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Preface

The Seventh Annual Forest Inventory and Analysis 

Symposium was held October 3–6, 2005, in Portland, ME.                 

The symposium featured participation, including 18 

presentations, by scientists from 12 foreign countries. In 

addition, the trend for participation by scientists from outside 

the formal Forest Inventory and Analysis program continues to 

increase. The symposium organizers thank all participants and 

presenters and convey special thanks to those who submitted 

their papers for these proceedings.

Ronald E. McRoberts

Gregory A. Reams

Paul C. Van Deusen

William H. McWilliams
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Forest Inventory: Role in Accountability for 
Sustainable Forest Management 

Lloyd C. Irland1

Abstract.—Forest inventory can play several roles in 

accountability for sustainable forest management. A 

first dimension is accountability for national perfor-

mance. The new field of Criteria and Indicators is an 

expression of this need. A more familiar role for the 

U.S. Department of Agriculture Forest Service Forest 

Inventory and Analysis (FIA) program is for assess-

ment and outlook development in States and regions. 

This essay poses three big challenges for FIA today: 

sustain and build on the Annual Forest Inventory Sys-

tem, show relevance to nontimber and science user 

groups, and improve measures of ecological health.

Introduction

I was introduced to Forest Inventory and Analysis (FIA) data 

by Professor Lee James at Michigan State, who in the mid 

1960s thrust a copy of the 1965 Timber Trends Report (USDA 

Forest Service 1965) into the hands of an eager young forestry 

student. Since then, I have been a regular FIA data user, and 

a frequent source of suggestions to the FIA units. While in 

State Government, I helped coordinate efforts to develop 

State funding for plot augmentation and other improvements 

to Maine’s FIA efforts. As a writer and consultant, I regularly 

mine FIA information. The various units have been helpful in 

supplying unpublished data, going back to the days when it 

would be furnished on microfiche. Looking back only 15 years, 

the amount of progress is truly extraordinary.

Interest is growing in taking a global perspective to forest 

inventory, with national inventories viewed as elements in a 

global assessment, just as States or provinces are elements in 

the U.S. and Canadian national timber budgets. Some even 

aspire to comparisons, by way of the Criteria and Indicators 

(C&I) process, which show how different nations are doing. 

Due to unresolved difficulties at national levels (see, e.g., Irland 

2007), and inconsistent definitions for data, an international 

perspective is not promising at the moment.

Accountability

Accountability sounds simple but it is not. Different 

stakeholders are concerned with different aspects of the forest. 

To mention accountability immediately raises the question of 

who is responsible. In the United States, responsibility is spread 

among levels of Government, agencies, and property owners. 

For many aspects of the forest resource, when the question is 

“Who are you going to call?” we do not know the answer. 

Different Stakeholders and Perspectives

Timber Sustainability, Growth/Drain

Despite the way the political winds are blowing these days, I 

am convinced of the continuing relevance of accountability 

especially when handled in a somewhat more inclusive way 

and with more neutral terms than in the past (Ince 2000, Irland 

2003, Nilsson et al. 1999).

Habitat

To my surprise, FIA data and analysis is less used for this 

question than it should be. Certainly a good start has been 

made, with national overviews by Flather, Brady, and Knowles 

(1999), and Noss, Laroe, and Scott (1995). 

Health/Ecological Condition/Biodiversity

This huge gap in our monitoring capacity will not be soon 

filled. In fact, we do not even have a sensible way to proceed 

1 Lecturer and Senior Research Scientist, Yale School of Forestry and Environmental Studies, 360 Prospect Street, New Haven, CT 06511. Phone: 203–436–3981. 
Fax: 203–432–3809. E-mail: irland@aol.com.
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(EPA 2002, NCSSF 2005, The Irland Group 2001). FIA has to 

respond in a measured manner, but avoid getting drawn into 

this black hole of limitless demands for new data. Yet, FIA data 

does offer ways to depict key changes and to offer diagnostics 

on overall conditions related to ecological health (e.g., Dahms 

and Geils 1997; O’Laughlin and Cook 2003; Shaw, Brytten, 

and Blander 2005; USDA Forest Service and BLM 1996).

Land Use 

Land use is an emerging social concern and is an area where 

FIA has established strengths, as I will note below.

Carbon Budgets 

Carbon budgets are an example of a new social concern for 

which the FIA system happened to be there, ready and waiting, 

with a rigorous national data set that can respond to this need 

(see, e.g., Smith, Heath, and Woodbury 2004). As Kyoto-

like policies continue to be debated, we will enter dangerous 

waters here, and will need to be on our guard against misuse or 

misunderstanding of this information.

Accountability for Interpretation 

Interpretation includes many things, including seeing that 

data and interpretations are presented with clarity, especially 

where data limitations are being pushed and need to be clearly 

identified. Somewhere in the forestry profession, we will 

need Truth Squads who can point out misinterpretations of 

forest conditions and abuses of FIA data by whatever interest 

group provides the latest example of selectively edited and 

partial views of what is happening in the forest. Government 

is understandably reluctant to speak directly about the bad 

news. In the future, there will be bad news and we had better 

get used to it. Data producers such as FIA have an obligation 

to make the data easy to use and understand, and especially to 

counsel less familiar users on limitations (see, e.g., Luppold 

and McWilliams 2004).

Accountability at National Level: Key Points on 
C&I

In the eagerness to implement C&I, a number of critical points 

have received limited consideration (Irland 2007). These have 

no immediate answers, but can no longer be ignored. Some 

of the problems originate in the definitions of the Criteria 

themselves. A few major challenges appear evident, based on 

the 2003 National Report (USDA Forest Service 2004), which 

represents a national application of the Montreal C&I. Those 

involved are engaged in detailed discussions on all of these 

questions. 

The Aggregation Problem

In an ecologically diverse Nation of continental scale, averages 

may mean little. How much total growing stock is standing in 

the forests is good to know, but how to interpret this statistic 

in terms of sustainable forest management (SFM) may be 

ambiguous, and the meaning of the national aggregate may be 

limited. The 2003 National Report summarizes 22 forest type 

groups, a highly aggregative way to view the forest. The Nature 

Conservancy defines 1,505 forest associations, plus almost 

1,500 more for woodland and shrubland (Noss and Peters 1995, 

Stein, Kutner, and Adams 2000). The FIA data system probably 

could not support disaggregation down to 1,505 forest types, 

but using only 22 cannot lead to very helpful conclusions about 

changes in the forest.

Credible Measures of Ecological Health

Credible measures of ecological health are lacking. Unfortunately, 

this lack of measures is often covered up by improvisations 

and euphemisms. Those conducting assessments are presently 

unwilling to use the best local or regional examples when 

national coverage is lacking. The FIA effort can undoubtedly 

relate to this problem, but at the same time, its sample design 

may not offer the best platform for many of the issues.

Improved Ways to Present Data 

Improved ways to present data on forest conditions and trends 

are needed. I think FIA is getting better at this and look forward 

to further progress. It is not an easy matter to present tables and 

charts that illuminate without oversimplifying the case.



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		� 

As the C&I process is currently structured, governments 

grade themselves. It is time to find a way to empower a truly 

independent body to conduct period assessments, according 

to C&I or other criteria. Previous examples include the Heinz 

Commission’s report (2002) and the Millennium Ecosystem 

Assessment (2005).

The FIA community is a major data provider for analysts 

working with some of the C&I. The community also has a 

major responsibility for quality control, providing tough-

minded, technically sound reviews of how the data are being 

used. At times, such comments may not be entirely welcome.

Accountability at Regional Levels: A Few 
Examples

Type Definitions Can Obscure Realities

In Maine, we were confronted with a severe budworm outbreak 

from about 1972 to 1985. In the wake of the damage, extensive 

salvage cutting was conducted. Emerging young stands 

developed in a variety of patterns. Especially troubling was that 

in many areas spruce-fir stands were being replaced by dense 

shrubby stands of early successional hardwoods and species 

such as pin cherry (Prunus pensylvanica) and raspberries 

(Rubus idaeus). These were in patches of varying sizes, some 

in the hundreds of acres. The 1995 FIA data showed that the 

area of the spruce-fir type group had fallen markedly since 

1982. This figure was widely cited as proof of mismanagement 

and a deteriorating resource. 

Lost in this debate were a few points. First, the type group is 

much larger than just the spruce-fir types, so the net change 

number included changes in other softwood types as well. 

Also, the definition of forest type used in FIA is not entirely 

transparent. To complicate matters, the forest type algorithm 

had been changed in the interim. Finally, type change was 

depicted as a black and white matter—either a stand is or is not 

spruce-fir. Yet, by depicting type as black and white, realities 

were obscured. It makes a huge difference whether an acre 

fell from 75 percent spruce-fir stocking to 50 percent, or from 

75 percent to zero. In either case, that acre might be tallied as 

moving out of the spruce-fir type. Also, uncertainty remains 

about the extent to which clearcut areas of low spruce-fir 

stocking will naturally recover softwood stocking over normal 

stand development. 

I was part of an informal probe of this information, in which we 

screened stocking conditions and change by deciles of spruce-

fir stocking. This approach yielded a much richer picture. 

As a byproduct, we could see that the change in the typing 

algorithm accounted for a portion of the apparent type change. 

This example is but one instance in which new processing and 

computational capabilities enable analysts to probe complex 

questions in much richer ways.

Better Present Age Class Data/Trends

In dealing with the Maine spruce budworm outbreak in the 

late 1970s and 1980s, we were frustrated by the difficulty 

in translating FIA data into age class information that we 

could use in assessment and modeling. Far too many ad hoc 

workarounds were necessary. In contrast, a focus on age class 

seems to have been routine in other regions for some time. 

Certainly not all stands are even aged, but this is no reason for 

inadequate attention to age class issues.

Land Use Changes

Sprawl and land use issues are being highlighted as major 

concerns for the future of American forests. These issues are 

relevant whatever your specific resource interest might be. The 

land use change matrices prepared routinely by some of the FIA 

units are highly informative about the dynamics of land use 

change. This kind of summary is needed nationwide. Using this 

data set to shed light on land use change is a perfect example of 

bringing the FIA capability into important debates on national 

issues. FIA is one of the only sources of consistent measurement 

on this point, so the importance of tracking land use can only 

increase (see, e.g., relevant sections of Wear and Greis 2002).

Measuring Forest Disturbance

The role of disturbance in shaping ecosystems has emerged 

over recent decades as a powerful source of insights. Using FIA 

data to track different sources of disturbance, including cutting, 

can make important contributions. FIA has been engaged in this 
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effort since at least the publications of Gansner et al. (1990) 

at the Northeastern Station. The recent South Carolina report 

(Conner et al. 2004) contains a useful summary placing timber 

cutting in context of other disturbances. Hopefully, this kind of 

summary will become a part of the standard presentation in all 

states. 

Regional and State Assessments

The regional scale of assessment that breaks out of the tra-

ditional box of State-by-State reporting has been an increas-

ingly important application of the FIA capability (Wear and 

Greis 2002, USDA Forest Service and BLM 1996, Dahms and 

Geils 1997). Also, individual States have conducted outstand-

ing assessment work that relies heavily on the FIA informa-

tion. Examples that come quickly to hand, without prejudice 

to others, include Oregon (Oregon Department of Forestry 

2004), California (California Department of Forestry and Fire 

Protection 2004), and Maine (Maine Forest Service 2005). A 

number of States, such as Minnesota and Maryland, have done 

extraordinary work integrating FIA and other data into massive 

Geographic Information System (GIS) systems for assessment, 

monitoring, and at times for analyzing policy or management 

decisions (Minnesota Department of Natural Resources 2001).

Three Big Challenges for FIA

Sustain and Build on Annual Forest Inventory System

The early years of the Annual Forest Inventory System (AFIS) 

brought questions in the user community about whether it could 

be a periodic synthesis of a State’s forest position with high 

statistical accuracy. In the event, the 5-year report produced for 

Maine has put that concern to bed. It is not only an excellent 

overview, but it breaks new ground in presentation in a number 

of ways. Gaining full clarity on the growth/removals balance 

has not yet been achieved but it appears to be within our grasp.

An additional concern was whether annual funding could be 

sustained at the State and Federal levels. It is encouraging to 

hear that FIA has strong support from U.S. Department of 

Agriculture (USDA) Forest Service senior management. Maine 

has been able to stay the course. Matters have not gone as well 

in some other States. Everybody wants something from the FIA 

but we can’t please them all. FIA managers are aware that they 

must not lose the essentials as they continue adapting to new 

data needs. More particularly, they will have to resist efforts to 

get us to address things not well suited to the sample design and 

analytical system. 

Within the United States, the building blocks continue to be 

the States—if they are unable to follow through with funds and 

cooperation, the program will not be sustainable. I don’t know if 

anyone has taken an outside look at the current status and fund-

ing outlook of the AFIS effort nationally. If not, it might be a 

good time now that Maine has finished its first 5-year report and 

others are emerging. We certainly need to have a good handle 

on progress nationally. I don’t think the future financial sustain-

ability of AFIS can be taken for granted. Hopefully, the next two 

suggestions could help in broadening support in useful ways.

Demonstrate FIA Relevance to Nontimber Issues and Value 

to Other Science Users

Numerous applications have shown the value of FIA data sets 

in tracking changes in various proxies for wildlife habitat. 

Many more nontimber applications are being showcased here. 

It is extraordinary that many scientists in other disciplines 

are totally unaware of this information and how to use it. The 

use of these data offers a major opportunity to advance FIA’s 

contribution to the wider science community, and hopefully 

generate greater support for the program.

It’s time to stop talking of terms such as timberland, which 

presume a resource value for a piece of forest. Terms such as 

sawtimber stands, in addition to using obsolete utilization stan-

dards, also presume a timber value for the forest that is often 

entirely irrelevant to the intended uses of the information. De-

fining stand size classes in a more neutral manner, not defined 

by outmoded product definitions, would be useful in any case. 

Traditional pulp, sawtimber, and related tabulations can be pre-

pared and included in the appendix or otherwise for the timber-

oriented audience. Try a thought experiment—how would we 

describe the forest in a region with no sawmills or pulp mills?
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We need to take more advantage of unprecedented processing/

sorting/graphics capabilities. Counties are probably obsolete, 

but there are States (Maine, Minnesota) where their wide range 

of size (up to a factor of 5 or 6) hinders interpretation. The FIA 

Survey Units attempt to provide geographic units of sufficient 

size to assure statistical significance and to capture important 

regional differences. If only for comparison with past data, I 

would not abandon them. Also, for certain kinds of geographic 

comparisons, analysis units of uniform size can be important 

(see, for an intriguing example, Stein, Kutner, and Adams 2000).

It is now time to integrate the national FIA data set into a 

suitable version of the ecological units being done on a separate 

track by the USDA Forest Service—the ecoregion maps by 

Bailey, Carpenter, and others. Gray (1995) illustrates this 

approach, using 90 ecologically defined “sections” for Canada. 

Building reporting around such units could yield important 

insights. It would demonstrate commitment to the emerging 

ecosystem paradigm and a willingness to step away from past 

timber-oriented definitions.

Much as we are gaining from current GIS modes of expression 

and analysis, we must not forget that better pictures or sophis-

ticated geostatistics yield new views, but not really new data. 

The traditional dot map is not yet obsolete. The usefulness of 

displaying plot locations versus geospatially modeled surfaces 

needs further analysis. New mapping and other visualizing 

capabilities are doubtless one of the exciting trends in this field. 

FIA and user groups have done yeoman work building on FIA 

data sets for biomass and carbon measurement. This spatial 

initiative is a major success story and is another good answer to 

the old claim that FIA is a timber only effort.

FIA has made great strides in making its data easy to find. It’s 

all on the Internet now. Comparable progress in making it easy 

to understand and apply is needed. New user groups are unfa-

miliar with much of the system, and have very distinct needs. 

We need to develop interpretive and how-to products aimed at 

various science audiences, help them to become familiar with 

FIA, and to use it more often. We also must address cultural 

gaps. As an example, I once reviewed a technical journal article 

assessing ecosystems in New Hampshire. The authors were 

clearly totally unaware of riches in FIA data sets. When I urged 

them to look into readily available publications that were highly 

relevant, they were not too interested in hearing about it. They 

were comfortable with their dot-map mindset that naturally 

emerges from people who spend all their time making lists of 

tiny little spots that host rare plants. Their view was certainly 

not wrong, but it was incomplete.

We need an academic program training resource analysts to 

use and improve existing data sets and apply them to a wide 

range of problems. It would support graduate students’ research, 

emphasizing mid-career students, and would conduct seminars 

and training. It would be unselfish, spending resources around 

the country and not just on campus. Private support for such a 

venture is needed, and soon. 

Build on FIA Strengths to Contribute to Ecological Health 

Monitoring

The huge hole in our data about trends in ecological condition 

and ecosystem health hinders our efforts on C&I as well as to 

our abilities to manage responsibly (see, e.g., EPA 2002; Heinz 

Center 2002; Irland 2007; The Irland Group 2001; NCSSF 

2005). Until substantial progress can be made in filling these 

gaps, talk of SFM is academic. We need to be certain that real 

FIA strengths are being employed. It won’t do to just measure 

more variables on each plot if the plot system poorly fits the 

matter of concern. Burdening the plot measurements just to 

satisfy critics is a bad way to respond to emerging needs.

Conclusions

Meeting the three big challenges will necessarily involve FIA 

with many other sections of the user community and the science 

community.

FIA is clearly overworked and underresourced. Somehow we 

must locate leaders who are in a position to help us address the 

funding issue, and soon. Further, I hope that by adopting my 

suggestions, we can broaden support in ways that will enable 

us to sustain the entire program into the future for all the public 

benefits it will bring. 
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A History of U.S. Department of Agriculture 
Forest Service Forest Survey, 1830–2004

Vernon J. LaBau1, James T. Bones2, Neal P. Kingsley3,      

H. Gyde Lund4, and W. Brad Smith5

Abstract.—This article provides a summary of a 

new report on the history of the Forest Survey (Forest 

Inventory) in the United States as it evolved within 

the U.S. Department of Agriculture Forest Service 

over a period of more than 100 years. It draws on 

the writings of several authors who have published 

on various aspects of the Forest Survey program. It 

reviews nine ground-plot designs used in the Forest 

Survey and Forest Inventory and Analysis (FIA) 

programs since 1931. The report also highlights 

the major events contributing to the current FIA, 

beginning as far back as 1830.

It is impressive to look at the many contributions 

of various people working with the Nation’s Forest 

Survey program, as well as the various methodologies 

that have contributed to understanding and updating 

the national Forest Survey statistics. It is especially 

timely that this historical report should occur at the 

time the Forest Service is celebrating the anniversary 

of its 100 years of service to the American people.

History of the Forest Survey

The history of the Forest Survey in the United States, as it 

evolved within the U.S. Department of Agriculture (USDA) 

Forest Service over a period of more than 100 years, is an 

interesting story. We have drawn on the writings of several 

authors who have published on various aspects of the Forest 

Survey. It is especially timely that this documentation should 

occur at the time the USDA Forest Service is celebrating the 

anniversary of its 100 years of service to the American people.

This report is for those readers who wish to understand the 

evolution and contribution of the Forest Survey program in U.S. 

forestry. Considerable attention is given to the different plot 

designs that were used and to an explanation of how the focus 

and goals of the Forest Survey program changed over time. 

The report (LaBau et al. 2007) documents the various designs 

and explains how the focus and goals of the Forest Survey 

demanded changes in plot designs over time. The Forest Survey 

has always been faced with a variety of conflicting objectives—

timber volumes, reproduction success, species composition, 

tree quality, etc. Statistical efficiency for one objective often 

compromised the estimate of other attributes. There are many 

difficulties in estimating growth, mortality, removals, forest 

type, condition class, and many other multiresource variables 

that the inventory estimated. The early Forest Surveys were 

almost exploratory in nature and evolved into increased 

emphasis on change, condition, quality, and other descriptive 

characteristics. The changes in design over time attempted to 

meet the emerging objectives and challenges.

Credit is given to those members of the Forest Survey whose vi-

sion and fortitude contributed so much to taking a concept, which 

began as an effort focused on monitoring the Nation’s timber 

supply and consumption, and expanded that concept to a multi-

resource and multifunctional program. This program has evolved 

over the years to meet the changing needs of a Nation that re-

quired a broadened forest inventory and monitoring program.

1 U.S. Department of Agriculture (USDA), Forest Service (retired); LaBau Forest Resources Consultants, 2951 Admiralty Bay Drive, Anchorage, AK 99515. E-mail: 
jimlabau2@cs.com. 
2 USDA Forest Service (retired; deceased).
3 USDA Forest Service (retired); 3546 Glen Oaks Court, White Bear Lake, MN 55110. E-mail: npkgrk@comcast.net. 
4 USDA Forest Service (retired); Forestry Consultant, Forest Information Services, 6238 Settlers Trail Place, Gainesville, VA 20155–1374. E-mail: gyde@comcast.net. 
5 USDA Forest Service, Forest Inventory Assoc. National Program Leader, Attn: SPPII, W. Brad Smith, Stop Code 1119, 1400 Independence Avenue SW, Washington, 
DC 20250–1119. E-mail: bsmith12@fs.fed.us.
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To the Future

The future of Forest Inventory and Analysis (FIA) program, as 

in the past, is still timber, but it is so much more. A national 

information management system has been completed and 

will serve both internal and external data needs. Work is 

under way to develop a set of standardized map products 

such as forest type maps, biomass maps, and a myriad of 

other spatial products. And, since the mid 1980s FIA and its 

cooperators have published more than 1,400 papers and articles 

on nontimber uses of FIA data. Clearly, FIA’s client list and 

program value will continue to grow to meet the needs of 

monitoring the sustainability of the Nation’s forest ecosystems.

In addition to traditional fieldwork, the new FIA continues 

to conduct surveys of private forest owners to assess their 

ownership objectives, track wood harvested from America’s 

forests, and conduct utilization studies on active logging 

operations to provide the factors needed to link the input (trees 

standing in the forest) with the output (wood products produced 

by a mill).

Collaborative relationships with universities, industry research 

organizations, interest groups, and other Federal agencies have 

been strengthened, allowing FIA to gain increased experience 

in specialized areas, as well as gain access to creative scientists 

outside of the USDA Forest Service.

The emphasis of FIA for more than 75 years has been data 

quality. The new program continues this tradition with a Quality 

Assurance program that includes documentation of methods, 

training for data collectors, checks of data quality, peer review 

of analysis products, and continuous feedback to ensure that 

the system improves over time. The search will continue for 

more efficient and more cost effective ways of fulfilling the 

FIA mission. Good men and women will move forward with a 

dedication to evaluate forest inventories and forest health, and 

produce information and analyses that will serve generations 

well into the future.
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Separating the Cows From the Trees: 
Toward Development of National Definitions 
of Forest and Rangeland

H. Gyde Lund1

Abstract.—This paper introduces issues surrounding 

the need for national definitions of forest and range-

land, and it review types of definitions in use, reviews 

past agreements and their status, and finally gives 

recommendations as to what should be done next.

The Need for National Definitions

The classification of lands as forest is one of the most 

important decisions that inventory specialists make in the 

course of their work. How lands are classified may influence 

how lands are to be managed and what Agencies are funded. 

Most of the time, classification is straightforward. Other times 

it may be difficult. For example, should figure 1 be classified as 

forest, rangeland, or both? 

If lands are classed as forest, the management strategy and 

funding may be to maintain the lands in tree cover. The U.S. 

Department of Agriculture (USDA) Forest Service has the lead. 

If lands are classed as range, then the management strategy and 

funding may be to maintain grass and shrubs and to remove 

any trees. The U.S. Natural Resources Conservation Service 

(NRCS) has the lead on private lands.

The NRCS defines rangeland as “a land cover/use category 

on which the climax or potential plant cover is composed 

principally of native grasses, grasslike plants, forbs or shrubs 

suitable for grazing and browsing, and introduced forage 

species that are managed like rangeland. This would include 

areas where introduced hardy and persistent grasses, such as 

crested wheatgrass, are planted and such practices as deferred 

grazing, burning, chaining, and rotational grazing are used, with 

little or no chemicals or fertilizer being applied. Grasslands, 

savannas, many wetlands, some deserts, and tundra are 

considered to be rangeland. Certain communities of low forbs 

and shrubs, such as mesquite, chaparral, mountain shrub, and 

pinyon-juniper, are also included as rangeland.” 

The USDA Forest Service defines forest as “land at least 10 

percent stocked by forest trees of any size, including land 

that formerly had such tree cover and that will be naturally or 

artificially regenerated. Forest land includes transition zones, 

such as areas between heavily forested and nonforested lands 

that are at least 10 percent stocked with forest trees and forested 

areas adjacent to urban or built-up lands. Also included are 

pinyon juniper and chaparral areas in the West and afforested 

areas. The minimum area for classification of forest is 1 acre. 

Roadside, streamside, and shelterbelt strips of timber must 

have a crown width of at least 120 feet to qualify as forestland. 

Unimproved roads and trails, streams, and clearings in forest 

areas are classified as forest if less than 120 feet wide.” 

The USDA Forest Service Forest Inventory and Analysis (FIA) 

Figure 1.—Native juniper (Juniperus spp.) invading grass/
shrubland in central Oregon.

1 U.S. Department of Agriculture, Forest Service (retired); Forestry Consultant, Forest Information Services, 6238 Settlers Trail Place, Gainesville, VA, 20155–1374. 
E-mail: gyde@comcast.net. 
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program classifies junipers as trees, while the NRCS National 

Resource Inventory (NRI) considers them shrubs. The FIA 

classifies oak and juniper woodlands as forests, while the 

NRI classifies them as rangeland. According to the Agency 

definitions, the land shown in figure 1 would be classified as 

forest by the USDA Forest Service and rangeland by the NRCS. 

In the United States, at least 50 million acres of such land are in 

question—roughly an area the size of Nebraska.

The difference between the USDA Forest Service and NRCS is 

but one example. Sixteen other Federal Agencies have at least 

one official definition of forest and rangeland, and eight have 

official definitions of tree. 

Because of this overlap, the U.S. Roundtable on Sustainable 

Forests and the Sustainable Rangelands Roundtable are seeking 

national definitions for forest and rangelands for mutually 

exclusive criteria and indicators. To this end, the Federal 

Geographic Data Committee’s (FGDC) Sustainable Forest Data 

Working Group’s created the Forest/Rangeland Definitions 

Group (FRDG). The objective of the FRDG is to develop 

standard operational definitions of forests and rangelands, 

allowing consistent and credible estimates of these areas and 

of their components, conditions, and products. Ultimately, 

development of definitions will be done through the FGDC. 

Membership includes people from the Federal Government, 

professional societies, and environmental groups.

I served as a consultant to the group. This article is based on 

the final report that I submitted (Lund 2004).

Findings

Forest and Rangeland Estimates

Figure 2 shows recent published estimates of forest and 

rangeland area in the United States (Lund 2004). Note that the 

estimates for rangeland vary more widely than those for forest. 

The reasons for the differences are the sources and perceptions 

of what constitute forest and rangeland (i.e., the definitions). 

The estimates of forest are all based on FIA data. Those for 

rangeland come from a variety of sources using different 

definitions. 

Existing Definitions of Forest, Rangeland, and Tree

In my quest, I found 786 published definitions of forest, 368 

definitions of rangeland, and 199 definitions of tree (Lund 

2005a, 2005b). Forest and rangeland definitions are grouped 

into four categories based on cover, use, ecological potential, or 

administration. Forest definitions are most frequently based on 

cover, while rangeland definitions are often based on potential 

or use.

My literature review led me to the following conclusions:

•	 Estimates of rangeland area vary more widely than those 

for forestland.

•	 There is only one party responsible for inventorying the 

Nation’s forests.

•	 Responsibility for the inventory of rangelands falls to 

many parties.

•	 Generally, definitions of forest are more inventory friendly 

than those of rangeland. That is to say, the definitions are 

more precise.

•	 There are accepted national and international definitions of 

forest but not of rangeland.

Past Attempts at National Standards and Direction

At least six attempts have been made in the past to develop 

and implement national standards for classification of lands for 

Federal Agencies. Three were recommendations for standards 

(Anderson et al. 1976, Driscoll et al. 1984, and Land Use and 

Land Cover Common Terminology Workgroup 1985) and three 

are actual agreements (Anon. 2001, FGDC 1997, and USDA 

SCS and Forest Service 1977, [National Land Cover Data—

NLCD]).

