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Abstract

Estimates of uncertainty are presented for projections of forest carbon inventory and average annual net carbon ¯ux on

private timberland in the US using the model FORCARB. Uncertainty in carbon inventory was approximately 29% (2000
million metric tons) of the estimated median in the year 2000, rising to 11% (2800 million metric tons) in projection year 2040,
with this range covering 95% of the distribution. Relative uncertainties about net ¯ux were higher and more variable than

relative uncertainty estimates of carbon inventory. Results indicated that relatively high correlations among projected carbon
budgets for the regional forest types led to greater total uncertainty than under assumptions of independence among types,
indicating that an accurate portrayal of correlations is important. Uncertainty in soil carbon, closely followed by uncertainty in

tree carbon, were most in¯uential in estimating uncertainty in carbon inventory, but uncertainties in projections of volume
growth and volume removals were most important in estimating uncertainty in carbon ¯ux. This implies the most e�ective ways
of reducing uncertainty in carbon ¯ux are di�erent from those required to reduce uncertainties in carbon inventory. Analyses as
presented here are necessary prerequisites to identify and reduce uncertainty in a systematic and iterative way. Published by

Elsevier Science Ltd.
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1. Introduction

Issues of climate change are increasingly prompting
nations to focus on accounting for and managing
greenhouse gas emissions. Most strategies for limiting

greenhouse gas emissions involve relatively expensive
options, principally through reductions in energy con-
sumption. Forests may o�er a lower-cost way to
remove atmospheric carbon dioxide (an important

greenhouse gas) and sequester carbon Ð thus reducing
net carbon dioxide emissions (US Environmental Pro-
tection Agency, 1995). Carbon assimilated by forests
can be accumulated in forest ecosystems, used as a
renewable energy source, or further stored as wood

products (Birdsey and Heath, 1995; Heath et al.,
1996).

Uncertainties associated with characterizing causes
and e�ects of climate change, coupled with the poss-
ibly high opportunity costs of early response can make
it di�cult for decisionmakers to commit to actions
(Morgan and Henrion, 1990; Smith et al., 1993).
Appropriate descriptions of uncertainty are necessary
to provide information for policy decisions pertaining
to e�ects of forests on net carbon dioxide emissions at
the national level. All estimates of current and future
carbon sequestration by forests feature some amount
of uncertainty. This holds true even when uncertainty
is not explicitly mentioned in an assessment. Actual
uncertainty depends partly on methods used to form
estimates as well as scenarios for climate, management,
and mitigation options. Sources of uncertainties
include error in sampling inventories, estimating
volumes at regional scales, identifying appropriate car-
bon pools, and limitations in understanding processes
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controlling pool sizes and ¯uxes (Birdsey and Heath,
1995). Identifying elements of the system that contrib-
ute most to overall uncertainties may help identify the
value of alternate priorities for management and
research. Limited resources can be used e�ciently if
research is directed toward those components that will
have the greatest e�ect in reducing overall uncertainty.
This study focuses on developing quantitative esti-
mates of uncertainty using an uncertainty analysis
approach (Brown and Adger, 1994; Morgan and Dow-
latabadi, 1996; Peck and Teisberg, 1996) to project
carbon budgets within forest ecosystems (Birdsey and
Heath, 1995). We present uncertainty estimates of for-
est carbon inventory and ¯ux on private timberland in
the US and identify the components that contribute
most to total uncertainty.

2. Modeling forest carbon budgets

Several studies have presented estimates of carbon
in US forests (Plantinga and Birdsey, 1993; Birdsey
and Heath, 1995; Turner et al., 1995); however, none
have dealt with quantifying uncertainties of the esti-
mates. Here, we apply an uncertainty analysis to the
model FORCARB (Plantinga and Birdsey, 1993;
Heath and Birdsey, 1993a; Heath and Smith, 2000),
which projects carbon budgets for privately owned for-
ests of the US. This version includes approximately
70% of productive US forests. The model is linked to
the TAMM/NAPAP/ATLAS modeling system (Adams
and Haynes, 1980; Ince, 1994; Mills and Kincaid,
1992; Alig et al., 1990), which provides estimates and
projections of forest volumes and areas. Collectively,
the models produce forest volume inventory projec-
tions at 10-year intervals. These projections of forest
volumes are used by FORCARB to estimate four
major carbon pools: soil carbon, forest ¯oor carbon,

carbon in understory vegetation, and carbon in living
tree biomass (Heath and Birdsey, 1993a).

