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ABSTRACT

The study of forest landscape change requires an
understanding of the complex interactions of both
spatial and temporal factors. Traditionally, forest gap
models have been used to simulate change on small
and independent plots. While gap models are useful
in exarmining forest ecological dynamics across tem-
poral scales, large, spatial processes, such as seed
dispersal, cannot be realistically simulated across
large landscapes. To simulate seed dispersal, spa-
tially explicit landscape models that track individual
species distribution are needed. We used such a
model, LANDIS, to illustrate the implications of seed
dispersal for simulating forest landscape change. On
an artificial open landscape with a uniform environ-
ment, circular-shaped tree species. establishment
patterns resulted from the simulations, with areas
near seed sources more densely covered than areas
further from seed sources. Eecause LANDIS simu-
lates at 10-y time steps, this pattern reflects an
integration of various possible dispersal shapes and
establishment that are caused by the annual varia-
tions in climate and other environmental variables.
On real landscapes, these patterns driven only by
species dispersal radii are obscured by other factors,
such as species competition, disturbance, and land-
scape structure, To further demonstrate the effects
of seed dispersal, we chose a fairly disturbed and

fragmented forest landscape (approximately 500,000
ha) in northern Wisconsin. We compared the simu-
lation results of a map with tree species {seed source
locations) realistically parameterized (the real sce-
nario) against a randomly parameterized species
map (the random scenario}. Differences in the
initial seed source distribution lead to different
simulation results of species abundance with species
abundance starting at idenrical levels under the two
scenarios. This is particularly true for the first half of
the model run (0-250 y). Under the random sce-
nario, infrequently occurring and shade tolerant
species tend to be overestimated, while midabun-
dant and midshade tolerant species tend to be
underestimated. The over- and underestimation of
species abundance diminish when examining long-
term (500 y) landscape dynamics, because stochas-
tic factors, such as fire, tend to make the landscapes
under both scenarios converge. However, differ-
ences in spatial patterns, and especially - species
age-cohort distributions, can persist under the two
scenarios for several hundred years.

Key words: seed dispersal; dispersal radii; dispersal
probability; spatially explicit; landscape model; LAN-
DIS: age cohorts; landscape pattern; fire distur-
bance; gap model; northern Wisconsin.

INTRODUCTION

The challenges in studying forest landscape change
come from two fundamental aspects: the relevance
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_of both long temporal and broad spatial dimensions.

Temporally, forest ecosystems may take hundreds of
years 1o undergo significant sticcessional change.
Factors that operate on such’long time spans may go
undetecteci by miany commonly used field experi-
ments. Such approaches often are based on rela-
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tively short observation periods that may not cap-
rure the full range of stochastic events. Spatially,
forest landscape change can be strongly affected for
centuries by the heterogeneity of vegetation distri-
bution at an initial point (Baker 1992; Wallin and
others 1996: Foster and others 1997; He and Miad-
enoff 1999), which is in turn affected by variation in
environmental conditions and resources. The inter-
action of spatial and temporal factors across the
landscape is further complicated by interactive hu-
man and natura! disturbances. Computer simula-
tion modeling is a useful toot for understanding
these large (10%-10% ha), long-term, complex sys-
tems. With modeling techniques, it is possible to
describe the modeled objects mathematically and
logically and deduce results that cannot otherwise
be investigated, especially at broad spatial and tem-
poral scales (Turner and others 1995; Gardner and
others 1999; Mladenoff and Baker 1999a).

Traditionally, forest landscape change has been
modeled by simulating changes in sample plots of
up to a few hundred square meters, selected within
various forest types or along environmental gradi-
ents (for example, Pastor and Post 1988; Urban and
others 1992; Fischlin and others 1995; Bugmann
1996). These models are often referred to as gap
models (Botkin and others 1972; Shugart 1984
Pastor and Post 1985) and typically did not contain a
high degree of spatial interactions among plots, or
across a large landscape. The modeling results are
often assumed to represent the much larger forest
landscape within which plots are located. By using
noninteracting plots, spatial complexity in ecologi-
cal processes as well as spatial variation is ignored.
Ecological processes occurring at spatial extents that
cover hundreds or thousands of plois cannot be
simulated with most gap models (Mladenoft and
Baker 1999b),