Figure 2.—Recent published estimates of forest (striped) and 
rangeland (checkered) area in the United States.
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Anon 2002
ERS 2003
SAF 2003
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Anderson et al. (1976) classed forest as a cover type and 

rangeland as a land use, so the categories were not mutually 

exclusive. Driscoll et al. (1984) defined forest land but not 

rangeland. The Land Use and Land Cover Terminology 

Workgroup (5-WAY) focused on land cover such as treeland, 

grassland, shrubland, etc., but the recommendations were not 

implemented. 

The USDA SCS Forest Service agreement (1977) combined 

definitions for a new definition of forest land: “Lands with at 

least 25 percent tree canopy cover or lands at least 16.7 (10 

percent) stocked by forest trees of any size.” This definition 

assumed that a 25 percent tree cover equaled 10 percent 

stocking. A 16.7 percent stocking is more closely related to 

5 percent rather than 10 percent canopy cover. Similarly, a 

25 percent canopy cover is more closely related to 68 percent 

rather than 10 percent stocking (Lund et al. 1981).

The FGDC (1997) purposefully did not define forest or 

rangeland. Instead, it used a similar approach as the 5-WAY 

based on cover. The NLCD system is also based on cover. 

A review of agency definitions in use after the agreements 

showed that very few agencies fully comply with the past 

agreements or recommendations. Reasons may include the 

following:

	 1.	 Classification did not meet need.

	 2.	 Difficult to break with tradition. 

	 3.	 Change did not meet need.

	 4.	 No advantage.

	 5.	 Didn’t know about. 

	 6.	 Didn’t have the authority.

	 7.	 Fear of being the only one to adopt.

	 8.	 Too much trouble.

	 9.	 Lack of incentives.

	10.	 Lack of reprisals if direction not followed.

As part of my presentation at this symposium, I tested the 

audience’s perception to see how they define forest and 

rangeland. The test was in two parts. First, participants wrote 

down their own definitions of forest and rangeland. Second, 

I showed a series of images and asked the people to classify 

the photos according to the definitions they had written. The 

appendix to this paper contains the results. The bottom line is 

that none of the participants followed their own direction. Based 

on past experiences and the test, implementation of Nationwide 

standards may meet with the same results. 

How Do I See the Situation?

We only need standard or common definitions in the following 

circumstances:

•	 Comparing estimates from different lands owners.

•	 Comparing estimates over time.

•	 Aggregating estimates for upward reporting.

The Forest Situation

•	  NRCS and FIA present conflicting estimates of forest area 

on private lands. 

•	 Conflicts could occur between FIA estimates and those of 

any landowner who uses a different definition of forest.

•	 FIA has the responsibility for inventory, monitoring, and 

reporting on forest land at the national and international 

levels.

•	 Other agencies and organizations may have their own 

definitions, as long as their data are not used for national 

reporting. Therefore, there is no issue with the definition of 

forest.

The Rangeland Situation

•	 No single agency is responsible for the inventory and 

monitoring of rangelands.

•	 USDA Economic Research Service reports on the Nation’s 

rangelands, but data comes from a variety of sources. 

•	 Many definitions are in use, none of which are inventory 

friendly.

•	 As a result, uncertainty exists as to what lands are 

considered rangelands. 

•	 There appears to be a reporting requirement at the national 

and international levels.

•	 The definition of rangeland is an issue at the national level.
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Change in area is an indicator of sustainable management for 

both forest and rangeland activities. We have a good handle 

on what is considered forest but not is what is considered 

rangeland. The main definitional issues are what constitute a 

tree and minimum tree cover. 

Where To Go From Here?

The FRDG work is currently on hold until it can do the 

following:

1.	 Determine what we really need to create, out of the 

following options: 

•	 National definitions that an agency or agencies would 

use for upward national (and international) reporting.

•	 Common definitions that agencies and cooperators 

would use for comparison and/or upward reporting.

•	 FDGC standard definitions that all agencies and 

cooperators would use regardless of purpose.

•	 All of the above.

•	 None of the above.

2.	 Identify national and international reporting requirements. 

Nationally, the USDA Forest Service periodically 

reports on forest and rangeland as the result of the 

Forest and Rangeland Renewable Resources Planning 

Act (RPA) of 1974. Definitions may overlap. Both the 

Roundtable on Sustainable Forests and the Sustainable 

Rangelands Roundtable call for estimates but only for 

their particular area of interest. At the international level, 

the United Nations Economic Commission of Europe 

and the Food and Agriculture Organization periodically 

conduct the Global Forest Resource Assessment and 

the Intergovernmental Panel on Climate Change (IPCC) 

monitors changes in greenhouse emissions (table 1). Of 

the two, the IPCC has the only reporting requirement for 

mutually exclusive estimates of forest and rangeland. 

3.	 Identify who has to use definitions, and when and 

why. Federal agencies are just the tip of the iceberg. 

Cooperators such as States, counties, municipalities, etc., 

also must be considered.

4.	 Determine how adoption of new standards may affect 

public perceptions of changes.

5.	 Determine how standards may affect agency funding and 

programs.

6.	 Determine what resistance the standard may face and how 

to mitigate.

7.	 Identify who will be responsible for what.

8.	 Construct an inventory-friendly classification system. The 

system should do the following:

•	 Be applicable over all lands. 

•	 Follow established scientific procedures where 

appropriate. 

•	 Be repeatable from place to place (spatial) and from 

time to time (temporal). 

•	 Be recognizable on the ground (generally based on 

cover and current condition).

•	 Be unambiguous (i.e., inventory friendly).

•	 Include minimum thresholds for area, strip width, 

vegetation type, height and cover, and any exclusions.

Table 1.—National and international reporting requirements for forest and rangeland statistics.

Requirement Forest Rangeland Definition type

Forest and Rangeland Renewable RPA of 1974 Yes Yes Definitions may overlap 

Roundtable on Sustainable Forests Yes No —

Sustainable Rangelands Roundtable No Yes —

UNECE/FAO’s Global Forest Resource Assessment Yes No —

IPCC Yes Yes (Grassland) Mutually exclusive

FAO = Food and Agriculture Organization; IPCC = Intergovernmental Panel on Climate Change; RPA = Resource Planning Act; UNECE = United 
Nations Economic Commission of Europe.
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9. 	 Agree on the following:

•	 What we consider a tree.

•	 How much tree cover we require to be a forest.

•	 A minimum area including strip width.

The IPCC has six land classes including forest, cropland, 

grassland (including rangeland), wetland, settlement, 

and other. Each class is mutually exclusive and all lands 

are covered (Milne and Jallow 2003). The IPCC classes 

provide the best base on which to develop any national 

definitions of forest and rangeland. Box 1 contains a 

proposed key for classifying lands in the United States 

based on the IPCC classes.

Appendix

Results of Lund’s Great Land Classification Test

Several agencies of the U.S. Government are in the process 

of developing national definitions of forest and rangeland for 

upward reporting. Agency and people’s perceptions of what 

is forest and rangeland vary. During my presentation at the 7th 

Annual Forest Inventory and Analysis (FIA) Symposium in 

Portland, ME, I tested the audience to see how a group of forest 

inventory specialists looked at the land. There were two parts 

to the test—an essay and a multiple-choice test. This article 

reports on the results. On the average, the FIA audience agreed 

less then when compared to the results of essentially the same 

test given to other groups.

 

Essay

For the first part, participants were asked to write down their 

mutually exclusive definition of rangeland and forest land. 

Thirty-one people participated in the test. Only 27, however, 

provided at least one definition. The results are shown in table 

A-1. Note that in a couple of instances I could not read parts of 

definitions. These I noted in the table with XXX. 

Multiple Choice

Next, the participants were shown a series of 38 images 

and were asked to classify each image as to if it was forest, 

rangeland, or other using the definitions they had written. Not 

everyone answered all the questions. In addition some people 

provided two answers for some questions. The latter were not 

counted. The results are shown in table A-2. 

Analysis

The participants agreed on classification on the average of 

70.8 percent of the time. Even though the audience was fairly 

homogeneous in background (all inventory specialists and 

many FIA employees), a great deal of variety exists as to how 

they look at the land. This is surprising as the U.S. Department 

of Agriculture Forest Service has a very specific definition of 

forest land. It is even more surprising when compared to results 

for essentially the same test given to other groups over the past 

2 years (table A-3). 

Box 1.—A proposed key for land classification based on IPCC 
classes. 

1.	 Is the land area > 1 acre and strip width > ___ feet? 
Yes—Go to 2. No—Classify with surrounding area.

2.	 Does the land have tree crown cover > 25 percent? 
Yes—Go to 3. No—Go to 4. 

3.	 Are the trees > 6 feet in height? Yes = forest land. No = 
nonforest land—Go to 4. 

4.	 Is the land used for growing crops? Yes = cropland. 
No—Go to 5. 

5.	 Is the land covered or saturated by water for all or part of the 
year? Yes = wetland. No—Go to 6. 

6.	 Is the land dominated by grasses, forbs, or shrubs? Yes = 
rangeland. No—Go to 7. 

7.	 Is the land developed for human activity? Yes = settlement. 
No = other land.

IPCC = Intergovernmental Panel on Climate Change.
Source: Lund 2006.

10. 	 Establish a program to encourage agencies to use 

standards. As indicated above, it is one thing to create 

standards and another to get people to use them. We need 

some mechanism to see if people are following direction 

and, if not, how we can correct the situation.

Following these recommendations, we should be able to 

separate the cows from the trees.
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Table A-1.—Results of Essay—Definitions.

Participant
In my opinion...

Lund’s comment
Rangeland is... Forest land is...

1 Use. Cover. Use for range, cover for 
forest

2 Less than 10 percent stocked. More than 10 percent stocked. Cover definition

3 Used for grazing. FIA definition.

4 < 10 percent stocked trees. > 10 percent stocked trees. Cover definition

5 Areas between/in forested lands that can be used 
for grazing.

Lands producing forest products. Use definition

6 Covered by grazing or browsing species with few 
than five merchantable trees per acre.

Five or more merchantable size trees per acre 
and/or covered by regeneration with potential to 
become merchantable trees.

Cover for range, use for 
forest

8 This concept is not well known in Europe. My 
question is how rangeland is divided into forest 
land, other wooded land, and on the other into 
forest land and grassland on the basis of IPCC 
definitions. 

I would follow Timber Boreal Forest Resources 
Assessment 2000 definition or Finnish National 
definition.

Land use for forest

9 None. 10 percent canopy cover of tree, w/ potential for 
tree establishment.

Potential or use

10 None. Covered by a certain amount of trees (crown 
cover).

Cover class

11 Not forest, but has significant evidence of 
browsing by domesticated animals.

10 percent cover, has a forest understory or the 
potential to develop one (usually due to wild 
animals), not used for anything other than forestry, 
at least one acre or 120-foot strip. 

Use class

12 Land, not defined as forest land, that has 
vegetation used for grazing XXX. Be good to use 
‘grassland’ vs. rangeland so get away from use 
definition. 

Land =/> 10 percent (5, 10, 25 percent?) stocked 
w/ trees at least 1 acre in size. 

Use for range, cover for 
forest

13 Critters eat it and not enough trees. Land with enough tree cover—let the user define 
‘enough.’ I use the 10 percent.

Cover class

14 < 10 percent tree cover. > 10 percent tree cover (need exception to handle 
certain situations such as clearcuts and recently 
planted stands).

Cover for range, use for 
forest

15 Agriculture area. Depends on the source of the data. For us the 
definition is linked with XXX XXX (tree crown cover, 
XXX, width).

Use for range, cover for 
forest

16 Lands with primarily grass or shrubs and with 
plants defined as trees as < 25 percent of cover.

Lands with primarily trees, > 25 percent cover. Cover class

17 An area dominated by grasslands and 
predominate used for gazing.

An area dominated by tree cover > 20 percent; 
trees > 2 m tall and > 1 ha in size.

Cover class

18 < 25 percent tree w/ domestic livestock. 25 percent tree cover potential/probable. Use class

19 Land uses—a place which raises cows; land 
provides other functions as well but mainly for 
cow. 

There are trees, crown cover of 10 percent on 
the 0.1-ha size area—management use for forest 
products.

Use class

20 Rangeland is land inhabited by people trying to 
eat cows.

Forest land is land inhabited by bears trying to eat 
people.

Use class (sort of)

21 Barren land that has natural vegetation by no 
trees. 

Tree land. Cover class

FIA = Forest Inventory and Analysis; IPCC = Intergovernmental Panel on Climate Change.
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Table A-1.—Results of Essay—Definitions (continued).

Participant
In my opinion...

Lund’s comment
Rangeland is... Forest land is...

22 Produces at least a minimal amount of forage, 
nonagricultural, nonurban, and below a threshold 
of forest tree stocking. 

Land that meets a minimum size and stocking 
of trees or the immediate potential to achieve 
stocking of trees.

Use class

24 Land not in below definition (see forest definition) 
that is grazed.

Wild land stocked more than 50 percent with trees, 
or more than 10 percent with shrubs.

Use for range, cover for 
forest

25 Land use or land cover? Land cover: grassland 
w/ < 10 percent tree. Land use: grazed. What is 
a tree?

Land cover =/> 10 forest cover. Land use: not 
grazed.

Both use and cover

26 Not forest, not developed. “Undisturbed” understory. Cover class

28 Not forested, having cover of grass or grazeable 
shrubs.

10 percent cover of trees, any plant with potential 
to produce a wood product.

Use class

29 A land use where livestock can be grazed. > 10 percent canopy cover w/tree species; or the 
potential to achieve this w/o major change in land 
use. 

Use class

30 I’ll know it when I see it. At least 1 acre, 120 feet wide…of trees… Cover class

No. Image Forest Range Other High Comment

Table A-2.—Results of the classification test. Numbers are the percent of participants classifying the image as forest, range, or other.

1 “Jungle” 100 0 0 100

2 Oasis 31 31 38 38 Issue is if participants considered palms as trees.

3 Tundra 15 37 48 48 Amount of tree cover is issue.

4 Alpine 68 13 19 68 No live trees—so class not based upon cover.

5 Golf course 0 9 91 91 Image shows elk grazing on course. 

6 Mature black spruce 
stand

100 0 0 100 The trees are less than 1 m in height at maturity. By some 
definitions this should not have been classed as forest.

7 Desert 28 28 44 44

8 Pinyon-Juniper (P-J) 84 13 3 84

9 Mesquite 27 53 20 53

10 Trees with grass 94 3 3 94

11 Scattered trees with 
shrubs

12 61 27 61

12 Scattered trees on peat 
bog

50 7 43 50 Amount of tree cover is the issue.

13 Trees and shrubs 57 37 6 57

14 Open stand 69 21 10 69

15 Coppice site 93 7 0 93 Those calling the area forest assume a land use, not cover. Note in 
table 1, most participants defined forest in terms of cover.

16 Canyon walls 56 9 36 56

17 Degraded land 3 3 94 94

18 Invading leafy spurge 27 60 13 60 Leafy spurge is not native. 

19 Invading native juniper 62 31 7 62

20 Invading houses 0 0 100 100
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Table A-2.—Results of the classification test. Numbers are the percent of participants classifying the image as forest, range, or other 
(continued).

21 Chained P-J area 29 61 10 61 Those calling the area rangeland assume a land use, not land cover. 

22 Recent clearcuts 94 0 6 94 Those calling the area forest assume a land use, not land cover. 
Note in table one that most participants wrote a cover definition. 

23 Older clearcut 91 9 0 91

24 Pasture 0 70 30 70 Potential is forest

25 Las Vegas 0 0 100 100

26 Change in water table 24 30 46 46 Trees are dead. 

27 Wetland 3 13 84 84

28 Riparian 52 25 23 52 Strip width is the issue.

29 Highway 0 3 97 97 Width of the highway is the issue.

30 Back road 3 39 58 58 Same. 

31 Isolated stand 63 22 15 63 Size of the stand and distance from another stand is the issue.

32 Area between stands 17 53 30 53

33 Bare area 0 19 81 81

34 Plowed and sown area 23 16 61 61 Some people must have put down answers after the use of the land 
was revealed. This is an afforestation project but one could not tell 
from the image alone.

35 Seeded area 23 47 30 47

36 Re-establishing native 
cedar

77 13 10 77

37 Young plantation 90 0 10 90

38 National forest 19 44 38 44

Total 1,584 887 1,331 2,691

Average 41.7 23.3 35.0 70.8

No. Image Forest Range Other High Comment

Table A-3.—Comparison of FIA results with results from other groups (percent of participants classifying images as forest, range, 
or other).

Group
Number of 

participants
Forest Range Other

Average percent 
agreement

Board of Directors, Society for Range Management 2003 15 23.0 52.0 25.0 80.0

Forest Rangeland Definitions Group 2003 21 30.0 42.0 29.0 72.0

Mapping and Remote Sensing Specialists EROS Data Center 2004 24 28.5 42.9 26.6 75.5

FIA Seventh Annual Symposium 2005 31 41.7 23.3 35.0 70.8

FIA = Forest Inventory and Analysis.
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The Society for Range Management, Forest Rangeland 

Definitions Group, and EROS Data Center folks tended to 

classify more lands as range while the FIA tended to classify 

more lands as forest. As noted in table 3, however, on the 

average there was less agreement within the FIA classifications 

than there were with the other three groups tested.

As in the earlier tests, while many participants wrote their own 

definitions, most did not apply them when classifying images. 

Images 4, 16, 22, and 24 are good examples. These images 

contained no live trees, but many of the FIA participants who 

wrote a cover definition, classified the lands as forest anyway. 

The bottom line is that it is easy to write a definition, but it is 

another thing to follow it. National definitions will meet with 

the same results. 
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Society of American Foresters—                 
An Advocacy for Forest Inventory

John W. Moser, Jr.1

Abstract.—The Society of American Foresters (SAF) 

represents all segments of the forestry profession 

in the United States, including public and private 

practitioners, researchers, administrators, educators, 

and students. Its mission is to advance the science, 

education, technology, and practice of forestry. SAF’s 

science and education program and its policy program 

have been long-term advocates for forest inventory 

with a specific focus on the U.S. Department of 

Agriculture Forest Service’s Forest Inventory and 

Analysis program. This address, delivered at the 2005 

FIA Science Symposium, presents and discusses 

aspects of SAF’s advocacy.

It is a pleasure to join you in another exceptional Forest 

Inventory and Analysis (FIA) Science Symposium. I would like 

to extend a warm welcome to all, especially to our international 

colleagues; you are certainly a notable addition to this year’s 

symposium. I am looking forward to your contributions, 

renewing past acquaintances, and putting faces with names that 

I only know through your work. At this time of year, there is no 

better place to be than on the Maine Coast—it is “The Place” 

for fall forestry meetings. Two weeks ago, the Sustainable 

Forestry Initiative Annual Conference was here. Next month, 

the Northeast Mensurationists will meet a few miles up the 

coast. And, I fondly recall attending the Society of American 

Foresters’ (SAF’s) National Convention here several Octobers 

ago. To commemorate the occasion, Bill Banzhaf and I planted 

a young oak tree in a park just down the hill to the west of us. I 

am looking forward to seeing if that tree is alive and well. 

The FIA program traces its roots to the 1928 McSweeney-

McNary Forest Research Act. Regarding the signing of that 

bill, articles in the Journal of Forestry stated, “the passage 

of that bill marked 1928 as a red letter year in the history of 

forestry for this country”… by establishing … a comprehensive 

inventory. . . for the renewable resources of the forest (Anon. 

1928, Frayer and Furnival 1999). In the spirit of that lofty 

acclaim, I titled my comments for this symposium “The Society 

of American Foresters—An Advocacy for Forest Inventory.” It 

just seemed fitting when SAF’s present FIA Position Statement 

proclaims that “the FIA program is the crucial source of 

information for assessing the sustainability of the Nation’s 

forests.” On the chance that you are not acquainted with SAF, 

I will briefly introduce you. It represents all segments of the 

forestry profession in the United States, including public and 

private practitioners, researchers, administrators, educators, 

and students. Its mission is to advance the science, education, 

technology, and practice of forestry; to enhance the competency 

of its members; to establish professional excellence; and to 

ensure the continued health and use of forest ecosystems to 

benefit society. 

SAF’s science, education, and policy programs have been long-

term advocates for forest inventory with a specific focus on the 

U.S. Department of Agriculture Forest Service’s FIA program. 

SAF’s membership and the organizations they represent 

unquestionably believe that a current and accurate forest 

ecosystem inventory is prerequisite to substantive discussions 

of sustainability, national forest policy, carbon sequestration, 

changes in growth and productivity, changes in land use and 

demographics, ecosystem health, and economic opportunities in 

the forest industries sector (Van Deusen et al. 1999). 

I believe that when SAF established the Forest Science and 

Technology Board and Working Groups in 1971, it forged a 

substantial advocacy with the FIA program. The goal of this 

new science structure was to improve SAF’s effectiveness in 

the development, dissemination, and uses of forest sciences. 

1 Professor of Forest Biometry, Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47906. E-mail: moserj@purdue.edu.
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It was anticipated that Working Groups would partner with 

other organizations to form viable and active communities of 

scientific and professional interest. Starting in 1974, The Forest 

Inventory Working Group began an immensely successful 

periodic series of national and international inventory 

conferences in which the FIA program and other national and 

international partners had a very large presence. Their first 

conference, held in Fort Collins, CO, focused on inventory 

design and analysis. FIA employees—past, present, and some 

who would ultimately join FIA in leadership roles—were very 

much in evidence as speakers; George Furnival, Mel Metcalf, 

Ken Ware, Joe Barnard, and Ed Frayer just to name a few. You 

may also find it interesting that three other speakers at that 

conference are speakers at this symposium; while mingling 

with the group see if you can guess their identities. 

The last in that series of forest inventory conferences was titled 

“Integrated Tools for Natural Resources Inventories in the 21st 

Century.” It was held in Boise, ID, during 1998. Many of you, 

I am sure, recall participating in that broadly focused inventory 

conference. The leading cosponsors included SAF, FIA, the 

International Union of Forest Research Organizations, and a 

host of other public and private organizations.

It is my opinion that from 1974 to 1998, SAF’s Forest Inventory 

Working Group exceeded all expectations in forming viable 

and active communities of scientific and professional interest in 

forest inventory. Lately, however, I have been disappointed that 

SAF’s advocacy of forest inventory conferences has not been as 

evident as it has been in the past—particularly when I consider 

the pace at which new scientific and technological methodology 

is being applied to natural resource inventories, and the 

increased importance that monitoring of ecosystems contributes 

to local, national, and international policies. 

To the credit of the FIA program, however, it has continued 

development and dissemination of forest inventory science 

and technology. They were the major contributor to the three 

half-day FIA sessions at SAF’s 2003 National Convention 

in Buffalo, NY. The FIA Science Symposia that began in 

1999 and is now beginning its seventh consecutive program 

spotlight evolving science and technology in the FIA program. 

It has been observed by some that these programs are too 

FIA concentric. In looking at program content and structure 

for this and last year’s symposia, I do sense a widening of the 

spheres. Should these symposia be further broadened to fill 

the void created by the absence of “Boise-type” inventory 

conferences? The breath and participation in this conference 

portrays a strong positive indication to me. That begs another 

question—who should take the lead? I am reluctant to say, Ron, 

that you and Greg should get on with that task; never mind 

that it will drastically impact your primary FIA employment 

responsibilities. Or is there perhaps an opportunity to revitalize 

the joint the FIA/SAF Inventory Working Group joint 

conference sponsorships? 

In the mission to advance the science, technology, and practice 

of forestry, SAF’s policy staff has been a vigorous advocate 

for the FIA program by building support and educating 

Congress and their staff on informational needs to assess 

the status, trends, and sustainability of this Nation’s greatest 

renewable natural resource—its forests. During the early 1990s 

SAF members were among high-level leaders representing 

environmental organizations, industry, professional societies, 

academia, and State and Federal agencies that met to express 

concerns that the FIA program was not receiving adequate 

funding to meet its mission of “maintaining a comprehensive 

inventory of the status and trends of the country’s diverse 

forest ecosystems, their use, and their health.” It was noted that 

creeping cycle lengths—some as long as 20 years—created 

uncertainty about our Nation’s forest resources. 

That group formed the core of the First Blue Ribbon Panel on 

FIA. They made the following recommendations:

•	 Implement a uniform approach on all ownerships. 

•	 Increase consistency and compatibility among FIA units. 

•	 Enhance coordination between FIA and public agencies. 

•	 Improve and expand information on ecosystems and 

noncommodity values.

•	 Produce the most current resource data possible. 

In October 1992, a subset of the Blue Ribbon Panel met 

with USDA Forest Service Chief Dale Robertson to reach an 

agreement for implementing the Panel’s recommendations 
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in the short-term and within current budgets. Unfortunately, 

before achieving positive results, Chief Robertson was replaced 

by Jack Ward Thomas. Again, the Blue Ribbon panel members 

presented their case for increased funding to the new Chief. 

Concurrently, other Panel members conducted briefings for key 

congressional staff with the objective of conveying the national 

importance of FIA and the overwhelming constituent support 

for improving the program.

In the year following the release of the First Blue Ribbon 

Panel’s report, the USDA Forest Service published “A 

Blueprint for Forest Inventory and Analysis Research 

and Vision for the Future.” That report proposed research 

directions, guiding principles, and goals to advance the 

program. In spite of sustained efforts, FIA advocacy groups 

concluded that there had been inadequate progress fulfilling the 

First Blue Ribbon Panel’s recommendations. To illustrate, in 

1991 the Federal appropriation for the FIA field program was 

$14.2 million; in 1997 that appropriation was $14.9 million. In 

the same interval, the average inventory cycle length increased 

from 10 to more than 12 years. 

In 1998, a second Blue Ribbon Panel representing an even 

broader constituency convened to assess the FIA programs’ 

progress since 1992. There were some regional successes; 

however, the Panel concluded that the lack of major program 

improvement was leading to the loss of ecological and 

economic benefits to society by hindering our ability to 

monitor forest health and sustainability. FIA’s usefulness 

was still being threatened due to increased cycle lengths and 

funding shortfalls. Briefly stated, the Panel made the following 

key recommendations: 

•	 Elevate the priority of the program within the USDA.

•	 Initiate annual inventories across all regions and 

ownerships. 

•	 Fulfill the mandate of reporting on all forest lands. 

•	 Concentrate on core ecological and timber data. 

•	 Develop a strategic plan to carry out the program’s 

mission.

I view 1998 as a turning point for FIA. The Second Blue Rib-

bon Panel Report signaled an urgent sense of frustration. Panel 

participants, such as the SAF, the American Forest and Paper 

Association, and the National Association of State Foresters 

kicked their advocacy and presence on Capitol Hill up a notch. 

Discussions with members of Congress regarding the future of 

FIA provided interesting responses. One member said, “It gives 

us an accurate picture of the extent and condition of our forests. 

We must continue to increase it’s funding over the next few 

years to annualize inventories.” Another responded, “I think the 

‘Foreign Intelligence Agency’ is truly important; now more than 

ever.” As you can well see, advocacy and education go hand in 

hand. “FIA” does not have the same connotation to all.

Overwhelming advocacy by the FIA user community, however, 

led Congress to include legislation in the 1998 Farm Bill, to 

implement an annual forest inventory and monitoring program 

that covers all forest lands in a consistent and timely fashion. 

The passage of that act demonstrated Congress’ commitment 

to an improved FIA program. In response, the USDA Forest 

Service developed a strategic plan that strongly responded to 

Congress’ intent, and to the recommendations of the Second 

Blue Ribbon Panel. 

In April 1999, a crucial hearing was held in the U. S. House of 

Representatives’ Agriculture Subcommittee on Forestry. The 

committee chair specified two prime objectives for the hearing:

•	 Establish FIA as a clear priority for the USDA Forest 

Service. 

•	 Establish a structure and funding proposal for FIA that 

would fulfill the Farm Bill’s mandate for a national 

annualized forest inventory. 

The five panelists, all members of SAF, representing the 

State Foresters, industry, academia, and the USDA Forest 

Service provided strong and convincing testimony for both 

programmatic and financial support.

