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ABSTRACT

Diameter growth of a tree in most gap-phase models is limited by light, nutrients, moisture,

and temperature. Growing-season temperature is represented by growing degree days (gdd), which is the

sum of the average dailY temperatures above a baseline temperature. Gap-phase models determine the

north-south range of a species by the gdd limits at the north and south boundaries of the realized niche.

An assumption of these models is that a species will reach maximum diameter growth at the midpoint

of its gdd range and that growth will taper parabolicallY to gdd limits. One might assume that diameter

growth would increase toward the southern edge of a species realized niche, and that factors other than

temperature would determine the southern boundary.

The USDA Forest Service has remeasured the diameters of approximatelY 200 species of

trees in the eastern United States, storing this information in a geo-referenced data base. Environmental

data have been assembled from nationwide GIS coverages, including soils, digital elevation maps,

climate data bases, and others. Using these data we developed and tested two methods in addition to the

gap-phase model to model changes in annual diameter growth over the geographic range of species

occurrence. Stepwise Regression (SR) and Regression Tree Anafysis (RTA) were used to determine the

environmental and geographic variables associated with different rates of diameter growth across the

species range. SR provided a linear approach to model and predict diameter growth. RTA is an

exploratory technique for uncovering structure in data and fitting models by recursive partitioning of the

data. RTA is better at capturing interactions between variables than traditional linear models. These

modeling techniques are demonstrated with shortleaf pine, Pinus echinata.

INTRODUCTION

Gap-phase (or gap) models are used widely to simulate forest response to
management or environmental change (Urban etal1991; Shugart and Smith 1996). An
important use of these models is simulating the effects of predicted global climate
change on the long-term composition of forest tree species from increased greenhouse
gases (Solomon 1986; Solomon and Bartlein 1992; Bowes and Sedjo 1993; Bugmann
1996; Talkkari and Hypen 1996). Individual-tree survivability and mortality are
determined by the rate at which the tree's diameter increases. These models use
competition for light, water, and nutrients to reduce the potential diameter growth of a
tree. The first-generation gap models (based on the equations in JABOWA, Botkin et al
1972) rely on an accumulation of the number of days and the degree to which the air
temperature exceeds a threshold temperature within a calendar year (growing degree
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days or gdd) to determine the potential diameter growth for a tree. This potential
growth is then decreased, by species, based on site-specific moisture, light, and nutrient
availability. A north/south range for a species is defined by the gdd limits of the

species' realized niche. To maintain a species within the assigned gdd range, potential
diameter growth is assumed to be maximized at the midpoint of the gdd range,
decrease parabolically toward the extremes, and equal zero at the extremes (figure 1).
Botkin et aL (1972), the originators of the gap model, derived this relationship from the
observations of relationships of net photosynthesis and immediate temperature and the
apparent coincidence of species ranges and temperature isotherms (Botkin 1993).
Multiple years of litde or no diameter growth trigger mortality for the trees in these
simulations. Thus, the tree species cannot survive beyond its assigned gdd range due to
a lack of diameter growth. Many ecologists believe that the failure of a species to
survive outside of its realized niche is due to factors other than temperature, such as
competition from species better adapted to the ecological conditions at the extremes of
a species' range (Bonan and Sirois 1992; Bugmann et aL 1996; LoeWe 1996; LoeWe and

LeBlanc 1996; Schenk 1996). The assumption that diameter growth is so closely tied to
gdd has been cited as a major flaw in the gap models that use this potential annual
diameter growth equation (GAP). This equation is being replaced in newer versions
(Bugmann etaL 1996).
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Figure 1. Actual county-level annual diameter-growth rates and those predicted by the
GAP algorithm plotted over average growing degree days for each county.

The processes responsible for individual-tree diameter growth include the
mechanisms that determine carbon ~ocation throughout the tree. Models of these

processes have been developed for a several species (Korol et aL 1996, Retzlaff 1996),
but many others still lack this information. Regional models will require
parameterizations of many more species before process models of diameter growth are
useful. Data are available to develop empirical regional models of annual diameter
growth for most tree species in the United States.