We apply uncertainty analysis to essentially the
same data as previous assessments of private timber-
lands (Birdsey and Heath, 1995), yet updates in the
model and the uncertainty analysis produce slight
di�erences in median estimates of carbon. Our results
are summarized by region (Fig. 1). The assumptions
underlying the timber projection are described in
Haynes et al. (1995). Although net ¯ux of carbon in
wood products and land®lls are signi®cant factors in
carbon sequestration in the forest sector (Heath and
Birdsey, 1993b; Heath et al., 1996), they are excluded
from this study; we estimate median values plus uncer-
tainties for forest ecosystems only.

2.1. Uncertainty and the simulation model

The term `uncertainty' is used to describe phenom-
ena such as statistical variability, lack of knowledge,
or surprise (Morgan and Henrion, 1990; Hattis and
Burmaster, 1994; Ho�man and Hammonds, 1994;
Vose, 1996; Cullen and Frey, 1999). We adopt the
simple de®nition that uncertainty is a lack of con®-
dence in a single value. We represent uncertainty
about a model variable as a range of potential values
in the form of a probability density function (pdf). A
consequence of explicit representation of uncertainty in
model formulation is that results are probability den-
sities, which re¯ect these uncertainties.

We used a Monte Carlo simulation, with Latin
Hypercube sampling (Iman and Shortencarier, 1984;
Morgan and Henrion, 1990; Vose, 1996; Cullen and
Frey, 1999), to estimate uncertainties in projections of
forest carbon. A Monte Carlo simulation is produced
by choosing one value from each input probability dis-
tribution for each of a large number of iterations to
successively form distributions of model results. Latin
Hypercube sampling is simply a strati®ed sampling
procedure in which distributions are sampled from
equally probable intervals, without replacement. Siegel
et al. (1995) and van der Voet and Mohren (1994)
have used Latin Hypercube sampling in Monte Carlo
simulations of process-based tree growth models.
Uncertainty analysis involves identifying e�ects of
uncertainties about inputs or model variables on over-
all model uncertainty. The relative in¯uences of each
uncertain value in a model can be identi®ed by the
correlation between the Latin Hypercube sampling and
the probability density distribution of model results.
Correlation coe�cients are then used to identify a per-
centage in¯uence of each part on the total (Conover,
1980; Morgan and Henrion, 1990; Vose, 1996).

Separate simulations were produced for di�erent
forest types, which were characterized by composition,
ownership, region, and productivity. A total of 216

Fig. 1. Regions of the 48 contiguous states used for subtotals of car-

bon budget projections.
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such forest types were included in these analyses. Input
variables with uncertain values were conveniently
classi®ed in two groups: forest projections and carbon
pool estimates. First, uncertainty in ®ve variables con-
tributed to projected forest volumes that were the
starting point for FORCARB simulations. Uncertainty
in initial forest volume inventory was successively
modi®ed for each 10-year period by summing uncer-
tainty in volume changes due to growth, removals,
thinning, and land area change. Second, estimates of
the four major carbon pools in FORCARB Ð trees,
understory, ¯oor, and soil Ð were each based on two
or more relationships parameterized for a given forest
type. Estimates of carbon pools were summed to a
total carbon inventory for each forest type; these were
then summed for regional totals (Birdsey and Heath,
1995). Average annual carbon ¯ux was calculated by
dividing the di�erence between two inventory distri-
butions by the intervening number of years (that is, 10
in this study).

Simulations were based largely on previous determi-
nistic analyses (Birdsey and Heath, 1995) and followed
uncertainty analysis procedures developed for FOR-
CARB. Additional details of the methods, applied to
only one forest type including an analysis of sensitivity
to pdf de®nitions, can be found in Smith and Heath
(2000b). A discussion of interpretation of probabilistic
estimates of uncertainty is featured in Smith and
Heath (2000a). Carbon budget totals for the 216 forest
types were based on summing pdfs in the Monte Carlo
simulation (Smith and Heath, 2000a). This method
explicitly accounted for any covariability input or
developed in the model. Uncertainties about values of
model variables were de®ned as modi®ed two-par-
ameter Beta distributions; both parameters were set
equal to three and then the pdf was scaled to ®t the
appropriate variable and de®nition of uncertainty
(Vose, 1996). De®nitions of uncertainty used in these
simulations are given in Table 1. Each Beta pdf was

scaled so that the central 95% of the distribution
spanned the range speci®ed in Table 1. Uncertainty
was summarized for model variables and results by
expressing the range of the 2.5th±97.5th percentiles as
plus or minus a percentage of the median.