The entire December 1999 issue of SAF’s flagship publication, 

Journal of Forestry, was devoted to “Forest Inventory and 

Analysis—Moving to an Annual National System.” A 

“Perspective” in that issue by Bob Goodlatte, Chair of the 

House of Representatives’ Hearing Committee, and Jim Garner, 

Virginia State Forester, explained that, “The improved FIA is 
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the cornerstone of ecologically and biologically sustainable 

forest practices in the 21st century. Congress has provided 

the framework. Willing partners are in place to help with the 

transition. The future is waiting.” (Goodlatte and Garner 1999.)

In February of 2000, the National Association of State Foresters 

and the USDA Forest Service entered into a Memorandum 

of Understanding (MOU) to fully implement the less costly 

alternative FIA program as proposed in the USDA Forest 

Service’s finalized Strategic Plan. This MOU was certainly a 

step in the right direction as it clearly documented State agency 

partners’ cooperation and commitment toward the realization of 

the mandate set forth by Congress in 1998. 

In December 2000, SAF’s Council adopted a Position 

Statement on FIA. It stated unequivocally that broad 

consensus indicates that there has never been a greater need 

for timely, comprehensive, and reliable inventory data on 

the Nation’s public and private forests. Moreover, the lack of 

full funding for the program is the primary impediment to 

successful implementation. A reconvening of the Second Blue 

Ribbon Panel occurred in 2001 to assess progress and make 

recommendations for moving the program forward. That Panel 

commended the FIA program for their accomplishments in 

developing the strategic plan and the implementation of the 

annualized inventory in 27 states. It was, however, noted that 

significant lag time occurs between plot data collection and 

analysis and this postpones data availability to the public. In 

addition, some States are taking longer than 1 year to measure 

a panel; this delay could undermine the preeminent purpose 

of the annual system as envisioned in the 1998 Farm Bill. 

The Panel unanimously agreed that full funding support by 

Congress and the Administration is essential to achieving the 

goals of a national annualized forest inventory.

While there have been no further calls since 2001 to reconvene 

the Blue Ribbon Panel, constituents still consistently identify 

funding priorities as a concern. From the enactment of the 1998 

Farm Bill through the most recent fiscal year, appropriated 

funding has increased from $29.8 million in 1999 to $60.9 

million in 2005. While not at the envisioned “full funding 

level,” the FIA program has made substantial progress toward 

the annualized national inventory. Beginning in 1998, FIA 

raised the program’s accountability with the publication 

of a “Fiscal Year Business Report” that clearly documents 

program changes, significant contributions, funding sources, 

expenditures, and long-term strategic directions. Those reports 

are clearly an asset in advocating program support. 

When I reflect on the evolution of the FIA program over my 

professional career, I have to look no further than in my own 

backyard. Indiana’s first FIA inventory was completed in 1950. 

When I arrived in Indiana in 1964 we were anxiously awaiting 

the first remeasurement, which occurred in 1967. The second 

remeasurement interval was a bit longer, taking place in 1986. 

When the third remeasurement occurred in 1998, we were 

getting close to the national average cycle length. But I refer to 

the next remeasurement benchmark as a “Blue Ribbon Panel 

Year.” It was 2003 and we had just completed the fifth panel 

in our 20 percent annualized FIA inventory. And to top that 

off, this morning Chris Woodall gave me a copy of “Indiana’s 

Forests 1999–2003”, one of the first 5-year state reports from 

the new annualized FIA. This “issues-driven” approach defines 

a new paradigm for the future of FIA reporting. It can only add 

to the legacy of a program with the responsibility to census this 

Nation’s forests.

Earlier, I cited Goodlatte and Garner’s perspective for FIA: 

“The future is waiting.” I believe that we are getting close. 
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Tree Communities of Lowland Warm-
Temperate Old-Growth and Neighboring 
Shelterbelt Forests in the Shikoku Region of 
Southwestern Japan

Shigeo Kuramoto1, Shigenori Oshioka2,                    

Takahisa Hirayama2, Kaori Sato3, and Yasumasa Hirata4

Abstract.—We characterized the tree species 

composition of a 30 ha old-growth and neighboring 

shelterbelt (reserved buffer strips among conifer 

plantations) in warm-temperate forests in the Shikoku 

region of southwestern Japan. Using a two-way 

indicator species analysis of data from 28 plots, we 

identified four structural groups in terms of relative 

basal area. These structural groups were interior 

and edge types of a greater than 30 ha old-growth, 

middle-sized (5- to 15-ha) shelterbelt type, and small-

sized shelterbelt (less than 5 ha) type, respectively. 

Canonical correspondence analysis also showed 

differentiation of the four structural types along edge-

interior gradient and remnant-size gradient.

Introduction

Warm-temperate old-growth forests in southwestern 

Japan, especially in lowland areas, were often converted 

into coniferous plantations, farmland, and other land uses 

(Ito et al. 2003, Miyawaki 1982, Nakagawa and Ito 1997). 

Only a few large old-growth remnant forests remain. 

Most natural forests remnants are shelterbelts that reserve 

buffer strips among conifer plantations or clear-cut areas. 

Natural forests remnants are important to forest restoration 

and maintaining biodiversity. First, they preserve many 

plants and animals. Second, they potentially contribute 

vegetation recovery as seed sources for adjacent clear-cut 

or thinned area of plantation forests (Ito et al. 2003; Sakai 

et al. 2006). The capacity for maintaining species diversity 

is strongly influenced by the size and shape of the forest, 

which many former studies reported as fragmentation effects 

and edge effects. (Murcia 1995). Many studies reported 

the effects of edges facing open sites, such as clear-cut and 

agricultural lands. The actual role of natural forest adjacent 

to conifer plantations as the seed source, however, has been 

little studied (Ito et al. 2003). Tree community structure 

of natural forest remnants is important as an indicator of 

the edge effects of forest remnants themselves, as well 

as a determinant of the role of seed source. In this study, 

we focused on the species composition of trees in natural 

forest remnants adjacent to conifer plantations in relation 

to the size of the remnant and other landscape and site 

environmental attributes. 

Study Area and Methods

Study Area 

The field survey was conducted in Asizuri peninsula, located 

on Shikoku Island in southwestern Japan (133 �������  �����°E, 32� ����� �����°N). 

The area is situated in �������������������������������������      a lowland (approximately 20 to 400 m 

above sea level), warm-temperate region where the natural 

vegetation is evergreen broadleaved forest dominated by 

Fagaceae, Lauraceae, and Camelliaceae species (Miyawaki 

1982). Annual mean temperature and precipitation is 17.9 ���°��C 

and 2,421 mm, respectively. 				  

In the approximate center of peninsula, a wide (greater 

than 30 ha) undisturbed old-growth forest remains, 
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surrounded by conifer plantations consisting of Japanese 

cedar (Cryptomeria japonica D. Don.; Japanese cypress 

(Chamaecyparis obutusa Sieb. et Zucc.), or their mixture; 

secondary evergreen broadleaved forests; and farmlands. 

Approximately 20 ha of undisturbed old-growth forest was 

reserved as the national Sadayama Forest Reserve (SFR) 

(Kochi National Forest Office 1995). Among compartments 

of plantations surrounding a wide old-growth forest, 

including the FSR, reserved buffer strips of evergreen 

broadleaved forests known as shelterbelts remained. Most 

conifer plantations were formed in the 1960s and 1970s in 

the Ashizuri area. Hence, edge formation mainly occurred 

30 to 40 years ago. 

Tree Census 

We settled eight transects in interior and five onsets of plots 

in the edge of the SFR representing the tree community 

structure of large-sized old-growth forests in the region. 

These were designated LOG. We also settled 10 plots 

in seven randomly selected shelterbelts of different 

landscape and site environmental attributes representing 

the tree community structure of shelterbelts. The selected 

shelterbelts differed in area size from 1.9 to 15 ha. The 

altitude of all plots ranged from 240 to 340 m above sea 

level with the exception of two shelterbelts that were 

approximately 50 m above sea level. 			 

	

The interior transects of the SFR were 10- m wide and 100-

m long rectangles placed in the center part of the reserve 

more than 60 m from the forest edge to avoid the edge effect 

(Murcia 1995), and arranged parallel with each other along 

the topographic gradient from the hilltop to the valley to 

represent microtopography-mediated variation in species 

composition of trees (Enoki 2003, Kuramoto and Okuda 

2005, Sakai et al. 1996). The edge plots of the SFR were 

placed at five randomly selected points on three edge lines 

of different direction. Three were places on the South-facing 

edge line adjoining conifer plantations, while one each was 

place on the West-facing and North-facing lines.... In each 

point of edge plots, two 10- by 20-m plots (subplots) were 

continuously placed along the line from the SFR border 

toward 20 m inside.

In the case of shelterbelt plots, we set up a 20-m2 plot in 

each narrow shelterbelt less than 20-m wide (less than 5 

ha) because it covered the entire part of shelterbelt and 

represented its community structure of trees. In wider 

shelterbelts, such as those greater than 5 ha, we set up two 

20-m2 plots, placed in the center and near the edge line of 

the shelterbelt, respectively. 

In each plots in the LOG and neighboring shelterbelts, all 

living trees more than 5-cm diameter at breast height (d.b.h.) 

were recorded with identification of species and d.b.h. 

measurement. 

Data Analyses

The relative basal area of each tree species was calculated 

for tree census data of each plot. We used each of the eight 

interior transects in the LOG and each of the ten plots in 

shelterbelts as one plot data in following analyses. For 

five onsets of plots in the edge of the LOG, we separately 

used each of two plots in a point in the following analyses 

because the extent of edge effect in warm-temperate forest 

edge is little known. Hence, we used 28 plots of data (8 of 

interior transects and 10 edge plots in the LOG, and 10 plots 

in shelterbelts, as reflecting the area size of the forest) in 

analyses. Two-way indicator species analysis (TWINSPAN) 

(Hill 1979) was used to classify the tree communities 

of LOG and shelterbelts, using PC-ORD (McCune and 

Mefford 1999). To explore the site environmental and 

landscape attributes relating tree community structure, 

canonical correspondence analysis (CCA) was done using 

CANOCO version 4.02 (ter Braak and Smilauer 1999). 

Site environmental and landscape attributes considered 

in the analysis—such as stand age (SAG), altitude (ALT), 

inclination (STE), area size (PAS), width and length of 

forest (WD and LEN), edge age (EAG), distance from 

the edge (DFE), and distance from large remnant forest 

(DFL)—were estimated for each forest from inventory 

maps of national forest, field observations, and Geographic 

Information System data (Y. Hirata [unpublished]). 
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Results

Classification of Tree Community 

In 28 plots surveyed, 60 tree species were recorded. In 

all the plots, Castanopsis sieboldii was dominant. Based 

on TWINSPAN, four structural groups (G1–G4) were 

recognized. Each division of groups corresponded with 

remnant-size difference, interior-edge contrast, and altitudal 

contrast of plots (fig. 1). For example, the first division 

corresponded with remnant-size contrast in which small-

sized remnants (Group4; shelterbelts less than 5 ha) were 

separated from others. Within small-sized remnants, those 

located in exceptionally low altitude (Group4B) were 

separated from others (Group4A) in the next division. In the 

other side of first division, middle-sized remnants (Group3; 

5- to 15-ha shelterbelts) were separated from the large-

sized remnant (LOG). Furthermore, the large-sized remnant 

(LOG) was divided into interior and edge types (Group1 

and Group2, respectively). Of edge plots in the LOG, inside 

plots of onset of plots (10 to 20 m away from the border) 

were included in interior type (Group1). The division of the 

four groups, including two subgroups, and principal tree 

species were follows (table 1): 

•	 Group 1. Interior of LOG. Quercus acuta, Machilus 

thunbergii were dominant next to C. sieboldii. 

•	 Group 2. Edge of LOG. Instead of C. sieboldii, Q. acuta 

was dominant. This group was characterized by the 

abundance of Cinnamonum japonicum and Neolitsea 

sericea with the decrease of species that were abundant in 

the interior. 

•	 Group 3. Mid-sized shelterbelt. C. sieboldii represented 

more than 50 percent of tree species. This group was 

characterized by sparseness of LOG species from the 

interior and edge, and occurrence of Diospyros morrisiana 

and Rapanaea nerrifolia. 

•	 Group 4. Small-sized shelterbelt. Without C. sieboldii, 

this group had no dominant species. This group was 

characterized by high species richness and the occurrence 

of Daphniphyllum teijsmanii, Q. phyliaeoides, and 

deciduous species. 

Table 1.—Vegetation groups classified by TWINSPAN and 
relative basal area of tree species for each group.

Figure 1.—TWINSPAN dendrogram of 28 plots in a greater 
than 30 ha old-growth forest and neighboring shelterbelts. 
Eigenvalues and indicator species with contribution scores 
in parentheses for each division are shown. Letters in the 
terminal boxes of the dendrogram represent a structural 
group of tree communities.



28	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

Ordination: Environmental Attributes and Tree 

Communities

In CCA ordination, the first three axes explained 67.3 

percent of species-environment relations. The first axis, with 

a correlation of 0.977 between species and environmental 

factors, explained 32.2 percent of the total variation and 15.1 

percent of species variation. The second axis showed a 0.853 

correlation between species and environmental factors, and 

explained 22.4 percent of the total variation and 10.5 percent 

of species variation. In the ordination diagram (fig. 2), each 

structural group of four TWINSPAN classifications was 

separated along two axes. Along the first axis, LOG groups 

(G1and G2) were separated from shelterbelt groups (G3 

and G4). In LOG groups, interior group (G1) was separated 

from edge group (G2) along the second axis. On both of two 

axes, distance from the edge (DFE) and edge age (EAG) 

showed the first and second highest t-value, respectively. 

Stand age (SAG), area size (PAS), and altitude (ALT) also 

showed high t-value on the second axis.

Discussions

Effects of Remnant Size on Tree Communities 

Studies have reported that species richness changes with 

patch size of warm-temperate broadleaved forests (Hattori 

and Ishida 2000) and tropical rainforests (Laurance et 

al. 1998). In these studies, positive correlation of species 

richness to area size of forests was detected. In our results, 

however, the number of tree species was not significantly 

different between old-growth forest and shelterbelts, 

with the exception of a 1.5 times higher number in small 

shelterbelts, in our results. Fukamachi et al. (1996) reported 

the negative relationship between patch size and tree species 

richness per unit area basis in cool-temperate regions of 

Japan. Large patches include higher microtopographic and 

elevational variation (Fukamachi et al. 1996, Hattori and 

Ishida 2000). Change of tree species composition in large 

forest patches was basically influenced by microtopography 

and elevation, although the change was gradual. Infrequent 

species, which contribute to species richness, were 

actually rare on the basis of each unit’s area. If the total 

area was considered, species richness might be increased. 

Furthermore, the effects of area size of forests on plant 

species diversity may be different among strata and life 

forms as well as forest types.

Most former studies focused on species richness, while 

detailed change of species was given less attention. Our 

results documented the drastic change of species of trees 

from LOG to shelterbelts along with patch-size gradient. 

In tropical rainforests, which have extra-high species 

richness, forest fragmentation resulted increase of tree 

mortality (Laurance et al. 1998), indicating that in smaller 

patches tree mortality was higher. A marked increase in 

wind-induced tree mortality in edges with decreased area 

of fragments was reported in a boreal conifer forest (Esseen 

1994). Most shelterbelts were situated along the ridge. Our 

data suggested that tree mortality was higher in shelterbelts.

Species richness was also correlated with tree density 

(Fukamachi et al. 1996). In small-sized shelterbelts (G4), 

tree density was 3 times that in interior of LOG plots (G1), 

Figure 2.—CCA ordination diagram with correlation 
vectors of environmental and landscape variables showing 
the ordination scores of 33 plots in a greater than 30 
ha old-growth forest and neighboring shelterbelts. Size 
of arrow and letter of each correlation vector represent 
intensity of contribution. Enclosed aggregations of plots 
show each structural group of tree community classified by 
TWINSPAN. Open circle, solid square, solid diamond, and 
open diamond show interior of old-growth forest, edge of 
old-growth forest, mid-sized shelterbelt plots, and small-
sized shelterbelt plots. 

CCA = canonical correspondence analysis.
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and 1.5 times that in edge of LOG plots (G2) and mid-sized 

shelterbelts (G3) (Kuramoto and Okuda 2005). Mean d.b.h. 

of trees decreased from large patches to smaller patches 

in the plots we surveyed. In conifer plantations, breakage 

of canopy closure caused by thinning or selective cutting 

induced an increase of light availability and density of 

understory trees (Kiyono 1990, Suzuki et al. 2005). Kiyono 

(1990) pointed out that deciduous tree species only could 

establish themselves after cutting events such as thinning, 

while evergreen tree species could establish themselves 

even under closed canopy in conifer plantations. Therefore, 

it was implied that species richness increased in shelterbelts 

by accelerated establishment of deciduous broadleaved 

tree species and light-demanding evergreen tree species, 

compensating for the decrease of old-growth evergreen 

species induced by edge effect. 

Impact of Edge Formation on Principal Canopy Tree 

Species and Their Response

Several evergreen broadleaved tree species that are common 

in interior LOG plots apparently decreased in edge of LOG 

plots and shelterbelts in our results. Of principal species 

in LOG plots, response to forest fragmentation and edge 

formation were different among species. C. sieboldii was 

dominant throughout different size of remnants, while Q. 

acuta and M. thunbergii were almost extinct in shelterbelts. 

Sprouting ability, photoinhibition, and potential distribution 

were suggested as reasons for these different responses. 

C. sieboldii was dominant in the lower part of the warm-

temperate forest zone, compared with Q. acuta, which 

was dominant in the upper part. M. thunbergii was mainly 

distributed in the upper slope of LOG plots, where large-

sized trees were grown. Most shelterbelts were positioned 

on the ridge, which suggested low suitability as a growth 

site for M. thunbergii. When the size of forest remnants was 

small, the edge effect was strong and the impact of direct 

cutting probably increased. Sprouting ability is important 

because it compensates for high mortality and other impacts 

of cutting. C. sieboldii had superior sprouting ability (Miura 

and Yamamoto 2003) over other LOG species. Rapid increase 

of light availability in shelterbelts and edge plots may cause 

photoinhibition of shade-tolerant species (Kitao et al. 2000). 

Tree species that occurred in shelterbelts were quite 

infrequent in LOG. Many of these species were deciduous 

broadleaved species, which required the light increase by 

the canopy opening of adjacent part and reserved belts, as 

reported of understory development in conifer plantations 

(Kiyono 1990, Suzuki et al. 2005). Evergreen broadleaved 

species typical in shelterbelts, such as D. teijsmanii, D. 

morrisiana, and R. nerrifolia, were supposed to be as light 

demanding as deciduous trees. These species seldom grow 

over 20 or 30 m high. In shelterbelts, low canopy height 

induced by high wind stress and low nutrient and water 

availability, enabled these species not to be suppressed by 

other canopy tree species. 

These facts implied that the function of shelterbelts as the 

seed source to adjacent conifer plantations were potentially 

different from LOG at the point of species composition, 

although species richness was not so different. 
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Zealand’s Planted Kyoto Forests
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Abstract.—This article discusses the development of 

a monitoring system to estimate carbon sequestration 

in New Zealand’s planted Kyoto forests, those forests 

that have been planted since January 1, 1990, on land 

that previously did not contain forest. The system 

must meet the Intergovernmental Panel on Climate 

Change good practice guidance and must be seen 

to be unbiased, transparent, and verifiable. At the 

same time, the system should meet a wider set of 

objectives for international forest reporting and forest 

health. The core of the system is to be a network 

of some 400 permanent sample points, established 

objectively on a 4- by 4-km grid coincident with an 

area of Kyoto forest. Each sample point is a cluster 

of four 0.04-ha circular plots installed in a design 

similar to that employed in the United States Forest 

Inventory and Analysis program. Sufficient data are 

collected at each point to enable the carbon density in 

each of the required reporting pools to be calculated 

or modelled. At a subset of points, integrated with an 

existing system implemented on an 8-km square grid 

over New Zealand’s indigenous forest and shrubland, 

assessments of soil carbon and plant biodiversity are 

made. The intention is that the inventory will have 

a 3-year measurement cycle, with one-third of the 

points remeasured each year. 

Introduction

New Zealand is committed to estimate greenhouse gas 

(GHG) emissions by sources and removals by sinks for 

reporting to the Conference of Parties of the United 

Nations Framework Convention on Climate Change. In 

accordance with Article 3.3 of the Kyoto Protocol, New 

Zealand has agreed to report, in a transparent and verifiable 

manner, GHG emissions by sources and removals by sinks 

associated with direct human-induced land use change and 

forestry activities, limited to afforestation, reforestation, 

and deforestation since 1990. Net carbon stock changes 

on land subject to afforestation (A), reforestation (R), 

and deforestation (D) must be estimated each year over 

the defined commitment period, the first of which is from 

January 1, 2008, to December 31, 2012, from information 

on land area (ha) and its corresponding carbon density (tC/

ha) for each of five carbon pools. 

Large-scale plantings of introduced tree species in New 

Zealand commenced in the 1920s. As of April 2004, the 

total area of exotic plantations in New Zealand was 1.82 

million ha (MAF 2005). In addition, New Zealand contains 

approximately 6.25 million hectares of indigenous forests 

(i.e., natural forests containing tree species that are either 

indigenous or endemic to New Zealand) and 2.65 million 

hectares of shrublands, containing both indigenous and 

exotic species. Radiata pine (Pinus radiata) is the most 

common plantation species, with approximately 89 percent 

of the total plantation area comprised of this species. 

Other plantation species include Douglas fir (Pseudotsuga 

menziesii) and eucalypts (Eucalyptus spp.). A significant 
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proportion of these exotic forests were planted since January 

1, 1990, on land that previously did not contain forest. These 

forests are referred to as Kyoto-compliant forests. Between 

1990 and 2004, it is estimated that approximately 600,000 

ha of such forests have been established (MAF 2005).

New Zealand does not currently have a plot-based national 

forest inventory covering all of its forests. A plot-based 

system covering the indigenous forest and shrubland is 

in the fourth year of a 5-year implementation program. 

Information on the area and the amount of growing stock 

in exotic plantations by age class, species, and region is 

compiled in the National Exotic Forest Description (NEFD). 

The data presented in the NEFD are obtained from surveys 

that are sent out annually to owners and managers of larger 

forests (at least 1,000 ha in size), or biennially to owners 

and managers whose forests are between 40 and 999 ha. The 

response rate for these surveys is generally very high. For 

example, in the 2003 NEFD some 1,400 survey forms were 

mailed out to all owners of forests at least 40 ha in size; a 

90 percent response rate was received, with a 99 percent 

response for owners with more than 1,000 ha. (MAF 2005). 

Since 1992, new planting that is not captured by these 

surveys of forest owners has been imputed from nursery 

surveys. Forest nurseries provide accurate estimates of the 

number of planting stock sold. Using assumed stocking 

rates and a number of other factors (e.g., restocking, 

blanking, and field wastage) the area of new forest planting 

is calculated. The total area of afforestation that has been 

imputed using data from nursery surveys is estimated to be 

around 180,000 ha. 

The data that are provided to the NEFD by large owners 

are considered to be very reliable. The data provided by 

many smaller owners or managers are of unknown quality, 

however, and, in general, their net stocked areas are 

thought to be overestimated. Much of the Kyoto-compliant 

afforestation that has occurred since 1990 is thought to have 

been carried out by these small-scale owners and may not 

be well represented by the NEFD. Therefore, to provide the 

necessary data to allow carbon stocks and stock changes 

to be estimated in accordance with the recently adopted 

good practice guidance for Land Use, Land-Use Change 

and Forestry (IPCC 2003), a means to inventory forests 

specifically designed for carbon monitoring is required. 

This article will outline the development of New Zealand’s 

proposed approach for an inventory of its planted Kyoto 

forests and describes some of the experiences gained 

from a pilot study that was conducted in the Nelson and 

Marlborough regions of the South Island.

Estimation of Forest Area

To meet its requirements under the United Nations 

Framework Convention on Climate Change and the Kyoto 

Protocol, New Zealand must determine the area of forest 

land. Under the Marrakesh Accords, countries must choose 

a definition of forest land from a predefined range of 

parameters describing minimum area, crown cover, and 

height at maturity in situ. New Zealand has provisionally 

adopted the following thresholds for the definition of forest 

land: a minimum area of 1 ha, crown cover of 30 percent, 

and a potential height in situ of 5 m. The exact approach 

for determining the area of Kyoto forest land is still to 

be finalized; however it is likely to be complete coverage 

mapping based on remote imagery, most probably acquired 

from satellites with some high-resolution aerial imagery. 

The recently completed Land Cover Database 2 (LCDB2) 

is based on a complete national coverage of Landsat 7 

Enhanced Thematic Mapper Plus satellite imagery and 

has a target spatial resolution of 1 ha. It is recognised that 

the use of satellite imagery to determine the area of forest 

land is not without its problems, particularly in detecting 

changes in the area of forest land to a high degree of 

precision. It is envisaged that high-spatial resolution aerial 

photography will be used to provide past land use detail that 

is not provided by existing satellite imagery. For future land 

use and land use change mapping, high-spatial resolution 

satellite imagery may also be used. 
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Development of a Plot-Based Inventory System

At the national scale, New Zealand’s woody vegetation can 

be thought of as being stratified into the following classes:

1.	 Indigenous high forest.

2.	 Shrubland (or other wooded land [OWL]). 

3.	 Pre-Kyoto exotic forest.

4.	 Kyoto-compliant exotic forest.

The forest inventory approach adopted by the New Zealand 

Carbon Accounting System is to use a national grid-based 

network of permanent plots to provide a statistically valid, 

unbiased estimate of carbon stored in planted forests. 

Currently, a network of plots is being installed on an 8- by 

8-km grid in indigenous forests and shrublands (Coomes et 

al. 2002, Payton et al. 2004). For Kyoto-compliant forests, 

a set of nested grids, coincident with the 8-km grid used to 

sample carbon stocks and plant biodiversity in indigenous 

forests and in shrublands, are placed over forests. This 

design is simple and robust to changes over time, permitting 

more complex statistical sampling designs and analyses to 

be imposed over the basic sample frame in the future, when 

necessary.

There are three proposed phases to the data collection.

Phase 1. Information on stand age, stocking, and 

management regime (e.g., thinning, pruning, forest 

health) is obtained for sample points on a 2-km grid7 

across the planted forest estate. This information is used 

(1) to determine the proportion of the planted forests that 

comply with the Kyoto Protocol definitions, and (2) for 

double sampling with regression estimation to improve the 

precision of estimates of carbon. 

Phase 2. Data to estimate carbon stocks and forest health 

are obtained from sample points on a 4-km grid7.

Phase 3. Additional soil carbon and plant biodiversity data 

are collected from sample points on an 8-km grid7 (i.e., at 

approximately one-quarter of the phase 2 sample points). 

Protocols for soil carbon measurement are described 

in Davis et al. (2004), while those for assessing plant 

biodiversity are described in Payton et al. (2004).

Data in phase 1 of the system are collected via discussions 

with landowners or forestry consultants, while data in phases 

2 and 3 are collected through a network of fixed-area plots. 

To minimize costs, it is proposed to visit only those points 

that have a high probability of sampling Kyoto forest.

Size of the Plot Network

The location of sample sites in planted Kyoto-compliant 

forests is determined by placing a 4- by 4-km grid over 

those LCDB2 classes thought to have a high likelihood of 

containing such forest (additional verification is done using 

recent fine-scale aerial photography). Assuming that the area 

of Kyoto-compliant post-1990 afforestation is 640,000 ha8 

(MAF 2005), then a 4- by 4-km grid is expected to yield on 

average 400 intersections (sample points). A subset of 100 of 

these points will be on the 8-km grid that is coincident with 

that used for the Indigenous Forest and Shrublands Carbon 

Monitoring System (Payton et al. 2004).

Using existing data from research monitoring plots, 

Goulding (2003) estimated that the coefficient of variation 

for stem volume in first rotation stands planted since 1990 

(i.e., maximum age of 13) was 50 percent. By the end of the 

Kyoto Protocol Commitment Period 1 (CP1) trees planted 

since 1990 will range in age from 1 year up to 22.5 years 

and Goulding (2003) estimated that for stands aged between 

4 and 23 years the coefficient of variation for stem volume 

increases to approximately 65 percent. Using these data 

and the assumption that the coefficient of variation for total 

carbon stocks is similar to that for stem volume, a network 

of 400 sites would produce an estimate of carbon stocks 

7 Nested grids that are coincident with the 8-km grid used to sample carbon stocks and plant biodiversity in indigenous forests and in shrublands.
8 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������                          The total area of post-1990 afforestation is approximately 670,000 ha; however, a proportion of this will not be Kyoto compliant as it occurred on land that already 
contained at least 30 percent canopy cover of a species capable of reaching 5 m in height.
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that has probable limits of error (the ratio of the 95 percent 

confidence interval to the mean) of approximately 6 to 7 

percent. Because these plots will be permanent, estimates 

of the change in carbon stocks over time will have a greater 

degree of precision associated with them than if they were 

computed from independent sets of temporary plots.

