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_. The study of forest landscape change requires an fragmented forest landscape (approximately 500,000
understanding of the complex interactions of both ha) in northern Wisconsin. We compared the simu-
spatial and temporal factors. Traditionally, forest gap lation results of a map with tree species (seed source
models have been used to simulate change on small locations) realistically parameterized (the real see-
and independent plots. While gap nrodels are useful nario) against a randomly parameterized species
in examining forest ecologicaldynamics across tern- map (the random scenario). Differences in the
poral scales, large, spatial processes, such as seed initial seed source distribution lead to different

dispersal, cannot be realistically simulated across simulation results of species abundance with species
large landscapes. To simulate seed dispersal, spa- abundance starting at identical levels under the two
tially explicit landscape models that track individual scenarios. This is particularly true for the first half of
species distribution are needed. We used such a the model run (0-250 y). Under the random see-

model, LANDIS, to illustrate the implications of seed nario, infrequently occurring and shade tolerant
dispersal for simulating forest landscape change. On species tend to be overestimated, while midabun-
an artificial openlandscape with a uniform environ- dant and midshade tolerant species tend to be
nrenr, circular-shaped tree species establishment underestimated. The over- and underestimation of

patterns resulted from the simulations, with areas species abundance diminish when examining long-
near seed sources more densely covered than areas term (500 y) landscape dynamics, because stochas-
further from seed source_,. Because LANDIS simu- tic factors, such as fire, tend to make the landscapes
lates at 10-y time steps, this pattern reflects an under both scenarios converge. However, differ-
integration of various possible dispersal shapes and ences in spatial patterns, and especially species
establishment that are caused by the annual varia- age-cohort distributions, can persist under the two
tions in climate and other environmental variables, scenarios for several hundred years.
On real landscapes, these patterns driven only by
species dispersal radii are obscured by other factors, Key words: seed dispersal; dispersal radii; dispersal
such as species competition, disturbance, and land- probability; spatially explicit; landscape model; LAN-
scape structure. To hmher demonstrate the effects DIS; age cohorts; landscape pattern; fire dismr-
of seed dispersal, we chose a fairly disturbed and bance; gap modeh northern Wisconsin.

INTRODUCTION of both long temporal and broad spatial dimensmns.
Tenrporally, forest ecosystems may take hundreds of

The challenges in studying forest landscape change years ro undergo significant successional change.
come from two fundamental aspects: the relevance Factors that operate on such long time spans ntay go

undetected by many commonly used field expen-
Receivt'd 24 No_ember 1998; accepted 17 Nlar¢h /999.

*G_rrespoll,lhlgauthor:e*m,lil:hshe@tacstaff.wi$c.edu ments. Such approaches often are based on rela-
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theIy short observation periods that inay not cap- ers 1989}, SORTIE iPacakl and o_hers 1993, 1996L
ture tire full range of stochastic events. Spatiall 3, and FACET (Urban and Shugart 1992; Urban and
forest landscape change can be strongly aifected lot' others 1999), have incorporated more spatial inter-
centuries by the heterogeneity of _ege_atioo distri- action than the eariier JABO'vVA-FORET types of
bution at an initial poirtt (Baker 1992; Wallin and gap models. FACET considers interaction of directly
others 1996; Foster and others 1997; He and Mlad- neighboring plots when simulating seed dispersal
enoff 1999), which is in turn affected by variation in (Urban and others 1999); SORTIE tracks individual
environmental conditions and resources. The inter- tree locations and simulates seed dispersal by using
action of spatial and temporal factors across the mean dispersal distances and seedling density de-
landscape is further complicated by interactive hu- fined for each species (Ribbens and others 1994).
man and natural disturbances. Computer simula- But even with state-of-the-art computers, these
tion modeling is a useful tool for understanding new models are still limited to simulating relatively
these large (10")-106 ha), long-term, complex sys- small sections of landscapes (for example, less than
terns. With modeling techniques, it is possible to l 0 ha; Pacala and others 1996; Caspersen and others
describe the modded objects mathematically and 1999), because the computational loads increase
logically and deduce results that cannot otherwise exponentially with simulation area (He and others
be investigated, especially at broad spatial and tern- 1999b). To simulate large areas by using these
poral scales (Turner and others 1995; Gardner and models, spatially inexplicit scaling-up (for example,
others 1999; Mladenoffand Baker 1999a). Acevedo attd others 1995; Keane and others 1996;