Empirical growth modelers have found that basal-area growth is a better
indicator of tree growth than change in diameter (Hilt 1983; Hilt and Teck 1989; Shifley
1987). Diameter growth of larger trees slows due to size while the increment of
circumference of wood area may not decrease. We present a method to model the
changes in both diameter and basal-area growth over the geographic range of species
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occurrence. The USDA Forest Service has remeasured the diameters of approximately
200 tree species in the eastern United States, storing this information in a

geo-referenced data base (Hansen et aL 1992). Environmental data have been assembled
from nationwide GIS coverages including soils, digital elevation maps, climate data

bases, and others (Olson et aL 1980; Soil Conservation Service 1991; U.S. Environ. Proto

Agency 1993; U.S. Geol. Surv. 1987). Regression Tree Analysis (RTA) was used to
determine the environmental and geographic variables associated with different rates of
diameter and basal-area growth across the species range. We demonstrate this RTA

modeling technique with shortleaf pine (pinus echinata), and compare our predictions
with those obtained with forward stepwise linear regression (SR) and the model used in
the first-generation gap models (GAP).

STUDY LIMITATIONS

A study of this type carries a suite of assumptions and limitations that must be
stated. These fall into the following categories: data inputs, analysis, and biology.

Data inputs.-When multiple GIS layers from disparate sources and scales are
overlaid, there are error propagations throughout the data (Walsh 8t aL 1987). This
impact is minimized in this study because a large sampling unit, the county, is the
common spatial unit, though the scale of impact of some factors is much smaller than
the county, i.e., some cQunties are highly diverse and some important ecolo~cal factors
could be averaged out at the county scale. For example, small zones of high elevation,

bottomlands, or unique soils, may be lost in the averaging process. Also, there is error
associated with the Forest Service's Forest Inventory and Analysis (pIA) sampling, i.e.,
these data were not collected with the intent of developing diameter-growth models,

intervals between remeasurements are inconsistent, and measurements of diameter at
breast height (dbh) were not taken by the same people or possibly at the same height

following long intervals between measurements.

Anafysis.-Correlation among variables may cause some of the regression trees
to be less interpretable than they might be if a fewer number of interpretable and

independent variables were used. However, there are fewer problems related to
multicolinearity with RTA than with linear methods, since the models are rule-based
rather than parametric (Moore 8t aL 1991). ForWard stepwise regression typically avoids
such problems by using only the independent variables that most improve the fit of the
model. ,

Bi%gy.-Neither the RTA nor the stepwise methods described here account
for physiological processes in the model outputs. We are not modeling the processes

associated with diameter growth but modeling the empirical associations between
diameter growth and large-scale ecological variables as surrogates to these processes.
There is no guarantee that the model predictions will behave logically should events
occur that alter the physiological processes.

One advantage of the diameter-growth model used by first-generation gap
models was that it also was used to limit a species range. If the methods developed here
are to replace the diameter-growth equation in these gap models, another method for

detennining a species' range must be implemented, such as those of Iverson et aL (in
press) or Schwartz (1993, 1996; Schwartz et aL 1996). Iverson etaL Uses RTA to predict
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future ranges of tree species based on ilie same information used here. Schwartz (1996)
estimates ilie rate at which a species can migrate across a fragmented landscape.

METHODS

Data

Data were extracted from several sources for the eastern United States. The

county was chosen as the mapping unit because it is the reporting unit for much of

these data and is of similarly size in the East. We evaluated 45 environmental variables

for each of the 635 counties for which shortleaf pine was a dominant or codominant

tree on more than one plot within the county (fable 1).

Table 1. County-level variables and descriptive statistics of the development data set.