Plot Design

Much of the work that led to the final choice of plot design 

is described by Moore et al. (2004a), who examined the 

effect of plot size on the variability of the estimates of 

standing volume and carbon stocks as well as the within-

site and between-site variation in these quantities. It was 

found that increasing the plot area above 0.04 ha did not 

further decrease between-plot variance, while that variance 

was unrelated to distance between plots within a stand 

over the range of distances examined (48 to 118 m). As a 

consequence of the study, it was recommended that each 

sample point consists of a cluster of four 0.04-ha circular 

subplots. The central subplot would be coincident with the 

intersection of the sample point; the centres of three other 

subplots located 35 m away and arranged at 120 degrees 

apart (fig. 1). This arrangement is similar to that adopted 

by the United States Forest Inventory and Analysis (FIA) 

(Bechtold et al. 2005, Scott 1993). The choice of 35 m as 

the separation distance between subplots was based on the 

need to increase the likelihood of obtaining differences in 

carbon density between subplots within a cluster, while at 

the same time trying to minimise the likelihood that subplots 

fall outside the target population.

In New Zealand, many of the Kyoto-compliant forests are 

small (< 50 ha) and, therefore, it is likely that a number of 

subplots will straddle the boundary between planted forest 

and adjacent nonforest land-cover classes. Unlike the case 

of a single plot that straddles multiple conditions (where 

techniques such as the “mirage method” can be used to 

correct for the part of the plot which falls outside the target 

population), it is not possible to rotate subplots into a single 

uniform condition (i.e., planted forest) as this will generate 

a bias by altering the selection probabilities of trees, 

especially those near the edge (Williams et al. 1996). 

To overcome this problem, New Zealand will adopt the 

same approach recommended for the FIA (Hahn et al. 1995, 

Scott et al. 1995). When a subplot straddles two or more 

conditions, field crews record the two azimuths where the 

condition-class boundary crosses the subplot perimeter. 

This is called the “fixed-radius, mapped plot” design. The 

plot level estimators (e.g., basal area, volume, stand density) 

are computed on the basis of the revised plot area and 

procedures for estimating means and variances are given in 

Van Deusen (2004).

For those sites that lie on the 8-km grid (i.e., phase 3), an 

additional 20-m square plot is installed at the center of the 

cluster for the purposes of recording plant species composi-

tion (plant biodiversity) by height tier. The plot is subdivided 

into 16 5- by 5-m subplots (fig. 2), with 24- by 0.75-m2 

circular subplots established to measure understory/seedling 

vegetation. The emphasis is on ensuring that biodiversity 

data collected from planted forest stands are compatible 

with equivalent data sets obtained from the inventory of in-

digenous forests and shrublands (Payton et al. 2004).

Figure 1.—Layout of the cluster of four 0.04-ha plots.
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Vegetation Measurements

The key purpose of the inventory is to collect sufficient 

information to allow the average carbon density (i.e., tonnes 

of carbon per hectare) of New Zealand’s Kyoto-compliant 

planted forests to be estimated. The good practice guidance 

for Land Use, Land-Use Change and Forestry inventories 

(IPCC 2003) recognises five carbon pools that need to be 

reported on: (1) above-ground live, (2) below-ground live, 

(3) dead wood, (4) litter, and (5) soil. In the current New 

Zealand Carbon Accounting System, pools (1) and (3) 

are estimated directly from field measurements, while the 

remaining three pools are modelled. Soil modelling (pool 5) 

requires soil data collected from a proportion of the plots. 

The approach for measuring pools (1) and (3) is briefly 

described in the following section.

For measurement purposes the above-ground live carbon 

pool is subdivided into four subpools. These are assessed 

using either height and diameter measurements (trees and 

tree ferns, saplings and seedlings) or height and cover 

measurements (shrubs, ground cover). 

•	 Trees are defined as woody stems > 25 mm diameter at 

breast height (d.b.h.) (1.4 m). 

•	 Saplings are woody stems > 1.4 m tall, but < 25 mm d.b.h.

•	 Seedlings are woody stems < 1.4 m tall.

•	 Shrubs are plants > 0.3 m high that lack the monopodial 

form typical of trees, saplings, and seedlings. For the 

purpose of estimating carbon they may be woody (e.g., 

gorse) or nonwoody (e.g., pampas).

•	 Ground cover refers to vegetation (woody or nonwoody)  

< 0.3 m high.

The d.b.h. of each standing tree on the plot is measured and 

its bearing and horizontal distance from the plot center re-

corded. A subsample of up to 16 trees per species spanning 

the range of d.b.h. values is selected for measurement of to-

tal height, green crown height, and pruned height. 

Dead wood includes standing and fallen dead stems, thinned 

trees, broken tops, stumps, etc., (including remnants of 

previous land covers) that have a diameter ≥ 10 cm. In 

intensively managed plantations, most dead wood originates 

from thinning operations. Therefore, the dead wood is 

assessed using the same protocols as for standing trees, 

but with a suitable allowance made for decay. Immediately 

following an operation, particularly one in which the felled 

trees are not extracted but left in situ (i.e., precommercial 

thinning or “thinning to waste”), the amount of dead wood 

may be substantial, but this decays rapidly.

Remeasurement Frequency

The growth rates of New Zealand’s exotic forests are often 

higher than those for forests in areas such as the United 

States and Scandinavia, as is the intensity of management. 

(In New Zealand there can be up to three green-branch 

pruning lifts and two thinning operations before a stand is 10 

years old.) Therefore, it is proposed that the remeasurement 

interval should be 3 years. (Note: the current standard 

remeasurement interval for permanent sample plots in New 

Zealand is 1 to 3 years.) If the interval is longer, changes 

to stand structure and levels of growing stock could be 

significant and difficult to estimate.

It is proposed that the system be an annualised inventory 

(Van Deusen et al. 1999), with one-third of plots measured 

Figure 2.—Layout of the 0.04-ha (20- by 20-m) square plot 
used for plant biodiversity measurement.
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each year. Under the annual approach some new data are 

available each year. It will be important for New Zealand 

to have current data on a regular basis to assess its national 

carbon balance leading up to and during CP1. In addition, 

the continuity of work should make it easier to retain 

experienced people and reduce the need to recruit and train 

new people, and the costs of conducting the inventory will 

be spread over the measurement cycle. 

During the first year of implementation of the inventory, 

estimates of carbon stocks will only be able to be estimated 

from the current year’s measurements. In subsequent years, 

however, data will be available from multiple years. While 

the simplest way to calculate annual estimates of carbon 

stocks is to use only the data from those plots measured in 

the current year, their precision will be lower because of 

the reduced sample size (i.e., only one-third of plots are 

measured in any one year). The approach for producing 

estimates of carbon stocks and stock changes using data 

from multiple years has not been decided on. It is likely, 

however, that New Zealand will use an imputation approach 

with appropriate growth models used to update information 

from plots measured in previous years. 

Testing of the Approach in a Pilot Study

A pilot study was carried out within the Marlborough, 

Nelson, and Tasman Districts of the South Island to address 

many of the issues relating to estimation of the carbon pools 

and fluxes in Kyoto-compliant planted forest lands, and to 

make recommendations for a national inventory based on 

precision, cost, and effort (Moore et al. 2005). A total of 

32 sites were sampled in August and September 2004—23 

on the 4-km grid (phase 2), and 9 on the 8-km grid (phase 

3), which is also used for the inventory of indigenous 

forests and shrublands. At each site a standard series of 

measurements was made as described in the relevant field 

manual. From these measurements, the amount of carbon 

(t/ha) in pools (1) through (4) was predicted for each plot 

using the C_Change model (Beets et al. 1999), and for pools 

(1), (2), and (3) using a series of allometric equations in 

order to provide a comparison with values from the model. 

The change in carbon stocks in pools (1) through (4) during 

the first Commitment Period of the Kyoto Protocol was also 

predicted using a combination of the C_Change model and 

appropriate growth models.

Results

In general, field teams had little difficulty with the 

measurement protocols. Some problems arose, however, 

with the measurement of coarse woody debris and the 

assessment of crown transparency. There were also some 

issues with the identification of forest land from LCDB2, 

with 4 of the 32 sites actually occurring on nonforest 

land (mainly pasture). Because the planted Kyoto forest 

estate consisted of many small blocks that were dispersed, 

plots that straddled boundary conditions were reasonably 

common; this straddling occurred at 14 of the 32 sites.

Both methods of calculating carbon stocks, the allometric 

and modelling approaches, produced similar estimates of 

the amount of carbon in the various pools, indicating that 

the carbon calculation protocols are robust. These estimates 

were specific to the region over which the pilot study was 

conducted and should not be considered representative of all 

Kyoto-compliant forests in New Zealand. Analysis of sam-

pling precision for the pilot supported earlier suggestions 

that the carbon stock could be estimated nationally using 

this design to within ± 7 percent of the mean.

From data collected on plant biodiversity, it was found that 

radiata pine stands contained an average of 25 ± 2.5 (n = 23) 

plant species per plot, with no suggestion of differences 

between Kyoto-compliant and non-Kyoto-compliant stands. 

Forty percent of the plant species in the radiata pine plots 

were New Zealand natives. As with the overall plant species 

diversity, native plant biodiversity varied widely between the 

radiata pine stands that were sampled (0 to 78 percent) and 

did not appear related to stand type.
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As a result of the pilot study a number of refinements have 

been made to the field procedures, but the basic design of 

the inventory is unchanged. The national implementation 

of the inventory was due to commence in winter 2005, 

which would have permitted a full cycle of measurement 

to be completed before the start of the first Kyoto Protocol 

Commitment Period in 2008. A number of issues over 

access to private land, however, have delayed the national 

implementation. If these issues can be overcome before 

December 2006, then plots will be established over a 2-

year time span, but will be remeasured on a 3-year cycle. If 

access to private land is not forthcoming, then the inventory 

may have to be redesigned to allow estimates of carbon 

stocks to be obtained from airborne remote sensing (e.g., 

high-resolution laser image detection and ranging coupled 

with color infrared aerial photography).

Discussion and Conclusions

The New Zealand Carbon Accounting System has been de-

signed to provide national estimates at a “reasonable” level 

of precision compared to cost. Sampling on a 4-km square 

grid across Kyoto compliant forests should result in some 

400 sample sites. Employing clusters of 4- by 0.04-ha plots 

should result in an estimate of the national Kyoto compli-

ant forest carbon stock per hectare to within ± 7 percent. 

Indications are that an estimate of the change in stocks 

over the commitment period may be obtained with more 

precise confidence limits, given that it will be derived from 

remeasurements of permanent sample plots (Moore et al. 

2004b). It is also a very “basic” design that can stand alone 

or be used to provide information for more complex inven-

tory methods that may answer specific questions. It has the 

potential sometime in the future to be statistically integrated 

with remotely sensed images in a combined system that 

will provide more detailed, spatially explicit information 

or results at a subnational or regional level more precisely 

than from plots alone. While the design of the inventory 

itself is relatively simple, the statistical techniques required 

to analyse the data, particularly determining the precision 

of carbon estimates, are more complex. To obtain estimates 

of the carbon stocks and change with their variances, analy-

sis of the data has to account for clusters of mapped plots, 

missing plots, rolling estimators/imputation, and the use of 

double sampling with regression estimators. It is therefore 

important that New Zealand maintains strong links with 

scientists in other countries who are involved with national 

forest inventories, particularly those in the United States due 

to the similarities in the systems, to keep abreast of advances 

in methodological and analytical approaches.

The system also has the potential to contribute to a range 

of national and international reporting requirements 

should the measurement procedures be extended beyond 

the minimum set required to estimate carbon stock. These 

include internationally derived requirements associated 

with sustainable forest management (e.g., New Zealand 

is a participant in the Montreal Process) and conservation 

of biological diversity (e.g., the Convention on Biological 

Diversity). Within New Zealand, the system could contribute 

data for the National Exotic Forest Description, Ministry 

of Agriculture and Forestry, and for Environmental 

Performance Indicators, Ministry for the Environment.

It is anticipated that over time the plot-based inventory will 

be extended to all planted forests, which will provide the 

data to enable full carbon accounting of all forest lands
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Abstract.—Satellite remote sensing is being used 

operationally by Swedish authorities in applications 

involving, for example, change detection of clear 

felled areas, use of k-Nearest Neighbour estimates 

of forest parameters, and post-stratification (in 

combination with National Forest Inventory plots). 

For forest management planning of estates, aerial 

photointerpretation in combination with stand-wise 

field surveys is used. Automated analysis of digital 

aerial photos is a promising technique for tree 

species classification; laser scanning is being applied 

to assess tree height, stem volume, and tree size 

distribution; and low-frequency radar is being used 

for stem volume estimation. Obtaining timely photos 

of single stands from small unmanned aircraft is also 

an increasingly realistic option.

Introduction

Sweden has 22.9 million ha of forest land, which is 

managed for the production of timber and pulpwood. Half 

of this area is owned by a few large companies and the 

other half is divided into more than 200,000 private estates. 

Information about this forest resource is needed at three 

levels: (1) the authorities need overviews that encompass all 

forest owners; (2) the individual forest owners need more 

detailed information for management planning of each 

estate; and (3) timely information is needed about individual 

stands where cuttings are planned or have just been carried 

out. New remote sensing methods are now being introduced 

and tested at all of these three levels. The aim of this article 

is to provide an overview of this recent development in 

Sweden in the field of remote-sensing-aided forest resource 

assessment. Because much of the forestry related remote 

sensing research in Sweden is done at the Remote Sensing 

Laboratory at the Swedish University of Agricultural 

Sciences (SLU), a second aim is also to provide an overview 

of the lab’s recent relevant research and to provide references 

to studies where more details about each topic can be found. 

Satellite-Data-Aided National Forest Monitoring

Moderate resolution optical satellite imagery from Landsat 

or SPOT has been operationally utilized by both the Swedish 

Forest Agency and the Swedish National Forest Inventory 

(NFI) during recent years. Since 1999, the Forest Agency 

has annually obtained satellite images for all forest land in 

Sweden. The primary application is for verification of cut-

ting permits; since 2003, cut areas have also been delineated. 

This verification is done by the local foresters at about 100 

district offices, using tailormade Geographic Information 

System and image processing applications created by the 

Forest Agency and the Swedish National Land Survey. The 

change detection is based on relative calibrated imagery us-

ing forest pixel values as a spectral reference. In support of 

this application, the SPOT satellites have been programmed 

to cover all of Sweden annually during recent summers. As a 

side benefit, the resulting image database is useful for many 

other applications, such as estimates of forest parameters by 

combining image data with NFI sample plots.

1 Professor, Remote Sensing Laboratory, Department of Forest Resource Management and Geomatics, Swedish University of Agricultural Sciences, SE 90183 
Umeå, Sweden. E-mail: hakan.olsson@resgeom.slu.se.



40	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

The Swedish NFI

The NFI design is based on an annual systematic sample 

of field plots across Sweden (Ranneby et al. 1987, Ståhl 

2004). The aim is to allow reliable summary statistics for 

31 counties or parts of counties, using 5-year averages of 

field plot data. Plots are located in square-shaped clusters 

that consist of either 6 or 12 temporary plots of 7-m radius 

or 8 permanent plots of 10-m radius. In total, about 5,300 

permanent and 3,500 temporary plots are inventoried across 

Sweden every year. Permanent plots are reinventoried 

every 5 to 10 years. The plots have been positioned with 

the Global Positioning System since 1996, which further 

enables their use in combination with satellite image pixels. 

The Munin Production Line

An automated production line has been developed for 

combining NFI plot data with Landsat satellite data. In a 

first step, the NFI plots are used for preprocessing of the 

satellite data. The local geometrical errors between the 

satellite data and each field plot are modeled and the most 

likely pixel values given this modeling are selected (Hagner 

and Reese [in press]). Furthermore, the correspondence 

between NFI plot data and the image data is also used for 

parameterization of a slope correction and for reducing haze 

differences within the individual satellite scenes (Hagner 

and Olsson 2004).

The first use of the Munin production line was for a 

nationwide classification of forest land into seven different 

forest classes. This work was done by SLU from 2002 to 

2003 under contract with the Swedish National Land Survey 

and it was used as input to national and European land cover 

databases. In total, 50 Landsat Enhanced Thematic Mapper 

Plus (ETM+) scenes and 34,000 NFI plots were used. The 

forest classification was based on “calibrated” maximum 

likelihood algorithm which made use of prior probabilities. 

The classification of each Landsat scene was iterated until 

the frequency for each forest class corresponded to the 

frequency according to the NFI plots within the scene 

(Hagner and Reese [in press]). 

The k-NN Product

The Landsat ETM+ images and the NFI plots used for 

the previously mentioned land cover classification were 

also used in production of a nationwide forest parameter 

database using a version of the Finnish k-Nearest Neighbors 

(k-NN) method (Reese et al. 2003, Tomppo 1993). The 

first “k-NN Sweden” database was produced with images 

from around 2000, and is available as a raster product with 

estimates of total stem volume, stem volume for different 

tree species, stand age, and mean tree height for each pixel. 

Estimates were made for all pixels defined as forestland 

according to the 1:100 000 topographic map. With the 

production line in place, generating such a database for all 

forest land in Sweden takes about 1 man-year including all 

data handling and quality checking. There is also a version 

of the k-NN product that has been generalized, using a 

segmentation software developed in house (Hagner 1990) to 

represent approximate stands.

While the pixel-level accuracy for the k-NN product can 

be quite poor, the accuracy for aggregated areas is still 

acceptable for many applications. Typically, the estimation 

accuracy for stem volume is on the order of 60 percent at 

pixel level, 40 percent at stand level, and 15 percent when 

aggregated over a 100-ha area (Fazakas et al. 1999, Reese 

et al. 2002, Reese et al. 2003). Because the relationship 

between optical satellite data and stem volume is poor for 

closed canopies, the k-NN product underestimates stands 

with high volume. In addition, standing volume in sparse 

areas or young forest may be overestimated. 

The k-nn database has been used by forest authorities, 

environmental authorities, and the tax agency to obtain 

an overview of forest resources for large areas (Nilsson et 

al. 2004). It is also used in many research projects, such 

as species habitat modeling, as a baseline for landscape 

scenarios, and together with change images for analysis of 

storm-damaged areas. During 2006, a new version of the 

nationwide k-nn database, using SPOT images from the 

summer of 2005, is being produced.
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Post-Stratification of NFI Estimates

Post-stratification of NFI plot estimates is presently being 

introduced as an operational routine. Tests show that the 

standard errors for estimates of total stem volume; stem 

volume for pine, spruce, and deciduous trees; as well 

as tree biomass can be reduced by 10 to 30 percent at a 

county level by using post-stratification based on Landsat 

ETM+ products compared to only using field data for the 

estimation (Nilsson et al. 2003, Nilsson et al. 2005). Post-

stratification has proven to be a straightforward and efficient 

method for combining satellite data and NFI data. Most 

problems that might lead to biased estimates are avoided, 

which might not be the case using other methods. 

Forest Management Planning Using Airborne 
Sensors

In Sweden, the forest management planning of estates is 

the responsibility of the land owner. In this section, remote 

sensing techniques that could provide stand-wise estimates 

useful for planning purposes are discussed. Estimation 

results for the most important variable, stem volume, are 

also summarized in table 1.

Optical satellite data with 5- to 30-m resolution pixels have 

been used operationally for updating of stand boundaries 

and could also be used for other tasks such as locating 

stands where shrub cleaning is needed, provided that a 

smooth supply of data is available. Satellite data, however, 

are generally not considered accurate enough for capturing 

basic data necessary for forest management planning. 

Instead, various combinations of aerial photointerpretation 

and field work have been used. Traditionally, the photos 

have been used mainly for defining homogeneous 

stands; however, especially for large forest holdings, 

photogrammetric instruments have been used as well, for 

measurements of tree heights and manually aided estimation 

of stem volumes. Aerial photography is the only terrestrial 

remote sensing data source in Sweden that is regularly 

acquired with government subsidies. During recent years, 

scanned digital orthophotos have become the most widely 

used data source for everyday work in the forest sector. In 

2004, the Swedish National Land Survey acquired a Z/I 

Digital Mapping Camera. The experiences so far has been 

that the radiometric quality of these images is much better 

than that of scanned aerial photos. 

Automated Interpretation of Aerial Photos

In our research with automated interpretation of aerial 

photos, we have implemented a version of the template 

matching method developed by Richard Pollock in Canada 

(Pollock 1996). This method is based on the generation 

of synthetic tree templates that are rendered with the 

appropriate illumination and view angle for each position 

in the image. The template trees are then compared with 

potential trees in the image using correlation techniques. 

Using template matching, studies carried out in a coniferous 

forest area in southern����������������������������������    Sweden,��������������������������   approximately �����������two-thirds 

of the trees could be found and positioned (Erikson and 

Olofsson 2005, Olofsson 2002). By using the digital photo 

pixel values associated with trees detected by template 

matching, we have, in early tests, separated tree species 

for spruce, pine, and deciduous trees for 90 percent of all 

detected trees (Olofsson et al. 2006). 

Table 1.—Stem volume estimation accuracies on stand level for different remote sensing sensors, validated at the same test 
site; all estimates except the photogrammetric measurements are made with regression techniques. 

Sensor or sensors used  References
RMSE

(%)

SPOT HRVIR, SPOT HRG, or Landsat ETM+ satellite data Fransson et al. 2004; Magnusson and Fransson 2005a. 23–31

Interpretation of aerial photos in photogrammetric instrument Magnusson and Fransson 2005b. 18–24

CARABAS VHF SAR Magnusson and Fransson 2004. 19

Combination of CARABAS and SPOT HRVIR Magnusson and Fransson 2004. 16

Laser scanner Fransson et al. 2004. 12
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Laser Scanning

Since 1991, the Remote Sensing Lab has conducted work 

using laser scanning for forests (Nilsson 1996), often in 

cooperation with the Swedish Defense Research Agency 

(FOI). Two main methods for forest inventory based on 

laser scanning have emerged. Using low posting density 

laser data (on the order of one laser pulse per m2), statistical 

relationships between field plot measurements and laser 

data features such as height percentiles can be established 

and then applied to all laser measured forest. This method 

has provided stem volume estimates with about 10 to 15 

percent root mean square error (RMSE) (Næsset et al. 

2004, Holmgren 2004). The commercial application of laser 

measurements for forest inventory has been pioneered in 

Norway. The first operational-scale test in Sweden was done 

in 2003 when a 5,000-ha area was laser surveyed (Holmgren 

and Jonsson 2004). The RMSE on stand level was 14 

percent for stem volume, 5 percent for tree height, and 9 

percent for mean diameter. 

The other main approach is to laser scan densely enough 

to obtain many laser pulses per tree to detect single trees, 

which requires a density on the order of five pulses per m2 

or more. Today such data is primarily obtained in research 

mode using helicopter, but technical developments allowing 

very-high-density laser scanner data from fixed wing 

aircrafts is a realistic option for future operational surveys. 

One contribution to this development is the emerging 

Focal Plane Array technology that enables many sensor 

elements to record the return from each emitted laser pulse 

(Steinvall 2003). In one study of a coniferous dominated 

forest in Sweden, by using high-density laser scanner data 

it was possible to locate more than 70 percent of the trees 

that represented more than 90 percent of the stem volume; 

tree height and canopy diameter were also automatically 

measured, both with a precision of 0.6 m (Persson et al. 

2002). Using features derived from laser data belonging 

to automatically detected tree canopies, we have also been 

able to discriminate spruce from pine with an accuracy 

of 95 percent (Holmgren and Persson 2004). Current 

work includes the combination of laser data and optical 

image data for improved tree species determination. The 

Remote Sensing Lab is also working with estimation of 

stem diameter distribution using dense laser scanner data 

(Holmgren and Wallerman 2006) and with laser-data-aided 

segmentation. 

Airborne Low-Frequency Radar

FOI and Ericsson Microwave Systems have developed 

CARABAS, which is a unique low-frequency synthetic 

aperture radar (SAR) system (Hellsten et al. 1996). At 

present only one system is available but the development 

of civilian systems is being discussed. Because CARABAS 

operates with 3- to 15-m long radar waves in the VHF band, 

the radar signal penetrates the forest canopy and is reflected 

predominantly from the interaction between ground and 

tree stems. A long series of CARABAS research studies in 

Sweden shows the potential of VHF SAR for stem volume 

assessment in boreal forests. Typically the RMSE for stand 

level assessment of stem volume is about 20 percent. In 

contrast to optical imagery, no signal saturation for high 

stem volumes has been found for Swedish forests (e.g., 

Fransson et al. 2000). Optical satellite data is, however, 

better correlated with stem volume up to about 100 m3 per 

ha than CARABAS data. Subsequently, the best estimation 

results have been obtained by combining the data sources, 

where satellite data is weighted more for low volumes and 

CARABAS data more for high volumes (table 1).

It has also been shown that wind-thrown trees often provide 

a stronger radar return and a different texture than standing 

trees, and that they often can even be detected under a 

canopy of remaining standing trees (Fransson et al. 2002, 

Ulander et al. 2005). At present a CARABAS survey is 

being carried out for a 15,000 km2 storm damaged area in 

southern Sweden to detect remaining storm-felled trees that 

could contribute to increased insect populations.
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Mapping of Single Forest Stands Using 
Unmanned Airborne Vehicles

The Swedish forests are managed with a clear felling after 

about 100 years. The large forest companies make special 

prefelling inventories to create a database that could be used 

to select and cut the right type of stands at any given time, 

according to industry needs. Today these timber inventories 

are entirely field based and there is a need to find remote-

sensing-aided methods. In addition, after final felling, there 

is a need to survey the area for regeneration planning and 

also for documenting nature conservation actions. There is 

also a need to follow up the regeneration of young forest 

and determine the areas and timing for precommercial 

cleaning cuttings. The common requirement for all of these 

applications is a need to, at a given point in time, survey 

specific stands that are scattered through the landscape. 

In Sweden today, photographs of new clear felled areas 

are often taken from small aircraft, using medium format 

digital cameras. A future time- and cost-effective alternative 

could be to use small unmanned airborne vehicles (UAVs) 

with cameras and/or other sensors that are operated by the 

foresters themselves on location. Members of our group 

have experimented with the development of UAVs and, after 

a series of tests, have arrived at a model with a wing span 

of about 1.2 m and a weight of about 800 g. It is driven by 

an electric motor and can take a payload of more than 500 g.                  

Using a standard digital camera, it is possible to take a 

series of 5-cm pixel photographs from an altitude of about 

150 m, which can be block triangulated and corrected to 

map projection. 

Discussion

The operational use of satellite data in Sweden has provided 

new opportunities for forest authorities and researchers 

alike. The boundaries and date of final cuttings are now 

well documented and the new regeneration of forests could 

be efficiently monitored. The combination of NFI plot data 

and satellite remote sensing data has provided the first 

nationwide map database of forest resources. Furthermore, 

post-stratification has provided the possibility to produce 

reliable statistics for smaller areas than the NFI plots alone 

can provide. The largest problem for the continuation of 

these developments is the lack of firm international long-

term planning for the supply of suitable satellite data. 

Many of the systems that could replace the present Landsat 

generation only have scenes with sizes in the order of 60 

by 60 km, which are more problematic to use because they 

encompass far fewer NFI sample plots than the Landsat 

scenes; furthermore, they often lack a mid infrared band, 

which is important for forestry. Fortunately, the United 

States has now made a commitment to develop a Landsat 8, 

but similar commitments are also needed in Europe.