Seed dispersal is an ecological process that inter-
acts with landscape heterogeneity at broad scales. It
can influence forest landscape change (Leishman
and others 1992} because seed sources present on a
given site can affect succession on surrounding sites
within certain dispersal distance radii, varying by
species seed characteristics and dispersal mode
(Burns and Honkala 1990). Seed dispersal is often
described with various mathematical distributions
involving dispersal probability and seedling density
(Pormoy and Willson 1993; Ribbens and others
1994; Kot and others 1996; Clark and others 1998).
In gap models, large-scale, contagious processes,
such as seed dispersal, usually have been assumed
to be either constant or random (Shugart 1984).
Recent models, such as FIRESUM (Keane and oth-

ers 1989y, SORTIE (Pacala and others 1993, 1996),
and FACET (Urban and Shugart 1992; Urban and
others 1999}, have incorporated more spatial inter-
action than the earlier JABOWA-FORET types of
gap models. EACET considers interaction of directly
neighboring plots when simulating seed dispersal
(Urban and others 1999); SORTIE tracks individual
tree locations and simulates seed dispersal by using
mean dispersal distances and seedling density de-
fined for each species (Ribbens and others 1994).
But even with state-of-the-art computers, these
new models are still limited to simulating relatively
small sections of landscapes (for example, less than
10 ha; Pacala and others 1996; Caspersen and others
1999), because the computational loads increase
exponentially with simulation area (He and others
199%b). To simulate large areas by using these
models, spatially inexplicit scaling-up (for example,
Acevedo and others 1995; Keane and others 1996;
Urban and others 1999), or simplifying the represen-
tations of some ecosystem processes, are needed.

To study forest landscape change in landscapes
larger than 10% ha, spatially explicit landscape mod-
els are needed that integrate broad-scale spatial and
temporal processes, Landscape models are models
that simulate large-scale ecological processes, such
as seed dispersal, wind and fire disturbances, insect
defoliation, forest disease, and harvesting. In this
study, we illustrate how spattally explicit seed dis-
persal is simulated in LANDIS, a raster-based land-
scape model. We endeavor to examine how seed
dispersal influences landscape change and how signifi-
cantly the initial seed source abundance and distribu-
tion affects simulation results. We use both an artificial
landscape and a large landscape (500,000 ha} in north-
ern Wisconsin, USA to address these issues.

METHODS

LANDIS Model

Model Purpose, Scales, and General Dynamics.  LAN-
DIS is designed to simulate forest dynamics at large
extents (10%-10° ha), over long periods of time (for
example, hundreds of years), by simulating indi-
vidual species as 10-y age cohorts (Mladenoff and
others 1996). LANDIS is a raster-based model in
which cells or sites in a grid correspond to the plots
or stands in gap models. Cell size can be varied from
10 to 500 m cotresponding to a spatial scale that is -
considered appropriate for a given study and input
data.- A 500-y simulation of a 500X800-cell map
with 23 species takes 1 h-on.a 940 MIPS (compa-
rable to a Pentium Pro 400Hz PC) computer. Each
site contains unique species, age cohorts, and envi-
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Table 1. Selected Species Lile History Attributes Parameterized in LANDIS

Species Long. Matu, ShadeT FireT EffD MaxD VeyP SpAge
Alries balsamea 150 23 3 L 30 160 0 0
Acer rubrim 150 i0 3 1 100 200 0.5 150
Acer saccharum 300 40 5 1 100 200 0.1 240
Betula alleghaniensis 300 40 4 2 100 400 0.1 180
Betula papyrifera 120 30 2 2 200 5000 0.5 70
Fraxinus americana 200 30 4 i 70 140 0.1 70
Piceq glatca 2060 25 3 2 30 200 0 0
Pinus banksiana 70 15 1 2 20 40 0 0
Pinus resinosa 250 35 2 4 12 275 0 0
Pinus strobus 400 15 3 3 100 2350 0 0
Populus grandidentaia 90 20 1 2 -1 -1 1.0 a0
Popufus tremudoides 90 15 1 2 —1 ~1 1.0 120
Prinus pentsylvanica 30 10 1 1 30 3000 0 0
Quectis ruba 250 25 3 3 30 3000 a.5 250
Tsuga canadensis 450 30 5 3 30 100 0 0