Definition Mean Minim MaximVariable

18.1339
4.360
4.205
4.867

25.110
0.838
2.021
77.129
51.611
0.293
1.621

135.179
11.220
5.702
1.868

20.356
15.164
3.019
11.298
18.384
0.130
0.417
5.694
1.748
9.649

9.720

0.000

2.067

1.161
9.278
0.115

0.000
39.350
25.630
0.122
0.754

78.461
1.009
0.228
0.000
0.910
0.000
0.000
0.000
0.000

0.000
0.000

0.000
0.000
0.000

28.603
19.739
6.603

22.245
39.873
1.510
11.938
100.320
88.760
0.465
7.195

152.400
49.599
8.161
14.590
63.860
58.560
36.640
40.260
93.390
16.930
13.360
99.990
98.46

100.000

TAWC
CEC
PH
PERM
CLAY
BD
INCH3
NOlO
NO200
KFFACT
OM
ROCKDE
SLOPE
PSP
SOILOK
SLSVLTS
SLVSLTS
SLWET
SLRANG
SLWIID
SLNOAG
DISn.ND
ALFISOL
ENTISOL
INCEPTS

,
Total available water capacity (cm)

Catton exchange capacity

Soil pH

Soil permeability rate (cm/hr)
Percent clay «0.002 rom size)

Soil bulk density (gm/ m3)
Weight % of rock 7.620-25.400 cm

% passing sieve No. 10 (coarse)
% passing sieve No. 200 (fine)
Soil erodibility factor, free of rock

Organic matter content (% by
Depth to bedrock (cm up to

Soil slope (%)
Potential soil productivity, m3
Soils with no limitations CO/o)
Soils with severe limits (%)
Soils with very severe limits CO/o)
Wet or stony level soils (%)
Soil suitable for range/forest CO/o)
Soil suitable for forest/wildlife (%)
Soil not suitable for cultivation CO/o)
Disturbed land (%)
Alfisol (%)

Entiso! (%)

Inceptisol CO/o)
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Table 1. County-level variables and descriptive statistics of the development data set

(Cont.).

MOUlSO
SPODOS
UL11S0L
VER11S0
GROWD
ANNMOI
MINEL V
MAXELV
ELVCV
MAYSEP
JARPET
JANT
JULT
AVGT
PET
WINDS
VP
PPT
DBHOLD
GDD

1.721
0.262
78.573
0.660

218.978
41.880
110.625
354.050
24.582
23.569
0.966
4.854

25.921
15.830
74.720
46.520
1382.33
1286.95
28.052

3755.69

0.000
0.000
0.000
0.000

158.000
-7.000
0.000
17.994
6.226
15.900
0.300
-1.730
18.256
8.530

33.130
43.710
974.000
990.000
10.932
1819.07

78.490
59.200
100.000
79.980
281.000
134.000
488.202
1949.88
103.272
27.500
2.200

10.660
29.450
20.630
106.430
67.850
1817.00
1822.00
52.724
5194.87

Mollisol (%)

Spodosol (%)
Ultisol (%)
Vertisol (%)
Number of frost-free days/year
Annual precipitation/PET
Minimum elevation (m)
Maximum elevation (m)
Elevation coefficient of variation
Mean May-September temperature

July-August precipitation/PET
Mean January temperature .(°q
Mean July temperature (oq
Mean annual temperature (oC)
Potential evapotranspiration
Wind speed (m/ second)

vapor pressure (pascals)
Annual precipitation (mm/yr)
Mean initial DBH (cm)

Growing degree days (days/year)

Diameter and basal-area g!:owth values.- The Forest Service has a mandate to

periodically determine the extent, condition, and volume of growth and removals of
timber on the nation's forest land. This is done by six FIA units. Four of these
produced a data base of standard format called the Eastwide Data Base (EWDB) for
the 37 states from North Dakota to Texas and east. These data are stored in three
record types (Hansen et al. 1992): county data, plot data, and tree data. Because the
entire range of shortleaf pine is contained within the counties represented in the

EWDB, that species was chosen for the modeling method d~onstrated here. We used
data from 5,148 forested plots that contained shortleaf pine to summarize desired

county-level information needed for this study. Note that the EWDB does not provide
information on precise plot location, so countywide averages were used for FIA data
(and all other data) in the analyses.