In Sweden the more detailed inventories needed for forest 

management planning are carried out at an individual estate 

level and are so far seldom coordinated with neighboring 

properties. This is in contrast to the situation in Norway 

and Finland where government subsidies are used to ensure 

more coordinated forest mapping. Since aerial photos are 

the only data source acquired by a government plan, there 

are in reality no other data options for the small forest 

owners who manage half of the forest land in Sweden. The 

possibility of working with high-quality photos from digital 

surveying cameras, which could be interpreted in the new 

user friendly digital photogrammetric work stations, as 

well as the emerging possibilities to automatically interpret 

aerial photos, opens up new possibilities. The large forest 

companies that manage millions of hectares could also 

consider other remote sensing methods. For them, laser 

scanning appears to be an attractive add on to the aerial 

photos. For large areas, the cost of acquiring laser scanner 

data is on the order of 15 percent of the cost for the final 

forest management plan. In the boreal coniferous forest, 

laser scanner data will provide better stem volume estimates 

and equally good tree height estimates as today’s field-

based methods. The field plots needed for training the laser 

scanner data could be used also for planning on a strategic 

level. Laser scanner data could also aid in automated stand 

boundary delineation. With future high-density laser scanner 

data, it will also be possible to estimate within stand stem 

diameter distributions and, in combination with digital air 
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photos, it will also be possible to obtain information about 

tree species distributions. 

The possibility to detect storm-felled trees with the 

CARABAS SAR is interesting, especially because the 

sensor is not dependent on weather or sun illumination, and 

is mounted on a jet plane. An operational scenario could 

be to survey areas with high stem volume and high risk 

for storm damage using CARABAS approximately every 

5 years. These images could be used to enhance the stem 

volume estimates in databases based on optical satellite 

data. This combined estimate might be of sufficient quality 

to make it useful also for the private forest owner. The main 

motivation for such a regular survey, however, would be to 

have an early reference with radar data that could be used in 

change detection when new images acquired directly after a 

major storm should be analyzed. Because storm-felled trees 

will give higher radar response and ordinary cuttings and 

removing of trees will give a lower response, the two types 

of changes will not be mixed up in the radar data, which 

might be the case with optical data. 

For timely mapping of single stands, the use of small UAVs 

could provide a breakthrough. Such UAVs driven by electric 

motors are already widely used by the military and the 

technology will most likely spread to civilian applications. 

There are no expensive or classified components needed to 

construct a UAV that can carry a digital camera. The main 

obstacle so far has been air traffic regulations, but, at least 

in Europe, guidelines and procedures for integrating small 

UAVs in civilian airspace will soon be established. Civilian 

professional use of small UAVs is already permitted in some 

countries, such as the UK and Finland, and will most likely 

be in others. 

Even with the straight-forward, simple, and realistic ap-

proaches to remote sensing of forests discussed here, it can 

be concluded that we are currently in a rapid development 

in which new sensors and platforms, such as digital cam-

eras, laser, radar, and UAVs, as well as a sound and realistic 

combination of the satellite technology and field data, pro-

vide new possibilities that will improve the supply of data 

about our forests. Beyond that, many new developments not 

discussed in this paper will provide additional possibilities 

over the coming 25 years. Examples include the use of time 

series data and data assimilation techniques; automated 

interpretation of high-resolution optical data using learning 

techniques; new laser scanner technology with very dense 

posting; ground based laser scanners that will be easy to 

handle and provide data that can be integrated with airborne 

measurements; feedback of data from harvester machines to 

similar stands according to remote sensing; and sensors on-

board permanent high-altitude UAVs. One major conclusion 

is, however, that government policy plays a key role regard-

ing which technically feasible data capture options will, in 

the end, be economically and practically feasible. This state-

ment is valid regarding the supply of satellite data, for poli-

cies for airborne data acquisition as well as for permissions 

to fly UAVs.
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Austrian National Forest Inventory: Caught 
in the Past and Heading Toward the Future

Klemens Schadauer1, Thomas Gschwantner2, and Karl 

Gabler2

Abstract.—The Austrian National Forest Inventory 

(AFI) started in 1961 on a temporary plot design with 

a systematic grid and a period of 10 years. For the 

first 30 years it was conducted as a continuous forest 

inventory. Since 1981 a permanent plot system has 

been used and the assessment period was reduced. 

Only slight changes in the plot design have occurred 

since the beginning of the inventory. During the 

past 45 years AFI changed from a survey of forest 

area, growing stock, and increment to a complex 

monitoring system covering many aspects of the 

forest ecosystem. Up to now the assessments have 

been restricted to the forest area but in the future AFI 

could be extended to become a landscape monitoring 

system. An ongoing project uses satellite imagery 

from Landsat with a k-Nearest-Neighbour technique 

over all of Austria aiming at maps and estimates with 

higher accuracy for small regions.

Introduction

The Austrian National Forest Inventory (AFI) is carried out by 

the Federal Research and Training Center for Forests, Natural 

Hazards, and Landscape (BFW), which until 2005 was a sub-

ordinated institution of the Ministry for Agriculture, Forests, 

Environment, and Water Management. In the meantime its 

legal status was changed and BFW has become a body of pub-

lic right, which is similar to a limited liability company. AFI 

is a binding mandate and embodied in the Austrian forest law, 

including the right to assess data periodically in every forest in 

Austria. No legally binding time schedule for the assessment 

periods exists. Therefore, each assessment cycle is the outcome 

of negotiations with the ministry. ������������������������������    Austria has about 8.4 million 

ha of total land and about 3.9 million ha of forest land.

AFI provides comprehensive and basic data for forest 

management on country, provincial, and subprovincial levels. 

It is used as a tool for forest policy decisionmaking and forest 

administration, as a database for scientific forest studies, and 

a source of information for the wood industry. During the last 

decade, more and more international reporting systems require 

AFI information. The smallest spatial units for which results are 

provided are identical with the smallest forest administrative 

units, from 10,000 ha to 250,000 ha in size. The statistical 

features of the results for the small units are rather weak. 

Statistical Design

In the 1950s when the AFI system was established, Scandinavian 

forest inventories already existed for more than 30 years (fig. 1). 

Therefore, some of the approaches of the third Swedish forest 

inventory were adopted by the AFI. The sources of the first local 

forest inventories in Europe date from much earlier, however.

 

Back to the Roots

The oldest document found by the authors dates back to 

1459 (Trubrig 1896), which describes the mandate to a forest 

survey done by horse-riding foresters aiming at a very rough 

estimation of harvestable growing stock. In the course of 

centuries the survey methods were improved. The aim of these 

so called “Waldbeschaue” (e.g., Anon. 1674, Braun 1974) was 

the estimation of growing stock and the potential for harvest 

including the efforts to be taken (Braun 1974). The reasons 

1 �����������������������������������������������������������������������������������������������������������������������������������������������������������                   Head of Department for National Forest Inventory, Research and Training Center for Forests, Natural Hazards, and Landscape, Seckendorff-Gudent-Weg 8, 1131 
Vienna, Austria. E-mail: klemens.schadauer@bfw.gv.at.
2 �����������������������������������������������������������������������������������������������������������������������������������������������������������                  Department for National Forest Inventory, Research and Training Center for Forests, Natural Hazards, and Landscape, Seckendorff-Gudent-Weg 8, 1131 Vienna, 
Austria.
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were the increasing wood demands for mining and salt industry. 

The assessment teams also were instructed to look for what 

they called forest damages, meaning illegal logging at that time. 

In the middle of the 18th century the concept of sustainable 

use of forest resources was developed (Baader 1933). The 

latest developments are now documented in the Ministerial 

Conference on the Protection of Forests in Europe (MCPFE) 

and the Montreal Process. So the aims for developing forest 

inventories did not change so much during the past 500 years. 

The Scandinavian forest inventories started their work in the 

1920s with a strip sampling concept (e.g., Heske 1926, Simak 

1951). Due to the prevailing topographic conditions and higher 

variability of growth conditions in Austria, the responsible 

authorities were obliged to conduct special surveys to find 

the most adequate layout for the inventory in Austria. These 

included tract grid density, sample plot sizes, stand and site 

characteristics, the selection of a nationwide basal area factor 

for Bitterlich’s angle count method, as well as sample tree 

characteristics to be used as input parameter for new volume 

and form factor functions.

The idea of a systematic grid of sample plots goes back to 

Zetzsche (Schmidt 1891) and was already applied in practice at 

the end of the 19th century. The idea to use a systematic grid of 

clusters (so-called tracts) also in a large-scale inventory stems 

from Hagberg (1955) and was field tested in the mid-1950s. It 

was adopted by several national forest inventories. 

Actual Design

The AFI uses the following approach (Gabler and Schadauer 

2006):

•	 Nationwide uniform survey criteria and manuals. 

•	 Systematic grid of tracts on the whole federal territory.

•	 Several sample plots per tract (satellite sample).

•	 Determined sample plot (300-m2 circular area) to identify 

area data.

•	 Bitterlich’s angle count method. 

•	 Line survey (landscape diversity and forest roads).

•	 Flexibility and creativity for the methodical treatment of 

ecological issues and special surveys.

•	 Volume determination of single trees through 

measurement to identify growing stock, increment, and 

harvesting.

•	 Evaluation of results through ratio estimation.

•	 Indication of a standard error for the individual average 

value (estimation value).

•	 Up-to-date measurement equipment.

•	 Computer-aided data capture and evaluation.

Only a small part of the total area of Austria (0.008 percent) 

is used for sampling by AFI. The results of the assessment are 

evaluated (scaled up to the selected geographical level such as 

the federal territory or the provinces). The average assessment 

values are indicated with their standard errors. 

The survey and assessment unit is the tract consisting of four 

circular plots 300 m2, each which are arranged at the corners of 

a square with 200 m of side length (fig. 2). The side lengths of 

this square are located in north-south and east-west directions. 

Figure 1.—Field crew of the Swedish National Forest Inventory 
at work during the 1950s.
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The tracts are systematically distributed over the whole federal 

territory and the number of tracts is about 5,600. This implies 

about 11,000 sample plot on forest land.

Each sample plot of a tract is subdivided into two concentric 

circular plots. The small rigid sample circle with a radius of 

2.60 m is used for the assessment of trees with a diameter at 

breast height (d.b.h.) between 50 and 104 mm. Sample trees 

with a d.b.h. larger than 104 mm are selected according to the 

Bittlerlich angle count method and the basal area factor 4. The 

relascope is installed at the centre of the circular sample plot of 

300 m2.

The whole sample circle with an area of 300 m2 is used to 

identify the forested area and its structures. These sample 

plots can be further subdivided. If there is a district, estate, 

or ownership borderline crossing the sample plot, the plot is 

subdivided into parts of tenths. If the sample plot is divided by 

a forest edge, it is subdivided into tenths between forest and 

nonforest. This division is applied also if other reasons exist for 

subdivision to be applied only on forested areas. They can both 

be site related and stand related.

The land cover type forest is defined as follows:

•	 Areas stocked with wooden plants and shrubs.

•	 Forested areas temporarily unstocked due to harvesting.

•	 Permanently unstocked areas provided they are in direct 

relationship with a forest (e.g., forest logging area, timber 

yards). 

The cover type must fulfil the following criteria:

•	 Minimum canopy density: 3 parts of tenths. 

•	 Minimum surface: 500 m2.

•	 Minimum width: 10 m.

The criteria of minimum surface area must meet an additional 

test. A sample plot of a tract is only 300 �m2. As the minimum 

area is 500 �m2 the survey team must look over the borders of 

the fixed circular plot and consider also the stand characteristics 

beyond the 300 �m2 circular plot for the evaluation. 

Volume estimates are obtained by applying tree measurements 

(d.b.h., height, upper diameter) from about 80,000 sample 

trees to tree volume equations. Volume data are gross volume 

of the stem over bark including stump and top. Dead standing 

trees (snags) are not excluded from volume estimates. Tree 

height and upper diameters are measured on a subsample of 

the 80,000 sample trees. To get the corresponding tree heights 

and upper diameters for all sample trees, data models are used 

(Gschwantner and Schadauer 2004). 

Short Overview of the Austrian Forest Land

The Austrian forest land is mainly owned by farmers with a 

forest area smaller than 200 ha (54 percent of total forest area); 

only 16 percent of the forest area belongs to the Republic of 

Austria. The forest area reaches from 100 to 1,800 m above sea 

level and has a medium slope of about 40 percent. Eighty per-

cent of the forest area is covered by coniferous species, mainly 

Norway spruce (Picea abies); the dominant broadleaf species 

is beech (Fagus sylvatica). The Alps dominate the ecological 

conditions and split the area into relatively small-scaled units of 

homogeneous conditions leading to a forest picture with high 

spatial variability. Approximately 80 percent of the forest area 

is used primarily for timber production (fig. 3). One-fifth has 

a mainly protective function including 4 percent of the total 

forest land which is not accessible due to extreme topographic 

conditions. The forest cover in the Alps has a very important 

Figure 2.—The Austrian cluster sample (tract).
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function for the maintenance of fresh water resources and soil 

quality. Main risks relevant for the Austrian Alpine region are 

avalanches and torrents.

Challenging Tasks for AFI

Sustainable Forest Management

Since the first set of Pan-European Indicators for Sustainable 

Forest Management was developed in the early 1990s, 

experience has shown that criteria and indicators are a very 

important tool for European forest policy. Indicators include 

forest area, growing stock, increment and fellings, forest under 

management plans, tree species composition, dead wood, etc. 

(MCPFE 2003). 

Data for these indicators are assessed and supplied by the 

AFI. The increment and fellings indicator highlights the 

sustainability of timber production over time as well as the 

current availability and the potential for future availability 

of timber. For long-term sustainability, the average annual 

fellings must not exceed the average net annual increment. For 

example, figure 4 shows that the sustainability concerning that 

indicator is satisfactory for Austria.

The result for each criterion and indicator is given by the 

Republic of Austria (2005).

Biomass for Energy Production

Biomass used to produce electricity and thermal energy is 

increasingly needed. The estimated additional sum for the next 

two years is about 4 million cubic meters per year; the total 

annual amount of harvest according to the 2000–02 AFI is 

19 million cubic meters. Special assessments and evaluation 

of the AFI show that there is a huge amount of so called 

“thinning backlog” available in the forest (17 million cubic 

meters), which could partly be used for energy production. 

But according to the actual prices the harvesting of small 

dimensions is not profitable. An evaluation of mortality and 

felling per year according to d.b.h. classes can be found in 

figure 5, falling into three categories: harvested living trees, 

harvested dead standing trees, and not harvested dead trees. 

The figure indicates clearly that the total amount of harvested 

living trees for the lowest d.b.h. classes is less than the volume 

of dead trees.

Climate and Growth

The AFI has collected permanent sample plot data from 1981 to 

2002. Five years after establishment the plots were remeasured 

in the years 1986–90 for the first time. The consecutive remeas-

urements took place during 1992–96 and 2000–02. From these 

measurements 17 increment periods (1981–86, 1982–87, …,     

1995–2001, 1995–2002, 1996–2002) can be derived. With 

this sample plot data a logarithmic basal area increment model 

was developed according to Monserud and Sterba (1996), who     

describe the basal area increment as a function of tree size, 

competition, and site variables:

Figure 3.—Management types of forest use. Figure 4.—Information to Indicator 3.1 “Increment and 
Fellings” based on the evaluation of the inventory periods 
1992–96 and 2000–02.
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In(BAI) = a + b * SIZE + c * COMP + d * SITE	 (1)

where:

BAI = the basal area increment.

a = the intercept.

b = the vector of coefficients for tree size variables.

c = the vector of coefficients for competition variables. 

d = the vector of coefficients of site variables. 

To estimate the growth trend in basal area increment, 

Gschwantner (2006) included dummy variables coding for the 

17 increment periods INT in the basal area increment model 

according to Monserud and Sterba (1996):

In(BAI) = a + b * SIZE + c * COMP + d * SITE + f * INT	 (2)

The coefficients f describe the variation of basal area increment 

between the 17 increment periods INT. Linear regression was 

applied to estimate the trend in basal area increment from the 

coefficients f. In a further step, Gschwantner (2006) evaluated 

the role of climate as a cause of the variation in basal area 

increment between the 17 increment periods. A point version of 

DAYMET adapted by Petritsch (2002) for Austrian conditions 

provided climate variables (temperature and precipitation) for 

each sample plot. These temperature and precipitation values 

were converted following Kublin et al. (1988) into climate 

parameters relevant to increment. The importance of climate in 

basal area increment changes was then assessed by additional 

inclusion of climate parameters CLIM into the model:

In(BAI) = a + b * SIZE + c * COMP + d * SITE                          

 + e * CLIM + f * INT	
(3)

As we did from basal area increment model (2), we also obtain 

coefficients f from model (3). Again, linear regression was 

employed to estimate the trend in basal area increment when 

climate parameters are considered in the model. If the observed 

growth trends were caused by climate variations, the additional 

inclusion of climate parameters should have a diminishing 

effect on the coefficients f of the 17 increment periods INT and 

should reduce the slope of the growth trend. This means that the 

included climate parameters explain the observed growth trend 

in basal area increment. Figure 6 illustrates this diminishing 

effect of the inclusion of climate parameters in the basal area 

increment model for Norway spruce. Thus, we assume that 

climate parameters are considerable relevant in explaining 

the observed trend in basal area increment of Norway spruce. 

Temperatures during the cold season were identified to be of 

special importance for increment changes.

Figure 5.—Fellings and mortality for small d.b.h. classes 
according to a special evaluation of AFI 2000–02.

Figure 6.—The change of coefficients of the 17 increment 
periods due to inclusion of climate parameters.
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Application of Remote Sensing Techniques

AFI does not use any remote-sensing techniques for prestratifi-

cation purposes. Within an ongoing project the satellite image 

data are combined with field data aiming at mapping of forest 

attributes and estimates for these attributes with higher accu-

racy for small regions compared to the existing estimations. In 

a prestudy, the main emphasis was placed on the incorporation 

of topographic correction into the k-Nearest-Neighbor-based 

assessment of forest attributes (Koukal 2004). A relatively new 

radiometric correction method (sun canopy sensor model) is 

used in combination with atmospheric correction methods. This 

approach turned out to be suitable also for operational applica-

tions. At the moment only results for the eastern part of Austria 

(more flat) are available. They reveal satisfying agreement with 

the ground-based results of the attributes: forest area, forest 

cover type, volume of the main tree species (species groups), 

and the percentage of the main tree species. 
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Abstract.—A primary objective of the Italian Nation-

al Forest Inventory (NFI) is to provide information 

required by the Kyoto Protocol and the Ministerial 

Conference on the Protection of Forests in Europe in 

relation to sustainable forest management practices. 

For this reason, the second Italian NFI was aimed at 

providing data in a way that is consistent with the 

international standards, such as the adopted defini-

tion of forest area. Particular attention was paid to the 

quality of the data collected to obtain good accuracy 

and high precision at the national level. This has been 

achieved with a three-phase sampling for stratifica-

tion that allowed for a high sampling intensity in the 

first two phases and careful control of the data inputs 

with continuous feedback from the surveyors. 

Introduction

The updating of information on national forest resources is 

of primary importance for national forest programs and local 

forest policies. National forest inventories (NFIs) based on 

statistical surveys provide nations with reliable quantitative 

forest information.

The first collection of data on Italian forests based on statistical 

sampling was performed between 1983 and 1985 with the 

first Italian NFI. The Forest and Range Management Research 

Institute (ISAFA) designed the project plan and the procedures 

for data collection and processing, while the field surveys 

were carried out by the National Forest Service (NFS). The 

results were published in 1988 (Castellani et al. 1988). On the 

other hand, official statistics on Italian forests were provided 

by the Italian Institute for Statistics (ISTAT) and derived from 

annual questionnaires, completed by the NFS. These statistics 

show few details, particularly on dendrometric and ecological 

features, and the most recent available data are referred to 1999.

Between 1985 and 2003, local forest inventories at a regional or 

subregional level were carried out by some administrative re-

gions of Italy. The framework derived from these projects, how-

ever, is neither complete, as the local inventories cover only half 

of the Italian territory, nor homogeneous, because they differ in 

their sampling schemes, survey procedures, and reference dates.

Therefore, at the end of the 1990s the information on Italian 

forests appeared to be dated and lacking, especially in meeting 

the information requirements of international standards. ������Italy 
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has ratified international conventions and agreements that 

bind the country to provide information on several aspects of 

national forests. �����������������������������������������������       Italy committed itself ������������������������    to use the criteria and 

indicators developed by the �������������������������������   2003 Ministerial Conference on 

the Protection of Forests in Europe (MCPFE)������������������   in international 

reporting on the status and conditions of Italian forests.� 

Furthermore, the agreement of the Kyoto Protocol has bound 

the Italian government to report on greenhouse gas emissions 

and, for this purpose, the assessment and monitoring of land 

use, land use change, and forestry activities is required. 

In 1998–99, ISAFA was asked by the Ministry of Agriculture 

and Forestry to conduct a feasibility study for a new NFI 

(ISAFA 1999). At the end of 2001, a Ministerial Order 

instituted a permanent NFI to be carried out by the NFS with 

the scientific and technical support of ISAFA. The “National 

Inventory of Forests and Forest Carbon Sinks” (INFC) started 

in 2002 with the design of the sampling scheme and the survey 

procedures for the first phase. The inventory design of the 

INFC is based on a three-phase sampling for stratification, 

while the previous NFI had adopted one-phase sampling (INFC 

2004b). Moreover, the two NFIs differ on the forest definition 

adopted, the sampling intensity, the distribution of sampling 

points, and the sources of the data and the attributes surveyed. 

The old inventory was conducted on approximately 30,000 

sample units distributed on a 3 by 3 km systematic grid that 

were classified as forest or nonforest by field surveys combined 

with information from available maps. Sample points identified 

as forest were measured in the field (Castellani et al. 1988). The 

INFC adopted a new sampling scheme to improve the precision 

of estimates, which meant that it wasn’t possible to use the 

previous NFI’s sample points. 

Many aspects of the INFC project, such as the survey 

procedures and the data sources, were designed to meet 

the international commitments described above. The list of 

attributes to be assessed was defined with particular attention to 

the international standards, mainly the United Nations Food and 

Agriculture Organization definition of forest and also the set 

of pan-European indicators of sustainable forest management 

(MCPFE 2003). Many different sources of information were 

used, such as the national cover of digital orthophotos, national 

and regional maps, databases and interviews, as well as field 

data. Lastly, the same framework used for dendrometric 

measurements is being used for collecting data on many aspects 

of forest ecosystems, according to a multiresource approach.

Methods

The Sampling Design

The sampling design adopted for the INFC is a three-phase 

sampling for stratification (fig. 1), in which the first two phases 

are required to estimate the forest area and its classification 

into forest categories, while the third is needed to collect 

dendrometric data (INFC 2004b).

In the first phase, systematic unaligned sampling is used 

to select sample points to be observed on orthophotos. The 

first phase sample is formed by approximately 301,000 

points distributed on a grid covering the whole Italian 

territory (30,132,845 hectares), with one sample point 

drawn randomly within each 1 by 1 km grid square. Through 

photo interpretation, the sample points are classified by land 

cover/land use class (fig. 2) to estimate the area of the strata 

by administrative region, and to identify the sampling units 

from which the subsamples of the following phases would be 

selected. The strata derived from the first phase classification 

are consistent with the first level of the CORINE Land Cover 

System (European Commission 1993) and with the FAO-

Forest Resources Assessment (FRA) 2000 forest definition 

(�����������������������������������������������������       UN-ECE/FAO 1997��������������������������������������      ), with a single class including both forest 

and other wooded land (OWL) (INFC 2003a). In the second 

phase, a subsample is randomly selected from the forest and 

other wooded land stratum according to the proportion of 

the land cover class in the 21 administrative regions of Italy. 

Approximately 30,000 sample points in the second phase 

were surveyed in the field to discriminate forest from OWL, 

to identify different forest types, and to collect information 

on other qualitative attributes of forest stands (INFC 2004a). 

The assessment of the main tree species or species group 

is the basic step to identify the forest type and subtype. 

On the whole, 23 types and 91 subtypes have been defined 

(fig. 2) (INFC 2003c). Lastly, a third phase subsample of 
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Figure 1.—Diagram illustrating the sampling design adopted by the second Italian National Forest Inventory. 

Figure 2.—Scheme for land cover/land use and forest type classification adopted by the second Italian National Forest Inventory; for 
the second phase, some examples of forest types and subtypes are given.
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approximately 7,000 points is selected from the second phase 

sample, then stratified by administrative region and forest 

type. The third phase subsample is used for dendrometric 

measurements������������������������������������������������         and for the collection of quantitative data on 

understory vegetation, dead wood, and other attributes.

Estimation Techniques 

As already mentioned, the first two phases are aimed at 

estimating the area of the inventory strata. The first phase 

measures the land cover/land use classes and the second phase 

measures the forest types, both divided by administrative 

region. The weight of each second phase stratum is derived 

from the proportion of the first phase sampling points falling in 

the forest and other wooded land class in each administrative 

region and the proportion of the second phase points falling in 

each forest type and subtype for the same region. The area of 

each forest category is then estimated by multiplying its weight 

by the area of the whole country. The second phase sample is 

also used to assess the distribution of the forest area according 

to qualitative attributes (for example property, coniferous trees 

vs. broadleaves composition, naturalness, etc). The estimators 

used for area and variance estimates are reported in INFC 

(2004b) and discussed in Fattorini et al. (2004).

For the volume estimation, a new set of 26 models is being 

developed to predict volume and above-ground phytomass from 

diameter at breast height (d.b.h.) and total tree height measured 

in the third phase. In these models, the dependent variables are 

stem and branch volume, stem and branch dry weight, slash 

dry weight, dead portion dry weight, stump dry weight, and 

total above-ground dry weight. To construct these models, 

approximately 1,300 sample trees from across the country were 

measured between 2002 and 2005. The models developed for 

a pilot study area in the eastern Alps are reported in Fattorini      

et al. (in press) and Gasparini et al. (2005). 

Data Collection and Information Sources 

In the first phase, t����������������������������������������     he photo interpretation was carried out 

by a team of 50 photo interpreters of the NFS working in 

different regional offices connected to a central database that 

was continuously updated with the results of the classification. 

The land cover/land use classes and subclasses were observed 

on black and white digital orthophotos with a nominal scale 

of 1:10,000 and a reference date between 2000 and 2003. 

Photo interpreters used Geographic Information System (GIS) 

functions implemented within a national GIS, which is a public 

service with several geographic information strata (cadastral, 

digital elevation model, land use, ownership, etc.) distributed 

by a Geographical Area Network or by Internet.

For the second and the third phases, more than 100 crews of 

two to three people formed by NFS and local forest service 

personnel were involved in the data collection. Phase two aimed 

at collecting in-field qualitative information related to forest 

stands and their ecological features. The field data were taken 

within a circular plot of 2,000 square metres with the sampling 

point at the plot center. In addition, administrative information 

(e.g., ownership, protected areas, restrictions, etc.) are 

collected by interviews or public database queries, while digital 

orthophotos are used (on video or in print) to observe the crown 

cover, the texture (horizontal spatial distribution of trees), and 

forest edges. �����������������������������������������������      For each sample point, approximately 40 forest 

qualitative attributes, as well as several attributes related to 

spatial positioning, were recorded (INFC 2004a). In phase 

three, a number of quantitative attributes will be measured that 

are related to dendrometric and silvicultural aspects, carbon 

stock, biodiversity, stand health, and nonwood products. As 

shown in figure 3, the measurements are taken in different sized 

plots for each sampling unit. The set of attributes assessed in 

the Italian NFI, listed by groups and with the indication of the 

information source, is shown in table 1.

Figure 3.—Sample plot configuration adopted for the third phase 
of the second Italian National Forest Inventory, illustrating the 
different sized plots used to assess the attributes surveyed.
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Data Quality Control

During the first phase, the control of data quality was carried 

out by the researchers and technicians of ISAFA, who 

repeatedly checked the classification of the photo interpreters 

to assure the quality of the final results. From three to eight 

control samples per region, each one formed by 50 sampling 

points, were used to test the accuracy of classification during 

the work. At the end of the first phase, 2 percent of the 

sampling points were randomly selected and independently 

reclassified. To compare the classification of ISAFA’s and 

NFS’s photo interpreters, quality standards were set for each 

cover class depending on the importance of the class and on the 

difficulty of its recognition on orthophotos (INFC 2003b).

For the second phase, control ground surveys were carried 

out for each region to assure the final quality of the data. 

