basic or applied research, innovative technology transfer, production promotion, new product development or marketing techniques, and significant service to the Walnut Council. If you know a deserving individual, agency, or organization that you would like to nominate, contact James E. Jones, Chairman of Walnut Achievement Award Committee (see front cover) for nomination forms. Nomination forms will be due on or before June 24, 1988.

After the Business meeting, we will board buses for lunch and a field trip in the Dodgeville area to visit a natural stand after completion of a timber stand improvement plan, a 10-year-old walnut plantation, the J. J. Rule walnut demonstration forest, and an adjacent managed natural walnut stand. That evening the Annual Banquet will be served at the Blackhawk Lake Recreation Area.

On Tuesday, July 26th, we will board the buses early for an all day field trip into southwestern Wisconsin to visit two sawmills before having an early lunch at the Tower Hills State Park. From there we will visit another walnut plantation and a manufacturing plant for woodcraft products. The meeting will adjourn at the conclusion of the field trip late in the afternoon.

The next issue of the Walnut Council Bulletin will contain the necessary preregistration forms and more detailed information about the program. In the interim, plan to make room reservations at the Karakahl Inn. Ask for Donna Hicks or Colleen Cox at 608/437-5545. Group room rates, if received by June 23, are $36.00 plus tax for a single and $42.00 plus tax for a double.

1987 Supporting Members of the Council

The Walnut Council wishes to express our gratitude to the following supporting members who contributed $50.00 to help support the activities of the Walnut Council. Their extra effort helps the Walnut Council to continue growing and meeting the needs of our members.

Lillian L. Greenwald — Bristol, VA
Dr. and Mrs. Sydney Eisen — Evanston, IN
Robert E. Hollowell, Jr. — Indianapolis, IN
Sigurd G. Peterson — LaPorte, IN
Hugh B. Pence — Lafayette, IN
Frank Purcell Walnut Lumber Co. — Kansas City, KS
Raymond Neiswender — Topeka, KS
E. E. Freeman, Jr. — Winchester, KY
Max Leach — Campbellsville, KY
Ben Petree — Silver Spring, MD

Future Meetings

<table>
<thead>
<tr>
<th>DATE</th>
<th>LOCATION</th>
<th>CONTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 24–26, 1988</td>
<td>Mount Horeb, Wisconsin</td>
<td>Jim Widder & David Ladd</td>
</tr>
<tr>
<td>August 6–9, 1989</td>
<td>Carbondale, Illinois</td>
<td>John Phelps</td>
</tr>
<tr>
<td>August, 1990</td>
<td>Southern Indiana</td>
<td>Bob Phelps</td>
</tr>
</tbody>
</table>

Nitrogen-Fixing Woody Nurse Crops

Nitrogen-fixing trees and shrubs fall into two broad categories. The leguminous trees and shrubs make up the largest category and are nodulated by the bacterium Rhizobium, which is the same bacteria that produces nodules on crops like garden peas, beans, and soybeans. Actinorhizal trees and shrubs make up the other category and are nodulated by the actinomycete Frankia (Torrey 1978).
There are six leguminous trees or shrubs currently available from one or more state nurseries within the natural range of walnut. These include black locust, Siberian peashrub, bristly locust, shrub lespedeza, honey locust, and redbud. Of these, only black locust and Siberian peashrub have been tested in walnut interplantings. Black locust will stimulate walnut growth; however, black locust rapidly overtops and suppresses the growth of walnut (Schlesinger and Williams 1984). Black locust, if coppiced or otherwise controlled, could be used early in the walnut rotation and then harvested for fenceposts or firewood as part of a precommercial thinning in the planting. Siberian peashrub, a leguminous shrub used in shelterbelts in the northern part of the walnut range, grows much slower than walnut and has not stimulated walnut growth in a planting in central Illinois (table 1).

Bristly locust and shrub lespedeza can both grow on a wide variety of sites and are excellent nitrogen fixers; however, neither has been tested in walnut interplantings because their mature heights are too short to act as trainers for the walnut trees. Honey locust and redbud have not been used in our interplantings trials because they are not nodulated and presumably do not fix atmospheric nitrogen (Halliday 1984).