We summarized the information for individual forested plots with shortleaf
pine trees that were relatively free from competition for light. These trees were
classified as dominant, codominant or open grown. Plots had been classified as
poletimber or sawtimber stands indicating that the average dbh (outside bark) was
greater than 12.7 cm (5 inches) or 27.94 cm (11 inches) at 1.37 m (4.5 feet), respectively.
For each tree used in this study, dbh was measured twice over a period of 1 to 20 years.
Basal area was calculated for each tree for both dbh measurements. The difference
between the two dbh and basal-area measures was divided by the time interval between
measurements to obtain annual rates of diameter and basal-area growth for each tree.
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Average rates of growth were calculated for each county that contained at least two
plots with shortleaf pine that met all of the specifications. Descriptive statistics for
annual diameter and basal-area growth are presented in Table 2.

Table 2. County based annual basal-area and diameter growth for shortleaf pine for the

development and validation data sets.

Development (n = 409)

Mean :M:inimum Maximum

Validation
Mean Minimum

(n = 113)

MaximumVariable

2.500 102.750 19.070 2.330 47.540Basal-area growth 19.952

(mm2)

Diameter growth 0.379

(cm)
0.064 1.573 0.387 0.089 1.166

,
Climatic factors. -Monthly means (averaged from 1948 to 1987) of precipitation,

temperature, potential evapotranspiration, windspeed, and vapor pressure for the
current climate were extracted from a data base generated by the Environmental
Protection Agency (1993). These data had been corrected and interpolated into 10 x 10
km grid cells for the conterminous United States. From these data we also calculated
annual means of each of the variables mentioned, and selected two derived factors on
the basis of their physiological importance to tree growth for this region: July-August
ratio of precipitation to potential evapotranspiration OARPE1) (the time most prone to
drought stress in the eastern United States), and May-September (i.e., growing season)
mean temperature (MAYSEP1). The data were aggregated to county averages via

weighted averaging by area. In addition, the GEOECOLOGY (Olson et al 1980)
county-level data base was used to provide county-level estimates of frost-free days

Gdd = ~ [ !ill' -!iaR -
n 2

bl -.ljll! + .ljan)( 1- bl -(.ljll! + .ljan)/2

2 .ljll! -.ljan

(GROWDAYS) and an annual ratio of precipitation to PET (ANNMOIS1). Gdd
values for each county were calculated using a sine-wave equation presented by Botkin

(1993):

where:
7t = 3.1416
tjul = average maximum temperature for July for each county (U.S. Environ.

Proto Agenc;:y 1993)
tjan = average minimum temperature for January for each county (U.S. Environ.

Proto Agenc;:y 1993)
bt = baseline temperature below which, it is assumed, no photosynthesis will

occur.
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Botkin (1993) assumes bt = 4.44°C (40°F), while Urban (1990) uses bt =

S.SSoC (42°F). For this paper, we split the difference and assumed bt = 5°C (41°F).

Soil factors.-- The State Soil Geographic Data Base (STATSGO) was developed by the
USDA Soil Conservation Service (now Natural Resource Conservation Service) to help
meet that agency's mandate to collect, store, maintain, and distribute soil-survey
information for U.S. lands. STATSGO includes data on the physical and chemical soil
properties for about 18,000 soil series recognized in the nation (USDA Soil Conserv.
Servo 1991). STATSGO maps were compiled by generalizing more detailed soil-survey
maps into soil associations in a scale more appropriate for regional analysis (1: 250,000).