Moreover, the data input was checked automatically by the 

data storage software INFOR2 (Muscaritoli et al. 2004), while 

periodic checks on the data stored in the central database 

were undertaken to control the consistency of the data and the 

progress of data collection. A similar procedure is planned for 

quality control of third phase surveys.

Technology and Data Flow

The great amount of data collected by the INFC required a 

sophisticated survey system and overall structure for both the 

database and the data flow.

The following main principles guided the design:

1.	 Use mobile GIS techniques, with a double client/server 

architecture and possibility of immediate, safe, and easy 

data transfer between crew stations and the central server.

2.	 Ensure the integrity of data through the different phases of 

the project.

3.	 Use user-friendly software for personnel without a high 

level of specialization in computer procedures. Both 

Table 1.—Set of attributes assessed in the second Italian NFI, listed by groups and with the indication of the information source.

Attribute group Source Attribute Phase

Land use, land cover Photo interpretation Broad land cover classes I

Forest classification Field survey Inventory category, forest type and subtype II

General information Field survey, interviews, local 
laws and regulations, GIS

Ownership, protected areas and other restrictions, forest management, 
regulations on recreational activities

II

Site information Field survey Aspect, slope, local land shape, logging possibilities, natural hazards II

Stand assessment Field survey Stand structure, stand development stage, main species composition, 
naturalness, microhabitats and artificial infrastructures

II

Road network Field survey, maps Roads, logging roads, paths, accessibility II

Canopy closure and 
spatial attributes

Photo interpretation Crown cover class, horizontal structure (texture), forest edges II

Dendrometric 
attributes

Field survey d.b.h., tree height, growing stock (trees with d.b.h. > 4.5 cm), increment, stand 
age, fellings volume

III

Carbon stock Field survey Whole-tree above-ground phytomass, shrub, litter phytomass, organic C soil 
content (special survey)

III

Biodiversity Field survey Tree (and shrub) species, volume and decay rate of dead wood (trees and parts 
with diameter > 10 cm), saproxilic insects (special survey)

III

Silviculture Field survey Type (intensity) of management, cutting method, wood extraction method, 
regeneration and underbrush (species, density, damages) 

III

Forest health 
condition

Field survey Primary damaging agent, biotic damages and disturbances assessment, 
defoliation class

II—III

Nonwood products Field survey Presence of special harvesting or picking practices III

Primary function Field survey, interview Primary (or multiple) function assessment III

d.b.h. = diameter at breast height; GIS = Geographic Information System; NFI = National Forest Inventory.



60	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

standard software packages (such as ArcPad and IBM 

DB2) and specifically developed software applications 

(such as INFOR2 mobile and desktop, and the SIM 

GISWEB) were used. 

4.	 Integrate between different information sources.

5.	 Enable remote monitoring of data collection, aimed at 

early quality control, test, and correction.

During the ground surveys, each crew uses a handheld 

computer (client) to gather data in the field and a laptop 

personal computer (client/server) to check, complete, and send 

the collected data to the central server. Other field instruments 

used were Global Positioning System (GPS) receivers, 

digital cameras, laser rangefinders, and more common forest 

mensuration tools. 

Figure 4 shows the dataflow during the different phases of the 

INFC. 

Figure 4.—Scheme illustrating the data flow of the second Italian National Forest Inventory.
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Ground Positioning Method and Technologies 

Because about two-thirds of Italian territory is hilly or 

mountainous, high-quality GPS receivers were used to acquire 

accurate measurements under tree coverage and in areas of 

high relief. 

A navigation procedure was defined to avoid any subjectivity 

in the choice of the field position of the sample point (BCRIC 

2001). For this reason, a reference point (F) had to be chosen 

at a distance of 15 to 25 m from the target sample point (C), 

in a location suitable for GPS signal reception, collecting a 

minimum of 180 GPS positions during a maximum time of 15 

minutes. Distance and bearing from this point feature (average 

coordinates) to the target sample point were calculated, 

allowing for an objective field position of the sample point. 

A static GPS point (with a minimum of 180 positions) was 

acquired at the plot center sample point, as well. GPS points 

were post processed using differential GPS.

Results

The final results of the second Italian NFI are not available 

at present, as the end of the project is scheduled for 2006. At 

the moment, the first phase of INFC is finished and the results 

are published on the Internet (www.ifni.it). The second phase 

ground survey is almost complete, while the third phase is 

planned to start in spring of 2006. The final results of the NFI, 

including quantitative information on the dendrometric features 

of Italian forests, are expected in the first half of 2007.

Forest Area, Forest Types Area 

The first results of the INFC are shown in table 2 and figure 5 

and are based on the first phase data and on the provisional sec-

ond phase data. These data refer to 78 ������������������������   percent�����������������    of the sampling 

points (23,383) that had been already surveyed at the end of 

March 2005. Table 2 gives the extent of the land cover classes 

forest and OWL for the whole country with their standard er-

rors. Concerning the forest area by administrative regions, a 

high precision of estimates was obtained thanks to the sam-

pling design and the high number of sampling points surveyed 

in the first two phases of the NFI. The standard error of esti-

mate was 1.12 ��������������������������������������������������       percent�������������������������������������������        for Toscana, one of the larger administra-

tive region of Italy with the largest forest area (the provisional 

estimate of forest plus OWL area is 1,156,682 hectares and 

the total area of the region is 2,298,448 hectares). Puglia and 

Valle d’Aosta had standard error of estimates of 3.96 and 3.38, 

respectively. Puglia is the region with the smallest proportion 

of forest (approximately 8 ���������������������������������������     percent��������������������������������      of the regional territory) and 

Table 2.—Provisional estimates of forest and other wooded land 
area provided by the second Italian National Forest Inventory.

Land use Area (ha) Standard error (%)

Forest 8,767,720 0.43

Other wooded land 1,662,099 1.76

Figure 5.—Provisional area estimates for the 23 Italian forest 
types defined for the second Italian National Forest Inventory.



62	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

Valle d’Aosta is the smallest region of Italy (325,121 hectares 

as provisional estimate of forest plus OWL area).

As explained in the description of the sampling design, the for-

est type was classified in the field on the basis of the prevailing 

tree species or species group in the sample plot. Figure 5 gives 

the provisional results on the proportion of the different types 

of Italian forests. The standard error of estimates calculated 

from the provisional data are quite small, ranging from 1.9 to 

2.1 ���������������������������������������������������������������          percent��������������������������������������������������������           for the largest strata, the extent of which is approxi-

mately 1,000,000 hectares (Oak forests, Beech forests), to 2.6 

to 2.8 ���������������������������������������������������������      percent��������������������������������������������������       for middle-sized strata of approximately 600,000 

hectares (Norway spruce stands, Olm oak forests). The standard 

errors for the smallest strata are 8.8 ������������ percent�����  for Other conifer-

ous forests (approximately 63,000 hectares) and 8.6 ������������ percent�����  for 

Fir forests (approximately 65,000 hectares).

Positioning Accuracy

The following positioning data are based on about 93���������  percent 

of the total sample. If we exclude nonforest (6�������������   percent����� ) or 

unapproachable8 (13�����������������������������������������        percent���������������������������������      ) points, as well as points with 

technical problems on the GPS files (1.4�������������������    percent�����������  ), we have 

positioning data on about 80��������������������������������      percent �����������������������   of the surveyed sample.

Table 3 shows the distribution of the data according to classes 

of distance between field and theoretical coordinate values 

of the sample points. These distances can be considered 

an accuracy index of the field positioning. Our results are 

promising in that the average distance value was 2.73 m.

An earlier study carried out by the ISAFA (Scrinzi et al. 2003) 

on GPS performances in INFC conditions had estimated 

expected accuracies within 8 m (standard GPS mode, 90� 

percent����������������������������������������������������        probability level). According to INFC field survey 

results, roughly 93���������������������������������������������         percent�������������������������������������        of the data are within the expected 

accuracy. The upper class (> 30 m) includes very high and 

improbable values, which can be thought of as outliers; for this 

reason they have been excluded from the average calculation 

and will need further processing.

8 Unapproachableness of a sample point could be declared, by the crew, according to the following criteria: crew safety (first priority), permission denied in private 
properties, and impenetrable vegetation. Most of the unapproachable points were remotely observable and therefore used for main forest type classifications.

Table 3.—Distribution of the second phase sampling points by 
class of distance from their nominal position.

Distance classes
(m)

Frequency
(number of points)

Frequency
(% of points)

No data 560 2.52

≤ 2 10,432 46.85

> 2 to 5 8,441 37.91

> 5 to 8 1,875 8.42

> 8 to 15 640 2.87

> 15 to 30 123 0.55

> 30 194 0.87

Total 22,265 100.00

Concerning the operational performances of GPS, the system 

failed to collect positions on the sample point location in 

only 2.5 percent of cases. Failures were due mainly to severe 

topography and high tree coverage conditions. Alternative 

navigation procedures (compute-aided traverse path by means 

of conventional techniques) were necessary only in 24 cases 

(0.11 percent��).

Discussion

One of the main aims of the new Italian NFI is to produce 

information needed for international reporting activities such 

as FAO assessments, carbon sink estimates for the Kyoto 

Protocol reporting, and the production of national reports on 

the sustainability of forest management within the MCPFE 

process. Therefore, by defining the inventory domain and 

the survey procedures of INFC, particular attention was paid 

to the international standards and commitments. It has been 

decided to base the inventory domain on the FAO-FRA 2000 

definitions and to include both forest and other wooded land 

use. Moreover, besides the more traditional dendrometric 

and silvicultural attributes, the data collection involves more 

detailed measurements about above-ground phytomass and 

ecological features to provide data on carbon sequestration and 

to meet most of the commitments related to the MCPFE. 
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In relation to the carbon stock estimates, the INFC provides our 

country with updated and reliable data on the extent of forests, 

on the volume and the dry weight of above-ground phytomass 

and dead wood, on growth rate, and on the carbon content of 

litter and organic soil. Concerning the indicators of sustain-

able forest management, the INFC data enable us to provide 

information on 20 of the quantitative pan-European indicators 

of sustainable forest management (table 4). The remaining indi-

cators are not suitable to be assessed by an NFI as they involve 

aspects that are either not observable by sampling procedure or 

require very detailed and time-consuming surveys.

 

A second important goal of the inventory project is to assure 

the quality of the data collected to obtain a good accuracy 

and a high precision of results at the national level. This has 

been achieved both by defining a suitable sampling design and 

Table 4.—Attributes of the second Italian National Forest Inventory and their consistency with the pan-European indicators of 
sustainable forest management.

Criterion Quantitative indicator Consistency with MCPFE standards

1 Maintenance and appropriate 
enhancement of forest resources 
and their contribution to carbon 
cycle

1.1 Forest area Yes

1.2 Growing stock Yes

1.3 Age structure, diameter distribution Yes

1.4 Carbon stock Yes, but no measurements on below-ground 
phytomass

2 Maintenance of forest ecosystem 
health and vitality

2.1 Deposition of air pollutants No

2.2 Soil condition Partly: organic C content only

2.3 Defoliation Yes

2.4 Forest damage Yes

3 Maintenance and 
encouragement of productive 
functions of forests

3.1 Increment and fellings Partly: no data on natural losses and on annual 
fellings for d.b.h. < 20 cm

3.2 Roundwood Partly: data on roundwood with d.b.h. > 20 cm; 
no data on marketed volume and value

3.3 Nonwood goods Some qualitative information

3.4 Services Some qualitative information

3.5 Forest under management plans Yes

4 Maintenance, conservation, 
and appropriate enhancement 
of biological diversity in forest 
ecosystems

4.1 Tree species composition Yes

4.2 Regeneration Yes

4.3 Naturalness Yes

4.4 Introduced tree species Yes

4.5 Deadwood Yes

4.6 Genetic resources No

4.7 Landscape pattern Partly: information on texture and forest edges

4.8 Threatened species No

4.9 Protected forests Yes

5 Maintenance and appropriate 
enhancement of protective 
functions in forest management

5.1 Protective forest extent (for soil and water 
protection)

Yes

5.2 Protective forest extent (for infrastructure 
protection)

Yes
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monitoring data collection and data storage. The three-phase 

sampling design for stratification, with the interpretation of 

orthophotos in the first phase and expeditious ground surveys 

in the second phase, made it possible to use a large sample size, 

which assures a high reliability of inventory results. Indeed, 

the provisional estimates of forest and other wooded land 

area presented in this paper are very precise, with low percent 

standard errors. Forest type area estimates at national scale 

follow the same trend, with percent errors of less than 3���������  percent� 

for most types considered. It should also be noted that our 

procedures allowed for accurate spatial positioning of samples 

with average distance errors of less than 2.8 m.

As a consequence of its ambitious aims, the NFI project 

requires a great effort, both from an organizational and from 

a technical point of view. Among the different aspects of the 

inventory, the technical support together with the monitoring of 

the data flow required quite a sophisticated survey system. The 

management of the data flow and the database is indeed one of 

the most critical issues of this project, due to the large amount 

of data coming from many different parts of the country and the 

large number of people involved.
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Table 4.—Attributes of the second Italian National Forest Inventory and their consistency with the pan-European indicators of 
sustainable forest management (continued).

Criterion Quantitative indicator Consistency with MCPFE standards

6 Maintenance of other 
socioeconomic functions and 
conditions

6.1 Number of forest holdings No

6.2 Contribution to gross domestic product No

6.3 Net revenue of forest enterprises No

6.4 Expenditures for services No

6.5 Forest sector workforce No

6.6 Occupational safety and health No

6.7 Wood consumption No

6.8 Trade in wood No

6.9 Energy from wood resources No

6.10 Accessibility for recreation Yes

6.11 Cultural and spiritual values No

MCPFE = Ministerial Conference on the Protection of Forests in Europe.
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A New Flexible Forest Inventory in France

C. Vidal1, T. Bélouard2, J.-C. Hervé3, N. Robert4,                 

and J. Wolsack5

Abstract.—The French National Forest Inventory 

was created in 1958 to assess metropolitan forest 

resources. To stick to new national and international 

requirements as well as to enhance reactivity, a 

new inventory method was implemented in 2004. 

This new method is based on a systematic sampling 

grid covering the whole territory every year. The 

size of the mesh is variable, locally adapted to the 

diversity and the fragmentation of French forests. 

The sample is defined for 5 years. It is divided into 5 

annual systematic subsamples, each of which covers 

the whole country. The estimation method uses 

poststratification to enhance statistical accuracy.

Introduction

The mission of the French National Forest Inventory (NFI) is 

to collect information about forest and natural lands all over 

the European part of France. It describes forest, other wooded 

land, heathland, and hedges. It draws a precise map of forest 

types and heathland. It estimates areas per land cover and land 

use, and assesses forest resources including growing stock and 

carbon stock with their increment as well as biodiversity.

Data are produced at national, regional, or “département” 

(administrative unit covering each nearly 1/90th of the country) 

levels to help policymakers in their decisions. It also proposes 

results at the scale of “forest regions,” which are small, 

continuous ecological areas. Aggregated results are available 

for free on the NFI Web site and particular requests can be 

asked. The NFI staff also conducts specific studies based on 

NFI results for many institutions. For example, it evaluated 

wood fuel resources in France (French NFI 2005) or updated 

indicators for forest sustainable development (French NFI 

2001), as well as international level delivery to the United 

Nations Food and Agriculture Organization and the United 

Nations Economic Commission for Europe.

The Previous Method

The forest inventory was conducted since 1958 per “départe-

ment” (French NFI 1985). Results were very precise at the scale 

of the “département,” but data were updated on these areas 

every 12 years only. No intermediate results were available. To 

produce results at the regional level (22 units) and more over 

at the national level, the aggregation of diachronic results was 

used. For field observations, a stratified sampling plan was used. 

The stratification variables were ownership, forest regions, for-

est types, land use and cover. It enhanced the quality of the for-

est area evaluation and tree measurement results, but the impact 

on ecological variables remained difficult to estimate.

National and International Context

In France, administrative regions become more and more 

a level of policy decisionmaking, and data are needed at 

this level to prepare political decision. At a different level, 

nonadministrative management units (e.g., regional and national 

natural parks) need forest mensuration and ecological results 

from the NFI to guide their action. As a consequence, a higher 

geographical flexibility is required.

Reactivity is also expected. The NFI must be able to evaluate 

quickly consequences from important disturbances (storm, 

drought, forest fires, or parasite attacks) that have an impact at 

the regional or at the national level. The envisaged solution is to 

come back on the surveyed plots but the sample must be recent.

1 Director, French Forest Inventory, Château des Barres, 45290 Nogent-sur-Vernisson, France. E-mail: cvidal@ifn.fr.
2 Head of the Interregional Unit in Bordeaux, 62 rue de Laseppe, 33000 Bordeaux, France. E-mail: tbelouard@ifn.fr.
3 Technical Director, French Forest Inventory, Château des Barres, 45290 Nogent-sur-Vernisson, France. E-mail: jcherve@ifn.fr.
4 Engineer in Charge of International Affairs, Château des Barres, 45290 Nogent-sur-Vernisson, France. E-mail: nrobert@ifn.fr.
5 Chairman of the Information System Council, Minister of Agriculture, 78, rue de Varenne, 75349 Paris 07 SP, France. E-mail: jean.wolsack@agriculture.gouv.fr.
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At the international level, the French government has to provide 

data about forest resources every 5 years to the Food and 

Agriculture Organization (FAO) and to report on sustainable 

forest management indicators for the Ministerial Conference 

for the Protection of Forests in Europe. It needs data about 

forest carbon stock and sinks to compute the greenhouse 

gases balance according to the convention on climate change 

of the United Nations and its Kyoto Protocol. To meet these 

requirements, regularly updated information at the national 

level is necessary.

Flexible Sampling Design

Principle: A Countrywide Systematic Sampling Each Year

To respond to these requirements, the NFI changed its sampling 

design. At first, the sample was prepared for 10 years and 

was divided into two 5-year systematic subsamples, each of 

which covers the whole of France. It finally started with a 5-

year slice. The new sampling is based on a systematic square 

grid covering the entire country. The size of the grid-mesh is 

2 km2. Plots are georeferenced using the Lambert II extended 

projection and New French Triangulation.

The whole grid is scheduled to be measured in 5 years. The 

5-year sample is divided into five systematic annual subsamples 

consisting of square grids interpenetrating each square (fig. 1), 

covering the entire country (model also presented in Roesch 

and Reams 1999).

1.1.	 Adapting the Sampling Effort: A Multilevel Grid

Some collected data are required with a very high confidence 

level, even in small areas. For other variables, precision is only 

required at the national level or when an approximate value 

is sufficient. Some variables, such as the volume of growing 

stock, can be evaluated on all plots using models, volume 

measurements being only necessary on a subsample to calibrate 

the models.

Due to the diversity of precision requirements, a mechanism 

was found to adapt sampling intensity to each variable (or set 

of variables), by defining a system of nested subgrids from the 

basic one. If the entire annual sample is, say, of level 1, the 

level 2 subsample is obtained by taking out of level 1 every 

second plot in staggered rows (fig. 2). Level 3 is obtained in 

removing in the same way every second plot from level 2, etc. 

There are half as many plots at the level n as at the level n+1.

In this way, nested systematic annual samples are generated 

with a sampling rate divided by 2 at each level. Measurements 

are made at a defined level, depending on the expected result 

accuracy. For each variable, an observation level is defined, 

corresponding to the subsample on which it is to be observed.

1.2.	 Invariance Properties

The properties of interrelated systematic square samples are 

preserved at every level in an annual sample as well as in a 

5-year sample (fig. 3). The only difference is the density of 

Figure 1.—A 5-year sampling grid divided into five annual 
interpenetrating sampling grids.

Figure 2.—Different levels of systematic grid subsamples.
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sample plots. As a consequence, the same computation scheme 

can be used every year and for every level.

As years will go by, the density of the observations and 

measurements will increase. The use of several consecutive 

annual measurements will be interesting to enhance the 

precision of the results and to enable local reporting.

Spatial Adaptation of the Sampling Rate to Optimize Field 

Work

Delimited Areas With Reduce Sampling Rate

Some areas in France are very homogeneous, for example, 

the maritime pine (Pinus pinaster) massif in the Southwest. In 

such areas, fewer measurements are necessary to obtain precise 

enough results. 

In other parts of the country, some forest ecosystems are not 

very productive and the economical use of the wood is of a 

little importance; e.g., green oak (Quercus ilex) or strawberry 

tree (Arbutus unedo) stands in the Mediterranean region or 

forests on steep slopes in mountainous areas. No detailed 

resource assessment is expected. Fewer measurements can be 

made to obtain estimations corresponding to the needs.

In both cases, the concerned areas (called forest zones) are 

mapped (fig. 4) and the density of the sample is adapted. Field 

operations are then carried out at a higher level subsample than 

the usual one, for example at level 3 instead of level 2 (fig. 5).

This geographical adaptation of the sampling rate makes 

it possible to go through the whole sample in 1 year with a 

constant number of field crews.

A Higher Sampling Rate for Poplar Stands

Poplar trees are economically important in France. Plantations 

are usually small and felling cycles are rather short. To make 

a precise inventory of these areas, a higher density of plots is 

required in the parts of the territory where the poplar stands are 

often clustered (valleys especially). Therefore, observations are 

conducted on 16-plot square clusters instead of single plots. 

These clusters are systematic 1 by 1 km grids. The mesh is 

square with 250 m between plots. This process multiplies the 

Figure 3.—Invariance of the subsample properties every year 
and at every level.

Figure 4.—Map of the forest zones with a reduced sampling 
intensity.

Figure 5.—Example of reduced sampling intensity in the 
Southwest.
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number of observations on poplar stands. To limit this number, 

clusters are only used in areas where poplar plantations are 

localized. These areas, called poplar zones, are mapped (fig. 6). 

Whenever a knot of level 1 grid is located in the poplar zone, a 

cluster of plots is attached to the knot (fig. 7). All plots from the 

cluster are surveyed (even if they are out of the poplar zone).

As a conclusion, the 5-year sampling design divided into 

systematic annual samples offers much flexibility with its 

several levels of systematic subsamples and its clusters. The 

density of observations can thus be adapted, depending on the 

variable measured and on the area.

Level for Data Collection

Photointerpretation

The whole annual sample (level 1) is observed on the French 

aerial orthophoto map called BD Ortho, which is a product of 

the French National Geographic Institute. Land cover and use is 

determined on each knot of the grid. Land cover nomenclature 

consists of open forest, dense forest, heath and moorlands, 

artificial or natural area without vegetation, other artificial areas 

and water. In case of doubts, controls are made in the field.

Poplar plantations are included in forest since November 2005, 

but they are still singled out during the photointerpretation. 

Their occurrence is detected in plots from clusters in poplar 

zones and also in plots from the level 1 annual sample out of 

poplar zones.

The photointerpretation produces results about land cover. It is 

also a key operation to determine the type of measurement that 

will be conducted in the field. 

Field Measurements in Forests

Field observations are conducted on plots determined as forest 

on the photographs at level 2 or 3. A forest is defined by the 

French NFI as a stand of more than 0.05 ha and wider than 20 

m in which crowns from forest trees or noncultivated trees that 

can reach 5 m in situ cover more than 10 percent of the area. 

To fit the FAO definition, it is determined whether the stand is 

larger than 0.5 ha.

The fieldwork, including stand description, tree, soil and 

ecological measurements, is done on four concentric circular 

plots (fig. 8):

•	 On a 25-m radius plot, the stand is described: land cover, 

land use and stand description (composition, structure, 

age, logging possibilities, etc.).

•	 On a 15-m radius plot, flora species (woody and 

nonwoody plants including pteridophytes and bryophytes) 

are identified and their abundance is noted.

Figure 6.—Map of poplar zones.

Figure 7.—Use of clusters inside poplar zones and single plots 
outside.
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•	 Trees are measured on three concentric plots, depending 

on their circumference at 1.3 metres. Trees more than 

23.5-cm circumference are measured on a 6-m radius plot. 

Trees more than 70.5-cm circumference are measured on a 

9 m radius plot. Trees more than 117.5-cm circumference 

are measured on a 15-m radius plot. Trees less than 23.5-

cm circumference are not measured.

On every forest plot observed in the field, the species, 

shape, and the number of stems of the tree are noted. Simple 

measurements are made: circumference at 0.1 m and at 1.3 

m, total height, diameter and height increment during the last 

5 years, and wood quality classes. Additional measurements 

such as timber height, mid-diameter, and mid-timber diameter 

are made on level 4 subsample plots. The results are used to fit 

volume estimation models.

Soil observations are conducted on a 1-m deep soil pit in a 

representative part of the plot. Humus (structure, litter, type) 

and soil (texture, carbonation, moisture) are described. Other 

information is collected, such as topography, exposure, parent 

rock, etc.

Heaths or Moorlands

Heaths surveyed by the NFI are covered with noncultivated 

vegetation. Their size exceeds 0.05 ha and their width is more 

than 20 m. The crown of noncultivated trees covers less than 10 

percent. Part of these heaths belongs to the other wooded land 

FAO category.

Heaths are inventoried in the field on every plot from the level 

3 grid. Soil and topography are described. Their ecological 

type determination is based on shrub cover and type of soil. 

These data are the only statistics about heaths available all over 

France.

Hedges and Tree Rows

Hedges and tree rows are observed on orthophoto maps during 

photointerpretation on every plot from the level 1 sample. A 

transect method is used. A 1-km long line transect is centred 

on each grid knot with a randomly varying orientation. The 

number of intersects (fig. 9) between tree rows or hedges and 

the transect is counted to evaluate the length of these alignment 

in the territory.

Figure 8.—Data collected in forests on four concentric circular 
plots.

Figure 9.—Example of a photointerpreted transect intersecting 
hedges.
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In the field, operations are conducted on every alignment 

intersected at less than 25 m from the transect centre at a 

specific level (fig. 10). The type (hedges with or without trees, 

trees row with forest trees or poplar), species (tree, shrub and 

bush), the length, the width, the coherence with other linear 

elements (wall, river, etc.) are noted. The shape and ligneous 

species are observed and the permeability is evaluated. Specific 

measurements are conducted on trees at level 5 to evaluate the 

volume and the increment of growing stock.

Figure 10.—Example of a tree row plot.

Estimation and Computing Methods

Every year, at every level and for all inventoried structure, 

data are collected in the same way. Consequently, estimation 

procedures are the same in all cases for annual results.

Results, Details, and Precision

As a result of the annual sampling plan, sufficient precision 

will be obtained with data collected in 1 year on large areas 

only, for example, one-fifth of France or the whole territory. It 

is interesting to mention, however, that the possibility of annual 

national reporting allows fast countrywide update of the results 

in case of major disaster. It also gives the possibility to follow 

regularly the evolution of forest and other wooded areas and to 

highlight general trends.

Results can be obtained at a more local level and/or with more 

details using observations from several consecutive annual 

campaigns. A general estimation shows that regionwide results 

are available in 3 to 4 years. For the département level, at least 

8 years of survey may be required, depending on the variable 

and the forest area.

Geographical Restitution Unit

With a systematic sampling design, the number of plots in a 

studied area is directly related to its size. Results will be more 

precise on larger areas. If data are required on small areas, two 

possibilities are offered by the new sampling design: (1) wait 

until enough data is gathered to compute the results, or (2) in-

crease the level of annual collection for data that must be better 

evaluated in a given area.

The precision of the evaluation of a variable is also related 

to its variability in a given domain. This statistical property 

is interesting, because areas where less variability for some 

variables is expected can be delimited. It leads to the possibility 

of using post-stratification to enhance the precision of the 

results.

Computation Principle: A Yearly Computation Using Post-

stratification

The French NFI maps forests and moorlands. In its Geographic 

Information System, the limits of administrative units such 

as département and ownership are also integrated. These are 

pieces of information that can be used to compute the results. 

Firstly, at the département or the region level, decisions 

to develop and encourage specific sylvicultures are taken. 

Secondly, the French national forestry board manages public 

forests differently if it is state forest or other public forest. 

Private foresters also have another behaviour. Thirdly, the forest 

type is determined on stand types, main species, structure, etc. 

As a result, in stands located in the same area, with the same 

forest type and ownership, less variability is expected.
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Results from the French NFI will be computed using map 

post-stratification by département, stand type, and ownership 

category. This processing method will enhance the precision 

and the consistence of the results at the local and the national 

level. For totals, national results are then the exact sum of 

results calculated in each strata. This ensures, for example, that 

national results equal the sum of département results.

