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A Comparison of Dynamic and Static 
Economic Models of Uneven-Aged 
Stand Management 

ABSTRACT. Numerical techniques have been used to compute the discrete-time sequence of 
residual diameter distributions that maximize the present net worth (PNW) of harvestable volume 
from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions 
determined with static analysis. In this paper, optimality conditions for solutions to dynamic and 
static harvesting problems are established. Comparison of these conditions shows that for a stand 
with any diameter distribution: (1) the optimal transition regime does not converge to the steady 
state that maximizes land expectation value (LEV) using the Faustmann equation; (2) the PNW 
of the optimal transition and steady-state regime is greater than the PNW of the statically deter- 
mined steady-state regime; and (3) the optimal steady-state regime is invariant. A refined version 
of a recently published dynamic optimization algorithm is provided and demonstrated with a 
whole-standldiameter-class simulator for hardwood stands in Wisconsin. Optimal management 
regimes are computed for comparison with a static equilibrium management regime and for 
analysis of the effect of cutting-cycle length on harvest pattern and PNW. FOREST SCI. 31957- 
974. 

ADDITIONAL KEY WORDS. Forest economics, optimal harvesting, nonlinear programming, gra- 
dient method. 

HARVESTING DECISIONS for an uneven-aged stand are dynamic because stand struc- 
ture changes over time as a result of tree removals. Dynamic optimization has 
not been used to determine harvest schedules because of the large number of 
decision variables involved. Instead, studies in uneven-aged management have 
concentrated on the smaller problem of determining optimal equilibrium man- 
agement regimes. 

Equilibrium management regimes have been developed with static optimiza- 
tion, which maximizes the present value of equilibrium harvests minus the value 
of residual growing stock. Adams (1 976) developed investment-efficient diameter 
distributions for a fixed cutting cycle. Buongiorno and Michie (1 980) and Martin 
(1 982) extended the analysis to consider alternative cutting cycles. Chang (1 98 1) 
and Ha11 (1 983) derived marginal production rules for optimal equilibrium grow- 
ing-stock levels and cutting-cycle lengths. Chang (1 98 l) demonstrated a method 
for solving these equations. 

Solutions obtained with static analysis have been used to develop transition 
strategies and to evaluate alternative management systems. Adams and Ek (1 974) 
demonstrated a method for determining optimal transition regimes that converge 
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to steady-state diameter distributions in three periods or less. Chang (1 98 1) and 
Hall (1 983) showed that the objective function for determining the optimal equi- 
librium growing-stock level and cutting cycle is equivalent to maximizing land 
expectation value (LEV) with the Faustmann (1 849) equation. Chang (1 98 1) then 
used LEV as a measure for comparing the profitability of uneven-aged and even- 
aged management. Martin (1 982) measured the profitability of uneven-aged man- 
agement on different sites with LEV. 

In a departure from static analysis, Haight and others (1985) used dynamic 
optimization to determine the optimal sequence of diameter distributions and 
selection harvests for an existing stand. They reported a 150-year management 
regime for a stand with a pre-harvest investment-efficient diameter distribution. 
This regime exhibited a pulselike transition away from the steady-state diameter 
distribution and had a higher present net worth (PNW) than the equilibrium 
management regime. These results called into question the use of static analysis 
for developing optimal steady-state stand structures and the use of LEV for eval- 
uating the profitability of uneven-aged management. 

In the &st three parts of this paper, I resolve the dynamic and static optimization 
problems for the diameter distribution model of uneven-aged management. In 
parts 1 and 2, I formulate the problems and derive marginal production rules that 
are satisfied by optimal solutions. In part 3, I compare the marginal production 
rules and steady-state solutions to each problem and discuss how solutions to 
each problem should be used. 

In part 4, I use the solution procedure given by Haight and others (1985) to 
develop an algorithm that provides stable solutions for transition and equilibrium 
management regimes. In the next two parts, I demonstrate the algorithm by 
computing optimal management regimes for comparison with a statically deter- 
mined equilibrium regime and for analysis of the effect of increasing the cutting- 
cycle length. Part 7 provides a summary and discussion. 

Consider the problem of determining the optimal sequence of selection harvests 
for an uneven-aged stand: 

subject to, for all i = 0, . . . , co and for j = 1, . . . , M, 

where 

Xu = a state variable representing the number of trees per acre in diameter 
class j at the beginning of period i before cutting 

S, = a control variable representing the number of trees per acre in diameter 
class j at the beginning of period i after cutting 

Pj = the net price per tree in diameter class j 
f;j. = a continuous nonlinear function with continuous partial derivatives rep- 

resenting the change in number of trees per acre in diameter class j during 
period i 

M = the number of diameter classes 



r = the discount rate 
t = the number of years in a time period. 

The objective function, equation (1.1), is formulated to seek the set {S,,) rep- 
resenting the residual number of trees in each diameter class and time period that 
maximizes the PNW of harvests over an infinite planning horizon. This formu- 
lation is equivalent to the PNW maximization problem presented and numerically 
solved by Haight and others (1985), in which the control variable set represented 
the percentage of the number of trees in each diameter class that were cut at the 
beginning of each time period. I use residual numbers of trees as control variables 
in the formulation for the dynamic problem presented here to facilitate compar- 
ison with the static optimization problem. 