Preprocessing was required before maps of particular attributes could be
produced on a national scale. We selected 15 variables related to tree-species habitat:
pH, available water capacity, organic matter, permeability, bulk density, cation-exchange
capacity, depth to bedrock, K factor, slope, potential soil productivity, and several
variables related to texture (e.g., percent clay, percent coarse fragments, percent volume
of soil flowing through screens with meshes of various sizes). Calculations were

performed by depth layer and spatial distribution, as described in Iverson et aL (1996),
to create county weighted averages.

Additional soil information was obtained from the GEOECOLOGY data
bases (Olson et aL 1980), including percentage of the county in each of seven soil
orders, five levels of limitations for agriculture, level of disturbance, and suitability to
range, forest, or wildlife.

Elevation.-- Maximum, minimum, and variation of elevation (i.e. coefficient of variation
of elevation within the county) were derived for each county from 1:250,000 U.S.

Geological Survey (USGS) Digital Elevation Model files obtained from the USGS
internet site (U.S. Geol. Surv. 1987).

Regression tree analysis

A relatively new technique being used in the ecological sciences, RTA, uses
iterative splitting of the data to develop empirical relationships between response and
predictor variables rather than requiring the more restrictive distributional assumptions
in classical regression functions. This alternative modeling approach creates models
that are fitted by binary recursive partitioning whereby a data set is successively split
into increasingly homogeneous subsets that elucidate relationships between predictor
variables and the response variables (Clark and Pregibon 1992). Thus, RTA is much
more flexible than classic statistical methods in uncovering structure in data that have
variables that may be hierarchical, nonlinear, nonadditive, or categorical in nature. RTA
is rapidly gaining in popularity as a means of devising prediction rules for rapid and

repeated evaluation, as a screening method for variables, as a diagnostic technique to
assess the adequacy of linear models, and for summarizing large multivariate data sets
(Clark and Pregibon 1992).

In order to split the data, observations are ordered for each predictor variable.
Calculating the value of each predictor variable produces the minimum variance within
each resulting subset. The predictor variable that produces the most homogenous
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subsets is chosen to split the data; this process is repeated for each subset. RTA models
the response as a discontinuous fwlction of the predictors.

There are several key advantages in using RTA in our application; which
covers a wide spatial domain, over classic statistical methods (Verbyla 1987; Michaelsen
eta/. 1994; Breiman et al1984): (1) adeptness ofRTA to capture nonadditive behavior,
where relationships between the response variable and some predictor variables are

conditional on the values of other predictors. Interaction effects can be elucidated

effectively by first sub setting the data by the first predictor, then identifying two
different predictors to subset the data at the next level of analysis, and so on, until the
terminal nodes are reached. RTA does this sub setting without specifying the interaction
terms in advance of the statistical analysis (as is required in multiple linear regression).
For example, in our study, the factors associated with the northern limit for a species
may differ greatly from the factors that regulate the southern limit of the species, (2)
This advantage allows, in effect, a stratification of the country so that some variables
may be most related to the diameter growth of a species for a particular region of the

country, while a differen~ set of variables may apply elsewhere. The same variables need
not apply equally everywhere. See Breiman et a/. (1984), Clark and Pregibon (1992),
Michaelsen et a/. (1994) for details on the regression and classification tree analysis. For
this paper we used RTA with SYSTA Tv. 7.0 (SPSS 1997).

Stepwise regression analysis

The SR procedure available in most statistical analysis packages (SAS 1990;
SPSS 1997), can be used to create a parsimonious model from a large number of
independent variables that may be correlated. The resulting model usually contains
independent variables that are not higWy correlated. P-values for entry into and
removal from the model were set at 0.05. Tolerance for correlated independent
variables was set at 1.0x10-11. Since the process of entering and removing these
variables from the model is iterative, the significance and fit statistics (e.g., RZ) usually
associated with regression models are inflated and should be viewed skeptically (SPSS

1997). These statistics are valid for a priori models only, so the models should be tested
for validity on an independent data set, as was done for this study.