Traditionally, forest landscape change has been Urban and others 1999), or simplifying the represen-
modeled by simulating changes in sample plots of tations of some ecosystem processes, are needed.
up to a few hundred square meters, selected within To study forest landscape change in landscapes
various forest types or along environmental gradi- larger than 104 ha, spatially explicit landscape mod-
ents (for example, Pastor and Post 1988; Urban and els are needed that integrate broad-scale spatial and
others 1992; Fischlin and others 1995; Bugmann temporal processes. Landscape models are models
1996). These models are often referred to as gap that simulate large-scale ecological processes, such
models {Botktn and others 1972; Shugart 1984: as seed dispersal, wind and fire disturbances, insect
PastorandPost 1985) and typically did not contain a defoliation {orest disease, and harvesting. In this
high degree of spatial interactions among plots, or study, we illustrate how spatially explicit seed dis-
across a,large landscape, The modeling results are persal is simnlated in LANDIS a raster-based land-
often asstmled to represent the much larger forest scape model. We endeavor to examme how seed
landscape within which plots are located. By using dispersal influences landscape change and how signifi-
noninteracting plots, spatial complexity in ecologi* candy the initial seed source abundance and distribu-
cal processes as well as spatial variation is ignored, tion affects simulation resnlts. We use both an artificial
Ecological processes occurring at spatial extents that landscape and a large landscape _500,000 ha, in north-
cover hundreds or thousands of plots cannot be em Wisconsin, USA toaddress these issues.
simulated with most gap models (MladenofI and
Baker 1999b). METHODS

Seed dispersal is an ecological process that inter-
acts with landscape heterogeneity at broad scales. It LANDIS Model
can influence forest landscape change (Leishman ModelPurpose. Scales, andGeneraIDymlmics, LAN-
and others 1992) because seed sources present on a DIS is designed to simulate forest dynamics at large
given site can affect succession on surrounding sites extents 104-10 _'ha L over long periods of time (for

within certain dispersal distance radii, varying by example, hundreds of yearsl, by simulating indi-
species seed characteristics and dispersal mode vidual species as 10-y age cohorts _Mladenoff and
(Burns and Honkala 1990}..Seed dispersal is often omers 1996). LANDIS is a raster-based model m
described with various mathematical distributions which cells or sites in a grid correspond to the plots

involving dispersal probability and seedling density or stands in gap models. Cell size can be varied from
(Pormoy and Willson 1993; Ribbens and others 10 to 500 m corresponding to a spatial scale that is
1994; Kot and others 1996; Clark and others i998), considered appro.nriate for a given study and input

In gap models, large-scale, contagious processes, data. A 500-y simulation of a 50(]xS00-cell map
such as seed dispersal, usually have been assun'ted with 23 species takes 1 h on a 940 MIPS (compa-
to be either constant or random (Shugart 1984). rable to a Pentiurn Pro 400Hz PC_ compmer. Each
Recent models, such as FIRESUM (Keane and oth- site contains unique species, age cohorts, and envi-
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Table I. Se[ecteciSpeciesLHe HistoryAnlibu{esParamelerizedin LANDIS

Species Lot_g. Manl. ShadeT FireT EI[D MaxD VegP SpAge

A£;ies ba[sa;_tea 150 25 5 1 30 160 0 0
Acer rubrum 150 l 0 3 I 100 200 0.5 150
Acer saa'harunt 300 40 5 1 100 200 0. [ 240

Betula ailegllaniensis 300 40 4 2 100 400 0. l 180
Betula papyrifera _20 30 2 2 200 5000 0.5 70
Fraxinus americana 200 30 4 l 70 140 0. I 70

Picea Sauca 200 25 3 2 30 200 0 0
Pinus banksiana 70 15 l 2 20 40 0 0
Pinus resinosa 250 35 2 4 [2 275 0 0
Pinus strobus 400 15 3 3 lO0 250 0 0

Popu[us grandidentata 90 20 1 2 - 1 - I 1.0 90
Pc_ptdus tremuloides 90 15 l 2 - l - 1 t ,0 120
Prunuspensylvanica 30 tO l 1 30 3000 0 0
Quecus ruba 250 25 3 3 30 3000 O.5 250
Tsuga canade_tsis 450 30 5 3 30 100 0 0

