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SUMMARY

Traveling costs incurred during extensive forest surveys make cluster sampling
cost-effective. Clusters are specified by the type of plots, plot size, number of plots,
and the distance between plots within the cluster. A method to determine the
optimal cluster design when different plot types are used for different forest resource
attributes is described. The method requires cost and variance relationships in order
to develop an optimal design. The cluster design developed for the Forest Health
Monitoring Program of the United States is presented.

INTRODUCTION

I^and managers and policy makers need accurate resource statistics to make
informed decisions on the management of the forest resource. Wben developing the
forest survey to collect dat4 the survey planner makes two key decisions: the
sample unit selection rule and the sampling unit (cluster) design. The objective of
this study was to develop a multiresource cluster design. This design was used for
the Forest Health Monitoring Program of the United States - a network of
multiresource pennanent clusters distributed across the Nation. Because the focus
of this paper is on the cluster desig4 only simple random sampling of clusters was
considered. Extensions to other selection rules can be made.
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METHODS

A cluster sample can be composed of various plot types (subsampling units)
used to measure a variety of resource attributes. Scott (1981) described the
sampling unit characteristics as a combination of a specified number of plots
arranged in a specific spatial pattern. Plot characteristics are:

1. q,?e of elements sampled, such as trees, shrubs, soils, or streams;
2. element selection rule, such as equal probability versus probability

proportional to size;
geometric type, such as point line, area, and volume;
shape, such as circular or rectangular.

design can be determined by specifying for each plot type, k:

3.
4.

The cluster

1. number of plots within the cluster, rnk,
2. plot size, 4,
3. distance between plots, 4, and their spatial arrangement.

Together with the total number of clusters to be sampled, n, these cluster design
variables influence the survey variances and costs. The fust step in specifring the
cluster design is to determine which plot types are to be used.

Sampl ing Unit  Design

Several methods of selecting overstory trees have been suggested, but the
most commonly used are fixed-area plots and variable-radius plots (horizontal point
samples). Maay studies were conducted comparing the efficiencies of fixed-area
plots versus variable-radius plots, such as Grosenbaugh and Stover 1957. In general,
attributes that are related to tree frequency rue more efficiently estimated using
fixed-area plots, and attributes related to tree basal area are best estimated using
variable-radius plots (Scott and Alegria 1990).

Since the 1970's, the emphasis in natural resource surveys has broadened to
include the entire forest ecosysterg including all plant species, soils, wildlife habitat,
and water resources. Fixed-area plots have also been used extensively for plant
species in the undentory (Lindsey et d. 1958). r ine-intersect sampling has been
used to estimate the amount of edge between various land cover ty?es (Barnes and
Scott 1983). Thus, a multiresource cluster design can include a variety of plot t)?es,
such as fixed-are4 variable-radius, and line samples.

Once the plot qpes have been specified, the cluster design variables, 4, 4,
*d 4, must be determined in a cost-effective manner. Most studies in forestry have
focused on plot size, 4, and on one or trvo attributes of interest (for example,
Freese 1961). In these studies, the variance and costs were modeled as a function of
the plot size. This approach was then extended to the study of clusters of plots for
one or two attributes (for example, Arvanitis and O'Regan 1972). Some have
explicitly modeled the distance between elements, {, as a desigu variable (for
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example, Nyyssonen et al. i971 and Ek et al. 1984).

The problem can be set up either to minimize variance subject to a fixed cost
constraint or to minimize cost subjea to fixed precision constraints. Arvanitis and
O'Regan (1972) used a simulation approach in which designs were tested and
compared. Another approach is to use linear or nonlinear programming techniques.

Var iance Est imat ion

In one of the first attempts to relate a cluster design variable to variance,
Smith (1938) developed a model of variance, V, as a power function of plot size.
This relationship has been used widely and has performed well. Scott (1981)
extended this model to aU of the cluster design variables:

R,(m,Eg) = bn^!" e? ,?

where:

(1)

i r=

R,(mri2ay) = bn ̂!u A? ,? +

Ri = rel-variance between clusters of attribute yt = 8ilya

b1 : reefe.ssion coefficie,nts withT=6,12,3

average paired distance between suhrnits of tpe t

1, if only one subunit (mr=11

The rel-varignce is convenient when the precision is specified as a percent of the
meaq for example, t 10 percent. The exponents of the cluster design variables are
negative and theoretically should range from 0 to -1. Thus, as the cluster design
variable increases, the rel-variance decreases.

Often two concentric plot types can collect data on the same attribute of
interest, such as a poletimber plot of size, 4, within a large saurtimber plot of size,
q,. Both plot q?es contribute to the estimate of the number of trees. In this case,
the model form chosen was:

Costs

As the cluster design variable increases, the cost also increases. The cost
functions must relate the survey costs to the cluster design variables and to the
number of clusters, n. They should be as accurate as posible and should reflect the
actual field and perhaps office work involved, so long as the costs are related to the
design variables. Scott (1981) introduced the effect of daily costs. The number of
days, D, is the number of clusters, n, divided by the number of clusters per day,
CPD. Daily costs include traveling from the office to the first cluster of the day and
back from the last cluster, lodging and meals, paid breaks, and supervision. Other

(2)
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types of costs include the travel time befween clusters, which is a function of tbe plot
density and the number of clusters per day. Costs that relate only to the number of
clusters include locating and establishing the first point in the cluster, and returning
from the cluster. Measurement costs are related to both plot size and type.