Lony., forgevicy fyear): Matw, age of manurity fyear): Shade, shade tolerance class; FireT, fire tolerance dass; EffD. effective seeding dfsttee (nej: MaxD, mtuximun seeding
distange fm): Vgl vegetative repreduction probability; Spdge, maxinuin age of vegetative reproduction (year).

ronmental information. For each site, individual
species are recorded as presence/absence of 10-y age
cohorts, This provides explicit seed source informa-
tion. The model is made up of three general parts:
landscape scale ecological processes, site or plot
scate ecological processes, and environmental data
layers characterized by landtypes that stratify a
heterogeneous landscape into relatively homoge-
neous units. Landscape scale processes include seed
dispersal, fire and windthrow disturbances, insect
defoliation, and forest harvesting. Site scale ecologi-
cal processes include forest successional dynamics
for individual species {age class presence/absence),
stich as seedling establishment, species regeneration
{birth}, growth, death (when reaching longevity}.
random mortality, and vegetative reproduction.
Landtypes are further grouped into active and non-
active, The latter contains nonforested sites, such as
water, lowland, and other nonforested classes that
are not simulated by LANDIS.

Further information on LANDIS overall model
design (Mladenoff and others 1996), model assump-
tions and behavior {Mladenoffl and He 1999), fire
disturbance (He and Mladenoff 1999), species and
age-list objects (He and others 1999b), mode} calibra-
tion and result verification (He and Mladenoff
1999), and model parameterization (He and others
1996) can be found elsewhere. _

Seed Dispersal and Seedling Establishment Dynamics.

In LANDIS, the available seed source locations
(cells with tree species) and ages are precisely
defined. Seed dispersal and seedling establishment
processes are simulated as several steps: dispersal.

light condition checking, and site condition check-
ing (Mladenoff and He 1999). Light and site condi-
tions affect establishment after dispersal. For any
species, seed dispersal distance is modeled as a
function of its effective and maximum seeding
distances. Effective seed dispersal distance is that for
which seed has the highest probability {for example,
P > 0.95) of reaching a site. The maximum sced
dispersal distance is that distance beyond which a
seed has near zero probability {for example, P <
0.001) of reaching. These distances are derived
{Table 1) trom previous literature for various tree
species (for example, Loehle 1988; Burns and
Honkala 1990). Seed dispersal probability (P be-
tween the effective (ED) and maximum seeding
distance (MD) foilows a negative exponential distri-
bution:

P —_— eﬂ)-l’,\':’_-\awj . . ( l}

where x is a given distance from the seed source
(MD > x > ED), MD is the maximum seeding
distance, and # is an adjustable coefficient (b > 0),
which can change the shape of the exponential
curve corresponding to various seed dispersal pat-
terns when information is available (Figure 1). x =
ED, we set P = 0.95, indicating that the probability of
seed dispersing within its own effective seeding distance
is very high, whilé it x = MD, we set P = 0.00L,
indicating that the probability of seed dispersing beyond
its own maximum seeding distance is very low.

when seed successfully arrives ara'given site, the
light condition checking procedure determines _
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Figure 1, The negative exponential distribution of tree
species seeding probability in relation to distance from
available sced sources. BD, species effective seeding dis-
tance; MD, species maximum seeding distance.

whether seedlings are allowed to establish based on
the shade tolerance rank of the seeding species
relative 1o the species already occurring on the site.
For example, paper birch (Betula papyrifera) is a
shade intoierant species that cannot seed into a site
on which hemlock (Tsuga canadensisy is already
established. When light conditions are favorable to a
species, the site condition checking procedure deter-
mines if the species can establish (Mladenoff and He
1999}, The environmental conditions of a site, such
as soil nutrient and water availabitity, may favor
certain species over others. The species establish-
ment coefficient, a number from 0 to 1, is intro-
duced in LANDIS as a relative scaling of how
environmental conditions favor various species
{Mladenoil and others 1996). These factors are not
mechanistically simulated. Rather, they are assigned
probabilities that can be derived empirically or from
the simulation results of an ecosystem process model
{He and others 1999a). '