The motion equation set (1.2) represents the diameter-class growth dynamics. 
The change in number of trees per acre f;i is the sum of functions for ingrowth , 
from smaller diameter classes, upgrowth into larger diameter classes, and mor- 
tality. Each of these components is a continuous and differentiable nonlinear 
function of the residual diameter distribution S,,, . . . , Si,. Uneven-aged stand 
simulators with this structure have been developed for Wisconsin hardwood stands 
(Adams and Ek 1974) and for Arizona ponderosa pine stands (Hann 1980). 

Equation sets (1.3) and (1.4) require that the residual numbers of trees and 
harvest levels be non-negative. The initial stand structure is given by equation 
set (1.5). 

Knapp (1983) derived Kuhn-Tucker conditions that are satisfied by optimal 
transition and steady-state solutions to a general dynamic optimization problem. 
I apply his analysis to the dynamic uneven-aged management problem given by 
equation sets (1.1) to (1.5) to obtain marginal production rules that are satisfied 
by optimal transition and steady-state management regimes. 

Kuhn-Tucker Conditions. -I define an optimal value function Ti*(Xil, . . . , XiM) 
as the discounted value of the optimal sequence of selection harvests in periods 
i to m when starting period i in state X,,, . . . , Xi,. Using the principle of opti- 
mality (Dreyfus and Law 1977, p. 10 l), Ti* satisfies the functional equation: 

(X, - S,)C 
T ( X i  . . . , X i  = Max 

subject to 

Sij 2 0 and Xi, - S, 2 0 j=  1, . . . ,  M. 

For S,,*, . . . , SiM* to solve the constrained maximization problem (1.6), I can 
define Lagrange multipliers u,,*, . . . , uiM* and vil*, . . . , viM* that satisfy the 
following Kuhn-Tucker conditions: 

M -Pj dT,+,* ~ T ; + I *  ax, +-+z-- 
(1 + rlit ,, as,, 

u..*S..* Y 11 = 0 and v,*(X,, - So*) = 0 j = 1 . . . , M (1.7b) 

S,,*zO and Xu-S ,*2O 1 M (1.7~) 

uU*2O and v,*20 j = l ,  ..., M. (1.7d) 

The dependence of the optimal control variable values S,,*, . . . , SiM* on the 



values of the state variables Xi,, . . . , Xi, is recognized with the following equation 
set: 

a Ti* - 4 + vu* j =  1, . . . ,  M. 
ax, (1 +rl i t  

The optimal value function Ti* and conditions (1.7aH1.7e) are defined for 
each time period i = 0, . . . , m. An optimal management regime must satisfy this 
complete set of interperiodic conditions. 

Marginal Production Rules. -To more easily derive and interpret the marginal 
production rules, I first define functional relationships for the Lagrange multipliers 
u,* and v,*. Examination of equation sets (1.7a), (1.7b), and (1.7~) yields the 
following conditions for the Lagrange multipliers: 

u..* = for S,* > 0 -a Ti*/aS, for S,* = 0 

v..* = for 'u* > j =  1 , .  . . , M .  (1.8b) a~ .* / a s ,  for x . . -s . .*=o u V 

Each Lagrange multiplier is a shadow price, which measures the change in the 
value of the objective function corresponding to a small change in the constraint. 
When S,* = 0, the multiplier uu* is the increase in benefits that would result from 
having one less unit of growing stock in diameter class j in period i. Similarly, 
when X, - Su* = 0, the multiplier v,* is the increase in benefits due to an increase 
in the residual number of trees in diameter class j period i. When a constraint is 
nonbinding in the optimal solution, the corresponding shadow price is zero. 

Equation (1.7e) gives the value of an additional tree in diameter class j at the 
beginning of period i, aTi*/aXu. When Xu - S,* > 0, the marginal tree is cut 
with value Pj/(l + r)". When Xu - S,* = 0, the marginal value includes the 
shadow price for an additional unit of growing stock in diameter class j at the 
beginning of period i. 

With these definitions, condition (1.7a) can be rearranged to obtain marginal 
production rules that are defined over the set of diameter classes in period i: 

4 M 

-- P k  aj;, u ~ *  " + V; = z 
+ r)(i+ 1). + vi+l k*]- 

k= l as, 

The left-hand side of equation (1.9) represents the opportunity cost of leaving 
an additional tree in diameter class j. When 0 < Sij* < Xu, the marginal input 
cost equals the discounted tree price. When S,* - X, = 0, the marginal cost 
equals the sum of the discounted tree price and the shadow price (discounted) of 
an additional tree. When S,* = 0, the marginal cost equals the discounted sum 
of the tree price and a price reduction due to an additional tree. The price reduction 
means that we would prefer to harvest more trees to improve the objective function 
value. 

The right-hand side of equation (1.9) gives the marginal revenue product of 
leaving an additional tree in diameter class j. This equals the discounted value 
growth resulting from the additional tree summed over all diameter classes plus 
the discounted value of the tree. The value of the growth in period i + 1 is the 
tree price if Xi+lk - Si+lk* > 0. If Xi+lk - Siflk* = 0, the value of the marginal 
growth includes v ~ + , ~ * ,  the shadow price for an additional tree in diameter class k. 