Values for FORCARB parameter uncertainties (that
is, the ®rst four variables listed in Table 1) were
adapted from preliminary uncertainty analyses (unpub-
lished) and collectively produced a total carbon inven-
tory uncertainty of slightly more than 210% for most
forest types for 2000. That is, the net e�ect of these
four variables was that 95% of the resulting carbon
inventory pdf was within 210% of the median. Uncer-
tainty generally ranged between 8 and 15%. USDA
Forest Service estimates of sampling error for volume
inventory are 5% per billion cubic feet for a 67% con-
®dence interval (Hansen et al., 1992). Because uncer-
tainty about forest type inventories are likely to
covary, and most forest volumes exceed one billion
cubic feet (Powell et al., 1993), we set a smaller value
for initial uncertainty: 5% for the 95% con®dence
interval (that is, the ®fth variable in Table 1). Uncer-
tainties about volume changes for each 10-year interval
(that is, the last four variables in Table 1) were not
well-de®ned. Therefore, uncertainties about volume
growth, removal, thinning, and that associated with
area change were set to 210%, a level comparable to
the net e�ect of the FORCARB parameters.

The use of Beta distributions was consistent with the
limited quantitative de®nitions of uncertainty Ð they
produced a continuous symmetrical pdf with a slightly
weaker central tendency than previous de®nitions of
normal pdfs (Smith and Heath, 2000a). Adopting a
better-de®ned central tendency would imply that we
have more information about the variable than is
available. No other signi®cance is attached to the
choice of Beta pdfs. Any other pdf would have worked
as well from a strictly modeling standpoint. We
applied the same uncertainty percentages across all for-

Table 1

Uncertainty de®ned for model parameters and projections of forest structure. Uncertainty about the precise value of a model variable was

de®ned as a probability density function. The percentage of the median speci®ed for each variable bounded the central 95% of the respective

probability distribution

Model variable Uncertainty as percentage of median

Tree volume to carbon conversion factor 215%

Understory carbon per unit area 225% for youngest stands, linearly adjusted to210% at 50 years, and constant

at the 50-year value above 50

Forest ¯oor carbon per unit area 250% of value for youngest stands

Soil carbon per unit area 215% for youngest stands, linearly adjusted to225% at age 15 years, linearly

adjusted to210% at 50 years, and constant at the 50-year value above 50

Initial volume inventory 25%

Volume growth over time interval 210%

Volume removals over time interval 210%

Volume thinning over time interval 210%

Volume change from area change over time interval 210%
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est types for this analysis, and each Monte Carlo simu-
lation included 200 iterations.

3. Results and discussion

3.1. Uncertainty in projected carbon budgets

Uncertainty in projections of carbon inventory for
the years 2000, 2020, and 2040 are presented in Fig. 2
as pdfs. The distributions express the probability of
values for carbon inventory based on the assumptions
and uncertainties that went into the simulation.
Clearly, the amount of uncertainty is large relative to
the increase in carbon inventory over this period.
Here, we summarize uncertainty as the lower and
upper bounds of the central 95% of the pdf (Table 2).
These 2.5 and 97.5 percentiles convey an absolute
range but can provide essentially the same information
as percent-error or variance measures (Smith and
Heath, 2000a). Resulting sums are normally distribu-
ted, as expected from summing many pdfs.

Summary values for regional and national totals are
presented for carbon inventory and average annual net
¯ux for 10-year periods through 2040 in Table 2. A
positive ¯ux represents a net gain in forest carbon
inventory. Median values correspond closely to pre-
viously published carbon budgets based on these data
and the same modeling system (Birdsey and Heath,
1995). Uncertainty about carbon inventory and ¯ux
increased with time in each region as well as for the
national total. Projections of growth and harvests
made by forest sector models are generally sensitive to
the time-span of the projection. As de®nitions for
growth and harvest uncertainties are re®ned, projec-
tions of uncertainty may show greater sensitivity to
time as well.

Relative uncertainty was lower and less variable in
estimates of carbon inventory as compared with aver-
age annual net ¯ux. These were generally between 5
and 6% for carbon inventory while relative uncertainty
for average annual net ¯ux was usually more than
three-fold larger. This was partly related to the
decrease in expected values of carbon ¯ux throughout
the period of the simulation. Estimates for the North
contained greater absolute uncertainty in both inven-
tory and ¯ux, yet relative uncertainties about average
annual net ¯ux were generally greater in the South and
West because median values were closer to zero.