Fire Disturbance.  Disturbance is simulated in com-
bination with successional dynarmics. Fire is simu-
lated as a stochastic process based on the distribu-
tion of fire return intervals and fire sizes, derived
from existing or historical data (for example, for the
northern U.S. Lake States, Heinselman 1973, 1981;
Frelich and Lorimer 1991, Baker 1992). The distribu-
tion of fire sizes and fire return intervals are charac-
terized for all landtypes within a simulated land-
scape (He and Mladenoff 1999). Dry, sandy landtypes
experience fire more frequently than mesic land-
types. LANDIS simulates {ires of five classes, reflect-
ing fires of tow (ground [ires) to high intensity
(crown fires). Tree species are grouped into five fire
tolerance classes. Small, young trees are assumed to
be more vulnerable than large, old trees. Fire sever-
ity is the interaction of susceptibility (species age
classes), species fire wlerance, and fire intensity,
which is determined by the time since last fire, a
surrogate for the amount of fuel. Fuel accumutation

regimes alse differ by landtypes, reflecting variabil-
ity in production and decomposition rates (He and
Miadenolt 1999,

Test Landscapes

First. to illustrate how seed dispersal is simulated in
LANDIS, we use an artificial landscape containing
four isolated tree seed sources of different species.
Next, 1o demonstrate the effects ol incorporating
spatially explicit seed source information across a
landscape, we will use an actual landscape and
compare the simulation results of landscape change
and species abundance based on two seed dispersal
scenarios under a natural fire disturbance regime.

1. A landscape with spatial distributions of seed
sources (tree species} as they occur on a real
landscape, referred to as the real scenario;

2. The same landscape with spatial distribution of
seed sources in the same proportions as the real
scenario, but randomly distributed across the
landscape, referred as the random scenario.

Artificial Landscape. A square artifictal landscape
was designed containing 10,000 cells (100100 grid
cell) with cell size equalling 20 20 m. Mature sugar
maple (Acer saccharum), hemlock, white pine {Pinus
strobus), and red oak {Quercus ruba), at age cohorts of
50 y, are set at the four comer cells, respectively
(Figure 2). The rest of the landscape is open land for
seed dispersal and scedling estabiishment. To mini-
mize variations that affect seed dispersal, we let the
entire artificial landscape contain one landtype. and
species establishment coefficients of the four species
are the same (0.5). We simulated the landscape up
1o 200 y. At this point nearly all of the open arcas
were covered by the simulated species.

Real Landscape.  The real landscape we simulated
represents approximately 500,000 ha located in
northern Wisconsin (44° N, 91° W), USA. The area
has very little topographic reliel. Upland forests
cover approximately 60% of the landscape with
more forest cover in the north. Lakes and lowlands
are scattered on the fandscape, occupying 5.2% and
7.5% of the area, respectively. Other nonforest
categories, such as croplands and pastures, occur on
59wy of the landscape. Forests are somewhat
fragmented, particularly in the south, due to the
large proportion {40%) of nonforest categories and
historical logging (Mladenoff and Pastor 1993).
Nonforest categories are not simulated by'LANDIS
and remain static throughout the simulation. This is
an environmentally heterogeneous region and was
quantitatively classified into six relatively homoge-
neous landeypes based on soil and climate variables
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Figure 2. Demonstration of seed dispersal patterns of
four tree species on an ariiticial fandscape: sugar maple,
hemlock, white pine, and hemlock at year 0, 40, 80, 120,
160, and 200. The corner cells at year O represent the
starting point for each species.

(Host and others 1996). More details on the study
area can be found in He and Miadenolf (1999;.

We divided the study area into a 4,854-km? grid
containing 121,362 cells (358X339) with a
200X200-m celi size. Forest cormposition and age
information of the study area were parameterized at
the individual species level (presence of 10-y age
cohortsy, from classified Landsat satellite thematic
mapper (TM) imagery (Wolter and others 1995) and
forest inventory data, by using a method described
by He and others (1998). This provides the explicit
location and age classes of seed sources, for ex-
ample, hemlock (see Figure 6a).

Random Landscape.  For the random scenario, we
kept the distribution of nonforest classes unchanged
and randomized the diswibution of each of these
species based on the existing species maps. These
new maps preserve the proportion of the species

and their age classes on the landscape and higher
level landscape structure, such as upland forest, nonfor-
est, waler, and wetlands, with randomized locations of
the distribution of seed sources wirhin forest areas, such
as shown for the hemlock (see Figure 6b).