Results will be computed for every campaign. When the 

combination of several campaigns is necessary, the information 

will firstly be computed on the given area for each annual 

slice, actualized if necessary, and then averaged (Johnson and 

Williams 2004, McRoberts 2001).

For specific results on specific areas, two possibilities will 

be offered: (1) use the established post-stratification, or (2) 

establish a new post-stratification adapted to the area and to the 

variable that must be evaluated.

Conclusions 

The new sampling design of the French NFI offers new 

opportunities. It is a flexible tool working annually at the 

national level and able to produce results on any part of the 

country. The NFI can compute results on smaller part of the 

country after a number of years depending on the area, the 

variability of the variable to be considered, and the sampling 

rate. This new tool allows fast reaction in case of exceptional 

events. Thanks to an efficient post-stratification, the loss of 

precision at the local level compared to the older method 

should be limited.
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An Investigation of Condition Mapping and 
Plot Proportion Calculation Issues

Demetrios Gatziolis1

Abstract.—A systematic examination of Forest 

Inventory and Analysis condition data collected 

under the annual inventory protocol in the Pacific 

Northwest region between 2000 and 2004 revealed 

the presence of errors both in condition topology 

and plot proportion computations. When plots were 

compiled to generate population estimates, proportion 

errors were found to cause underestimation of 

forested area. We identified reasons for the errors 

and offered recommendations for error prevention. 

Modifications were made to the condition proportion 

module in the compilation system as a result of 

these findings, and recommendations to reduce error 

incidence in the field in 2005 have already reduced 

the error rate by 70 percent. 

Introduction 

The annual Forest Inventory and Analysis (FIA) protocol uses 

the term condition for a set of five mutually exclusive land 

use/land cover classes that describe all landscapes sampled 

by FIA: accessible forest land, nonforest land, noncensus 

water, census water, and nonaccessible land. Within accessible 

forest land, conditions are refined to reflect differences in 

vegetation density and size classes, or ownership regimes. 

The spatial extent of conditions is determined by ocular 

assessments performed in the field following rules from field 

protocols. Adjacent conditions are delineated by a boundary 

line with a maximum of two segments. Boundary line vertices 

are recorded in reference to annular/subplot (partial plot) 

centers by using azimuth and distance measurements. Where 

determining the boundary between two conditions is difficult 

or impossible due to a gradual transition from one condition 

to another, the entire annular/subplot component is assigned to 

the condition present at its center. Field crews use hard copies 

of plot design templates to sketch the plot conditions before 

transferring all pertinent information to the data logger. Crew 

members have the option, usually at the end of the field day 

or sometimes later, of using a boundary visualization program 

available on their laptop computers to examine condition 

boundaries and make any necessary corrections. Conditions 

recorded in the field are also examined in the office as part of 

the programmatic quality assurance (QA) effort. Condition 

mapping errors detected during QA are flagged for follow up 

and resolution by data collection staff. All plot condition data is 

loaded into the FIA National Information Management System 

database (NIMS), where Procedural Language extensions to 

Structure Query Language (PLSQL) scripts use the condition 

mapping data to calculate condition proportions. These 

proportions are used to scale inventory sample plot data and 

generate State and regional population estimates. 

Problem Identification

Random examination by Pacific Northwest FIA (PNW-FIA) 

analysts of condition-related data in NIMS for the years 2000 

to 2004 revealed topological errors, related either to the locus 

of condition boundaries or condition labeling. Even for plots 

with topologically consistent condition data, the condition area 

proportions calculated in NIMS were often incorrect. Because 

the condition proportion is the first module in the NIMS 

compilation and the estimates it produces are widely used by 

other modules, errors in condition proportion were propagated 

forward, affecting much of the rest of the compilation.

Study Objectives

The study had the following objectives:

1.	 Determine the frequency and type of topological errors in 

condition mapping.

1 Research Forester, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forest Inventory and Analysis, P.O. Box 3890, Portland, 

OR 97208. E-mail: dgatziolis@fs.fed.us.
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2. 	 Identify circumstances that tend to generate topological 

errors.

3.	 Compute the correct condition proportions for all plots.

4.	 Generate maps of conditions to be used as reference for 

future plot visits.

To handle the large number of plots to be examined, we 

generated a collection of linked, custom Arc/Info Workstation 

Arc Markup Language (AML) scripts. All FIA plots in 

California, Oregon, and Washington visited during the 2000–04 

period were included in the study and their related data 

processed by the scripts. AML-script output was evaluated 

and compared to information available in hard copies of plot 

folders and to digital data contained in the NIMS database. 

Recommendations for reducing condition error rates were 

conveyed to field data collection staff as part of field training, 

and to FIA analysts. All field recommendations were 

implemented during the 2005 field season. Post-implementation 

error rates were compared to previous error rates. 

Sources of Condition Errors

Condition mapping and proportion calculation are complex 

for several reasons. First, dense understory vegetation and/or 

steep terrain sometimes preclude a clear line of sight between 

the center and the limiting distance perimeter of the partial 

plot. Second, field crews must simplify what is sometimes a 

meandering or indistinct condition boundary to two straight 

line segments. In either case, condition boundaries recorded 

are drawn in the field by inference rather than observation, and 

errors are introduced, most often resulting in intersections of 

condition boundaries. Intersections also appear in instances in 

which more than two distinct conditions converge, resulting 

in condition boundaries that are in close proximity. During 

computation of condition proportions, the module used 

originally by NIMS used Euclidean geometry embedded in 

a small set of heuristic rules to convert geometric boundary 

information to condition proportions. Condition relationships 

not considered by the simple rules would produce condition 

proportion errors that were related to the complexity of 

the boundary relationship. On the other hand, condition 

mapping and proportion calculations based on the Geographic 

Information System (GIS) are analytical (i.e., data oriented), 

and, hence, capable of computing proportions correctly, 

regardless of boundary complexity. 

Results

Condition Topology

A total of 12,303 plots were processed by the AML scripts. Of 

those, 11,647 at the annular (macroplot) design and 12,251 at 

the subplot design had consistent, error-free topology. Nearly 

42 percent of all plots contained at least one forested condition. 

For 17 plots, the condition boundary segment corners were 

found to be at a distance from partial plot centers larger than or 

equal to the limiting distance of the partial plot. Table 1 shows 

the distribution of topology errors types by plot design. Practi-

cally all errors (87 out of 98 errors, or 89 percent) occurred in 

plots with at least one forested condition. Error incidence on 

the annular design far exceeded the rate at the subplot design, a 

result that is not surprising given that the much larger annular 

limiting distance is more likely to encompass a greater number 

of conditions. Nearly 70 percent of errors involved boundary 

intersections or erroneous condition labeling. Table 2 shows the 

error rate by topology error type. The rate computation con-

sidered only plots with condition topology that rendered them 

susceptible to a particular error type. For example, intersec-

tions are possible when there are at least two boundaries on a 

partial plot. The approximately 20 percent of errors classified as 

Table 1.—Distribution of condition topology errors across plot 
designs. Brackets indicate number of plots with at least one 
forested condition in each error type class.

Error type
Design

Total
Annular plot Subplot

Same condition on both sides 
of boundary or condition 
label conflict

	 27  	[25] 	1 5 	 [14] 42

Condition boundary 
intersection

	 23  	[22] 	4    	 [3] 27 

Condition boundary intersects 
(or is within 0.1 feet from) 
subplot center

	 6    	[6] 	 3  	  [3] 9

Other 	14   	 [14] 	 6  	  [6] 20 

Errors total 	 70  	 [62] 	 28 	[25] 98
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other (tables 1 and 2) involved conditions which, if considered 

independently, violate no field protocol rules. Considered in 

the context of the whole plot, however, the condition delinea-

tions implied the presence of a highly improbable spatial ar-

rangement of conditions. Figure 1 shows the annular design 

condition map of such a plot where condition 2, classified as 

accessible forest land, is confined by the remaining three non-

forest conditions and cannot reasonably expand outside the 

plot to reach the 1-acre minimum size required by the protocol 

rules. Figure 1 also shows that condition 3 appears in annular 

plot 2 while condition 2 first appears in annular plot 3, in viola-

tion of the rule stating that the condition numbering sequence 

should follow the numbering of partial plots. Checking against 

the hand-drawn sketches on the plot cards revealed these to be 

cases of one or more condition labeling errors. Examining the 

relationship between the number of condition boundaries in a 

partial plot and the frequency of topology errors (fig. 2) indi-

cates that the probability of an error increases with the number 

of boundaries in a partial plot. It is unclear whether the prob-

ability of an error differs between subplots and annular plots. 

Condition topology errors identified via the AML scripts 

were collated by error type and reviewed by FIA analysts and 

experienced field crew leaders. The consensus was that the 

errors were in part due to human mistakes, but also related to 

ambiguities in the field instructions and poor collection habits 

(e.g., conversion of measured sloped distances to horizontal by 

assessing visually, rather than measuring, the slope gradient) 

carried forward from the periodic inventory protocols that 

Table 2.—Error rates per condition topology error type and 
plot design.

Error type
Error rate (percent)

Annular plot Subplot

Same condition on both sides of 
boundary or condition label conflict

	1 .6 	[27/1735]a 	1 .4 	[15/1086]

Condition boundary intersection 	 3.5  	 [23/653] 	1 .7    	 [4/236]

Condition boundary intersects (or is 
within 0.1 ft from) subplot center

	 0.3   	[6/1735] 	 0.3  	 [3/1086]

Other 	 0.8 	 [14/1735] 	 0.6  	 [6/1086]

a Fractions represent the number of plots with an error divided by the 
number of plots where the error was theoretically (based on the number 
of condition boundaries present) possible.

Figure 1.—Condition mapping of an annular design plot 
containing logical error in the spatial arrangement of 
conditions. 

Figure 2.—Percentage of plots with topologically incorrect 
condition boundary by boundary frequency per partial plot 
and plot type and design. Numbers above the bars indicate plot 
frequency.
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guided field data collection before the start of annual inventory 

at PNW-FIA. Plot maps of condition topology errors and 

recommendations on the proper interpretation of protocol rules 

were conveyed to the field personnel during the annual training 

sessions in 2005. Preliminary analysis of condition data 

acquired during the 2005 season suggests that the adoption of 

the recommendations resulted in a condition topology error rate 

approximately one-third of the rate in the previous 5 years.

Proportion Calculation

For plots without topological errors, condition proportions 

computed via the AML scripts were compared to those 

produced by the NIMS compilation. Proportion discrepancies 

smaller than 0.01 percent (of the total design-specific plot 

areas) were attributed to rounding error. Discrepancies 

exceeding 0.01 percent were found at the annular design on 61 

plots and at the subplot design on 12 plots. Visual examinations 

of plot cards from field visits and of the maps produced by 

the scripts for plots exhibiting a proportion discrepancy reveal 

that, in all cases, the proportion computed by the AML scripts 

was correct (fig. 3). Henceforth, proportion discrepancies 

are referenced as proportion errors. Unlike the topology 

errors, proportion errors appear to be independent of topology 

complexity (table 3). When examined separately for forested 

Figure 3.—Discrepancies between AML- and NIMS PLSQL-computed proportions for two annular design plots.
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and nonforested conditions, the distribution of proportion 

error showed evidence of bias, with forested condition 

underestimated and nonforested conditions overestimated at 

both partial plot designs (table 4). The bias was statistically 

significant. Two-tail t-tests for equal mean proportion error in 

forested versus nonforested conditions had p-value ≈ 0 for the 

annular plot design and p-value = 0.002 for the subplot design. 

The test assumed unequal variances.

Documenting condition proportion errors led to rewriting 

the condition proportion module. The new condition module 

is capable of detecting the majority of topology errors and 

computes proportions correctly for all plots with consistent 

topology. A small number of errors (labeled other in tables 1 

and 2) pertaining to improbable condition arrangement remain 

undetected.

Discussion

Observing the number of boundary intersections at the subplot 

design (table 1) could generate the impression that such inter-

sections are rare. When the number of partial plots with at least 

two condition boundaries is considered (table 2), however, the 

error rate becomes noticeable, with boundary intersections pres-

ent at 1.7 percent of such plots at the subplot design and twice 

as frequent (3.5 percent) at the annular design. This observation 

could partially be attributed to the reduction of visibility in the 

field as boundary distance from the partial plot center increases, 

and partially attributed to the larger area occupied by an annular 

plot. Errors in condition labeling and instances of boundary 

intersection with partial plot centers are likely independent from 

field visibility considerations and plot design sizes. Results 

indicate that the rate of occurrence for these error types does 

not differ between designs (table 2). Irrespective of design, an 

increase in the number of condition boundaries present on a plot 

increases the probability of condition boundary errors (fig. 2).

Proportion errors in a plot are complementary; an 

overestimation in one or more conditions must be balanced by 

underestimations in others. In absolute value terms, the mean 

proportion error of 3.2 percent corresponds approximately to 

one-eighth of the area of a partial plot. Visual examination of 

condition maps produced by the AML scripts revealed that the 

majority of plots with a proportion error involve a nonforested, 

elongated condition splitting a forested condition into two, 

unequally sized parts (fig. 4). The smaller of the two forested 

polygons (northwestern part of annular plot 3) in figure 4 is 

approximately one-eighth of a partial plot. This observation 

helped trace the cause of discrepancies observed between 

Table 3.—Proportion errors in the NIMS database computed 
via PLSQL modules by error magnitude and plot design. 
Quantities in parentheses represent the mean number of 
condition boundaries present in each plot. At least one forested 
condition was present in each plot.

Error magnitude
(percent of plot area)

Frequency

Annular plot 
design

Subplot design

< 1 14 (2.00) 4 (4.25)

1–5 35 (2.35) 4 (1.75)

> 5–10 8 (3.00) 3 (2.50)

> 10 4 (1.75) 1 (3.00)

Total 61 (2.32) 12 (2.88)

Mean absolute error (percent 
plot area)

3.223 3.522

Standard deviation 3.183 4.120

Table 4.—Distribution moments of proportion calculation errors for forested and nonforested conditions present in the NIMS 
database calculated by using PLSQL modules.

Condition Design Number of plots
Error moments (percent of plot area)

Mean Standard deviation Maximum Minimum

Forested conditions
Annular 61 – 2.254 3.887 – 15.708 12.378

Subplot 11 – 3.830 4.602 – 15.018 0.452

Nonforested conditions
Annular 60 1.796 4.237 – 12.378 15.708

Subplot 10 2.736 4.351 – 2.612 15.703
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condition proportions calculated via the AML scripts and those 

computed in NIMS (table 4) to an inaccurate PLSQL script 

structure. Given that only spatial information is used in the 

computation of proportions and assuming spatially random 

arrangement of condition types, there is no reason to anticipate 

condition-type-related bias in the errors detected. Error bias, 

however, is present. The observed underestimation of forest-

condition proportion is likely due to the shape and position 

of nonforested conditions that are frequently found on partial 

plots in areas dominated by forested conditions. In the example 

shown in figure 4, the previous NIMS PLSQL module failed 

to appropriately account for the smaller of the two forested 

conditions separated by the nonforested component and, by 

lumping the small forested condition’s area with that of the 

nonforested condition, generated an area bias toward nonforest.

Despite higher fidelity in condition boundaries mapped and 

condition proportions computed in 2005, condition errors 

are still present in NIMS, both in the data and compiled 

information. Although these errors can potentially be flagged 

automatically by heuristics embedded in the database 

compilation procedure, their logical rather than topological 

nature would always necessitate manual inspection of all 

pertinent information, an option that is laborious and costly. 

The best alternative is to identify condition errors while the 

crew is still in the field. The current data recorder used by FIA 

could easily employ consistency checks for condition topology 

and offer visualization of the condition mapping for crews to 

evaluate before leaving the plot. Rather than relying on abstract 

perception of geometric relationships between conditions, 

crew leaders would examine their condition maps on the data 

recorder while viewing the actual condition breaks on the plot. 

This process would virtually eliminate all of the condition-

related errors identified in this analysis.

 

Because of differences among FIA regions, for example, in 

dominant vegetation biomes, land use practices, and ownership 

regimes, a data compilation procedure that performs well in 

one region may be problematic in another. Rocky Mountain 

FIA analysts rarely find two condition boundaries on the same 

partial plot. The legacy NIMS condition module performed 

well under such circumstances, but it has proven inadequate for 

compiling more complex condition arrangements present in the 

Pacific Northwest. This experience suggests that caution should 

be exercised every time new data collection and compilation 

approaches are considered for adoption at the national level to 

ensure that such changes will not have untoward consequences 

for regions in which patterns or ranges of data are different.
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Figure 4.—Typical NIMS condition proportion error case 
involving an annular design plot and resulting from lumping the 
nonforest area with the smaller of the forested parts.
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Deriving Simple and Adjusted Financial 
Rates of Return on Mississippi Timber 
Lands by Combining Forest Inventory and 
Analysis and Timber Mart-South Data

Andrew J. Hartsell1

Abstract.—This study compares returns on 

investments in Mississippi timber lands with returns 

on alternative investments. The real annual rates 

of return from mature, undisturbed timber lands 

in Mississippi over a 17-year period (1977–94) 

were computed. Southern Research Station Forest 

Inventory and Analysis (FIA) timber volume data and 

Timber Mart-South (TMS) data on timber prices were 

employed. FIA trees were assigned a TMS dollar 

value based on species, size, and condition. The 

dollar value of each plot was derived by summing 

the per acre value of all trees on the plot. Simple and 

adjusted financial maturity concepts are investigated 

and compared. Simple financial maturity reflects the 

value of the timber only, while adjusted financial 

maturity reflects the implicit costs of holding timber. 

Average annual rates of change in monetary value 

and volume change were computed and compared for 

three distinct time periods: 1977–87, 1987–94, and 

1977–94. These rates of return are compared to those 

for alternative investments such as stocks, bonds, 

certificates of deposit, and treasury bills. The effects 

of various plot- and condition-level strata such as 

ownership, forest type, survey unit, and ecoregion on 

financial rates of return are investigated.

Methods and Procedures

This study investigates biological and financial growth rates 

of undisturbed stands in Mississippi by applying Timber Mart-

South (TMS) stumpage prices to Forest Inventory and Analysis 

(FIA) sample trees. Each FIA sample tree was assigned a dollar 

value based on species, size, and condition. Saw-log trees were 

divided into multiple products (saw log and topwood) and rough 

cull trees were treated as pulpwood. The tree values were summed 

for each plot to derive the total plot value in dollars per acre.

Study Area

The study area consists of the 82 counties of Mississippi, 

with the emphasis on timber lands. Timber land is defined as 

land that is at least 10 percent stocked by trees of any size, or 

formerly having such tree cover, and not currently developed for 

nonforest uses. Minimum area considered for FIA classification 

and measurement is 1 acre.

Time Periods

Three distinct time periods were investigated. These time 

periods coincide with FIA surveys of Mississippi. These three 

time periods are 1977–87, 1987–94, and 1977–94.

Plot Selection

Value change computations require input from two points in 

time. For this study, the earlier time period will be referred to 

as time 1. The later time period is time 2. Therefore, when the 

1987–94 period is discussed, 1977–87 is time 1 while 1987–94 

is time 2.

All plots must be classified as forested for all survey periods 

in question. All time 2 plots must be classified as saw-log-size 

stands, while time 1 plots may be either poletimber-size or 

sawtimber-size stands. Stands classified as seedling/sapling 

1 Research Forester, U.S. Department of Agriculture, Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN 37919. E-mail: ahartsell@
fs.fed.us.
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in either survey are omitted. All time 2 stands must have at 

least 5,000 board feet of timber per acre. Several plots were 

classified as having elm-ash-cottonwood forest. These were 

excluded because sample size was inadequate (< 10 plots for 

each survey period). All stands with evidence of management, 

disturbance, or harvesting for the survey periods in question, as 

well as the previous survey period, were excluded. 

Tree Selection

All live trees ≥ 5.0 inches in diameter at breast height (d.b.h.) 

were included in the sample set, except rotten cull trees. Rough 

cull tree volumes were given pulpwood value. No cull trees 

were used in sawtimber computations. Tree selection was 

performed by variable radius sampling (37.5 basal area factor). 

Since tree selection was performed by variable radius sampling, 

new trees appear over time. These new trees were included in 

all computations and therefore affect growth and value changes. 

Trees that died between survey periods were included only in 

the survey year(s) in which they were alive. This factor has 

the potential to create negative biological and economic value 

growth between surveys.

Timber Mart-South Data

This study uses TMS price data to calculate individual tree 

values. TMS has been collecting delivered prices and stumpage 

prices for 11 Southern States since December 1976. All TMS 

price data are nominal. Real prices were calculated using the 

U.S. Bureau of Labor and Statistics all commodities Producer 

Price Index. As 1986 was the midpoint of the study period, all 

TMS prices were inflated or deflated to 1986 levels.

Tree Products and Tree Values

The following logic was used for determining tree products:  

(1) all poletimber-size trees are used for pulpwood; (2) the 

entire volume of rough cull trees, even sawtimber-size trees, is 

used for pulpwood; (3) the saw-log section of sawtimber-size 

trees is used for sawtimber; and (4) the section between the 

saw-log top and 4-inch diameter outside bark pole top is used 

for pulp and often referred to as topwood.

In 1981, TMS began to report Southern pine chip-n-saw prices. 

Therefore, the two survey periods after this time included a 

third product, Southern pine chip-n-saw. Chip-n-saw trees are 

Southern pines 9.0 to 12.9 inches d.b.h. All trees < 9.0 inches 

d.b.h. are still treated as pulpwood, and trees ≥ 13.0 inches 

d.b.h. are treated as sawtimber trees. This modification was 

made for the 1987 and 1994 survey periods. 

FIA traditionally computes all board-foot volumes by 

international 1/4-inch log rule. Most of the TMS price data 

is in Doyle log rule. To accommodate the price data, all FIA 

tree volumes were recalculated using the Doyle formula. In 

a few instances, prices are reported in Scribner log rule. To 

accommodate this, the Doyle prices for these few instances 

were converted to Scribner prices by multiplying the Doyle 

price by 0.75 (Timber Mart-South 1996).

The TMS reports include a low, high, and average price 

for standing timber for various products. This report does 

not consider peeler logs or poles and piling as possible 

products because determining these products from FIA data 

is questionable. Omitting these classes allows for a slightly 

conservative approach to estimating tree and stand value. FIA 

data has information on species, product size (poletimber or 

sawtimber), and quality (tree class and tree grade). Prices for 

each section of the tree were assigned based on these factors. 

These prices were then applied to the different sections of 

a tree. Table 1 details how TMS prices where assigned to 

individual trees.

Growth Models

Timber volumes and values are summed for each plot. These 

totals are then used as inputs for the growth models. Three 

growth models were used in this study. Each is based on the 

formula used in determining average annual change. 
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Timber Value Growth (TVG) is a simple financial maturity 

model that considers only the actual change in value for a plot 

for the survey period in question. Incomes derived from future 

stands are ignored. The basic formula for TVG is: 

TVG = [(TVF/TVP)1/t – 1] * 100	 (1)

where 	

TVG = timber value growth percent.

TVF = ending sum of tree value on the plot at time 2. 

TVP = beginning sum of tree value on the plot at time 1.

t = number of years between surveys.

Forest Value Growth (FVG) includes the value of land in the 

computation of economic value change. The formula for FVG is:

FVG = [((TVF + LVF) / (TVP + LVP))1/t – 1] * 100	 (2)

where: 	

FVG = forest value growth percent.

TVF = ending sum of tree value on the plot at time 2. 

LVF = ending land value.

TVP = beginning sum of tree value on the plot at time 1.

LVP = beginning land value.

t = number of years between surveys.

FVG is an adjusted financial maturity model. Adjusted financial 

maturity concepts account for all implicit costs associated with 

holding timber. These implicit costs are sometimes referred 

to as opportunity costs. Thus, adjusted financial maturity 

concepts account for revenues from future stands. One method 

of adjusting the model is to include bare land value (LV) in 

the equation, because LV accounts for future incomes and the 

inclusion of LV adjusts the simple financial maturity model. 

This study computes multiple FVGs using LVs ranging from 

$50 per acre to $550 per acre in $50 increments.

Biological Growth Percent (BGP) is similar to TVG, except it 

uses timber volumes instead of timber values. The BGP model 

accounts for the actual annual change in tree volume for a 

plot over a survey period. The BGP model is the same as the 

TVG model, except it uses the sum of tree volumes on the plot 

instead of the sum of tree values.

Table 1.— Logic used in assigning TMS prices to FIA sample trees.

Tree characteristic Price assignment 

Growing-stock pine poletimber Average pine pulpwood price

Nongrowing-stock pines Low pine pulpwood price

Hardwood growing-stock poletimber Average hardwood pulp price

Hardwood nongrowing-stock, nonoak trees Low hardwood pulp price

Pine sawtimber topwood Low pine pulpwood price

Hardwood sawtimber topwood Low hardwood pulp price

Southern pine chip-n-saw Average chip-n-saw pricea

Tree grades 1 and 2 oaksb High oak sawtimber price

Tree grade 3 oaksb Average oak sawtimber price

All other growing-stock, sawtimber-size oaksb Low oak sawtimber price

Post oak, Delta post oak, and black oak Low mixed sawtimber price

Tree grades 1 and 2 Southern pine High pine sawtimber price

Tree grade 3 Southern pine Average pine sawtimber price

All other pine sawtimber—growing-stock Low pine sawtimber price

All nonoak tree grade 1 hardwoods High mixed sawtimber price

All other nonoak tree grade 2 and 3 hardwoods Average mixed sawtimber price

Any remaining growing-stock hardwoods Low mixed hardwood price

a Except for the 1977 survey, in which this category does not exist. For 1977, all Southern pines < 9.0 inches d.b.h. are treated as pulpwood, larger 
trees as sawtimber.
b Except for the following species: post oak, Delta post oak, and black oak.
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Results

Initial investigations analyzed value growth based on various 

plot strata such as county, ownership, and forest type. Table 2 

details the sample size, BGP, TVG, and FVG of Mississippi 

timber lands by forest type for the 1977–94 period. FVG is 

computed in $250 increments ranging from $250 to $1500. 

This sample set is more likely to represent the true trend for 

the extended period as it contains only plots that met the selec-

tion criteria for all three surveys. All financial rates of return 

are real. Table 2 reveals that pine stands outperformed all other 

stands in terms of biological and economic growth. Average 

pine stand volume increased 5.2 percent per year, while aver-

age pine stands earned more than 16 percent per year using 

the simple model. The adjusted rates of return for mature pine 

stands ranged from 4.9 percent to 10.9 percent per year depend-

ing on land value. While stands consisting primarily of pine 

outperformed other types, they did not do so to the degree that 

many would expect. A common perception in the South is that 

loblolly pine is the only economically viable species. This may 

not be the case, as even oak-gum-cypress stands, the weakest 

performers in this study, had TVG greater than 12 percent per 

year and FVG ranging from 3.5 to 8.25 percent per year.

Figure 1 illustrates the FVG estimates from table 2. If 

landowners know the value of their land, or the value of nearby 

lands, then they can use this graph as a guide to the rates of 

return they might expect to earn on their holdings. This graph 

clearly shows the effect that land value has on rates of return. 

As LV increases, rates of return decrease. There will be a point 

at which land value plays a greater role in determining land use 

than do timber values.

Another avenue is to investigate value change spatially and 

temporally to determine if there are any regional patterns or 

shifts in value change over time. This is accomplished by map-

ping out rates of return across the State and comparing these 

rates to ecological strata such as forest type and ecoregion, or 

comparing these distributions over time. To accomplish the 

first, an ecological benchmark is needed. Figure 2 shows the 

distribution of plots by 1994 forest type. Pine stands dominate 

the southern/southeastern portion of the State, while hardwoods 

form the plurality along major waterways. The northern part of 

the State is almost an even mix of the three types. Traditional 

wisdom dictates that the greatest rates of return would occur in 

the southern part of the State, due to the high frequency of yel-

low pine. The following queries tested this idea as well as look-

ing for any spatial/temporal patterns.

Table 2.—Average annual growth percent, real timber value growth percent, and real forest value growth percent by forest type, 
Mississippi, 1977–94.