Uncertainty in one time period a�ected uncertainty
in subsequent times. However, e�ects in these results
were limited to Monte Carlo sampling and did not in-
corporate any e�ects of uncertainty on median values.
For example, harvests for a given forest type depend
on both harvests of other forest types in a region as
well as previous harvests. While these e�ects were
included in the median projections provided by the
TAMM/NAPAP/ATLAS modeling system, the same
was not true for the Monte Carlo simulation. Uncer-
tainty about a harvest at one time did not a�ect the
expected value of subsequent harvests. To properly
include such links in the current modeling system
would require complete linked simulations of TAMM/
NAPAP/ATLAS and FORCARB for the entire
country for each iteration of the Monte Carlo simu-
lation.

3.2. In¯uences on uncertainty

The simulations were developed to estimate likely
levels of uncertainty in a large-scale forest carbon bud-
get. Estimates of uncertainty and how they propagate
through the model are subject to change as available
data and our understanding of the system change.
There are two principal reasons that these results are
preliminary to a comprehensive description of uncer-
tainty in the carbon budget projections. First, incom-
plete information about predicting total carbon from
projections of forest volumes necessitate the subjective
de®nitions of pdfs. Current research is focused on
improving the quantitative descriptions of uncertainty
of model parameters. Second, as in any complex sys-
tem, there are multiple ways to model and analyze
uncertainty. A detailed list of possible uncertainties
can easily exceed the nine values de®ned for these
simulations (Table 1). The process of identifying
sources of uncertainty and appropriate levels of aggre-
gation is useful because we can improve the model
most e�ectively by focusing on reducing the most in-
¯uential sources of uncertainty.

Carbon budget projections for each of the 216 forest
types used in simulations can be described as a two-
step process: ®rst, estimating uncertainty in volume

Fig. 2. Probability density functions representing uncertainty in pro-

jections of total carbon inventory for projection years 2000, 2020,

and 2040. Note that the areas under the probability densities sum to

one.
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projections and second, converting volumes to total
forest carbon. However, these were not independent
steps. Uncertainty about volume projections for each
year included estimates of uncertainty in initial inven-
tory and cumulative e�ects of uncertainty in sub-
sequent growth, removals, thinning, and area change.
FORCARB estimates of total forest carbon were
based on age and volume. Thus, cumulative forest pro-
jections in¯uenced the distribution of volumes among
age classes and, in turn, in¯uenced the balance
between age-based and volume-based carbon estimates
made by FORCARB.

Overall uncertainty as shown in Fig. 2 and Table 2
can be apportioned to each of the model uncertainties
described in Table 1. Collectively, FORCARB par-
ameters Ð estimating the four carbon pools Ð
accounted for a major portion of uncertainty, but the
relative contribution generally decreased with time.
The relative contribution of FORCARB parameters to
carbon inventory uncertainty decreased from 79 to
64% from 2000 to 2040, and the contribution to ¯ux
uncertainty decreased from 45 to 40% over the same
period. The percentage contribution of each input

uncertainty on total carbon budget uncertainty pro-
jected for 2010 and 2040 is shown in Fig. 3. In general,
uncertainty in estimates of tree and soil carbon and
projections of volume growth and volume removals
were most important in contributing to uncertainty
about the whole. Uncertainty about initial forest
volume inventory had little in¯uence at the levels of
uncertainty set in Table 1. The in¯uence of uncertainty
about growth and removals usually increased with
time. In¯uences of individual uncertain values can
depend on the amount of uncertainty associated with
each as well as how each part contributes to the whole
(Smith and Heath, 2000b). Identifying such trends in a
linear model will usually depend more on relative
values for uncertainty than precise de®nitions of absol-
ute uncertainty. For example, a moderate (10±20%)
increase in all de®nitions of uncertainty listed in
Table 1 would produce the same general trend as
found in Fig. 3 (data not shown).