The rule for resource production states that the residual number of trees in 
diameter class j period i is increased until the marginal input cost of one more 
tree equals the marginal revenue product associated with leaving the tree. An 
optimal management regime for an existing stand has satisfied this rule simul- 
taneously over all diameter classes and periods in the planning horizon. The 
marginal production rules and definitions of the shadow prices are summarized 
in the Appendix. 

To derive the static optimization problem, I modify the original dynamic for- 
mulation given by equations (1.1) to (1.5) by including an equilibrium constraint: 

m M 

  ax PNW = Z) 2 (X, - S,)Pj 
(SO}  i=o (1 + r);' 

subject to, for all i = 0, . . . , m and for j = 1, . . . , M, 

Xi+l, = Sij + Lj(Si1, . - 9 SiM) (2.2) 
s, 2 0 (2.3) 

x, - s, 2 0 (2.4) 

xo, (2.5) 
and 

Xi+,, = X,for all i = 1 , .  . . , m and j =  1,.  . . , M. (2.6) 

Constraint (2.6) requires that an equilibrium harvest regime be achieved after 
one harvest from an existing stand. Using this constraint, I can rearrange the 
objective function (2.1) to obtain 

M 
(Xlj - Soj)Pj Max PNW = Z) (Xoj - Soj)P, + Z) 

iS0j1 j= 1 (1 + r)'- 1 ' 

Substituting the growth dynamics (2.2) into (2.7) results in the static optimi- 
zation problem: 

M M 

Max PNW = Z) (Xoj - Soj)Pj + Z) . . . , s0M)< 
c so j )  j= I j=l ( l + r ) ' - 1  (2.8) 

subject to, for j = 1, . . . , M, 

Soj(l + r)'/[(l + r)' - 11 2 0 (2.9) 

foj(Sol, - . , SOM)/[(~ + r)' - 11 2 0 (2.10) 

xoj - so, 2 0 (2.1 1) 

xoj. (2.1 2) 

The objective function (2.8) seeks a steady-state diameter distribution So,, . . . , 
So, that maximizes the value of the initial harvest plus the present value of 
equilibrium harvests in perpetuity. This is equivalent to the objective function 
for forest value given by Chang (198 l), except that we consider diameter-class 
growth dynamics. 

In contrast to Chang's (1 98 1) formulation, three sets of constraints are needed 
to determine the optimal steady-state management regime. Constraint set (2.9) 
requires a non-negative residual stocking level and constraint sets (2.10) and (2.1 1) 



require non-negative harvest levels. Constraint sets (2.9) and (2.10) are multiplied 
by the constants (1 + r)'/[(l + r)' - 11 and 1/[(1 + r)' - 11 to simplify the 
derivation and interpretation of marginal production rules. The initial diameter 
distribution is given in equation set (2.12). 

When the initial harvest constraints (equation set (2.11)) are not binding and 
the value of the initial stand structure is ignored, the problem is equivalent to 
maximizing LEV. Solutions are investment-efficient diameter distributions that 
have been developed by Adams (1976), Buongiorno and Michie (1 980), and 
Martin (1 982). 

Kuhn-Tucker Conditions.-For So,*, . . . , SoM* to solve the constrained maxi- 
mization problem (2.8) to (2.12), I can define Lagrange multipliers a,*, . . . , a,*, 
b,*, . . . , bM*, and el*, . . . , cM* that satisfy the following Kuhn-Tucker conditions: 

a.*S J OJ * = 0, b,*fo, = 0, and c,*(Xo, - So,*) = 0 j = 1, . . . , M (2.13b) 

Soj*IO,  & I 0 ,  and Xo,-So,*IO j = 1 ,  . . . ,  M (2.13~) 

a j * 2 0 ,  b j*IO,  and c ,* IO  1 . M. (2.13d) 

Marginal Production Rules. -The Lagrange multipliers a,*, b,*, and cj* are shadow 
prices, which measure the change in value of the objective function corresponding 
to a change in the associated constraint. When So,* = 0, aj*(l + r)l/[(l + r)' - 
11 is the increase in PNW resulting from a decrease in residual stocking in diameter 
class j. When& = 0, b,*/[(l + r)' - 11 is the increase in PNW due to an increase 
in the number of trees in diameter class j in the equilibrium stand structure. 
Finally, when Xo, - So, = 0, c,* is the increase in PNW due to an increase in 
residual stocking in diameter class j. The shadow prices a,* and bj* must be 
multiplied by the scaling factors used in constraints (2.9) and (2.10) to obtain 
these definitions. Whenever a constraint is nonbinding in the optimal solution, 
the corresponding shadow price is zero. 

Rearranging (2.13a) gives the marginal production rules for an optimal equi- 
librium diameter distribution: 

The marginal input cost of leaving an additional tree in diameter class j is the 
tree price. Marginal input cost is reduced by a,* if So,* = 0 and is increased by 
cj* if Xo, - So,* = 0. Marginal revenue product equals the discounted value growth 
that results from the additional tree in diameter class j plus the discounted value 
of the tree. Prices of the growing stock are increased or reduced according to 
whether the growing stock and harvest constraints are binding. 

The marginal production rule stated by equation set (2.14) is to increase the 
number of trees in diameter class j until the marginal input cost of one more tree 
equals the marginal revenue product associated with leaving the tree. An optimal 
steady-state diameter distribution satisfies this rule simultaneously over all di- 
ameter classes. Production rules and shadow price definitions are summarized 
in the Appendix. 



