent
pools and inventories. The central curve represents the base
model projections that assumes very high correlation between
two consecutive tree and soil estimates (r = 0.99). The two
wider distributions represent flux uncertainty with between-
inventory tree or soil carbon correlation coefficients set at
r = 0.6. Note that the wide disparity in the range of uncer-
tainty for flux (B) resulted from the same two distributions of
inventory (A), but with different assumptions of covariance.

to these three effects by manipulating the distributions
contributing to the 2010 flux (Figure 4).

Inventory for 2010 was increased and decreased to
systematically alter expected difference between inven-
tories and thus expected value of flux. This effect had
little apparent influence on range from the 5th to the
95th percentiles of the distribution of flux values pro-
duced by the model (Figure 4A). Relative uncertainty
was manipulated by modifying the dispersion (but not
the shape or sampling sequence of the distribution) of
the 2010 inventories to modify the relative coefficients
of variation of the two inventories (Figure 4B). The
effect was apparently linear, with a greater influence by
increased uncertainty in soil carbon inventory. Manip-
ulating the Monte Carlo sampling sequence to set the
sampling correlations between distributions also had a
greater effect through soil carbon estimates (Figure
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Figure 4. Sensitivity of model uncertainty to elements defin-
ing probability densities of two consecutive inventories. Sen-
sitivities to changes in (A) mean of estimates, (B) increase in
uncertainty, and (C) covariation of distributed values were
determined for both tree (O) and soil (O) carbon pools.
Model response was represented by the width of the central
90% of the probability density. Values were obtained from
manipulation of inventory distributions used to project aver-
age annual flux for 2000 to 2010.

4C). An interaction of the effects shown in Figures 4B
and 4C was such that as relative uncertainty about
carbon inventory decreased, the influence of between-
year covariability increased (note the greater slope for
high correlation in Figure 4C). This illustrates the pos-
sible value in simply knowing what inputs influence
results, such as when explicitly accounting for covari-
ability may matter. Because joint distributions can be

key to successful links among models (Morgan and
Henrion 1990), the importance of recognizing this sim-
ple relation increases as additional parts of the larger
forest sector modeling system are considered.

The 5th to 95th percentile interval was more appro-
priate as a dependent variable in this analysis than were
the importance and contribution indexes. The impor-
tance index identifies the effect of a single distribution
on the resulting model distribution, while flux uncer-
tainty was influenced by the relative definitions of two
Determining percentage contribution
would require many additional simulations because
each is based on a treatment effect relative to a base
level. This analysis underscores the point that a single
measure of model results is usually not best for all

inventories.

analyses.

Value of This Approach

Not everything always matters. Projections of uncer-
tainty about forest carbon budgets are dependent on
assumptions and information that go into the models.
When such information is very limited, a pragmatic
approach to quantifying this uncertainty is to develop
preliminary estimates and then sort out conditions
where specific uncertainties may or may not matter.
This can be followed by iteratively revising estimates of
uncertainty and improving empirical bases for models.
A single approach is seldom best for all applications.
Our use of Monte Carlo simulation is simple and flex-
ible and allows for alternate approaches to uncertainty
analysis.

Some simulation models make the distinction be-
tween uncertainty associated with variability, or natural
heterogeneity in the system modeled, and uncertainty
due to lack-of-knowledge (Morgan and Henrion 1990,
Hattis and Burmaster 1994, Hoffman and Hammonds
1994, Ferson and Ginzburg 1996, Cullen and Frey
1999). Lack-of-knowledge uncertainty assumes the ex-
istence of a single best value that we do not know, while
variability expresses changing values among occur-
rences. Such a distinction is not absolute and may
depend on the understanding of appropriate mecha-
nisms or even the scale of the model. Variability may
contribute to overall uncertainty in parameterizing re-
lations at moderately large temporal (year) and spatial
(10°-107 ha) scales as applied in this model. We are
not, however, addressing annual fluctuations in carbon
inventory or growth, and we do not simulate more than
one forest industry maple—beech-birch forest in the
northeastern United States for a given year. Thus, esti-
mates of uncertainty applied to this analysis do not
contain a distinct component of variability, yet the con-
trast was made because the presence or absence of



variability affects the structure of the Monte Carlo sim-
ulation. A two-way Monte Carlo model can separately
identify the effects of each on overall model results
(Cullen and Frey 1999); however, a one-way Monte
Carlo model is most appropriate in our case, where
variability is not a distinct component of uncertainty.