In¯uences on uncertainty can vary with time and
forest type, but such details are generally obscured in
aggregate results such as in Fig. 3. An example of
details for an individual forest type is given in Fig. 4,

Table 2

Projected carbon inventories and average annual net carbon ¯ux, by region and as a national total. Each group of three numbers represents

uncertainty in each estimate: the median value of the pdf bounded by the 2.5 percentile (below) and the 97.5 percentile (above)

Region C estimate 2000 2010 2020 2030 2040

North Inventory 11200 11600 11900 12300 12600

(Million metric tons) 10200 10600 10900 11100 11300

9200 9450 9550 9630 9750

Flux 54 40 38 37

(Million metric tons per year) 40 26 24 22

23 11 8 6

South Inventory 10100 10300 10400 10300 10200

(Million metric tons) 9350 9480 9500 9360 9130

8550 8610 8560 8340 8020

Flux 24 15 ÿ6 ÿ16
(Million metric tons per year) 13 2 ÿ15 ÿ23

4 ÿ8 ÿ23 ÿ32

West Inventory 3090 3120 3180 3260 3310

(Million metric tons) 2810 2860 2920 2970 2980

2540 2560 2570 2570 2570

Flux 10 10 9 5

(Million metric tons per year) 5 5 4 1

1 1 0 ÿ3

Total Inventory 24400 25100 25600 26000 26300

(Million metric tons) 22400 23000 23400 23500 23500

20400 20700 20800 20700 20500

Flux 86 63 39 23

(Million metric tons per year) 58 33 13 0

29 4 ÿ14 ÿ26
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which shows results from simulations of high pro-
ductivity planted pine in the eight western states of the
Southern region. FORCARB parameters remain most
in¯uential for carbon inventory uncertainty (Fig. 4,
upper graph), yet uncertainty in carbon ¯ux is even-
tually most in¯uenced by growth and removals (Fig. 4,
lower graph). Note that the sum of the percentage in-
¯uences of the Tree C and Soil C lines is slightly less
than the percentage for the FORCARB line. This is
because the total in¯uence of FORCARB parameters
also includes the e�ects of uncertainty about unders-
tory and forest ¯oor carbon. The balance between in-
¯uences of FORCARB vs projections of growth and
removals can vary with type, productivity, and use
(ownership) of forests; some examples of relative in¯u-
ences on uncertainty are given in Table 3. The di�erent
in¯uences among forest types suggest that e�orts to
better de®ne or reduce projected uncertainty should be
forest speci®c.

E�ects of setting uncertainty at the levels described

in Table 1 were investigated with sensitivity analyses.
We applied two scenarios to the high productivity,
planted pine example from Fig. 4. In the ®rst scenario,
doubling the level of uncertainty in initial forest
volume inventory had little e�ect on overall uncer-
tainty. The in¯uence of initial volume inventory on
total uncertainty (analogous to results of Fig. 4) never
exceeded 10% for any time between 2000 and 2040. In
the second scenario, doubling the uncertainty about
growth and removals did a�ect model uncertainty.
Uncertainty about carbon inventory increased over
50% by 2040, while absolute uncertainty about pro-
jected ¯ux doubled. The di�erent responses of inven-
tory and ¯ux could be foreseen from the information
in Fig. 4, which indicated that volume removals were
more in¯uential for ¯ux than for volume in 2030 and
2040. These results suggested that careful de®nitions of
growth and removals are important in future model
development, but re®nement of uncertainty about for-
est inventory becomes less important with time.

Fig. 3. Percentage of total uncertainty attributable to each of the nine variables whose values were de®ned as uncertain. Results are by region for

carbon inventory (left column) and average annual net ¯ux (right column) for projection years 2010 and 2040.
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3.3. National total as a sum

At the level of individual forest types, sensitivities to
uncertainties can vary according to such factors as
productivity, land use, and age structure. The national

totals presented here involve aggregating carbon bud-

gets and uncertainty for all 216 forest types. Such

sums are more sensitive to assumptions about related-

ness among the parts than to the magnitude of uncer-

tainty in an individual variable. Results are based on

Fig. 4. Percentage of total uncertainty attributable to selected variables whose values were de®ned as uncertain. Results are for forest industry

high productivity planted pine forest type in the eight western states of the South. In¯uence on uncertainty in projected carbon inventory is in

the top panel, and in¯uence on uncertainty in projected average annual net ¯ux is in the bottom panel. Note that the FORCARB line represents

the sum e�ect of all FORCARB parameters.