Loner,, ton!le',ios fyear): Matu , ¢_leof"matttri(l, (ycarl; ShadeT] shade toleram'e class: Fire[: fire t_lcram*' class; EfJD. t_)Fctive seeding distance (m): MaiD, tna._'im!lm secdin9
distance: (m): Vcgt_ v_}lemtive"rel,roduct[L_nprobability; SpAge, tm_i_mlm age of l'_Ntativ¢ rcpr_,duction (year)

ronorental information. For each site, individual light condition checking, and site condition check-

species are recorded as presence/absence of iO-y age ing (Mladenoff and fie 1999). Light and site condi-

cohorts. This provides explicit seed source informa- lions affect establishment after dispersal. For any
tion. The model is made up of three general parts: species, seed dispersal distance is modeled as a

landscape scale ecological processes, site or plot function of its effective and maximum seeding

scale ecological processes, and environmental data distances. Effective seed dispersal distance is that for

layers characterized by landtypes that stratify a whichseedhasthehighestprobabifity([orexample,

heterogeneous landscape into relatively homoge- P > 0.95) of reaching a site. The maximum seed

neous units. Landscape scale processes include seed dispersal distance is that distance beyond which a
dispersal, fire and windthrow disturbances, insect seed has near zero probability (for example, P <

defoliation, and forest harvesting. Site scale ecologi- 0.001) of reaching. These distances are derived

cal processes include forest snccessional dynamics (Table 1) from previous literature for various tree

for individual species (age class presence/absence), species (for example, Loehle 1988; Burns at_.d

snob as geedling establishment, species regeneratioi'J Honkala i9901. Seed dispersal probability (P_ be-
(birth t, glowth, death (when reaching longevity), tween the effective tED) and maximum seeding

random mortality, and vegetative reproduction, distance EMDI follows a negative exponential distri-
Landtypes are further grouped into active and non- bntion:
active, The latter contains nonforested sites, such as

water, lowland, and other nonforested classes that p = e -_'_','-_z ,1

are not simulated by LANDIS.
Further information on LANDIS overall model where x ts a given distance from tbe seed source

design (Mladenoff and others1996), model assump- (MD > x > EDL MD is :he ma×imum seeding
lions and behavior (Mladenof[ and He 1999), fire distance, and b is an adjustable coefficient ib > 0

disturbance (He and Mladenoff 1999), species and which can change the shape of the exponential

age-listobjects (He andothers 1999b), modelcalihra- curve con-espnnding to various seed dispersal pat.
tion and result verification (Fie and Mladenoff terns when inlormatk)n is available Figure IL IF x <

1999), and model parameterization (He and others ED, we set P = 0.95. indicating that the probability ot

1996) can be found elsewhere, seed dispersing withixl its own effective seeding distance

Seed Dispersal and Seedlbtg Establishntent Dyttamics. is very higlt, while ii ,_ -> MD. we set o = 0.001.
In LANDIS, the available seed source locations indicating that the probability of seed d spersing beyon¢l

(cells with tree species) and ages are precisely itsown maxinttmt seeding distance isverylow.

defined. Seed dispersal and seedling establishment When seed successfully arnves at a given site, the

prncesses are simulated as several steps: dispersal, light conditkm checking procedure de_ermmes
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regimes also diller by Iandtypes, rctlc'cthrg variabi!-

• . \ --sp_cesa hy in pr_)cluc[ion and dcct_inposhloll rates {tie and

>..: - ]_ soec'es8 MIadenol11999}.

_ss.
e2. i
7 0a - ", Test Landscapes

", First, to illustrate how sect{ dispersal is sinmlated in

i "--'--___. ___ LANDIS, we use an artificial hmdscape containing
0 I four isolated tree seed sources of different species.

EO,, e% i_D,< ,'v_0_. Next, to ctemonstrate rite effects of incorporating

Figure l. Tile negative exponential dislfihution of tree spatially explicit seed source information across a
species seeding probability in relathm to distance from landscalte, we will use all actual landscape and
available seed sources, liD, species effective seeding dis- contpare tire simulation results of landscape change
tance; MD, species maximum seeding distance, arid species abundance based on two seed dispersal

scenarios under a natural fire disturbance regime.

whether seed ngs are allowed to establ{sh based on 1. A landscape with spatial distributions of seed
the shade tolerance rank of the seeding species sources (tree species) as they occur on a real

relative to the species already occurring on the site. landscape, referred to as the real scenario;

For exantple, paper birdr (Betula papyrifera) is a 2. The same landscape with spatial distribution of
shade intolerant species that cannot seed hire a site seed sources in the same proportions as the real
on which hemlock (Tsuga canadensis) is already scenario, but randomly distributed acrnss the

established, When light conditk)ns are favorable to a landscape, referred as tbe random scenario.