Quantitative expressions of uncertainty produced
through Monte Carlo simulation are unambiguous but
highly dependent on the adopted definition of uncer-
tainty and the context in which they are used. As we
present it, uncertainty is essentially a model imposed on
the modeled projection of carbon, and like any model,
results are simply functions of inputs and assumptions.
However, acceptance that such PDFs are appropriate to
the questions asked of the simulation requires an addi-
tional level of confidence beyond correctly translating
input numbers to output numbers. Such “confidences”
on the part of the decision-makers are not readily quan-
tified and can differ with experience and background.
Some insight into a model is usually required for ac-
ceptance by users. For this reason, simple and tractable
models that allow for user insights into behavior and
sensitivities are commonly recommended for inte-
grated assessments (Morgan and Dowlatabadi 1996).

Simply knowing inventory uncertainty is insufficient
for estimating flux uncertainty. The distinction be-
tween the uncertainty necessary to characterize inven-
tory and that required to estimate flux points out the
need for accounting for covariability among uncertain-
ties defined as PDFs. Marginal probabilities alone are
insufficient for these analyses. Joint distributions, where
necessary, can be either empirically determined or de-
veloped through the process modeled. Just as viewing
inventory as an end will limit uncertainty analysis of
flux, so viewing discrete parts of a system as entirely
separate also will limit uncertainty analysis of the aggre-
gate system.

The analysis presented here is based on assumptions
that FORCARB is a subset of a larger system of influ-
ences that determine forest carbon budgets and the
need for these values extends beyond single “best” es-
timates. Adding a probabilistic simulation did not
change the expected values for the model. As system
size and complexity increase, however, expected values
for the probabilistic and single-point forms of a model
can easily diverge. Thus, the value of this application is
not in a specific application of FORCARB, but in iden-
tifying important links to the larger system. Ongoing
uncertainty analyses of forest carbon budgets address a
system of models (Birdsey and Heath 1995) and pre-
sume that questions asked about uncertainty, defini-
tions assigned to uncertainty, and means of analyzing
uncertainty are interrelated.
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Conclusion

The uncertainty analysis techniques we employed
were clearly applicable to developing quantitative esti-
mates of input uncertainty through examining compo-
nents of PDFs. These results underscored two useful
considerations when applying this approach to analysis.
First, no single measurement of influence, or index,
applied equally well to all analyses: for example, the
importance index had limited usefulness in identifying
influences of flux estimates. Second, results are subject
to reanalysis as uncertainties are revised and influences
shift. The iterative nature of this modeling is based on
identifying where additional information most affects
results: obviously, needs change as information is ob-
tained. The consequent updating and reanalysis will
affect the quality of results and confidence in the sim-
ulation. The simple and tractable modeling structure
we employ contributes to the flexibility necessary for
these analyses.

Using these techniques with limited initial informa-
tion, we were able to identify relative influences of both
model parameter PDFs and components of parameter
PDFs, reducing and ordering the list of unknown un-
certainties. Distributional forms of the PDFs were not as
important as covariability or ranges of values. Covari-
ability among FORCARB model parameters emerged as
a very influential component of uncertainty; however,
the implications of this result were different for esti-
mates of carbon inventory versus carbon flux. Uncer-
tainty about model parameters had a simple, direct
effect on estimates of carbon inventory, and this ex-
tended to covariability between PDFs. Overall uncer-
tainty increased in proportion to influence and covari-
ability between parameters. The effect was essentially a
linear function of a priori assumptions input as param-
eter uncertainty. In contrast, input parameter defini-
tions had relatively less influence on flux uncertainty.
Flux uncertainty was largely a function of simulated
covariability between annual inventories and was de-
pendent on structure and assumptions of the modeling
process. Thus, our results suggest that explicit account-
ing of covariability may be necessary for adequately
defining flux uncertainty in a forest carbon budget
model.
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