Both the dynamic and static optimization problems seek to maximize PNW, but 
the static problem includes an equilibrium harvest constraint. For any initial 
stand, problem 1 seeks the optimal sequence of diameter distributions and selec- 
tion harvests over an extended planning horizon, while problem 2 seeks the 
optimal equilibrium diameter distribution that can be established with one harvest 
from the stand. Although problems 1 and 2 have different constraint sets, the set 
of feasible solutions to problem 2 is a subset of the feasible solutions to problem 1. 

Because the problems have different constraint sets, they have differences in 
marginal production rules. Problem 1 defines interperiodic production rules for 
both transition and equilibrium management regimes, while problem 2 defines 
production rules for equilibrium management regimes only. Thus, we can only 
compare production rules for steady-state stand structures. The conditions for the 
equilibrium stand structures are given in the Appendix. I make two comparisons. 
The first comparison is made with the assumption that the initial diameter dis- 
tribution is arbitrarily large. In the second comparison this assumption is dropped. 

Comparison 1. -Will an investment-efficient diameter distribution satisfy the 
marginal production rules for a dynamic equilibrium stand structure? An in- 
vestment-efficient diameter distribution is found by solving problem 2 with an 
arbitrarily large initial stand structure. Thus, c,* = 0 for j = 1, . . . , M. In this 
case, the marginal input cost and marginal revenue product of the conditions for 
the static equilibrium do not contain Lagrange multipliers for binding non-neg- 
ative harvest constraints. As a result, whenever an equilibrium harvest regime 
found by solving the static optimization problem contains no harvest in diameter 
class k, so that bk* = 0, the management regime will not satisfy the conditions for 
a dynamic equilibrium. The converse of this is also true. 

Suppose an investment-efficient diameter distribution contains positive harvest 
levels in all diameter classes so that bk* = 0 for k = 1, . . . , M, and all trees 
growing into the largest diameter classes are cut so that a,* > 0. In this case, the 
rules for static and dynamic equilibrium production are equivalent. The converse 
of this is also true. 

How often will investment-efficient diameter distributions contain positive har- 
vests in all diameter classes? Getz (1 980) investigated the structure of maximum 
sustained-yield harvest policies for age-structured populations with linear growth 
dynamics and arbitrary stock-recruitment functions. He showed that, at most, 
two age classes are harvested, the younger partially and the older completely. The 
remaining age classes that contain individuals are not harvested. The structure 
of the Adams and Ek (1 974) simulator is similar to the age-class population model 
analyzed by Getz (1 980), except that movement of trees to the next larger diameter 
class is predicted with a nonlinear function. Nevertheless, the dynamic equilibria 
obtained by numerically solving problem 1 with the Adams and Ek (1974) sim- 
ulator exhibit bimodal harvest policies. If optimal equilibrium harvest policies 
for diameter-class simulators with nonlinear growth dynamics are always bimodal, 
dynamic and static equilibrium regimes will be equivalent only when the residual 
diameter distributions contain trees in the smallest diameter class. 

These results restrict the use of statically determined steady-state diameter 
distributions. Adams (1976), Buongiorno and Michie (1980), and Martin (1982) 
solve problem 2 with an assumption that the first-period harvest constraints are 
not binding. They call their solutions investment-efficient diameter distributions; 
these are used as goals in transition management. Because investment-efficient 
diameter distributions do not satisfy marginal production rules for dynamic equi- 



librium stand structures, they should not be used as goals for long-term manage- 
ment. They should be used only when the objective is to convert the stand to an 
equilibrium structure in one harvest. 

Chang (1 98 1) used static analysis to determine the optimal steady-state growing 
stock and cutting cycle without considering diameter-class growth dynamics. The 
management objective was to maximize forest value, which he defined as the 
PNW of harvests when converting an existing stand to an equilibrium growing- 
stock level in one cut. This objective is equivalent to maximizing LEV with the 
Faustmann equation where the opportunity cost on the residual growing stock 
represents the regeneration costs of the stand. As a result, Chang (1 98 1) concluded 
that the forest value model is the only correct method of determining equilibrium 
growing stock and cutting cycle. 

The static optimization problem that I present is equivalent to Chang's (198 1) 
forest value model, except that it seeks the optimal equilibrium stand structure 
and includes constraints on the diameter-class growth dynamics and bounds on 
the residual diameter distribution. Investment-efficient diameter distributions that 
solve problem 2 can also be viewed as maximizing LEV with the Faustmann 
equation. However, investment-efficient management regimes do not maximize 
the present value of returns to the initial growing stock. Thus, maximizing LEV 
with the Faustmann equation is not the correct criterion for determining optimal 
steady-state stand structures. 

Why does the dynamically determined harvest regime converge to a steady 
state that does not maximize LEV? An intuitive explanation can be made by 
viewing an optimal management regime as having transition and equilibrium 
phases. Since the equilibrium phase takes place later in the planning horizon, its 
value is discounted more than the value of the transition phase. As a result, it 
is possible to convert a stand to an equilibrium phase that has less than maximum 
LEV with a transition regime. The value of the transition regime would more 
than offset the discounted losses during the equilibrium phase. 