species, tile site condition checking procedure deter- Artificial Landscape. A square artificial landscape

mines if the species can establish (Mladenoff and He was designed containing i 0,000 cells ( 100 × 1O0 grid
1999t, The envkonmental conditions of a site, such cell) with cell size equalling 20× 20 m. lVlature sugar

as soil nutrient and water availability may faw/r maple tAter saccharlon), hemlock, white pine (Pinus
certain species over others. The species establish- strobus), and red oak (Ouercus ruba), at age cohorts of
ment coefficient, a number from 0 to 1, is intro-

50 y, are set at the four corner cells, respectively
duced in LANDIS as a relative scaling of how

(Figure 2). The rest nf the landscape is open land for
environnlental conditions favor various species

(Mladenoff and others 1996). These factors are not seed dispersal and seedling establishment. To mini-
nlize variations that affect seed dispersal, we let tile

meci_a nistically simulated. Rather, they are assigned entire artificial landscape contain one landtype, and
probabilities that can be derived empirically or from
the simulation results o[ an ecosystenr process nrodel species establistlnrent coefficients of tile four species

are the same (0.5). We simulated the landscape up
(He and nthers 1999a).

FireDismrbance. Dislurbance issinmlated in cent- to 200 y. At this point nearly all of the open areas

bination with successional dynamics. Fire is simu- were covered by the simulated species.

lated as a stochastic pn)cess based on the distribu- Real La_ldscape. The real landscape we simulated
lion of fire return intervals and fire sizes, derived represents approximately 500,000 ha located in

from existing or historical data ( for example, for the northern Wisconsin (44 ° N, 91 o W), USA. Tile area
northern U.S. Lake States, Heinsdman 1973, 1981; has very little topographic relief, Upland forests

Frelich attd Lorimer 1991; Baker 1992). The distribu- cover approxintately 60°/, of the landscape with
lion of fire sizes and fire return intervals are charac- more forest cover in tile north. Lakes and lnwlands

terized for all landtypes within a simulated land- are acattered on the landscape, occupying 5,2% arm
scape (l-le and Mladenoff 1999). Dry, sandy landtypes 7.5% of [he area, respecitvely. Other nonforest

experience {ire more frequently than mesic land- categories, such as croplands and pastures, occur on

types. LANDIS simulates fires el five classes, reflect- 27.7% of the landscape. Forests arc somewllat

ing fires of low (gnmnd fires) to high ntensitv fragmented, particularly m tim soutil, due to the
(crown fires). Tree species are grouped into five fire large proporthm _40%i of nnnforest categories and

historical logging .Mladenoff and Pastor 1993
tolerance classes, Snrall, yotlng trees are assnFned to

be niore vulnerable than large, oct trees. Fire sevel- Nonforest categories arc not simulated by LANDIS

ity is the interaction of susceptibility (species age and remain static tlimughoui the simulation. This is

classes), species fire tolerance, and fire intensity, all environnlentally heterogeneous region and was
which is determined by the time since last fire, a quantita ively classified into six relatively hnnrnge-

st rrogate for the anlount of fuel. Fuel accumulation neots andh pes based on snil and climate variables
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yoar0 ,at40 and their a_'e classes on the landscape and higher
sugarma_e hemlock [eve[ landscape sn'ucture, such as up[and forest, nonfor-

est, water, and wetlands, with randomized locations of
the distribution of seed sources within forest areas, such

as shown for ttle hemlock {see Figure fib).

.;-x:;>:_" Simulation Controls

_,o0,. ,_aoak " :,-._,,a.,._.: We merged the six landtypes present in the study

y_.r0o ,,1_ area into a single landtype for the real and random

' q scenarios. This minimizes the differences caused by
factors other than seed source distribution and seed/

• .::_" ' " dispersal, such as enviromnental variation at the

broadest scale• Fine scale heterogeneity due to

initial landscape structure, such as forest vs nonfor-
est is retained. All simulations were conducted

under a natural fire disturbance regime with mean

fire return interval of 800 y and fire severity of class

y._ leo _,mr200 5. Because class 5 fires are the most severe, they can

spread while ignoring the vegetation differences

under the real and random scenarios. Fires are
stochastic. Neither the time of occurrence nor the

fire size is repeatable for a given fire. We set the

same random number seed (a nrodel input param-
eter) for different runs. Therefore, the randomly
generated disturbance regimes (individual fires) are
identical in both the real and random scenarios (He

and others 1996). This ensures that the stochastic
IIIIv._._,_ Ill _ NN r_o_ EEJ_,,_ _o_r, results from real and random scenarios were conrpa-