Table 3

Percent contribution to average annual net carbon ¯ux uncertainty in 2040 for six of the 216 forest types. Values specify the percentage of ¯ux

uncertainty attributable to the respective model variables

Forest type FORCARB Initial inventory Volume growth Volume removals

Maple beech birch, northeast, forest industry 43 15 13 23

Spruce ®r, northeast, forest industry 23 17 52 0

North total 38 9 27 19

High productivity planted pine, south central, forest industry 26 5 32 33

Upland hardwoods, south central, farm 40 27 25 6

South total 42 15 25 12

High productivity Douglas ®r, Paci®c northwest, forest industry 31 7 42 10

Ponderosa pine, northern Rocky Mountains, forest industry 22 8 37 28

West total 33 8 30 19
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the assumption that information leading to uncertainty
in the given variables was highly correlated. In reality,
this is somewhat true: uncertainties are based on our
ability to accurately simulate forest-speci®c character-
istics, and positive correlations are likely where re-
gional or forest-speci®c characteristics are similar.
Negative correlations are also possible: overestimates
of timber harvests in one area are likely to correspond
to underestimates in a second area if overall median
projections are considered accurate. The degree of cor-
relation will depend on data and how processes are
modeled. While assumptions leading to high covaria-
bility in uncertainty among forest types are admittedly
somewhat speculative, at worst the result of positive
covariability is a tendency to in¯ate uncertainty when
216 inventory or ¯ux pdfs are summed.

Starting uncertainties (Table 1) were all perfectly
correlated among forest types at the start of each
simulation, that is, the sampling distribution for a
given variable was the same for each simulation.
Di�erences in initial volume inventory and the patterns
of growth and removals produced di�erent distri-
butions of volume and age. Thus, although the ®nal
carbon inventories were highly correlated, they were
not perfectly correlated. Coe�cients of correlation for
carbon inventories of all possible paired combinations
of forest types ranged from about 0.2 to over 0.99
with the median at about 0.8.

Latin Hypercube sampling facilitates resampling at
speci®ed levels of covariability. This allows for `what
if' experiments to examine the sensitivity of the results
to modeled uncertainty (Smith and Heath, 2000b).
Uncertainty about total carbon inventory projected for
the year 2040 under di�erent assumptions of related-
ness is shown in Fig. 5. The solid line represents the
pdf produced by the basic simulation (that is, the pdf
for 2040 in Fig. 2). Clearly, correlations among forest

types had an e�ect on the aggregate distribution,
which was very similar to one based on perfect corre-
lation among forest types (that is, the pdf represented
by the dotted line in Fig. 5). The assumption of inde-
pendence (that is, the pdf represented by the dashed
line in Fig. 5) had a ®ve-fold e�ect on total uncer-
tainty: that is, uncertainty is apparently reduced by
more than 80%. This e�ect extended to estimates of
average annual ¯ux, which were based on di�erences
between successive inventories followed by summing
the 216 forest types. Flux estimates summed for 2040
were reduced by 68% under the assumption that simu-
lated carbon inventories among forest types were inde-
pendent (data not shown). Factors a�ecting year-to-
year covariability also strongly a�ected apparent levels
of uncertainty. Assumptions of relatedness among for-
est types in these simulations formed high year-to-year
correlations.

The net e�ect of these general observations about
sums and di�erences of pdfs underscores the import-
ance of covariability in quantifying uncertainty (Vose,
1996; Cullen and Frey, 1999; Smith and Heath,
2000a). The Latin Hypercube sampling of pdfs repre-
senting the four FORCARB parameters and the ®ve
variables used to estimate volume were independent of
each other. However, separate sampling sequences
were not used for di�erent years or forest types. The
net e�ects were high, but not perfect, correlations
among years and among forest types. As a conse-
quence of this modeling procedure alone, carbon bud-
get uncertainty was reduced at the forest-type level
and increased when represented at the national level.
Speci®cally, reductions at the level of forest type were
from a sum of four independent carbon pools to deter-
mine the pdfs to represent inventory, and a di�erence
between two highly correlated distributions to deter-
mine the pdfs to represent ¯ux. As these forest-type

Fig. 5. E�ect of covariability among projections on apparent uncertainty of summed carbon inventory for 2040. Note that the areas under the

probability densities sum to one.
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level pdfs Ð inventory and ¯ux Ð were summed for
national estimates, the generally positive correlations
among the individual forest types in¯ated uncertainty
relative to an assumption of independence. Ostensibly,
such results may be viewed as mere modeling consider-
ations, however, they are perhaps more important as
considerations for evaluating information provided by
models. Knowing the consequences of how the num-
bers are put together are an early step toward applying
model results in assessments or policy.