Comparison 2. -Here I make no assumptions about the form of the initial stand 
structure. Does the initial stand structure affect the form of the equilibrium found 
by solving problems 1 or 2? The rules for dynamic equilibrium production do 
not contain any conditions regarding the initial stand structure. Thus, under the 
assumption that the stumpage price function and interest rate are constant over 
time, optimal transition strategies for different stands will converge to the same 
equilibrium. 

In contrast, the equilibrium found by solving the static optimization problem 
does depend on the initial stand structure, since the objective is to maximize 
PNW of harvests when converting to an equilibrium structure in one cut. 

For a given stumpage value function and interest rate, is there an initial stand 
structure that results in the same equilibrium solution to both problems 1 and 2? 
Suppose the initial stand has the pre-harvest dynamic equilibrium structure. 
Equating the Lagrange multipliers for the rules of static and dynamic production 
shows that the optimal solution to problem 2 is the dynamic equilibrium harvest 
regime. For any other initial stand structure, the management regime found by 
solving problem 2 will not be the same as the optimal transition and equilibrium 
regime found by solving problem 1. 

This result changes the method for measuring the profitability of uneven-aged 
management. Both dynamic and static optimization problems can be used to 
develop management regimes for an existing stand. The steady-state regime found 
by solving problem 2 will not, except in special cases, be the optimal solution to 
problem 1. Therefore, the optimal transition and steady-state management regime 
will have a PNW greater than the PNW of the optimal steady-state management 



TABLE 1. Initial diameter distributions and stumpage values for a northern 
hardwood stand (site index 60). 

Initial diameter distribution 
Diameter class 

midpoint (inches) Regime 1 Regime 2 Stumpage value 

regime that solves problem 2. This makes economic sense, since the dynamic 
formulation is not constrained to achieve a steady state in any future time period. 
Thus, the profitability of uneven-aged management should be measured by the 
PNW of the optimal transition and equilibrium management regime found by 
solving problem 1. 

SOLUTION PROCEDURE FOR DYNAMIC OPTIMIZATION 

In the analysis presented above, the dynamic optimization formulation and the 
marginal production rules for optimal transition and equilibrium harvesting were 
used to point out the limitations of investment-efficient stand structures that solve 
the traditional static optimization problem. In this section I develop an algorithm 
for solving the dynamic harvesting problem that improves the unconstrained 
nonlinear programming approach used by Haight and others (1985). 

Haight and others (1985) used a gradient-based procedure called the method of 
steepest descent. The algorithm starts with an initial guess of the control variable 
values and seeks to improve the objective function value by successive approx- 
imations of the control variables. Each approximation is found by moving in the 
direction of the gradient, and the process terminates when improvements are less 
than a set tolerance. The solution obtained at termination is an approximation 
to a stationary point that satisfies Kuhn-Tucker conditions for optimality. 

Haight and others (1 985) developed optimal management regimes with 5-year 
cutting cycles over a 150-year time horizon, with the assumption that all remaining 
trees were harvested at the end of the time horizon. For time horizons 150 years 
or longer and a 4 percent discount rate, the discounted value of the terminal 
diameter distribution was so small that it had no effect on the determination of 
the control variable values in earlier periods. 

The discount factors for distant-period harvests did affect the ability of the 
gradient method to reach stationary solutions. Because the marginal values of 
distant-period control variables were much smaller than the termination criterion, 
the algorithm terminated before reaching a stationary point. As a result, final 
solutions for distant-period control variables were sensitive to values initially 
given to the control variables. Nevertheless, the gradient method produced stable 
solutions for the first several periods. 

In order to obtain stationary solutions for transition and equilibrium manage- 
ment regimes, I have developed an algorithm that takes advantage of the stability 
of the first-period solution and the sequential nature of the problem. The method 



TABLE 2. Management regime 1 (PNW = $171.29/acre). 

Diameter class midpoint (inches) Totals 

Year 6 8 10 12 14 16 18 20 Trees FtZ % 



TABLE 2. Continued. 

Diameter class midpoint (inches) Totals 

Year 6 8 10 12 14 16 18 20 Trees Ft2 $ 

95 24.9 20.1 18.0 15.4 12.3 9.5 2.9 .O 103.3 65.6 63.9 
100 25.9 19.6 17.2 15.1 12.5 9.9 2.9 .O 103.4 65.7 64.9 
105 27.2 19.5 16.5 14.6 12.5 10.2 2.9 .O 103.7 65.6 65.6 
110 28.1 19.7 16.1 14.1 12.4 10.4 2.9 .O 103.9 65.4 65.8 
115 28.7 20.1 15.8 13.7 12.1 10.4 3.0 .O 104.1 64.9 65.7 
120 30.1 20.5 15.8 13.3 11.8 10.3 3.0 .O 105.1 64.7 65.4 
125 31.3 21.1 15.9 13.1 11.5 10.2 3.1 .O 106.4 64.6 65.2 
130 32.2 21.8 16.1 13.0 11.2 10.0 3.0 .O 107.5 64.4 64.1 
135 31.5 22.4 16.4 13.0 11.1 9.7 3.1 .O 107.6 64.3 63.7 
140 31.1 22.7 16.8 13.1 11.0 9.6 3.1 .O 107.6 64.3 63.3 
145 29.5 22.8 17.2 13.3 10.9 9.4 3.1 .O 106.5 64.1 63.0 
150 30.1 22.5 17.4 13.6 11.0 9.4 3.1 .O 107.3 64.4 62.8 

uses repeated application of the gradient method described by Haight and others 
(1985). 