Figure 2. Demonstration of seed dispersal patterns of rable. All sinmlation results were calibrated to en-
four tree species on an artificial landscape: sugar maple, sure that the proposed fire disturbance regimes
hemlock, white pine, and hemlock at year 0, 40, 80, 120, were correctly simulated (He and Mladenoff 1999)
16o, and 200. The corner cells at year 0 represent the Simulated species abundance and distribtltion for
starting poiut for each species, a given time step involves stochasticity such as fire

events; therefore we compare all simulation maps
and mean abundance derived from the time span of

(Host and others 1996}. More details on the study the simulations (50 time steps total}. Individual

area can be found in He and Miadenolf 11999). species abundance at every tO-y time step was
We divided the study area into a 4,854-km 2 grid calculated as the percentage of ceils in the active

containing 121.362 cells (35g×339) with a
200x200-m cell size. Forest composition and age landscape containing a given species, Mean abun-

dance was then calculated as the average ahun-
infornratinn of the study area were parameterized at
the individual species level (presence of 10-y age dance from these individual time steps over the
cohortsL from classified Landsat satellite thematic period of simulation. For the random scenario, we
mapper (TM)imagery (Wolter andothers 1995)and calculated percentage of error of the mean abun-
forest inventory data, by using a method described dance against the real scenario as the standard
by He attd others (1998). This provides the explicit according to the following equation:

location and age classes of seed sources, for ex- °,4,,error "- _randonl mean
ample, hemlock (see Figure 6a). 12

Random Landscape. For the random scenario, we - real mean,treal mean, * 100
kept the distribution of nonforest classes unchanged
and randomized the distribution of each of these Positive numbers indicate the overestimation of

species based on the existing species maps. These species abundance tn the random scenarto, while
new maps preserve the proportion of the species negative numbers indicate the opposite.
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Year0 Year 50 Year 100 Year 150 Year 200 Year250

" ._ _', ' " _ "_'k:.-- _- _'" '".'-_-, " !' _" 'W-'_'_.'k_@",-_'_+_J'=_,'2.."_._., _"'_?"

Year 300 Year 350 Year 400 Year450 _ Year500 Pr_-year150fires

;_ ,,__ _.,_ _,,_,_,_,C_]_.,_. _'-_--.¢{_._ _._"_"_,,_ _ white pine
"_ _-, . _,_.:':<_::, ' '_._"_IF¢._,_...... her
= ,,'_"__. _,_,_,_,.f_ __ :_'_._ _._FZ_ _ _ ot forests

Figure 3. Dynamics of white pine simulated under real and random scenarios from year 0 to 500.

RESULTS (Figure 2). As expected, hemlock, with the shortest
effective and max(reran seeding distance, made the

The Artificial Landscape least progress through the 200-y simulation (Figure
With uniform environmental condittons, species 2). This implies that available _ccd source on the

dispersal and establishment on the artificial land- landscape is important to hemlock abundance due
scape is mainly a function of species seeding capabili- to its relatively low dispersal ability. Tt_e seeding
ties as defined by their effective and maximum seed distances of sugar maple are longer than that of
dispersal distances and relative age to sexual matu- hemlock, resulting in a higher cover of sugar maple
rity. The seedling establishment patterns reflect the than hemlock on the landscape. White pine has the
seeding probabilities defined in Eq. (1) (Figure 1), same effecnve seeding distance and similar maxt-
where areas close to a seed source of given species mum seeding distance as sugar maple, but it dis-
are more densely covered by the species than areas persed much faster than sugar maple. This is be-
further from the seed source. These gradients are cause white pine has the lowest sexual maturity age
obvious from year 40 to year 80 (Figure 2). Species (!.5 y) among the four species (Table 1). The newly
with larger maximum seeding distances (such as red dispersed white pine age cohorts mature more
oak, which can be dispersed at low density but long quickly than the other species• and they can serve as

distance by birds)progressed more rapidly'than the many new seed sources, which in turn increase
other three species. Red oak has the greatest dis- white pine abundance on the landscape.
persal radius but variable probability at the maxi- As observed from year 120 to 200 in the simula-
mum distance (Figt_re 2). With the artificial land- tion, seed dispersal also was affected by the species
scape, spatial patterns of different species reflect relanve shade tolerance and competition.The simple
their seed dispersal radii especially before year 120 circular patterns of species distribution driven by
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seed dispcrsaE radii are obscured _{n'rc the radii o{ renn_ving shade tolerant species, thereby favoring
diifc_em species D_erlap aud spt'cies con_pt,titio;_ _lti!o i_iue estal_lisim_e_t. Ho_evcr. a large, sc_ere

occurs. Such e[lccts were {uund c_pecially for both fh'e can also rcducc white pine abundance, bm_eiit-

white pine aird red oak at years 120, 160, and 200 iug less sl_adc tolerant species, such as paper birch