Actinorhizal plants currently available from state tree nurseries include European (black) alder, autumn olive, and Russian olive. All three are being tested together in a walnut interplanting in central Illinois (table 1). European alder has been shown to stimulate the tree growth in a few walnut interplantings (Schlesinger and Williams 1984; Van Sambeek et al. 1985). On moderately to poorly drained soils, European alder is frequently killed early in the rotation in response to juglone produced by the walnut trees (Rietveld et al. 1983).

Autumn olive will stimulate the growth of walnut on all but the best walnut sites (Schlesinger and Williams 1984). The increased foliar nitrogen content of walnut interplanted with autumn olive suggests that atmospheric nitrogen fixed by autumn olive is readily made available to the walnut trees (Ponder 1983). Unfortunately, the "Cardinal" strain of autumn olive originally selected for planting in the United States is a prolific seed bearer and is widely spread to unmowed areas by birds that use the berries for food. As a result, several states have or are considering a ban on the planting of autumn olive. In addition, in some areas, autumn olive periodically suffers extensive dieback in response to climatic stress and/or an identified stem pathogen (Van Sambeek et al. 1985).

Russian olive is an actinorhizal shrub similar to autumn olive in crown form and is frequently used in wildlife plantings in the northern part of the walnut range. Growth rate appears to be compatible with walnut (table 1). Branch dieback on older trees due to Phomopsis canker will limit the potential usefulness of Russian olive in the southern part of the walnut range.

Non-Nitrogen-Fixing Woody Nurse Crops

Few non-nitrogen-fixing trees have been evaluated as possible candidates for intercropping with walnut. White pine is promising because it can be harvested early in the walnut rotation for Christmas trees or allowed to grow and be harvested later as pulpwood (Camp 1986). Because white ash, sugar maple, and red oak have widespread branches with dense foliage and growth rates similar to walnut, these high value hardwoods are also occasionally recommended.

A relatively large number of non-nitrogen-fixing shrubs are currently available from state nurseries for wildlife plantings; however, most of these shrubs have not been tested in experimental interplantings. Amur honeysuckle and ginnala maple, two shrubs with growth rates and crown forms similar to autumn olive, are being tested in an interplanting in central Illinois (table 1). Both species were introduced into the United States and seedling availability may become a problem as state nurseries

Table 1. Sixth year height and crown area for walnut and the interplanted nitrogen-fixing and non-nitrogen-fixing nurse crops on a bottomland site in central Illinois.

<table>
<thead>
<tr>
<th>Interplanted species</th>
<th>Height</th>
<th>Nurse crop</th>
<th>Crown area</th>
<th>Nurse crop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black walnut</td>
<td>Nurse crop</td>
<td>Black walnut</td>
<td>Nurse crop</td>
</tr>
<tr>
<td></td>
<td>feet</td>
<td></td>
<td>square feet</td>
<td></td>
</tr>
<tr>
<td>NITROGEN-FIXING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European alder</td>
<td>8.8 a</td>
<td>13.9 a</td>
<td>45 a</td>
<td>51 a</td>
</tr>
<tr>
<td>Russian olive</td>
<td>8.1 ab</td>
<td>10.1 b</td>
<td>44 a</td>
<td>44 a</td>
</tr>
<tr>
<td>Autumn olive</td>
<td>6.9 ab</td>
<td>7.3 c</td>
<td>36 a</td>
<td>33 ab</td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td>8.1 ab</td>
<td>3.3 f</td>
<td>42 a</td>
<td>2 d</td>
</tr>
<tr>
<td>NON-NITROGEN FIXING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur honeysuckle</td>
<td>7.2 ab</td>
<td>7.0 cd</td>
<td>38 a</td>
<td>47 a</td>
</tr>
<tr>
<td>Ginnala maple</td>
<td>6.8 ab</td>
<td>5.3 de</td>
<td>35 a</td>
<td>23 bc</td>
</tr>
<tr>
<td>Scotch pine</td>
<td>6.3 b</td>
<td>3.8 ef</td>
<td>28 a</td>
<td>8 cd</td>
</tr>
<tr>
<td>Close-spaced walnut</td>
<td>6.8 ab</td>
<td>—</td>
<td>32 a</td>
<td>—</td>
</tr>
</tbody>
</table>

Means within the same column followed by the same letter are not significantly different from each other at the 5-percent level.