Simulation Controls

We merged the six tandtypes present in the study
area into a single landtype for the real and random
scenarios. This minimizes the differences caused by
factors other than seed source distribution and seed
dispersal, such as environmental variation at the
broadest scale. Fine scale heterogeneity due to
inirial landscape structure, such as forest vs nonfor-
est is retained. All simulations were conducted
under a natural fire disturbance regime with mean
fire return interval of 800 y and fire severity of class
5. Because class 5 fires are the most severe, they can
spread while ignoring the vegetation differences
under the real and random scenarios. Fires are
stochastic. Neither the time of occurrence nar the
fire size is repeatable for a given fire. We set the
same random number seed (a model input param-
eter) for different runs, Therefore, the randomly
generated disturbance regimes (individual fires) are
identical in both the real and random scenarios (He
and others 1996). This ensures that the stochastic
results from real and random scenarios were compa-
rable. All simulation results were calibrated 1o en-
sure that the proposed fire disturbance regimes
were correctly simulated (He and Mladenoff 1999)

simulated species abundance and distribution for
a given time step involves stochasticity such as fire
events: therefore we compare all simulation maps
and mean abundance derived from the time span of
the simulations (30 time steps total). Individual
species abundance at every 10-y time step was
calculated as the percentage of cells in the active
landscape containing a given species. Mean abun-
dance was then calculated as the average abun-
dance from these individual time steps over the
period of simulation. For the random scenario, we
calculated percentage of error of the mean abun-
dance against the real scenario as the standard,
according to the foliowing equation:

% error = (random mean . )
— real mean)/real mean) * 100

Positive numbers.indicate the overestimation of
species abundance in the random scenario, while
negative numbers indicate the oppos:te
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Figure 3. Dynamics of whize pine simulated under real and random scenarios from year 0 to 500.

RESULTS
The Artificial Landscape

Wwith uniform environmental conditions, species
dispersa! and establishment on the artificial land-
scape is mainly a function of species seeding capabili-
ties as defined by their effective and maximum seed
dispersal distances and relative age to sexual matu-
rity. The seedling establishment patterns reflect the
seeding probabilities defined in Eq. {1 (Figure 1),
where areas close to a seed source of given species
are more densely covered by the species than areas
further from the seed source. These gradients are
obvious from year 40 to year 80 (Figure 2). Species
with larger maximum seeding distances (such as red
oak, which can be dispersed at low density but long
distance by birds) progressed more rapidly than the
other three species. Red oak has the greatest dis-
persal radius but variable probability at the maxi-
mum distance (Figure 2). With the artificial land-
scape, spatial patterns of different species reflect
their seed dispersal radii especially before year 120

(Figure 2). As expected, hemlock, with the shortest
effective and maximum seeding distance, made the
least progress through the 200-y simulation {Figure
7). This implies that availabie seed source on the
landscape is important to hemlock abundance due
to its relatively low dispersal ability. The seeding

distances of sugar maple are longer than that of

hemiock, resulting in a higher cover of sugar maple
than hemlock on the landscape. White pine has the
same effective seeding distance and similar maxi-
mum seeding distance as sugar maple, but it dis-
persed much faster than sugar maple. This is be-
cause white pine has the lowest sexual maturity age
(15 y) among the four species {Table 1). The newly
dispersed white pine age cohorts mature rmore
quickly than the other species, and they can serve as
many new seed sources, which in turn increase

“white pine abundance on the landscape.

As observed from year 120-to 200 in the simula-
tion, seed dispersal also was affected by the species
relative shade tolerance and competition. The simple
circular patterns of species distribution driven by -



314 H. §. He and D, J. dyladenoelt

seed dispersal radii are obscured swhere the radii of
different species overlap and species competition
oceurs, Such effects were found espediatly for both
white pine and red oak at years 120, 160, and 200
(Figure 2). At year 200, the tormerly open land-
scape was almost completely occupied by forest
white pine and red oak seeds cannot establish in
areas where hemlock and sugar maple already exist.
However, hemlock and sugar maple, the more
shade tolerant species, will continue to disperse
under shite pine and red oak. In the absence of fire,
they will eventually outcompete white pine and red
oak on this landscape (resulis not shown). New and
complex patterns can be formed from the interac-
tions of ather factors interacting with seed dispersal,
as wili be shown below.