(Figure 2). At year 200, the [ormerly opei_ /and- and aspen. A spatially explicit seed source is impor-

scape was ahnost completely occupied by forest, tantlorspeciescolonizatiotla{ter fires, asshownby
White pine and red oak seeds cannot establish in the small white pine patches that occur at year 150

areas where hemlock and sugar maple already exist, in the south where the 120-y fire occurred (Figure

However, hemlock and sugar maple, the more 3). White pine encroachntent into tire ()pen space

shade tolerant species, will continue to disperse takes approximately 200 y, and it is largely cote-
under white pine and red oak. In the absence of fire, nized at around year 300. The initial white pine

they willeventual[youtconrpete white pineand red patches in the north are thinned by fires and
oak on this landscape (results not shown). New and eventually broken down to relatively small patches,

complex patterns can be formed front the interac- while new, younger patches formed after fire distur-

lions of other factors interacting with seed dispersal bances in other parts of the landscape [rmn year 250
as will be shown below, to 500 (Figure 3).

In the random scenario, white pine abundance
Real Scenario vs Random Scenario before year 150 is slightly higher than in the real

For real landscapes, multiple locations can be found scenario, and white pine distribution is fairly stable

as seed sources for any given species, Overlap of (Figure 3). The same fire that occurred in the real

species dispersa{ radii is common. The interactions scenario at year 120 also occurred under tile ran_

of species competition and disturbance, plus the dora scenario, as a result of the fixed random
percentage o[ nonforest areas that often serve as number seed (He and others 1996). With maximum

barriers for seed dispersal, make it unlikely to area covered by seed dispersal radii under the

observe species establishment patterns being driven random scenario, white pine colonizes the open
simply by seed dispersal radii. Competition under space created by this fire in approximately 100 y

the real scenario, where the landscape is fully (year 150-250), much faster than the time needed

occupied, complicates the impact of seed dispersal in the real scenario (Fignre 3). Because the overall
on species migration compared with the artificial abtmdance of white pine on the landscape is rela-

landscape, In this study, we are able to trace the lively low, these spatially explicit dynamics are not

spatial dynamics of a given species over the period refJecwd in tbe white pine abundance trajectory

of simulatk)n, lt'_ the sinrulation shown in Figure 3, {Figures 3 and 4dL From year 250 to 500, whRe pine

we chose white pine, a dominant torest species abundance remains relatively stable, with a few sroatl
before European settlement but occtlrring only on fires occurring nil the landscape, causing maps from

approximately 6% of the forested landscape today_ real and random scenarios to converge (Figure 3)

At the beginning of the simu!ation (Figure 3), The random scettario immediately maximizes the
white pine was largely distributed in the northern area that seed dispersal radii cover, and restdts in

part of the study area and occurred only sparsely in some of the largest possible increases in a species
the south due to historical disturbance and environ- abundance over time. This is seen from the percent-

mellt constraints. Because we assunled a houIog- age of error estimates for most species, espec'ial_y for
enous environment for the entire landscape, white the first 250 y (Figure 4), indicating the increasing

pine ntigration south is expected, As simulated, the divergence between real and random scenarios.

migration of white pine is a gradual process that However, as the runs continue this difference
interacts with disturbance, seeding, and eoinpeti- gradually decreases (Figure 4), and the percentage

tion {Figure 3). Although white pine has early of error estimates are lower than m the first half of

maturity and great seeding ability, as shown on the the simulation (discussed later), For the first half uf

artificial, open landscape (Figure 2i, its seedlings the model run, tire highest overestimates m tile
cannot establish on sites already occupied by shade randmu scenario (average percentage of error aero,._

tolerant species, such as sugar maple and yellow 0-250 I,') arc' found for tt_e least ahundant specie_

birch, which are common in this area. A relatively (Figure 5), snch as hemk)ck 117,4°A j, jack pine
stable state for white pil_e prevails for approxi- {36.0%), redpine (li.5%), and white pine (4.1%i.

mately the first 100 y until the forest ages. During Overestimates in the random scenario lor the abun-

this period, there is a gradual accumulation of fuel, dant and shade tolerant species are low _lor ex-
and the fire probability increases. A significant {ire ample, sugar maple 0.6%, fire lowest among all

occurs at year 120 {Figure 3}, creating open space by species). These overestimates decrease during the
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Real _Random 4oo ....