The models parameterized with the development data set were applied to the
data that was set aside for validation. Our interest was in comparing the newly
developed algorithms with those used in gap models and the algorithms' abilities to
predict diameter growth. Therefore, all comparisons were conducted with the estimates
of diameter growth. Model performance was evaluated on accuracy and precision. As
defined here, accuracy measures whether the predictions are consistently higher or
lower than the actual values. Precision is a measure of the spread of the prediction
errors. The statistics calculated for each measure are, for accuracy:

486



and precision:

1 ~ A )2
MeanSquand EmIr=n~ z.( Yi- Yi

i=1

where:
nv = number of counties in the validation data set
yAi = predicted diameter growth for county i
Yi = actual diameter growth for county i

i = county index (l,...,nv).

Bias is a measure of how close the mean of the predicted values is to the mean
of the actual observations. Mean Squared Error (MSE) measures the average squared

distance between the predictions and the actual observations.

RESULTS

RTAModel
Plots of the residuals over the predicted values of the RTA models for

diameter and basal-area growth indicated that the variance of the errors increased as the
predictions increased. Therefore, natural log transformations were calculated for the
variables and the models were reanalyzed (figure 2a-b).

The percent reduction in error (PRE) is a fit statistic used by SYSTAT with
RTA analysis. PRE represents the proportion of variation in the data explained by the
model similar to R2 (SPSS 1997). The PRE statistic for the log diameter growth model
(0.725) was higher than that for the log basal-area growth model (0.520). This is

contrary to findings of other empirical mpdelers of diameter growth (Hilt 1983; Hilt
and Teck 1989; Shifley 1987), who found that basal-area growth is a more predictable
variable. However, the trees used in this study were constrained to be the largest, and
fastest growing, so there were fewer differences in initial diameter than in the entire
population of shordeaf pine trees. Thus, in the remainder of this paper, we focus on the
results of the diameter-growth model.

If allowed, RTA would continue until each observation was identified as a
node in the tree. We adjusted the tolerances of the procedure so that each node
contained at least five observations. The tree fit for this study contained 31 terminal
nodes. We "pruned" that tree to the most significant 21 nodes (figure 3). The first split
in the tree was based on average temperature for the months of May through
September, which is highly correlated to gdd (r = 0.97). Further divisions were

-determined by variables related to the suitability of the land t~ forestry and agriculture,
soil chemistry, coarseness of the landforms, and initial dbh. The separations appear
logical such that it is predicted that counties with warmer climates, less slope, and more

permeable soils will have larger diameter growth rates.
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Stepwise model

When the SR procedure wa.s used to fit diameter growth to the independent
variables, a plot of the residuals again indicated that the variance was heterogenous. A
natural log transfomlation was perfomled and the model was refit. All independent
variables were available for selection regardless of possible multicolinearity. However,
none of the variables chosen was highly correlated with each other. As in the RTA

model, MA YSEPT (growing-season temperature) was the first entered, followed by
variables indicating lands suitable for forests, nutrient availability, and the average initial
dbh within the county (fable 3). Even though the R2 value (0.383) is inflated due to the

non-a priori character of the method, it is less than that of the PRE statistic of the RTA
model. Plots of the residuals versus the predicted values and predicted versus actual
values are shown in figure 2c-d. As in the RTA model, relationships between the
independent and dependent variables are reasonable: counties that are wamler, flatter,
and more fertile have larger diameter-growth rates. However, this model recognizes the

negative relationship between ANNMOIST and diameter growth calculated from the
FIA data. Diameter groWth was not correlated to annual precipitation but was

positively related to PET, probably because increased temperatures were needed to
increase PET. And since PET is the divisor in the ANNMOIST calculation, a negative

relationship would be expected. The RTA algorithm did not select a variable related to

precipitation.

Table 3. Variables and coefficients developed by the SR model of the natural log of
diameter growth (adjusted R2=O.391); variables are in order of entry into the model.