Real Scenario vs Random Scenario

For real landscapes, multiple locations can be found
as seed sources for any given species. Overlap of
species dispersal radii is common. The interactions
of species competition and disturbance, plus the
percentage of nonforest areas that often serve as
barriers for seed dispersal, make it unlikely to
observe species establishment patterns being driven
simply by seed dispersal radii. Competition under
the real scenario, where the landscape is [ully
occupied, complicates the impact of seed dispersal
on species migration compared with the artificial
landscape. In this study, we are able to trace the
spatial dynamics of a given species over the period
of simulation. In the simulation shown in Figure 3,
we chose white pine, a dominant [orest species
before European settlement but occurring only on
approximately 6% of the forested landscape today.
At the beginning of the simulation {Figure 3,
white pine was largely distributed in the northern
part of the study area and occurred only sparsely in
the south due to historical disturbance and environ-
ment constraints. Because we assumed a homog-
enous environment for the entire landscape, white
pine migration south is expected. As simulated, the
migration of white pine is a gradual process that
interacts with disturbance, seeding, and competi-
tion (Figure 3). Although white pine has early
maturity and great seeding ability, as shown on the
artificial, open landscape (Figure 2}, its seedlings
cannot establish on sites already occupied by shade
tolerant species, such as sugar maple and yellow
birch, which are common in this area. A relatively
stable state for white pine prevails for approxi-
mately the first 100 y until the forest ages. During
this period, there is a gradual accumulation of fuel,
and the fire probability increases. A significant fire
occurs at year 120 (Figure 3), creating open space by

removing shade wolerant species. theveby favoring
white pine establishment. However a large, severe
fire can alse reduce white pine abundance, benefit-
ing less shade telerant species, such as paper birch
and aspen. A spatially explicit seed source is impor-
tant for species colonization alter fires, as shown by
the small white pine patches that occur at year 150
in the south where the 120-y fire occurred {Figure
3}, White pine encroachment into the open space
takes approximately 200 y, and it is largely colo-
nized at around year 300. The initial white pine
patches in the north are thinned by fires and
eventually broken down to relatively small patches,
while new. vounger patches formed after fire distur-
bances in other parts of the landscape from year 230
to 300 (Figure 3).

In the random scepario, white pine abundance
before year 150 is slightly higher than in the real
scenario, and white pine distribution is fairly stable
{Figure 3). The same fire that occurred in the real
scenario at year 120 also occurred under the ran-
dom scenario, as a result of the fixed random
number sced (He and others 1996). With maximum
area covered by seed dispersal radii under the
random scenario, white pine colonizes the open
space created by this fire in approximately 100 y
{year 150-250), much {aster than the time needed
in the real scenario (Figure 3). Because the overall
abundance of white pine on the landscape is rela-
tively low, these spatially explicit dynamics are not
reflected in the white pine abundance trajectory
{Figures 3 and 4d). From year 250 to 500, white pine
abundance remains relatively stable. with a few small
fires occurring on the landscape, causing maps from
real and random scenarios to converge (Figure 3)

The random scenario immediately maximizes the
area that seed dispersal radii cover, and results in
some of the largest possible increases in a species
abundance over time. This is seen from the perceni-
age of error estimates for most species, especially for
the lirst 250 y (Figure 4}, indicating the increasing
divergence between real and random scenarios.
However, as the runs continue, this difference
gradually decreases (Figure 4}, and the percentage
of error estimates are lower than in the first half of
the simulation (discussed later). For the first half of
the model run, the highest overestimates in the
random scenario (average percentage of error across
0250 y) are found for the least abundant species
(Figure 5), such as hemlock (17.4%). jack pine
(36.0%), red pine {11.5%); and white pine {4.1%:).
Overestimates inn the random scenario for the abun-
dant and shade tolerant species are low {for ex-
ample, sugar maple 0.6%, the lowest among ail
species). These overestimates. decrease during the
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Figure 4. Simulated abundance for (a) hemlock, (b) jack
pine, (¢) red pine, and {d) white pine under real and
random seed source distribution scenarios.