50 i_ ............................. 300 __
40 _ a)hemlock 200

20 _ o.o

10 -to.oI ...........-20.0 __

0 -ao.o

4 ° g o° g g g _ g g g 8_
b) jack pine Years

3

__ Figure 5. Percentage of error of species abundance in the

rarldom vs real scenarios caktdated as [(random-real//
real '_ IOOI across 500-y simulation. Positive numbers

1

o_ __.._,._ indicate an overestin'tation of species abundance underthe random scenario; negative r_unrbers indicate an under-
0 estimatkm.

15
.<

12 dance is more variable under the real scenario than
9 that under the random scenario.

6 The difference between the two scenarios be-

comes more obvious when examining species age-
3 cohort distribution. For example, hemlock, histori-
0 cally a dontinant species in this area, is young and

25 _ not common, with the majority around 30-60 y okt

20 j d) white pine (Figure 6a). It is distributed as a few large patches in

the north and scattered seed sources in the south15 1 (Figure 6a). This spatial structure was randomized
10 (Figure 6b). It is interesting to note that hemlock

distribution in the south is very similar on both

5 I landscapes (Figure 6a and b). At year 200, tile
0 ' -- ...... spatial patterns become very similar in the south on

o ko° o° om o° m° o° to° o° to° Oo both landscapes due te stochastic fire disturbance
•-- ,- _ ea m m _- ._- to and the similar starting conditions (Figure6candd).

Years However, the initial, young hemlock patch in the
northeastern area has succeeded into a large old-

Figure 4. Simulated abmtdance for (a) hemlock, (b)jack growth patch approximatdy 210 y old (Figure 60.
pine, (el red pine, and (dr white pine under real and These pattemsare not reflected in the random scenario,
random seed sotlrce distributkm scenarios.

DISCUSSION

second half of the model run (250-500 y; Figure 5), Simulation Approach Implicationswith hemlock (16.6%),jack pine (17.2%), red pine
(3.9°5 L and white pine t-1.1%). Negative percent- Tree species seed dispersal curves lead to a circular-
age of error indicates an underestimate under the shaped species distribution pattern on the artificial
random scenario. Underestimates occur for mid- landscape. Because LANDIS simulates at 10-'7 thne

shade tolerant, midabundant species, such as yellow steps, this pattern reflects an integration across
birch [B. alleghaniensis) and red oak in the random annual variatkm and possible dispersal shapes and
scenario (Figure 5). Red oak was underestintated establishment that might be caused by the vartation
(-0.9%t from year 0-250, as were yellow birch in climate ane other enwronmental variables ,Houl6
(-3.4%) and paper birch (-3.7%). These nnderesti- 1998 .. Shapes ot seed dispersal probability curves
mates increase froth year 250 to 500 with red oak are affected not only by dispersal distances bttt also

1-16.5%), yel'tow birch (-8.l%), and paper birch by the coellicient b tEq, II, which cnrrenflv is a
(-13.9%) (Figure 5). For less abundant, shade constant (b = 1.0i in LANDIS. floweret, varions
intolerant species, such as jack pine, species abun- species may be nrore specifically described with
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Year 0 Year 200 Year 300

N _ water m 60-90 yr _ 180-210 yr

A 0 25 50KM _ non-forest mUl 90-120 yr m >210 Yr<30 yr _ 120-150 yr _ other tree species
30-60 yr _ 150-180 yr

Figure 6. Hemlock seed sources distribution and spatial pattern under the real and random scenarios a[ cal and lb) year 0
(c) and (d) year 200, /el and Ifi year 300, respectively, illustrating that the initial dif[erence of seed source distribution on
the landscape can last several hundred years

dispersal curves of different shapes fPortnoy and not simulated as can he done in other models that
Willson I993). It is feasible for LANDIS to further track individual trees _for example, Ribbens and

parameterize b by species when the information is others 1994.. Investigations represennng seed den-
available. Under the real scenario simulation, seed sity at large, spatial scales pose challenges and

dispersal pattern is modified and obscured by spe- warrant further study. Nevertheless the results ot
ties competition, natural and human disturbance, our study reveal, to an extent, forest ecological
and variation in environmental conditions mot dynamics incorporating spatially explicit seed sources
simulated in this study) can significantly change on large landscapes.
these underlying patterns. Therefore. verification

Effects of Seed Dispersaland understanding of seed dispersal patterns for
on Species Abundanceeach individual species Is mlportant.