Cluster Conf igurat ion

The cluster configuration defines the way in which the cluster is laid out on
the ground. In this study, the cluster design is a systematic arrangement of the plots.
The configuration is a function of the number of plots of each type, and the distance
and direction between plots. [n order to keep the plots within the minimum sample
area of 0.4 ha the configuration used had one center plot surrounded by the
remaining plots which were equally spaced at a fixed distance from the center, thus
forming a regular po$gon with one plot in the center. By speciSing the distance, {.,
between the center and the remaining plots for this configuration, the total walking
distance, d*.n, and the average paired distance between plots can be determined.
Once the radius, 4, is specified, the walking distance can be computed as walking
from center to plot 2, then along the sides to the remaining plots:

dnft= d, + (m*-t) dt@ (3)

where:

firr, = max(mr-l); for ft=l,X

The average paired distance was computed as the average of all possible distances
between pairs of plots. To avoid recalculating it for each situation, it was computed
as a function of the number of plots and the radius, d,:

i, = drflm) (4)

where:
f(1) = undefined f(6) = 1.3592
t(2) = 1.0 f(7) = 7.3520
(3) = 1.3333 f(8) = 1.3453
(4) = 1.3660 (9) = 7.3394
(5) = r.3657 f(10) = 1.3343

f(11) = 1.3298
f(12) = 13258
f(13) = 1.3224
f(t+; = 7.3r%
f(15) = r.3167

Optimizat ion Problem

When various cost components are put into a single form and lower bounds
are added to the design variables, the optimization problem can be stated as:



minimize C = DIC**+(CPD-1)C*+ C,,"*{Tr ,*(CPD-DT.,"}I

I r l
+ n CrrlT** T,rnttdot+ m*,7*+ fnrfr3)l

I t - r j

(s)

Subject to:

R,(mrirarlln < V, (i=1,

HPD-T^t+Tu 
> cpD (an integer)

T*+T*

n >2

mr > 0 (t=l,l()

dr r 0 (fr=lfi)

zt > 0 (t=ltr)

where:

frb) = time to measure a plot of size z,

Izi = desired precision (variance as a proportim of the meaa)

HPD = number of working hours per dat (e.g., 8)
r

Too = Tn+ T,, o/,,** fr^rT* * lnrT282)
t-l

The cost and time variables are defined in Table 1.

Although this study focused on minimizing costs for fixed precision levels, the
same variance and cost functions could be used to minimize some weighted function
of the variances to achieve a fixed cost.

Solut ion Technique

The model can be treated as a large integer nonlinear programming problem.
The particular solution technique used was the m-neigbborhood method (Garfinkel
and Nemhauser 1972, p. 330). By treating the distance, 4, ud plot size, 4, s
integers (for example, 5 m and 0.001 h4 respectively), this methd searches all
possible combinations of the desigu variables in the m-neighborhood, that is, within
m increments of the starting value. The combination which minimizes the cost the
most is used as the next starting point. This process is repeated until no
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improvements are found. Other starting points can be tested until the best
combination is determined. Although this method does not guarantee finding the
global optimun! it usually improves upon any existing desigu

DATA AND RESULTS

Estimating the cost and variance function parameters requires the collection
of preferably 40 or more clusters. In addition to the resource data, crew times and
other costs must be recorded. The cluster must be designed in such a way that
several distances between plots can be evaluated. Also, the cluster should have
more plots than would be e4pected in the final solution. Also, several plot sizes
should be evaluated by recording tree locations on a large plot, or by collecting data
on a series of sizes.

The first set of data used in this study was taken in 1968 and 1981 by Forest
Inventory and Analysis (FIA), USDA Forest Sewice, on 61 remeasured plots in
Hancock County, Maine. These plots were unique in that two cluster configurations
were co-located: 1) a l/t}-ac (0.0a ha) poletimber plot and a L/S-ac (0.08 ha)
sawtimber plot; and 2) a cluster of ten 37.5 t( /ac (8.6 nf/ha) horizontal point
samples (Figure 1). Detailed time data on each observation were recorded by an
additional crew member. In addition, data were collected on 20 new plots located in
central New Jersey. Some new variables and less detailed time data were recorded,
but the cluster configuration (Figure 2) provided data on a wider variety of
con-figurations.

Cost Funct ions

Cost functions and times were developed using standard regression techniques
(Table 1). The values presented are either simple averages or relate time to a
cluster design variable. In general, the times were highly variable. Attempts to
relate the times to the magnitude of the item recorded resulted in low correlations.
However, the averages do prove useful in determining the optimal cluster design.