second half of the model run (250-500 y; Figure 5).
with hemlock (16.6%), lack pine {17.2%), red pine
{3.9%), and white pine (—1.1%}. Negative percent-
age of error indicates an underestimate under the
random scenario. Underestimates occur for mid-
shade 1olerant, midabundant species, such as yellow
birch (B. alleghaniensis) and red ocak in the random
scenario {(Figure 5). Red oak was underestimated
(=0.9%) from year 0-250, as were yellow birch
(—=3.4%) and paper birch {-3.7%). These underesti-
mares increase from year 250 to 500 with red oak
(-16.5%), yellow birch (-8.1%), and paper birch
(~13.9%) (Figure 5). For less abundant, shade
intolerant species, such as jack pine, species abun-
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Figure 5. Percentage of error of species abundance in the
random vs real scenarios calculated as [{random-realy/
real * 100} across 500-y simulation. Positive numbers
indicate an overestimation of species abundance under
the random scenario; negative numbers indicate an under-
estimation.

dance is more variable under the real scenario than
that under the random scenario,

The difference between the two scenarios be-
comes more obvious when examining species age-
cohort distribution. For example, hemlock, histori-
cally a dominant species in this area, is young and
not common, with the majority around 30-60 y old
{Figure 6a). Itis distributed as a few large patches in
the north and scattered seed sources in the south
{(Figure 6a). This spatial structuye was randomized
(Figure 6b). It is interesting (o note that hemlock
distribution in the south is very similar on both
landscapes (Figure 6a and b). At year 200, the
spatial patterns become very similar in the south on
both landscapes due to stochastic fire disturbance
and the similar starting conditions {Figure 6cand d).
However, the initial, young hemlock patwch in the
northeastern area has succeeded into a large old-
growth patch approximately 210 y old (Figure 6C).
These patterns are not reflected in the random scenario.

DI1SCUSSION

Simulation Approach Implications

Tree species seed dispersal curves lead to a dircular-
shaped species distribution pattern on the artificial
landscape. Because LANDIS sirnulates at 10-y time
steps, this pattern reflects an integration across
annual variation and possible dispersal shapes and -
establishment that might be caused by the variation

_in climate and other environmental variables (Houlé
- 1998). Shapes of seed dispersal probability curves

are affected not.only by dispersal distances but also,
by the coetficient b (Eq. 1), which currently is a
constant (¢ = 1.0} in LANDIS, However; vartous
species. may be more specifically described with
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Year 0

Real landscape

Random landscape

Year 200

1 non-forest
<30 yr

B2 30-60 yr 150-180 yr

90-120 yr
1 120-150 yr [___] other tree species

Figure 6. Hemlock seed sources distribution and spatial pattern under the real and random scenarios at (a) and (b) year 0,
{cy and {d) year 200, (e} and (f) year 300, respectively, illustrating that the initial difference of seed source distribution on

the landscape can last several hundred years.

dispersal curves of different shapes (Portnoy and
Willson 1993). It is feasible for LANDIS to further
parameterize & by species when the information is
available. Under the real scenario simulation, seed
dispersal pattern is modified and obscured by spe-
cies competition, natural and human disturbance,
and variation in environmental conditions (not
simulated in this study} can significantly change
these underlying patterns. Therefore, verification
and undersianding of seed dispersal patterns for
each individual species is important.

It is relevant to point out that results from
LANDIS simulations are semiquantitative. That is,
because only species age-cohort presence/'absence_is
tracked, not individual trees, forest density is not
incorporated. Therefore, the actual number of seeds
per unit area of a species arriving at a given site is

not simulated as can be done in other models that
track individual trees (for example, Ribbens and
others 1994}, Investigations representing seed den-
sity at large, spatial scales' pose challenges and
warrant further study. Nevertheless, the results of
our study reveal, to an extent, forest ecological
dynamics incorporating spatially explicit seed sources
on large landscapes. o

Effects of Seed Dispersal

on Species Abundance

A spartially explicit description of a species seed
source is essential in forest landscape change stud-
ies, because each seed source can potentally affect
the successional dynamics of-its surrounding sites
within its $pecies dispersal radius, Our simulation
results indicate that there is over- and underestima-
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tion of species abundance under the random sce-
nario, in comparison to the real scenario. For the
first half of the simulationn {0-250 y). there is
increasing species abundance for less common spe-
cies, such as hemlock and pine. This is because seed
source abundance is the most limiting factor, and
the random scenario maximizes the total area that
these species dispersal radii cover. For some
midabundant and midshade tolerant species, such
as yellow birch and red oak, the random scenario
produced lower abundances than the real scenario.
For these species, competition rather than seed
source abundance becomes a primary factor deter-
mining their abundances. Because red oak and
yellow birch cannot establish on sites where hem-
lock resides, their abundances decreased in the
second half of the simulation especially while hem-
lock increased to approximately 30% of the land-
scape during the second half of the simulation
under the random scenario {Figure 4a)