In equation (1.6) I defined the optimal value function Ti*(Xi,, . . . , Xi,) as the 
discounted value of the optimal sequence of selection harvests in periods i to m 
when starting period i in state Xi,, . . . , XiM. Using equation (1.6), the optimal 
value function for period 0 is as follows: 

l * ( ~ o ~ + h l , ~ ~ ~ ~ ~ o M + h M ~ ]  (4.1) 

subject to, for j = 1, . . . , M, 

The gradient method can be used to find a stationary solution So,*, . . . , So,* 
to the constrained maximization problem defined by (4.1) for a finite-period time 
horizon (N) 150 years or longer. Using So,*, . . . , So,*, we can write the optimal 
value function for period 1 : 

M 

TI*= I Max [ ~ ( X ' S 1 ~ ) 4 +  , (1 +r ) '  T2*(SlI + A I , . . . , S I M + A M ) ]  (4.2) 

subject to, for j = 1, . . . , M, 

S,, 2 0 
Xlj - S,, 2 0 

XI, = Soj* +&(Sol*, . . . , SoM*). 

A stationary solution S, ,*, . . . , SIM* to the constrained optimization problem 
defined by (4.2) can be obtained by multiplying each side of the objective function 
by the constant (1 + r)' and applying the gradient method for an N-period time 
horizon. Multiplication of the objective function by (1 + r)' shifts the discount 
factors back one period and allows the use of the same termination criterion. 
Repeating this process for a predetermined number of periods (L) gives a sta- 
tionary solution for the L-period management regime. 



TREES CUT ON 5-YR 
CUTTING CYCLE 

RESIDUAL TREES 

DIAMETER CLASS MIDPOINT (in.) 

FIGURE 1.  Residual diameter distributions for equilibrium harvest determined with (a) dynamic and 
(b) static optimization. Equilibrium structures were determined with the same initial stand structure, 
stumpage value, and interest rate. 

The algorithm is summarized as follows: 

1. Set the number of periods in the planning horizon equal to L and the current 
period ( K )  equal to 0. To operate the gradient method, specify the number 
of periods in the time horizon (N) and the termination criterion. To start 
the gradient method in period 0, specify the initial diameter distribution 
and the starting values for the control variables. 

2. Solve the N-period control problem using the gradient method. Save the 
control variable values for period 0 and the vector of state variables for 
period 1 from this solution. 

3. If K < L, replace K by K + 1 and set the initial diameter distribution equal 
to the vector of state variables that were saved in step 2. Reset the starting 
values for the control variables and go to step 2. If K = L, stop. The optimal 
control sequence for an L-period management regime has been determined. 

I demonstrate this algorithm with a whole-standldiameter-class simulator for 
mixed hardwood stands in Wisconsin. The simulator has been incorporated into 
static optimization algorithms (Adams and Ek 1974, Adams 1976, Martin 1982) 
and a dynamic optimization program (Haight and others 1985). The simulator 
includes nonlinear functionsf;i for the change in number of trees per acre in a 2- 
inch diameter class j during a 5-year growth period i. Growth function arguments 
are the residual stand structure at the start of the growth period. The smallest 
diameter class is 6 inches. 

The algorithm applies the gradient method in each period of an L-period time 
horizon. This method requires (1) predetermined values for the number of periods 
(N) over which the gradient method will be applied and (2) the termination 
criterion, which is the minimum acceptable improvement in the objective function 
value used to obtain the next approximation of the control variable values. 

After sensitivity analysis, I set the time horizon equal to 3 1 5-year periods and 
the termination criterion equal to $O.Ol/acre PNW. With these parameters, the 
algorithm produced stable solutions for transition and equilibrium management 
regimes. Management regimes developed with random values given to control 
variables varied by less than 1 tree per acre per diameter class in residual diameter 



TABLE 3. Dynamically and statically determined steady-state residual diameter 
distributions and harvests (5-year cutting cycle). 

Diameter Dynamic equilibrium Investment-efficient class diameter distribution diameter distribution 
midpoint 
(inches) Residual Cut Residual Cut 

Value of residual 
($/acre) 

Value of harvest 
($/acre) 

Land expectation 
value, LEV ($/acre) 

distributions over a 31-period time horizon. Increasing the number of periods 
(N) and reducing the termination criterion did not change the solutions but in- 
creased execution times. Execution times for the examples in the next sections 
varied between 1 and 3 hours on an IBM PC-XT microcomputer. 

COMPARISON OF DYNAMIC AND STATIC HARVEST REGIMES 

Adams (1 976) used static optimization to develop investment-efficient diameter 
distributions for hardwood stands (site index 60) managed with 5-year cutting 
cycles. He used a stumpage value function that assigned a constant price per cubic 
foot for trees between 6 and 12 inches in diameter at breast height and a rapidly 
increasing price for larger trees. Each distribution was constrained to a predeter- 
mined value of residual growing stock. Because of limits on the data base from 
which the simulator was constructed, the maximum diameter of residual trees 
was 18 inches. 