Black Walnut Information Hotline

618/453-2318

Call this number to find answers to questions or problems concerning planting, growing, or selling black walnut trees.
begin placing more emphasis on production of native shrubs over exotic shrubs.

Benefits From Woody Nurse Crops

Because forest soils are characteristically low in available nitrogen, researchers initially assumed that the primary benefit of interplanting nitrogen-fixing nurse crops with walnut would be the addition of nitrogen to the site and increases in available soil nitrogen have been found in some interplantings (Funk et al. 1979). Several studies have shown that improved walnut growth is highly correlated with increases in walnut foliar nitrogen concentration (von Althen 1985, Van Sambeek et al. 1985). Other benefits including improving the physical properties of the soil, reducing the understory competition, providing wind protection, moderating soil and air temperatures, and disrupting the life cycle of several walnut pests have also been observed (Schlesinger and Williams 1984).

Soil properties in successful interplantings are usually more similar to those found in productive timber stands than in cultivated or old field sites. Forest soils typically have organic matter contents between 3 and 4 percent compared to 2 percent for agricultural soils. Small increases in organic matter content remarkably augment a soils capacity to promote plant growth by decreasing the leaching of soil nitrogen, by increasing the water-holding capacity, and by increasing soil porosity and tilth (Brady 1974). Because most interplantings are not annually cultivated, these soils will more likely develop a higher organic matter content which can lead to improved long-term growth of walnut.

Reduced understory competition, especially from grasses, may also be very important (figure 1.). By the time crown closure in pure walnut stands is sufficient to suppress the understory vegetation, significant reductions in walnut growth will be occurring from between tree competition (Schlesinger, in press). Interplanting woody nurse crops can raise the total crown cover sufficiently to suppress the understory vegetation while minimizing the between tree competition that would normally occur in pure stands. In addition, the increased shading will help moderate soil temperature extremes and reduce the evapotranspiration rates. Overall, woody species with spreading crowns have tended to increase walnut growth more than tall, upright species (table 1).

Herbaceous Cover Crops

An alternative to intercropping with trees or shrubs to control the understory vegetation is underplanting with compatible ground covers or cover crops. Walnut is well suited for underplanting with shade-tolerant ground covers because of walnut's short growing season, sparse foliage, and deep taproot. Several multicropping systems (a series of intercrops) have been proposed that use winter wheat, soybeans, milo, or fescue between widely spaced rows of walnut managed for timber and nut production (Kurtz et al. 1984). Close spacing within rows still allows for some selection gains when thinning. Winter wheat is an excellent intercrop because its vegetative growth occurs while the walnuts are still dormant. Soybeans and milo are less attractive because both will compete with walnut for the available soil water and nutrients during the dry part of the growing season (figure 2).

Based on recent research results, we may want to proceed cautiously with intercropping with grasses like tall fescue and smooth bromegrass. In several walnut plantings with early acceptable tree growth, annual height growth has declined to unacceptable levels following establishment of a grass sod (Schlesinger and Van Sambeek 1986). Removal of the grass sod by annual cultivation or herbicide application frequently increases walnut growth to acceptable levels (Bocoum 1987, Miller et al. 1987). Other researchers have also advised against managing walnut trees with fescue (Holt and Voeller 1975, Todhunter and Beineke 1979, Roth and Mitchell 1982).

Recent research has shown that leachates from tall fescue sod will slow the growth of potted walnut seedlings (Rink and Van Sambeek 1985). Peters and Luu (1985) have shown that fescue leachates contain a number of short-chain organic acids that can inhibit plant growth.