Spatial Impacts of Seed Dispersal

The initial spatial patterns, due to legacies of past
land use significantly influence subsequent forest
landscape succession. For example, spatial differ-
ences simulated under the real scenario and random
scenario for white pine (Figure 3} and hemlock can
persist for several hundreds of years. This observa-
tion agrees with results of others (for example,
Baker 1992; Wallin and others 1996; Caspersen and
others 1999}, Hence longer simulations make start-
ing conditions less important due to disturbance and
other stochastic events. The impact of initial species

distribution patterns can be extended through seed -

dispersal as shown with hemlock. As the initial
cohorts of hemlock age reach sexual maturity and
produce seed, mew cohorts occur around these
initial cohorts {Figure 6}. '

At the end of the 500-year simulation, landscapes
under both real and random scenarios converge
significantly, as seen for white pine (Figure 3) and
hemlock (Figure 6). The reasons for the resem-
blance are twofold. First, in this landscape, fire
disturbance is the dominant factor shaping land-
scape pattern. With 800-y mean fire return interval,
approximately two-thirds of the landscape is dis-
turbed on both landscapes during a 500-y simula-
tion, leading to the expected convergence of the two
landscapes after several hundred years. Conceiv-
ably, with shorter mean fire return intervals, land-
scapes under random and real scenatrios may con-
verge sooner. Second, in our study area, with
approximately 40% of the area in nonforest, the
forest landscape is highly fragmented, and the real

species distribution patterns do not differ signifi-
cantly from the random scenaric as much as is
possible in a more nonfragmental landscape. There-
fore, the area covered by seed dispersal radii in both
scenarios does not differ greatly for many species,
and the final species abundances for the entire study
area are fairly close under real and random sce-
narios.

Because detailed species and age information
necessary for the parameterization of individual
cells is not often available at landscape scales, the
random scenario is often used (for example, Shifley
and others 1997). Our results suggest that use of a
random seed source scenario can be valid when (a)
examining long-term (several hundred years, given
longivity of the species here) forest landscape
changes; and (b) simulating with relatively short
mean fire return intervals in relation to species life
spans.

CONCLUSION

Species migration is a large spatial (109-10¢ ha) and
temporal scale {102-103 y) process {Davis and others
1986; Pitelka and the Plant Migration Workshop
Group 1997, Clark and others 1998). Such processes
occur in a spatially explicit manner through seed
dispersal. The influence of seed dispersal will di-
rectly affect species abundance and composition as
well as migration rates across the landscape. In
simulations not incorporating seed dispersal, species
abundance on a landscape remains constant until
either species reach their longevity and die or the
landscape is altered by disturbances. Spatially ex-
nlicit landscape models simulating seed dispersal
mechanistically can lead to more accurate assess-
ments of how species may migrate across real,
structured landscape than nonspatial approaches.

Both species abundance and the spatial structure
of its initial distribution (presence/age) have signifi-
cant impacts on sequential changes of forest land-
scapes. This is particularly true when examining
forest laridscape dynamics at relatively short time
spans (for example, less than 10? y}. Although the
influence of initial conditions declines over time, it
can remain apparent for hundreds of years, espe-
cially for long-lived species, such as hemlock w1th
low seed dispersal capability. '

Use of unrealistic initializations of spe(:les abun-
dance and distribution can cause over- and underes-
timation of species abundance, which depend Ot
simulation time span, dlsturbance frequency ‘and
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tandscape configuration (not directly addressed in
this study). A randomly parameterized species distri-
bution may be used to examine forest landscape
change when simulation spans are longer than
species longevity and mean return intervals of the
major disturbances, such as fire. In addition to
random species distribution, unrealistically assigned
initial species age distribution and the impacts of
environmental heterogeneity. may further obscure
the effects of seed dispersal, and warrant further

investigation.
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