Constant

MAYSEFf

SLWILD

CEC

PH
SLWET

DBHOLD

INCH3

OM

ANNMOIST

PET
SLOPE

-3.71437

0.12791

0.01006

0.01125

0.11638

0.01180

-0.01220

0.04090

0.08504

-0.00488

-0.00940

-0.00854

0.00000

0.00000

0.00000

0.02208

0.00035

0.00534

0.00207

0.00077

0.00358

0.00039

0.00076

0.04673
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Gap Model

No algorithm was developed and no alterations were made to the existing
GAP algorithm based on the development data set. Applying the GAP algorithm to

this data set was for demonstration purposes only. Maximum diameter, maximum
height, growth factor, and growing degree-day range for shortleaf pine as used by
Solomon (1983) and the GAP algorithm used in ZELIG ({)rban 1990) were combined
with the gdd calculations presented previously to esrimate diameter growth for the
counties in our development data set; oprimal soil moisture and ferrility were assumed
(figure 1). Modifying these esrimates for low moisture availability and low fertility
would not improve the esrimates. The plot of residual versus predicted diameter-
growth values and predicted versus actual diameter-growth values are presented in
figure 2e-f.

Validation

Twenty-five percent of the observations (113 counties) were randomly set
aside as a validation data set. Bias and MSE statistics were calculated for the models as
applied to the validation data set (figure 4). The high level of bias for the SR and GAP
algorithms indicates that these methods consistently overestimated diameter growth for
the counties. However, the average error of the estimates for the SR algorithm was
smaller based on the MSE. Both RTA and SR algorithms outperformed the GAP
model in accuracy and precision.

0.035 0.040

..-,. 0.035
e
u
..0.030

~g 0.025
g 0.020
~
] 0.015
~
5- 0.010'"
H 0.005
~

0,000

0.030

0.025

0.020

0.015

5'~ 0.010
~ 0.005

0.000
RTA Stepwise Gap

Figure 4. Comparison of the accuracy and precision of the RTA, SR, and GAP
algorithms in predicting annual diameter growth of shortleaf pine when applied to an
independent validation data set.

Diameter-growth measurements of the development and validation data sets
were combined to prod~ce the maps in figure 5. The predictions calculated using the
RTA and SR approximate actual diameter growth better than the GAP predictions. The
RTA algorithm tends to better identify the pockets of high growth rates at the northern
range boundary than the SR algorithm.
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CONCLU~IONS

RTA and SR provided algorithms that performed better than the GAP
algorithm in predicting annual diameter growth based on statistical measures of
accuracy and precision. The advantages of the GAP algorithm are that it is based on

plant growth processes, is general to all species, performs with little site-specific data,
and provides a mechanism to limit species ranges. This study showed that some of the

assumptions used to develop the algorithm are false, at least for shortleaf pine.
Diameter growth does not necessarily approach zero near the edges of a species gdd
range. In fact, for shortleaf pine, some of the highest growth rates are near the range

boundaries. Therefore, species ranges should not be determined solely by seasonal

temperature ranges. .
The site-specific data required by the RTA algorithm might seem obscure, but

were readily calculated from publicly available GIS coverages. We intend to develop
algorithms for more than 100 species of trees in the eastern United States, but at a finer
scale. Algorithms of this o/Pe could replace the GAP algorithm in the gap models,

allowing competition for light, water, and nutrients to determine species ranges as
opposed to gdd limits. This information would provide for a persistence of species at
the southern edge of their realized niche in simulations of climate change.

An efficient, realistic, general mechanistic model of diameter growth should
be developed. These are being developed for certain species (free-BGC, Korol et at.

1996; TREGRO, Retzlaff et at. 1996). The scientific parameterizations of these
algorithms for the tree species of the world will take time.

-
0.15 0.30 0.45 0.60 0.75

Anmal Diamerer Growth ~re (cm)
0.90 1.05

Figw:e 5. Comparison of actual diameter growth of shortleaf pine in the eastern United
States and that predicted by three algorithms.
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