Have You Paid Your 1988 Dues?

In January, our Executive Director Larry Frye sent a letter to all members of the Walnut Council asking for your support by paying your 1988 dues and helping to recruit new members. Check your mailing label. It should indicate through what date your dues are paid and your membership category (LM = Life Member, RM = Regular Member, YM = Student Member, and FM = State Forestry Member). If you have not paid your 1988 dues, please do so using the application for membership on the last page of the Walnut Council Bulletin. If you find any errors on your mailing label, please bring them to the attention of Larry Frye. We want everyone to continue receiving the Walnut Council Bulletin and all other mailings.
Because soil-borne organic acids are rapidly decomposed by soil microorganisms (Vaughn et al. 1983), these acids must be produced continuously to inhibit plant growth. The rapid restoration of walnut leaf color observed after removing fescue by summer cultivation suggests that growth of walnut trees may also be inhibited by fescue-produced organic acids.

Intercropping forage legumes between rows of walnut can stimulate walnut seedling and sapling height growth (Van Sambeek and Rietveld 1982, Van Sambeek et al. 1987). Interplanting hairy vetch, an annual cool-season legume, in combination with within row chemical weed control will stimulate walnut growth during the establishment phase (figure 3). Hairy vetch has also been shown to stimulate the growth of pole-sized walnuts (Schlesinger and Van Sambeek 1986, Bocoum 1987). Crownvetch, a cool-season perennial legume, and sericea lespedeza, a warm-season perennial legume, will also stimulate growth of established walnut seedlings (figure 4).

WALNUT HEIGHT WITH ANNUAL LEGUMES

ESTABLISHED WITH CHEMICAL WEED CONTROL

![Graph showing height of walnut with annual legumes](image)

Figure 3. Height of walnut through eighth growing season when intercropped with and without annual legumes. Chemical weed control around individual seedlings was used for the first three years.

WALNUT HEIGHT WITH PERENNIAL LEGUMES

ESTABLISHED WITH CHEMICAL WEED CONTROL

![Graph showing height of walnut with perennial legumes](image)

Figure 4. Height of walnut through eighth growing season when intercropped with and without perennial legumes. Chemical weed control around individual seedlings was used for the first three years.

For long-term maintenance of forages under closely spaced walnut trees, semi-shade to shade tolerant legumes will need to be established. Potentially legumes like cicer milkvetch, crownvetch, flatpea, birdsfoot trefoil, and several of the lespedezas could be used in forest plantings because they are somewhat shade-tolerant, persistent, and either suppress other weeds or produce palatable forages (figure 5). Forage legumes like alfalfa, sweet clover, and red clover have little or no shade-tolerance and would probably not persist after plantation establishment.

Benefits From Cover Crops

A common cause of growth stagnation in young walnut plantations is competition for available nitrogen (von

New Life Members Recognized

Since our last announcement, the Walnut Council has increased the number of life members from 15 to 21. The Walnut Council wishes to recognize new life members who are also helping the Walnut Council to continue growing and meeting the needs of our members.

George T.Trial — Columbia, MO
James H. Lee — Memphis, TN
Ralph R. Obenchain — Woodstock, IL
Tom Cox — Peoria, IL
Bonnie Ennis — East Peoria, IL
Lillian L. Greenwald — Bristol, VA
tree species with flowers killed by late spring frosts. Walnut in the spring—an important consideration for a
the soil surface would also be lost.

With the increased biomass produced by the planted
mulched soil surface under this planting. Althen 1985). Besides suppressing growth of weeds (Van
Sambeek and Rietveld 1982), planting legumes will also
increase soil nitrate nitrogen levels making more nitrogen
available for uptake by the trees (White et al. 1981). Apparently, the benefits from increased soil nitrogen, in-
creased soil organic matter content, and reduced inci-
dence and severity of foliar pests offset the impact of
the increased soil water and nutrient uptake associated
with the increased biomass produced by the planted
legumes. Harvesting intercropped legumes for hay will
probably result in little or no increase in soil nitrogen or
organic matter and the benefits derived from mulching
the soil surface would also be lost.