For comparison, I use the dynamic optimization algorithm presented here to 
develop two management regimes for a hardwood stand, site index 60. The regimes 
are developed to maximize the PNW of selection harvests taken on a 5-year 
cutting cycle over a 150-year time horizon. The value of the terminal diameter 
distribution is not included in the objective function. I use the same stumpage 
value function (Table 1) and a 4 percent real interest rate. 

The initial diameter distribution fc: management regime 1 is the pre-harvest 
investment-efficient diameter distrilution, which has a marginal value growth of 
4 percent (Adams 1976). Management regime 2 is developed for an initial diameter 
distribution with fewer trees in each diameter class. 

Management regime 1 exhibits a pulse-transition harvest pattern during the 
first 55 years (Table 2). All of the 6-inch and 76 percent of the 8-inch trees are 
cut at the start. In the remaining periods, trees are harvested primarily from the 
two largest and most valuable diameter classes. Except for the first period, harvest 



TABLE 4. Management regime 2 (PNW = $82.03/acre). 

Diameter class midpoint (inches) Totals 

Year 6 8 10 12 14 16 18 20 Trees FtZ $ 

.---. Trees per acre cut -..--- 
0.0 0.0 0.0 

.o .o .o 

.o .o .o 

.o .o .o 

.o .o .o 

.o .o .o 

.o .o .1 

.o .o .4 

.O .O .6 

.O .O .8 

.o .o 1.2 

.O .O 1.6 

.o .o 2.0 

.O .O 2.4 

.O .O 2.8 

.O .O 3.0 

.O .O 3.2 

.o .o 3.3 

.o .o 3.3 

.O .O 3.2 

.o .o 3.1 

.O .O 2.9 

.O .O 2.7 

.O .O 2.6 

.O .O 2.6 

.O .O 2.5 

.O .O 2.5 

.O .O 2.5 

.O .O 2.6 

.O .O 2.6 

.O .O 2.7 

Residual trees per acre .. 
5.5 4.5 1.5 
5.4 4.6 3.0 
5.5 4.6 3.6 
5.7 4.7 3.8 
5.8 4.8 4.0 
6.0 4.9 4.1 
6.4 5.0 4.0 
7.1 5.3 3.8 
7.9 5.6 3.6 
9.0 6.2 3.4 

10.2 6.9 3.2 
11.4 7.7 3.0 
12.4 8.6 2.9 
13.1 9.5 2.8 
13.4 10.2 2.8 
13.4 10.7 2.8 
13.1 11.0 2.8 
12.6 11.0 2.9 
12.1 10.8 2.9 



TABLE 4. Continued. 

Diameter class midpoint (inches) Totals 

Year 6 8 10 12 14 16 18 20 Trees Ft2 $ 

95 32.5 20.8 15.3 12.8 11.6 10.6 3.0 .O 106.8 64.7 65.7 
100 32.8 21.9 15.7 12.6 11.2 10.2 3.0 .O 107.6 64.3 64.7 
105 31.9 22.6 16.2 12.7 10.9 9.9 3.1 .O 107.5 64.0 63.8 
110 31.6 23.0 16.7 12.8 10.7 9.6 3.1 .O 107.8 64.0 63.1 
115 31.0 23.1 17.2 13.1 10.7 9.3 3.1 .O 107.8 64.0 62.6 
120 30.7 23.1 17.5 13.4 10.8 9.2 3.1 .O 108.1 64.3 62.4 
125 29.6 23.0 17.7 13.7 11.0 9.2 3.1 .O 107.5 64.4 62.4 
130 28.3 22.7 17.8 14.0 11.1 9.2 3.0 .O 106.4 64.5 62.6 
135 28.4 22.2 17.8 14.1 11.3 9.3 3.0 .O 106.4 64.8 62.9 
140 28.1 21.8 17.6 14.2 11.5 9.4 3.0 .O 106.0 65.0 63.3 
145 28.0 21.5 17.4 14.2 11.6 9.6 3.0 .O 105.7 65.1 63.8 
150 28.0 21.5 17.2 14.2 11.7 9.7 3.0 .O 105.3 65.0 64.0 

values vary between $30.1 and $40.5 per acre. The pulse-transition is nearly the 
same as the harvest pattern presented by Haight and others (1985) for the same 
initial diameter distribution. 

Downward-sloping diameter distributions are maintained between years 60 and 
150. Harvests take place in the 6-, 18-, and 20-inch diameter classes. By year 
135, harvests stabilize so that during the last four periods residual diameter 
distributions differ by fewer than 1.0 tree per acre per diameter class for all but 
the 6-inch diameter class. 

In part 3, I found that the PNW of a management regime developed with 
dynamic optimization will be greater than the PNW of an equilibrium manage- 
ment regime developed with static analysis for the same initial stand structure. 
In this example, the PNW of management regime 1 ($17 1.29/acre) is 5.1 percent 
greater than the PNW of equilibrium harvests taken on a 5-year cycle for 150 
years from the initial investment-efficient diameter distribution ($163.05/acre). 

I also applied the dynamic optimization algorithm using investment-efficient 
diameter distributions given by Martin (1982) as initial stand conditions. The 
resulting management regimes, which were developed using the corresponding 
stumpage value functions, interest rates, and cutting-cycle lengths given by Martin 
(1982), improved PNW by 30 to 50 percent relative to the PNW of the corre- 
sponding static equilibrium management regimes. 