It is relevant Lo point out that resuhs from A spatially explicit description of a species seed
LANDIS simulations are semiquantita{ive. That is. source is essential in forest landscape change stud-
because only species age-cohort presence/absence is ies, because each seed source can potentially affect
tracked, not individual trees, forest density is not the successional dynamics of its surrounding sites
incorporated. Therefore, the actual number of seeds within its species dispersal radius. Our simulation
per unit area of a species arriving at a given site is results indicate that there is over- and u nderestima-
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tion of species abundance under the random sce- species distribution patterns do not differ signifi-
nario, in comparison to the real scenario. For the cantly from the random scenario as much as is
first half of the simulation (0-250 y}, there is possible in a more nonfragnrentallandscape. There-
increasing species abundance for less common spe- fore, the area covered by seed dispersal radii in both

cies, such as hemlock and pine. This is because seed scenarios does not differ greatly for many species,
source abundance is the most limiting factor, and and the final species abundances for the entire study
the random scenario maximizes the total area that area are fairly close under real and random sce-
these species dispersal radii cover. For some narios.

midabundant and midshade tolerant species, such Because detailed species and age information
as yellow birch and red oak, the random scenario necessary for the parameterization of individual
produced lower abundances than the real scenario, cells is not often available at landscape scales, the
For these species, competition rather than seed random scenario is often used (for example, Shirley

source abundance becomes a primary factor deter- and others 1997). Our results suggest that use of a
mining their abundances. Because red oak and
yellow birch cannot establish on sites where hem- random seed source scenario can be valid when (a)
lock resides, their abundances decreased in the examining long-term (several hundred years, given
second half of the simulation especially while hem- longivity of the species here) forest landscape
lock increased to approximately 30% of the land- changes; and (b) simulating with relatively short

scape during the second half of the simulation mean fire return intervals in relation to species life
under the random scenario (Figure 4a) spans.

Spatial Impacts of Seed Dispersal CONCLUSION
The initial spatial patterns, due to legacies of past
land use significantly influence subsequent forest Species migration is a large spatial (104-106 ha) and
landscape succession. For example, spatial differ- temporal scale (102-103 y) process (Davis and others
ences simulated under the real scenario and random 1986; Pitelka and the Plant Migration Workshop

scenario for white pine (Figure 3) and hemlock can Group 1997, Clark and others 1998). Such processes
persist for several hundreds of years. This observa- occur in a spatially explicit manner through seed
tion agrees with results of others (for example, dispersal. The influence of seed dispersal will di-
Baker 1992; Wallin and others 1996; Caspersen and rectly affect species abundance and composition as

others 1999). Hence longer simulations make start- well as migration rates across the landscape. In
ing conditions less important due to disturbance and simulations not incorporating seed dispersal, species
other stochastic events. The impact of initial species abundance on a landscape remains constant until

distribution patterns can be extended through seed either species reach their longevity and die or the
dispersal as shown with hemlock. As the initial landscape is altered by disturbances. Spatially ex-
cohorts of hemlock age reach sexual maturity and pllcit lar, dscape models simulating seed dispersal
produce seed, new cohorts occur around these mechanistically can lead ro more accurate assess-
initial cohorts (Figure 6). ments of how species may migrate across real,

At the end of the 500-year simulation, landscapes structured landscape than nonspatial approaches.
under both real and random scenarios converge

significantly, as seen for white pine (Figure 3J and Both species abundance and the spatial structureof its initial distribution tpresence/age) have signifi-
hemlock (Figure 6), The reasons {or the resem-
blance are twofold. First, in this landscape, fire cant impacts on sequential changes of forest land-

disturbance is the dominant factor shaping land- scapes. This is particularly true when examining
scape pattern. With 800-y mean fire return interval, forest landscape dynamics at relatively short rime
approximately two-thirds of the landscape is dis- spans +[or example, less than IO 2 yj. Although the
turbed on both landscapes during a 500-y simula- influence of initial conditions declines over time, it
rio'n, leading to the expected convergence of the two can remain apparent for hundreds of years, espe-

landscapes after several hundred years. Conceiv- cially for long-lived species, such as hemlock, with
ably, with shorter mean fire return intervals, land- low seed dispersal capability.
scapes under randont and real scenarios may con- Use of unrealistic initializations of species abun-
verge sooner. Second, in our study area, with fiance anddistributioncancause over- and underes-
approximately 40% of the area in nonforest, the tilnation of species abundance, which depend on
forest landscape is highly fragmented and the real simulation time span, disturbance frequency, and
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