The heavy mulches produced by unharvested ground
covers aid in the adsorption and retention of soil moisture and can significantly delay budburst and flowering of
walnut in the spring—an important consideration for a
tree species with flowers killed by late spring frosts (Wolsterhelme 1970). When managing for timber and
nuts, leguminous ground covers have been shown to
stimulate earlier walnut fruiting and increased numbers
of nuts per tree in young plantations (table 2).

Conclusions
Research data indicate that intercropping with nitrogen-
fixing trees and shrubs can significantly improve the
eyearly growth of walnut. Benefits are currently ascribed to
release of fixed-nitrogen and suppression of competing
understory vegetation, especially grasses. Intercropping
semi-shade tolerant legumes as a compatible ground
cover is a promising alternative to using nitrogen-fixing
trees and shrubs.

Literature Cited
Bocourn, Ibrahimia. 1987. Effects of vegetation management on the
growth of stagnated black walnut (Juglans nigra L.) trees. Un-
Camp, Richard F. 1986. Walnuts and white pine can be grown together
Autumn-olive as a nurse plant for black walnut. Bot. Gas. 140
(Suppl.):S110-S114.
Halliday, Jake. 1984. Register of nodulation reports for leguminous
trees and other arboreal genera with nitrogen fixing members.
Holt, Harvey, A. and Jack E. Voeller. 1975. Influence of weed control on
alternatives for black walnut plantation management. J. For.
82:604-608.
Miller, Les A., Paul H. Wray, and Carl W. Mize. 1987. Response of
stagnated black walnut to chemical release. North J. Appl. For.
4:93-95.
chemistry of allelopathy (Alonzo C. Thompson, ed.). Amer. Chem.
Ponder, Felix, Jr. 1983. Effect of autumn-olive on the mineral composi-
14:1253-1263.
effects of black walnut on European alder co-planted as a nurse
Rink, George and J. W. Van Sambeek. 1985. Variation among black
walnut seedling families in resistance to establishment interference.
Plant and Soil 88:3-10.
Roth, P. L. and R. J. Mitchell. 1982. Effects of selected cover crops on
the growth of black walnut. In Black walnut for the future. USDA
Schlesinger, Richard C. The effects of crowding on Juglans nigra
growth. In Proc. IUFRQ Internal. Conf. on Thinning Problems. Mos-
cow, USSR. (in press.)
cover management can revitalize black walnut trees. North J. Appl.
For. 3:49-51.
walnut to interplanted trees. For. Ecol. and Manage. 9:235-243.
Todhunter, Michael N. and Walter F. Beineke. 1979. Effect of fescue on
black walnut growth. Tree Planters' Notes 30:20-23.

(continued on page 11)

Authors point out that growing walnut requires a long-term commitment if you plan to produce high quality logs under short rotation forestry. Intensive management requiring continuing, periodic silvicultural treatments, i.e., weed control, vegetation management, pruning, and thinning, will be necessary for at least 40 to 50 years. First consideration should be given to pruning and release of walnut trees in natural stands to shorten this time frame. Plantation culture will require additional investments, i.e., establishment, weed control, and early vegetation management, to achieve satisfactory growth and to produce a quality product. Authors emphasize that the decision to grow walnut must be based on a long-term commitment and that it is not a one-time investment.

UNDER THE WALNUT TREE

The recipes selected for this column are taken from a variety of sources and demonstrate how versatile black walnut nutmeats can be. If you have a favorite recipe calling for walnuts, especially black walnut nutmeats, please send it to the Bulletin Editor (address on front cover), so it can be included in a future issue.