I also determined in part 3 that dynamically determined management regimes 
do not converge to steady-state stand structures determined with static analysis. 
In management regime 1, the residual diameter distribution at year 150 is essen- 
tially a steady state. This distribution has a flatter shape (Fig. 1) and a 4.7 percent 
higher growing-stock value than the investment-efficient distribution (Table 3). 
The value of harvests taken from the dynamically determined steady state is 4.1 
percent less than the value growth from the investment-efficient stand structure. 
As a result, the LEV of the dynamic equilibrium management regime is 11.1 
percent less than the LEV of the statically determined regime. 

Management regime 2, in which the initial stand structure includes fewer trees 
in each diameter class relative to the steady state found in regime 1, demonstrates 
that the dynamically determined steady state is independent of the initial stand 
structure (Table 4). During the first 25 years, harvests take trees from the 20-inch 
diameter class only, while the numbers of trees in the remaining classes increase. 
Between years 30 and 55, a weak pulselike harvest pattern takes place, with large 



TABLE 5. Management regime 3 (PNW = $169.41/acre). 

Diameter class midpoint (inches) Totals 

Year 6 8 10 12 14 16 18 20 Trees Ft2 $ 

numbers of trees cut from the 6-inch diameter class and small but increasing 
numbers of trees harvested from the 18-inch class. Downward-sloping diameter 
distributions are maintained for the remainder of the time horizon. The residual 
stand structure at year 150 is nearly stable and differs by fewer than 1 tree per 
acre per diameter class in all but the 6-inch diameter class from the steady-state 
structure in regime 1. 

The dynamic optimization algorithm is easily expanded to analyze cutting cycles 
that are multiples of the 5-year projection interval. This is accomplished by 
constraining Xi,. - So = 0 for j = 1, . . . ,  M in periods when no harvest is desired. 

Management regime 3 (Table 5) is developed for the same initial stand structure, 
stumpage value function, and interest rate as management regime 1; however, 
the cutting cycle is 10 years. Harvesting takes place in two pulse cycles during the 



first 90 years, with downward-sloping diameter distributions maintained there- 
after. In contrast to management regime 1, the maximum diameter of residual 
trees is 16 inches and harvest values vary between $46.0 and $75.0 per acre. 

Buongiorno and Michie (1980) demonstrated the importance of fixed entry 
costs in determining the economic cutting cycle. A break-even analysis with fixed 
entry costs can be used to compare the PNW of regimes with different cutting 
cycles. Similar to the results for thinning in even-aged stands (Brodie and others 
1978), a fixed entry cost for selection harvests on a given cycle lowers the PNW, 
leaving the management regime unchanged. With no fixed entry cost, the PNW 
of management regime 1 exceeds the PNW of regime 3 by 1.1 percent. An entry 
cost of $0.75/acre would equate the values of the two management regimes. A 
similar comparison showed that an entry cost of $2.37/acre would be necessary 
for a 15-year cutting cycle to be optimal. In general, higher entry costs favor 
extended cutting cycles. 

SUMMARY AND CONCLUSIONS 

I have presented the marginal production rules and a computational solution 
method for the optimal transition and equilibrium management regimes for an 
uneven-aged stand. Comparing the production rules for a dynamic equilibrium 
stand structure with marginal production rules for the steady state determined 
with static optimization shows that solutions to the two problems will differ. Also, 
the PNW of the optimal transition and steady-state management regime will be 
greater than the PNW of the static equilibrium regime. Thus, for the diameter 
distribution model of uneven-aged management, maximization of LEV with the 
Faustmann equation is not the correct criterion for determining the optimal steady- 
state stand structure. 

The solution method is the first to allow the simultaneous determination of 
optimal stand-specific transition and equilibrium management regimes. Numer- 
ical results show that while the steady-state solution is independent of the initial 
stand structure, the length and harvest pattern of the transition regime is not. 
Thus, generalizations about the relative profitability of uneven-aged and even- 
aged management cannot be made on the basis of steady-state management re- 
gimes alone, but must include the value of the stand-specific transition regime. 

It would be very interesting to apply the solution method presented here to a 
simulator that projects growth and yield for both even-aged and uneven-aged 
stands. Then we could observe the effects of the initial stand structure and the 
timing and cost of regeneration on the relative profitability of the two fundamental 
management systems. 
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The marginal production rules and shadow price definitions for equilibrium har- 
vest regimes in dynamic and static optimization problems are shown below. 

Problem 1: Dynamic Optimization 

where 

u,* = the increase in PNW that would result from having one less unit of 
growing stock in diameter class j in the residual stand 

v,* = the increase in PNW that would result from having one more unit of 
growing stock in diameter class j in the residual stand. 

Problem 2: Static Optimization 

where 

aj*(l + ry 
= the increase in PNW that would result from having one less 

+ r)' - '1 unit of growing stock in diameter class j in the residual stand 
bj* 

= the increase in PNW that would result from having one more 
+ r)' - '1 unit of growing stock in diameter class j in the residual stand 

cj* = the increase in PNW that would result from having one more 
unit of growing stock in diameter class j in the residual stand. 