4. Conclusions

We estimated the uncertainty in carbon inventory of
privately owned forests in the US as approximately
29% (2000 million metric tons) of the estimated me-
dian in the year 2000, with this range covering the cen-
tral 95% of the distribution. Uncertainty in ¯ux
ranged from approximately 228 million metric tons
over the period 2001±2010 on an annual average basis,
to 224 million metric tons annually over the period
2031±2040. (Note the di�culty in interpreting relative
uncertainty as a percentage as the median approaches
zero.) The soil carbon component contributed most to
the overall uncertainty of carbon inventory, followed
by the tree carbon component. Uncertainties in volume
growth and removals were most in¯uential in estimat-
ing uncertainties in carbon ¯ux.

Our results are best considered an iterative step in a
process to identify uncertainties and improve model
estimates. All projections are a result of model
assumptions, and our results are no exception. Uncer-
tainties de®ned for these simulations were a subset of
the many uncertainties inherent in such a comprehen-
sive projection. Uncertainties in issues such as land
use, management, economics, and climate, as well as
the uncertainties de®ned here all necessitate continuous
improvements. Expected values and uncertainty in pro-
jected forest carbon budgets are likely to continue to
change as uncertainties in assumptions and underlying
data are better described. However, our results do
suggest that di�erentiating between 10 or 20% error in
some empirical relationships or model projections may
have less e�ect on results than clearly understanding
how model parts are related. In addition, results indi-
cated that the most e�ective ways of reducing uncer-
tainty in carbon ¯ux would di�er from those required
to reduce uncertainties in carbon inventory.

Acknowledgements

This study was made possible by the ®nancial sup-
port of the USDA Forest Service Northern Global
Change Research Program. We thank Richard Bird-

sey, Jari Liski, David Williams, and two anonymous
reviewers for helpful comments on the manuscript.

References

Adams, D.M., Haynes, R.W., 1980. The 1980 timber assessment

market model: structure, projections, and policy simulations.

Forest Science 26, 64 Monograph 22.

Alig, R.J., Hohenstein, W.G., Murray, B.C., Haight, R.G., 1990.

Changes in Area of Timberland in the United States, 1952±2040,

by Ownership, Forest Type, Region, and State, General

Technical Report SE-64, USDA Forest Service, Southeastern

Forest Experiment Station, Asheville, NC. 34 pp.

Birdsey, R.A., Heath, L.S., 1995. Carbon changes in US forests. In:

Joyce, L.A. (Ed.), Productivity of America's Forests and Climate

Change, General Technical Report RM-271, USDA Forest

Service, Rocky Mountain Forest and Range Experiment Station,

Fort Collins, CO, pp. 56±70.

Brown, K., Adger, W.N., 1994. Economic and political feasibility of

international carbon o�sets. Forest Ecology and Management 68,

217±229.

Conover, W.J., 1980. Practical Nonparametric Statistics, 2nd ed, ed.

John Wiley & Sons, New York.

Cullen, A.C., Frey, H.C., 1999. Probabilistic Techniques in Exposure

Assessment. Plenum Press, New York.

Hansen, M.H., Frieswyk, T., Glover, J.F., Kelly, J.F., 1992. The

Eastwide Forest Inventory Database: Users Manual, General

Technical Report NC-151, USDA Forest Service, North Central

Experiment Station, St. Paul, MN, 48 pp.

Hattis, D., Burmaster, D.E., 1994. Assessment of variability and

uncertainty distributions for practical risk analyses. Risk

Assessment 14, 713±730.

Haynes, R.W., Adams, D.M., Mills, J.R., 1995. The 1993 RPA

Timber Assessment Update, General Technical Report RM-259,

USDA Forest Service, Rocky Mountain Forest and Range

Experiment Station, Ft. Collins, CO, 66 pp.

Heath, L.S., Birdsey, R.A., Row, C., Plantinga, A.J., 1996. Carbon

pools and ¯uxes in US forest products. In: Apps, M.J., Price,

D.T. (Eds.), Forest Ecosystems, Forest Management and the

Global Carbon Cycle, NATO ASI Series I: Global

Environmental Change, vol. 40. Springer-Verlag, Berlin, pp. 271±

278.

Heath, L.S., Birdsey, R.A., 1993a. Carbon trends of productive tem-

perate forests of the conterminous United States. Water, Air, and

Soil Pollution 70, 279±293.

Heath, L.S., Birdsey, R.A., 1993b. Impacts of alternative forest man-

agement policies on carbon sequestration on US timberlands.

World Resource Review 5, 171±179.

Heath, L.S., Smith, J.E., 2000. Soil carbon accounting and assump-

tions for forestry and forest-related land use change. In: Joyce,

L.A., Birdsey, R.A. (Eds.), The Impact of Climate Change on

America's Forests, General Technical Report, USDA Forest

Service, Rocky Mountain Research Station, Ft. Collins, CO, (in

press).