Rel-var iance Funct ions

The rel-variance functions were developed using aonlinear regression on
various subsets of the data The subsets were selected to form various cluster
configurations with different numbers of plots, distances between thenr, and plot
sizes. For each of these combinations, the rel-variances across all clusters were
computed. These rel-variances were then regressed against the cluster design
variables (Table 2). In general, the rel-variances also proved to be highly variable
and proved difficult to model. Often the parameter for distance would have the
incorrect sign. This was a result of both its minimal affect on rel-variance at these
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short distances, and its correlation with the number of plots. Techniques such as
ridge regression were not investigated.

Opt imizat ion Resul ts

The optimum cluster design program was written in FORTRA}{ and was
based on F[A's precision requiremens which could be stated in terms of the
ma,rimum rel-variance allowed. To meet the precision requirements specified in this
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Variable Value Description

Cat"* 14.90 Dollars per two-person crew hour

Qcra 6.11 Vehicle: to first and from last cluster = $6.11/100 km

Q., 1.43 Vehicle: driving between clusters = $1.43/18 km

Qoiry 24.80 Vehicle lease = $6.20/day; SupenriSory = $18.60/day

Tr*,0 1.80 Hours from office to first and back from last cluster

&, 0.33 Hours to drive from one plot to the next

Aairy 0.50 Daily tasla such as equipment maintenance

T* r.20 Hours to travel from vehicle to cluster and return

T." 0.38 Hours of other activities, such as breaks

Tr.n .0003 Hours per meter of walking

T- 0.04 Hours to establish (monument) each plot center

Function k Model

Foliage 1 0.065 hr

Reproductn. 2 0.0125 + (46.4 hr/ac) (E ac) -

Poletimber 3 0.013 + (13.4 hrlha) (E ha) + 5.61 (a ha) (a huf'

Sawtimber 4 0.00 + (10. hr/ha) (e ha) + 2.ss (a ba}'

Table 1. Summary of cluster design costs and times

study, the two cluster configurations used in Maine would cost $43,000 for the fixed-
area plots and $43,500 for the 10 prism plots. The optimization resulted in a cluster
of four fixed-area plots at a cost of $35,40G-a savings of 18 percent. One cluster
could be obsened each day, and the day was fully utilized. The optimum design is
shown in Figure 3.

In 1990 in the six New England states, a network of Forest Health Monitoring
clusters was established. The purpose of the monitoring is to charactenze the forest
conditions and potential stressors, to detect and quantrs changes in conditions, and
to correlate these changes with potential stressors. The cluster design chosen was
based on the optimization performed for FIA The design was modified by
referencing each point back to the center and by offsetting the reproduction plot 3.7
m to the East to avoid trampling (Figure 3). The design is being used as the
network of clusters expands throughout the United States in the coming years.
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Table 2. Coefficients of rel-variance function (2) for seven attributes.

DISCUSSIO N AND CONCLUSIONS

The data required to develop the cost and variance functions are generally
not readily available. A relatively expensive pilot survey will be required. The
cluster design used in the pilot should be developed so that a variety of cluster
configurations can be formed from subsets of the data, such as in Figure 2. The
development of the functions can follow the forms used in this study and need not
take long to develop. The optimization can be performed based on the algorithms
reported here or using the program developed here (undocumented). The whole
process is time-consuming and expensive. Thus, the method described here is only
appropriate when a large-scale survey is being planned. The benefits derived in
using an optimal cluster design must more than offset the costs of developing the
design. For exarnple, potential savingp for the Northeastern FIA are about $90,(m
annually.

The cost functions used in this study may be applicable in other areas or can
be modified. More detailed information on these and other variables is available
from the author. The rel-variance functions proved difEcult to model. Other model
forms or regression techniques should be investigated. Also, other optimization
methods could be used which take advantage of the fact that the distance and plot
size variables are continuous. Another approach, which avoids the model
development and optimization steps, is to use the cost and variance data directly.
Find the subset of data which meets the precision requirements and minimizes cost.
Although this cluster conliguration may not be optimal, it avoids many of the
analytical steps and model assumptions involved.
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Attribute of

Interest

Rel-Variance Coefficients

bo b, q q

No. Seedlings/ha 0.019 -0.77r -0.154 4.236

No. Saplings/ha -1.080 -0.807 4.326 -0.536

No. Overstory Trees/ha -2.t10 -0.413 0.0 4.368

Basal Area (rt /ha) -3.350 -0.645 0.0 4.772

Net Cubic Volume (nflha) -1.330 -0.563 0.0 4.375

Net Board Foot Vol. -1.030 -0.503 0.0 4.425

Biomass/ha -3.810 -0.535 -0.t24 -1.0



The optimization methods proposed in this study can be thought of in a very
general way. The first step is to identify the design variables. In this situation they
are: 1) the number of clusters, 2) the number of plots within a cluster, 3) the
distance between plots, and 4) the plot size. All costs that are related to these
variables must be quantified and put into a form similar to equation (5). The rel-
variances of all attributes of interest should be modeled as a function of the design
variables. The costs are then minimized subject to precision constraints. The final
step is to perform a sensitivity analysis to determine the robustness of the design
chosen. These steps can be applied to almost any survey sampling problem resulting
in a very efficient design.
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