Colonial Nut Bread

2/3 cup sugar
1 lightly beaten egg
2 1/2 cups flour
1/2 teaspoon salt
1 cup chopped black walnut nutmeats
1 cup raisins
2 1/2 teaspoons baking powder
1 cup sweet milk

Beat egg and gradually add sugar. Sift together flour, baking powder, and salt. Add the dry ingredients and sweet milk alternately to egg mixture. Stir in raisins and chopped nutmeats. Pour in a buttered loaf pan and let stand for 60 minutes. Bake at 350°F for 50 minutes.

[Reprinted from the Michigan Nut Growers Association The Nutjar—A Cookbook]

Black Walnut Pudding

4 eggs, separated
1 cup zwieback crumbs
1 cup chopped black walnut nutmeats
2/3 cup powdered sugar
1 teaspoon vanilla
1/2 cup heavy cream, whipped

Beat egg yolks slightly and combine with zwieback crumbs, chopped black walnut nutmeats, sugar, and vanilla. In separate bowl, beat egg whites until stiff. Gently fold beaten egg whites into nutmeat mixture. Pour into a buttered shallow casserole. Bake in 350°F oven 20 to 25 minutes. Let stand overnight before serving. Excellent with Zuuppa da Pesce, bouillabaisse, or fish stew.

[Reprinted from the New Casserole Cookery by Marian Tracy]

Rocky Road Fudge

20 large marshmallows
6 oz. semi-sweet chocolate
1/2 cup butter
2 cups sugar
2/3 cup evaporated milk
1 cup broken black walnut nutmeats
1 teaspoon vanilla

Cut 10 large marshmallows into quarters, spread on a cookie sheet, and freeze until firm. Break up chocolate and place with butter in large mixing bowl. In heavy sauce pan, combine sugar, 10 marshmallows, and milk. Bring to boil over medium heat and continue boiling for 5 minutes, stirring constantly. Pour hot mixture over chocolate and butter, stirring mixture until it is well blended and starts to thicken. Add chopped black walnut nutmeats, vanilla, and frozen marshmallow quarters. Pour into lightly greased 9-inch pan. Chill until firm. Cut into squares and store covered.

[Adapted from recipe in Feed My Lambs cookbook edited by Ruth Howard, Millbank, South Dakota]

Chewy Black Walnut Squares

1 egg, unbeaten
1 cup brown sugar, packed
1 teaspoon vanilla
1/2 cup sifted all-purpose flour
1/4 teaspoon baking soda
1 cup brown sugar, packed
1/4 teaspoon salt
1/2 to 1 cup chopped black walnut nutmeats

Combine egg, brown sugar, and vanilla. Quickly stir in flour, baking soda, and salt. Add chopped black walnut nutmeats. Spread in a greased 8-inch square pan. Bake at 350°F for 18 to 20 minutes. Be sure not to overbake; cookies will be soft in center when taken from oven. Cool in pan; cut into sixteen 2-inch squares.

[Adapted from recipe in June/July 1986 Issue of Sun-Diamond Grower]

Site Improving Intercrops article (continued from page 6)

1988 Annual Meeting to be in Wisconsin

The 1988 Annual Walnut Council Meeting has been scheduled for July 24 to July 26 at the Karakah Inn in Mount Horeb, Wisconsin according to the program co-chairmen Jim Widder and David Ladd. Mount Horeb is approximately 20 miles west of Madison, Wisconsin. This year’s theme will be “Walnut Naturally in Wisconsin.” This meeting will be a must for those interested in black walnut natural stand management and lumber utilization.

On Sunday, July 24th, the Walnut Council Executive Board will meet all afternoon with meeting registration beginning in late afternoon. Plan to be at the meeting by 6:30 p.m. to meet with your Landowner Representative for a short meeting followed by the Landowner’s Show and Tell. Now is the time to begin planning your slide presentation (15 to 20 minutes long) for this interesting and enlightening session. Please contact Larry Severud (see map at bottom left) and let him or his secretary know that you are preparing a presentation.

On Monday, July 25th, the meeting will begin early with welcomes and several technical presentations. This will be followed by the Annual Business meeting. One of the highlights of the business meeting is presentation of the Walnut Achievement Award. This award is given for achievements in black walnut related activities including (continued on page 2)