Ho�man, F.O., Hammonds, J.S., 1994. Propagation of uncertainty

in risk assessments: the need to distinguish between uncertainty

due to lack of knowledge and uncertainty due to variability. Risk

Analysis 14, 707±712.

Iman, R.L., Shortencarier, M.J., 1984. A FORTRAN 77 Program

and User's Guide for the Generation of Latin Hypercube and

Random Samples for Use with Computer Models. Sandia

National Laboratories, Albuquerque, NM and Livermore, CA.

Ince, P.J., 1994. Recycling and Long-Range Timber Outlook,

General Technical Report RM-242, USDA Forest Service, Rocky

L.S. Heath, J.E. Smith / Environmental Science & Policy 3 (2000) 73±82 81



Mountain Forest and Range Experiment Station, Ft. Collins,

CO, 23 pp.

Mills, J.R., Kincaid, J.C., 1992. The Aggregate Timberland

Assessment System Ð ATLAS: a Comprehensive Timber

Projection Model, General Technical Report PNW-GTR-281,

USDA Forest Service, Paci®c Northwest Research Station,

Portland, OR, 160 pp.

Morgan, M.G., Henrion, M., 1990. Uncertainty: A Guide to the

Treatment of Uncertainty in Quantitative Policy and Risk

Analysis. Cambridge University Press, New York.

Morgan, M.G., Dowlatabadi, H., 1996. Learning from integrated

assessment of climate change. Climatic Change 34, 337±368.

Peck, S.C., Teisberg, T.J., 1996. Uncertainty and the value of infor-

mation with stochastic losses from global warming. Risk Analysis

16, 227±235.

Plantinga, A.J., Birdsey, R.A., 1993. Carbon ¯uxes resulting from

US private timberland management. Climatic Change 23, 37±53.

Powell, D.S., Faulkner, J.L., Darr, D.R., Zhu, Z., MacCleery, D.W.,

1993. Forest Resources of the United States, 1992, General

Technical Report RM-234, USDA Forest Service, Rocky

Mountain Forest and Range Experiment Station, Ft. Collins,

CO, 132 pp.+map. [Revised, June 1994].

Siegel, E., Dowlatabadi, H., Small, M.J., 1995. Sensitivity and uncer-

tainty analysis of an individual plant model and performance of

its reduced form versions: a case study of TREGRO. Journal of

Biogeography 22, 689±694.

Smith, A.E., Cramer, W.P., Dixon, R.K., Leemans, R., Neilson,

R.P., Solomon, A.M., 1993. The global terrestrial carbon cycle.

Water, Air, and Soil Pollution 70, 19±37.

Smith, J.E., Heath, L.S., 2000a. Considerations for interpreting

probabilistic Estimates of Uncertainty of Forest Carbon. In:

Joyce, L.A., Birdsey, R.A. (Eds.), The Impact of Climate Change

on America's Forests, General Technical Report, USDA Forest

Service, Rocky Mountain Research Station, Ft. Collins, CO, (in

press).

Smith, J.E., Heath, L.S., 2000b. Identifying in¯uences on model

uncertainty: an application using a forest carbon budget model.

Environmental Management, (accepted).

US Environmental Protection Agency, 1995. Climate Change

Mitigation Strategies in the Forest and Agriculture Sectors, EPA

230-R-95-002, 64 pp.

Turner, D.P., Koerper, G.J., Harmon, M.E., Lee, J.J., 1995. A car-

bon budget for forests of the conterminous United States.

Ecological Applications 5, 421±436.

van der Voet, H., Mohren, G.M.J., 1994. An uncertainty analysis of

the process-based growth model FORGRO. Forest Ecology and

Management 69, 157±166.

Vose, D., 1996. Quantitative Risk Analysis: a Guide to Monte Carlo

Simulation Modelling. John Wiley and Sons, Chichester,

England.

Dr Linda Heath has degrees in forestry and quantitative resources

management from the University of Illinois and the University of

Washington. She is currently a Research Forester with the USDA

Forest Service, and Team Leader for developing carbon budget esti-

mates for US forests.

Dr Jim Smith has degrees in biology and plant biology from Rice

University and Louisiana State University. He is currently a

Research Plant Physiologist, and a member of the team developing

carbon budget estimates for US forests.

L.S. Heath, J.E. Smith / Environmental Science & Policy 3 (2000) 73±8282