Forest type Plots
BGP TVG

FVG
250

FVG
500

FVG
750

FVG
1000

FV
1250

FVG
1500

(%) (%) (%) (%) (%) (%) (%) (%)

Pine 25 5.22 16.14 10.95 8.61 7.18 6.18 5.45 4.88

Mixed 26 3.63 13.36 9.08 7.11 5.89 5.06 4.44 3.96

Oak-hickory 38 4.35 15.14 9.23 6.91 5.57 4.69 4.06 3.58

Oak-gum-cypress 70 3.16 12.43 8.25 6.37 5.23 4.46 3.89 3.46

Total 159 3.84 13.82 9.05 6.97 5.73 4.88 4.27 3.79

Figure 1.—Forest value growth percent by forest type and land 
value, Mississippi, 1977–94. 
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Interesting patterns emerge when each plot’s forest value 

growth (LV = $750 per acre) by survey period is mapped. 

The southern portion of the State tended to have slightly 

higher rates of return for 1977–87. It is interesting that 11 

plots scattered across the State experienced negative value-

growth, even in the southern portion. While rates of return 

where slightly higher in the south, the degree to which they 

outperformed the rest of the State was relatively small along 

with the certainty that they would “earn money” (fig. 3).

Conversely, the majority of the highest earning plots in the 

1987–94 survey occur outside of the southern region and in 

areas of the State that are dominated by hardwood and mixed 

stands. This result is due to increases in hardwood stumpage 

prices that occurred in this time frame. Another interesting 

point is that no negative value-growth plots were in this data set 

and all plots “earned money,” with the majority of the highest 

earning plots occurring in the northern and central regions of 

the State (fig. 4).

The true long-term economic trend is best ascertained by 

combining inventories and using the plots that meet selection 

criteria in both surveys. The results of the extended 1977–94 

period are similar to those for the 1987–94 period in that 

no plots lost money and the majority of the highest earning 

plots occurred outside the southern portion of the State. The 

moderating effect of time, along with the first inventory’s lower 

rates of return, produce overall lower rates of return (fig. 5).

Figure 2.—Distribution of plots by major forest type, 
Mississippi, 1994.
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Figure 3.—Distribution of plots by forest value growth, land 
value = $750 per acre, Mississippi, 1977–87.
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Another avenue of investigation involves stratifying value 

change not on a plot- or condition-level variable such as 

ownership or forest type, but on ecoregion. Figure 6 combines 

Bailey’s ecoregions with the data from figure 4. There is an 

apparent correlation between ecoregion and economic value 

change for the State, as the majority of the highest earning plots 

occur in the Coastal Plains middle section. Indeed, the plots in 

this section averaged more than 9 percent per year real rate of 

growth for the period. This rate of return is significantly higher 

than those for the other sections (table 3). 

Comparing the rates of return from timber lands to those for 

other investment options yields interesting results (table 4). The 

simple financial maturity model (TVG) outperforms all other 

investment options for all survey periods. The results differ, 

however, when using the adjusted model. Between 1977 and 

1987, certificates of deposit, AAA corporate bonds, and the 

S&P Stock Index (S&P 500) rank higher than FVG. During this 

survey, the adjusted model’s rates of return compare favorably 

with the Dow Jones Industrial Average and Treasury Bills. 

The outcome is better for both the next time frame (1987–94) 

and the extended period (1977–94). In both instances FVG 

outperforms all other investment options except the S&P 500.

Figure 4.—Distribution of plots by forest value growth, land 
value = $750 per acre, Mississippi, 1987–94.
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Figure 5.—Distribution of plots by forest value growth, land 
value = $750 per acre, Mississippi, 1977–94.
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Figure 6.—Distribution of plots by forest value growth, land 
value = $750 per acre, by ecological section, Mississippi, 
1977–94.
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Table 4.—Average annual real rates of return, expressed as 
a percentage, for Mississippi timber lands and alternative 
investment options by survey period. 

Investment options 1977–87 1987–94 1977–94

TVG 8.05 18.58 13.82

FVGa 2.40 8.09 5.73

1-month certificate of deposit 2.93 2.11 3.32

3-month certificate of deposit 3.06 2.18 2.75

6-month certificate of deposit 3.22 2.30 2.89

3-month Treasury Bill 2.11 1.61 1.96

6-month Treasury Bill 2.24 1.73 2.09

1-year Treasury Bill 2.18 1.86 2.11

AAA corporate bonds 4.23 4.67 4.43

Dow Jones Industrial Average 0.10 5.13 2.21

S&P 500 Stock Index 6.84 8.48 7.92

Table 3.—Average annual forest value growth percent by 
ecoregion, Mississippi, 1987–94.

Bailey’s ecological section N
Average forest 
value growtha

Coastal Plains and Flatwoods Lower Section 62 6.25

Coastal Plains Middle Section 221 9.05

Louisiana Coast Prairies and Marshes 
Section

3 6.08

Mississippi Alluvial Basin Section 56 4.45

a Forest value growth percent calculated using bare land value = $750 
per acre.

FVG = Forest Value Growth.
TVG = Timber Value Growth.
a FVG calculated using bare land value = $750 per acre.

1977–94 forest value 
growth percent, lv = $750

Coastal Plains and Flatwoods, Lower Section
Coastal Plains, Middle Section
Louisiana Coast Prairies and Marshes Section
Mississippi Alluvial Basin Section
Coastal
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Key Points

This study did not consider the effects of taxes. The impacts 

of taxes paid or tax exemptions for the various investment 

options were not taken into account. These have the potential to 

affect the final rates of return. The stands must be completely 

liquidated to meet the specified rate of return. The landowner 

maintains possession of the land. Income from selling the 

land is not included. LV change over time is not considered. 

Regeneration costs, and other silvicultural practices, are 

excluded from the analysis as well. Returns from intermediate 

harvests, thinning, and costs of land improvements are not 

included. Therefore, foresters and land managers have the 

potential to improve on these rates through species selection, 

intermediate practices, and final products the stands produce.

Conclusions

Economic studies such as this have the potential to increase 

FIA’s user base while informing landowners of the value of 

their holdings. This could lead to a higher awareness of all the 

management options available to them, and open the doors to 

new ones. For example, hardwood management may now be a 

viable management option to many landowners who previously 

ignored this resource. In addition, investment institutions such 

as banks and timber management organizations would find this 

type of product useful, increasing the demand for FIA data and 

products.
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Identifying Areas of Relative Change in 
Forest Fragmentation in New Hampshire 
Between 1990 and 2000

Tonya Lister1, Andrew Lister2, William McWilliams3, and 

Rachel Riemann2

Abstract.—Forest fragmentation potentially can 

impact many facets of natural ecosystems. Numerous 

methods have been employed to assess static forest 

fragmentation. Few studies, however, have analyzed 

changes in forest fragmentation over time. In this 

study, we developed new classifications from 

Landsat imagery data acquired in 1990 and 2000 

for New Hampshire, assessed fragmentation in both 

time periods, and created maps depicting the spatial 

extent of fragmentation change through time. Visual 

inspection of the resulting maps suggests the method 

successfully identifies areas of the State where 

fragmentation is occurring at a relatively high rate. 

Introduction

Forest fragmentation continues to be a topic of great interest in 

the Northeastern United States. The conversion of land cover 

from forest to other uses by humans and natural processes 

affects animal behavior, plant-seed dispersal, hydrological 

processes, and local weather conditions (Forman 1995). When 

contiguous forest land is divided into smaller, more complex 

patches, increasing isolation of remaining patches and an 

increase in forest areas influenced by nonforest edge often 

results. These factors may lead to changes in the composition 

and structure of the forest, including an increased potential 

for nonnative species invasion (Haskell 2000, Trombulak and 

Frissell 2000).

The U.S. Department of Agriculture Forest Service’s Forest 

Inventory and Analysis (FIA) program continuously inventories 

the Nation’s forest resources. The data collected include 

information on the extent, condition, and character of U.S. 

forests. Recently, FIA also has included forest fragmentation 

information in their State reports (Barnett et al. 2002, Wharton 

et al. 2004). In a regional assessment of forest fragmentation 

in the Northeast, a suite of fragmentation indicators were 

summarized by county, watershed, and ecoregion (Lister et al. 

2005, USDA Forest Service 2006). These data sets and other 

regional and national forest fragmentation assessments (e.g., 

Riitters et al. 2002, Heilman et al. 2002) provide information 

on forest fragmentation at one point in time. Information about 

the dynamic nature of fragmentation, including changes in 

the patterns and distribution of forest land, are less abundant 

in the scientific literature. Although this dynamic component 

of fragmentation is difficult to assess, it is critical to our 

understanding of the stability and health of forest ecosystems 

and to our ability to properly manage forest resources.

Recognizing the importance of forest land dynamics and 

fragmentation change to forest management, the New 

Hampshire Division of Forests and Lands is addressing these 

concerns in their latest revision of the Forest Resource Plan. 

This comprehensive Statewide plan summarizes the condition 

of New Hampshire’s forests and discusses the desired future 

forest condition. As a potential input to the 2006 Forest 

Resource Plan, FIA agreed to conduct a spatial assessment 

of relative change in forest fragmentation. This ongoing 

assessment is designed to identify areas of the State where land 

class conversion is occurring at a relatively high rate, with the 

purpose of helping managers and policymakers make more 

1 Research Forester, U.S. Department of Agriculture (USDA), Forest Service, Northeastern Research Station, Forest Inventory and Analysis, 11 Campus Boulevard, 
Suite 200, Newtown Square, PA 19073. Phone: 610–557–4033. E-mail: tlister01@fs.fed.us.
2 Research Foresters, USDA Forest Service, Northeastern Research Station, Forest Inventory and Analysis, 11 Campus Boulevard, Suite 200, Newtown Square, PA 
19073. 
3 Research Forester and Project Leader, USDA Forest Service, Northeastern Research Station, Forest Inventory and Analysis, 11 Campus Boulevard, Suite 200, 
Newtown Square, PA 19073. 
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effective and appropriate management decisions. The goals 

of this article are to describe the methods used to produce the 

land cover base maps of New Hampshire, to provide a mapped 

summary of the fragmentation statistics calculated at two points 

in time, and to discuss preliminary interpretations of the data. 

Furthermore, this analysis serves as the first in a series of State-

level land cover conversion analyses that could become part of 

the fabric of FIA analytical reports.

Methods

Description of Study Area

Forest land dominates New Hampshire’s landscape, covering 84 

percent of the total land area, making it second to Maine, the 

Nation’s most forested State (Frieswyk and Widmann 2000). 

New Hampshire’s 4.8 million acres of forest are relatively 

evenly distributed across the State with all 10 counties made 

up of at least 65 percent forest. A greater concentration of 

forest occurs in the northern half of the State, which includes 

the White Mountain National Forest (fig. 1). The lowest 

concentration of forest is in the more populated, southeastern 

section of the State (Frieswyk and Widmann 2000). 

New Hampshire’s forest products industry adds more than $1.5 

billion to the State’s economy (NEFA 2001). Sawlogs are the 

primary industrial use of wood harvested, followed by pulp-

wood. According to FIA data, the area of forest land in New 

Hampshire decreased slightly between 1983 and 1997 (Fries-

wyk and Widmann 2000). An estimated 134,500 acres of forest 

were converted to other land uses during this period. The great-

est decrease in the area of forest land occurred in the eastern 

part of the state, especially in Carroll and Strafford Counties. 

Base Map Classification

Initially we hoped to use previously classified images from 

two different points in time that would serve as the basis for 

a moving window fragmentation analysis. The land cover 

maps that we compared included the Multi-Resolution Land 

Characterstics (MRLC) 1992 classification (Vogelmann 

2001), and classifications created by David Justice (2002). 

Due to differences in the original images and classification 

methods, we determined that these classification maps were not 

comparable. We decided to perform our own classifications to 

reduce any methods-based discrepancies.

We found spectral differences between a Landsat satellite image 

collected in 1990 and one collected in 2000. The images used 

were clipped from Earthsat Geocover mosaics (Earthsat 2006), 

and consisted of leaf-on bands two, four, and seven. Spectral 

difference images were created by using band subtraction 

(band 7–band 7, band 4–band 4, and band 2–band 2) in Leica 

Imagine4. Spectral difference images were created by using 

band subtraction using Leica imagine4. For example, on a pixel-

by-pixel basis, the spectral values of band 7 for the 1990 image 

were subtracted from the spectral values of band 7 for the 2000 

image. Once the magnitude of the spectral differences between 

each of the corresponding bands from the two time periods 

was determined, we developed heuristics to identify areas of 

loss, increase, or no change in forest cover. This was done by 

iteratively thresholding the three band spectral difference image 

to create potential forest cover loss maps and comparing them 

visually with National Agricultural Imagery Program files from 

2004 (USDA Aerial Photo Field Office 2006), U.S. Geological 

4 The use of trade, firm, or corporation names in this publication is for the information of the reader. Such use does not constitute an official endorsement or approval 
by the U.S. Department of Agriculture (USDA) or the USDA Forest Service of any product or service to the exclusion of others that may be suitable.

Figure 1.—The State of New Hampshire showing counties, 
major cities, and national forests.
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Survey (USGS) digital orthophoto quads from around 1997 

(USGS 2006a) and NHAP (USGS 2006b) 1:40,000 aerial 

photographs from 1993. Photography that corresponded with 

the dates of the Landsat scenes would have been preferred, but 

was unavailable. 

We then combined the resulting classified forest cover change 

image with a classification conducted by Justice et al. (2002) 

from 2000 (IM2000), and one conducted by the MRLC pro-

gram (Vogelmann 2001) from 1990 (IM1990) to produce the 

land class base maps. Unique combinations of forest cover 

change and IM2000 allowed us to “backdate” the 2000 clas-

sification to create a new 1990 classification, based on IM2000, 

via a recoding procedure. For example, if IM2000 indicated an 

urban class and the forest change image indicated forest loss, 

then a new 1990 image was created by “backdating” IM2000 to 

a forest class. Similar logic was used for other classes. IM1990 

was used primarily to detect areas of forest gain. For example, 

if IM2000 indicated a forest class, the land cover change image 

indicated forest gain, and the IM1990 image indicated a non-

forest class (not including urban, residential or transportation, 

which was unlikely to revert to forest), then the new 1990 im-

age was assigned a nonforest class at that location. If the forest 

cover change image indicated no change, then the IM2000 

class was assigned to the new 1990 image. 

We combined Geographic Information System coverages of 

roads from the U.S. Census Bureau’s TIGER Line files (U.S. 

Census Bureau 2002) with both the new 1990 image and 

IM2000. We then applied a correction methodology described 

in Lister et al. (in press) to convert forested areas with a high 

road density to the developed class, under the assumption 

that these areas are probably either residential, or so impacted 

by the road density as to make them ecologically similar to 

developed areas.

Map Refinement and Land Class Descriptions

The final classification scheme for both IM2000 and the 

new 1990 image was based on a collapsing of the original 

IM2000 classes into six categories: water and background 

(which consisted of analysis unit edges and roads, and was 

not included in calculations), developed (residential, urban, 

forest that was relabeled developed based on road density, and 

transportation networks not coinciding with the census roads), 

agricultural areas (including pastures and orchards), forest 

(including forested wetlands), natural vegetated areas (including 

herbaceous wetlands, sand dunes, tundra, and exposed bedrock 

areas with stunted vegetation), and cleared areas that have not 

been converted to developed land cover classes. We applied 

a spatial filtering algorithm to these maps (Leica Imagine’s 

“eliminate” procedure) to remove patches consisting of less 

than four contiguous pixels of the same class.

Fragmentation Assessment

Next, we clipped each image into 974 overlapping 10- by 

10-km image tiles using Leica Imagine and calculated a suite 

of fragmentation statistics on the image tiles from each time 

period using APACK software (Mladenoff and DeZonia 2001). 

We then normalized each metric’s value for each tile by dividing 

it by the maximum value of that metric across all the tiles. 

We did this to facilitate interpretation of the fragmentation 

difference analyses when the classifications from the two time 

periods varied due to classification error and not true land cover 

change. In other words, the fragmentation change analyses 

identify image tiles that show large relative differences, not 

absolute differences. We merged and joined these normalized 

datasets to the centroids of the overlapping tiles (which were 

5 km apart), subtracted the new 1990 image’s normalized 

fragmentation statistics from those of IM2000, and generated 

the fragmentation change maps.

Results and Discussion

Although a full suite of fragmentation metrics was estimated 

and mapped, the following discussion includes a small sample 

of only the most interesting fragmentation indices. Mean patch 

size is widely used to characterize forest patches and has been 

shown to be an important and applicable metric (Lausch and 

Herzog 2002). As described above, the mean forest patch size 

is presented as a relative value in figure 2, which shows the 

distribution of patch sizes in New Hampshire. Not surprisingly, 

the average patch size is largest in the White Mountains 

National Forest located in the eastern-central portion of the 
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State. Although the distribution of average forest patch area 

is similar in 1990 and 2000, the change map (fig. 3) shows 

mostly patchy decreases and some increases in average forest 

patch area in the northern half of the State. A preliminary 

visual inspection of USGS digital orthophoto quads and aerial 

photographs at different time periods revealed that many of 

these areas of change are due to harvesting and forest regrowth.

The forest aggregation index estimates the degree to which 

forested pixels are clumped together in the landscape. This 

metric is calculated by dividing the number of forest cells that 

are adjacent to other forest cells by the total number of possible 

adjacent forest-forest edges. The more aggregated the forested 

pixels, the higher the aggregation index. As expected, the 

forest aggregation index is lowest in the southeastern portion 

of the State (fig. 4), which has the lowest percentage of forest 

cover yet hosts the greatest number of forest patches. The area 

surrounding Manchester also supports the greatest amount of 

urban land uses. The highest forest aggregation index values 

are found in Coos, Grafton, and Carroll Counties in the north. 

Figure 5 shows relatively little change in forest aggregation 

index between 1990 and 2000. The aggregation index 

shows some increases along the Connecticut River at New 

Hampshire’s western border with Vermont. Decreases in forest 

aggregation index in central Coos County may correspond 

Figure 2.—Relative forest mean patch size calculated within 
overlapping 10- by 10-km image tiles in New Hampshire in 
1990 (A) and 2000 (B).

Figure 3.—Relative difference in forest mean patch size 
calculated within overlapping 10- by 10-km image tiles in New 
Hampshire.

(A) (B)

Figure 4.—Relative values of forest aggregation index 
calculated within overlapping 10- by 10-km image tiles in New 
Hampshire in 1990 (A) and 2000 (B).

with areas influenced by harvest activities as suggested by the 

images and photography we studied.

Up to this point the changes captured by our preliminary 

analyses have been attributed to land cover conversion due to 

harvesting activities as forested land is cleared and regrowth 

occurs. These changes are significant to evaluate, but generally 

do not represent a permanent loss of forest land; a change in 
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land use has not occurred, just a temporary change in land 

cover. In an attempt to capture forest loss and fragmentation 

changes due to urban pressures, we selected two metrics: the 

number of forest patches less than 10 ac in size, and the length 

of edge shared between urban and forest patches. 

Figure 6 indicates that the more highly developed, southeastern 

portion of the State has the greatest number of small forest 

patches. One of the most impressive increases in the number 

of small forest patches occurred in the southern half of Carroll 

County (fig. 7). According to FIA data, Carroll County lost 

more than 10 percent of its forest land between 1983 and 

1997 (Frieswyk and Widmann 2000). Forest loss in this 

county is most likely due to urban and residential growth to 

accommodate an expanding population. From 1990 to 2000, 

population in Carroll County increased 23 percent, which 

was higher than the State and national averages of 11 and 13 

percent, respectively.

The influence of forest edge on habitat quality is a matter of 

great concern. The character of the edge effect depends on the 

type of land use or class that borders the forest patch. For this 

article, we were interested in evaluating changes in the amount 

of forest/urban edge. The length of edge shared by forest 

and urban land classes was greatest in the areas surrounding 

Figure 5.—Relative difference in forest aggregation index 
calculated within overlapping 10- by 10-km image tiles in New 
Hampshire.

Figure 6.—Relative values of the number of forest patches less 
than 10 ac in size calculated within 10- by 10-km image tiles in 
New Hampshire in 1990 (A) and 2000 (B).

Figure 7.—Difference in relative values of the number of forest 
patches less than 10 ac in size calculated within 10- by 10-km 
image tiles in New Hampshire in 1990 (A) and 2000 (B).

Manchester and Nashua (fig. 8). The Manchester and Nashua 

areas also experienced relatively large increases in the length 

of forest/urban edge between 1990 and 2000 (fig. 9). Southern 

Carroll County was also a site of relatively high increase in 

urban/forest perimeter. This finding is consistent with the 

possibility that urban pressure and population growth in Carroll 

County is affecting forest patterns and fragmentation. In the 

northern part of the State, some of the increases in length of 
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edge shared between forest and urban are centered on specific 

cities, including Littleton, Lancaster, and Berlin (fig. 9).

The utility of some fragmentation metrics and patch-based 

fragmentation metrics in general has been the subject of debate. 

For example, mean patch size can be misleading—many 

different landscape configurations can lead to the same 

mean value. Furthermore, our use of roads as patch-defining 

borders could lead to false interpretations of the results. Some 

small roads or land cover changes might not have a strong 

ecological impact. For example, forest and pasture have less 

ecological difference than forest and urban areas. We used 

relative differences in fragmentation metrics between the time 

periods because we wanted to identify areas of the State that 

showed anomalous changes in forest fragmentation compared 

to the rest of the State. If we assume that the classifications are 

similar to each other with respect to accuracy and have similar 

minimum mapping units, then we can infer that differences in 

the fragmentation metrics between the two time periods are 

the result of actual changes in the landscape, and not artifacts 

of the classification process or metric calculation algorithms. 

Future work will involve verifying the accuracy of these maps.
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The Virtual Analyst Program: Automated 
Data Mining, Error Analysis, and Reporting

W. Keith Moser1, Mark H. Hansen, Patrick Miles, Barbara 

Johnson, and Ronald E. McRoberts

Abstract.—The Forest Inventory and Analysis (FIA) 

program of the U.S. Department of Agriculture Forest 

Service conducts ongoing comprehensive inventories 

of the forest resources of the United States. The 

Northern Region FIA (NFIA) program has three 

tasks: (1) core reporting function, which produces the 

annual and 5-year inventory reports; (2) forest health 

measurements; and (3) scientific analysis of questions 

and themes that arise from the data. 

Annual reports provide updated views of the extent, 

composition, and change of a State’s forests. These 

reports have a standard format divided into the three 

broad categories of area, volume, and change. This 

reporting process also provides important early trend 

alerts and error-checking functions. Incorporating our 

understanding of important trends and relationships, 

and “cautions” to be aware of, the Virtual Analyst 

program at NFIA seeks to automate the more 

repetitive functions of producing reports while 

highlighting any anomalies that might require further 

investigation.

This paper discusses the program logic and prototype 

design. We explore the concepts of data mining and 

the role it plays in the FIA analysis process. Next, 

we work backward from the Web-based application 

product to information-generating vehicles that 

connect to the forest inventory database. Finally, we 

will discuss the opportunity to expand this report-

writing function into a customized, user-defined data 

query and analysis function.

Introduction

The Forest Inventory and Analysis (FIA) program of the 

U.S. Department of Agriculture Forest Service conducts 

comprehensive forest inventories to estimate the area, volume, 

growth, and removal of forest resources in the United States, in 

addition to taking measurements on the health and condition of 

these resources. The program’s sampling design has an intensity 

of one plot per approximately 2,400 ha and is assumed to 

produce a random, equal probability sample. Four regional FIA 

programs divide up responsibility of inventorying and analyzing 

data in the United States and the Northern Region FIA (NFIA) 

is responsible for 24 States in the Northeast, Upper Midwest 

and Great Plains sections of the United States. In 15 States of 

NFIA, the plots in each State are sampled on a 5-year cycle; 

i.e., each state has 20 percent of its plots inventoried each year, 

while the remaining states are sampled on a 7-year cycle.

Such a process generates tremendous quantities of data. A 

portion of the data generated is analyzed and published in 

annual and more comprehensive 5-year State reports. Although 

the production of the tabular output is automated, data review, 

analytical text, and report highlights have typically required a 

great deal of human input.

Background

An important component of the core reporting function is the 

production of updated annual reports. The annual reports are 

the most current estimates of each State’s forest resources 

and frequently are the first alert to emerging trends in forest 

structure, composition, growth, and mortality. The reports are 

divided into the three broad categories of area, volume, and 

change. The annual report is the final phase of a continuous 

quality control process, evaluating the accuracy of the data 

1 Contact author: W.K. Moser, U.S. Department of Agriculture, Forest Service, Northern Research Station, Forest Inventory and Analysis, 1992 Folwell Avenue, St. 
Paul, MN 55108. Phone: 651–649–5155. E-mail: wkmoser@fs.fed.us.
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from the data collection on the plot to final dissemination of 

information and knowledge to our customers. The Virtual 

Analyst (VA) program at NFIA is designed to serve these 

multiple needs. Incorporating our understanding of important 

trends and relationships, and our awareness of important 

alerts (items warranting further investigation), this program 

automates the more repetitive tasks of report production.

Data-Mining Theory

With the vast quantity of data generated by the inventory pro-

cess, an efficient and effective knowledge discovery procedure 

is critical to providing credible and valuable information to 

our stakeholders. Frawley et al. (1991) defined knowledge 

discovery as “the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data.” 

These authors further defined knowledge as a “pattern that is 

interesting (according to a user-imposed interest measure) and 

certain enough (again according to the user’s criteria).” One of 

the more salient aspects of a continuous forest inventory is its 

ability to detect change. While knowledge of the total volume 

or biomass present is useful, an equally important type of 

information details changes in forest extent, composition, and 

structure. These change estimates are not only indicators of 

trends of interest (e.g., greater numbers of trees, less mortality, 

etc.), but also send a signal to policymakers and land managers 

that there is the potential for different ecological futures.

Data Mining

Data mining uncovers structure within existing databases. 

Beyond concerns with data collection issues (Hand et al. 2000), 

one of its principal benefits to NFIA is the opportunity for error 

checking. One of the unique aspects of data mining is its focus 

on patterns within the data. While most statisticians are con-

cerned with primary data analysis (data collected with a par-

ticular question or set of questions in mind), data miners focus 

on secondary analysis aimed at finding relationships that are of 

interest or value to the database owners (Hand et al. 2000). In 

the place of statistical significance, we need to consider more 

carefully substantive significance: is the effect important (Hand 

1998b)? Data mining is not a one-time activity, but rather an 

interactive process involving the data miner and the domain 

expert (the analyst assigned to report on the inventory of a 

particular State), as well as the data (Hand et al. 2000).

The two types of structure in data are models and patterns 

(Hand 1998a). A model is an overall summary of the data or a 

subset of the data, whereas a pattern is a local structure made 

up of a subset of the data. For NFIA, it is important to practice 

data mining that examines both types of data. A model may be 

a summary of the inventory data for specific attributes, while a 

pattern may document an interesting facet of the data, such as 

increased mortality or change in the species composition of the 

overstory.

While statisticians are concerned with characterizing the 

likelihood an apparent structure will arise in a data set given no 

such structure in the underlying process, data miners focus on 

simply locating the structure. The responsibility for deciding 

whether the structure has meaning in terms of the underlying 

process is shifted to the analyst (Hand 1998b).

The analyst is looking for two types of patterns: “real” and 

“inadequate” patterns. A real pattern is a trend or structure 

indicating an actual and significant characteristic of the forest. 

For example, data analysis might discover the occurrence of 

a tree species not previously known to exist in that location. 

On the other hand, an inadequate pattern can indicate either 

an error in data collection or an anomaly in data conversion. 

An example of an inadequate pattern can occur when a plot is 

divided into multiple conditions, reflecting its past management 

or a change in forest type. If the condition “slice” of the plot is 

small, and there happens to be one large tree in that slice, the 

expanded basal area per unit area of land might be unnaturally 

large, which would be a function of the random occurrence of 

one large tree in a small sample area. At the State level, the first 

pattern might appear as a critical error, while the second pattern 

might not matter. The knowledge of the analyst is essential to 

separating critical from noncritical errors or anomalies. Patterns 

that can be explained are more likely to be real and are often 

obvious in retrospect. Many unexpected patterns discovered in 

a data set during data mining, however, will be attributable to 

data inadequacy (Hand et al. 2000).
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FIA Database 

By the nature of the two-phase, fixed-area, plot-based sampling 

conducted by FIA (McRoberts 2005), a relational data model 

with hierarchical components has been used to create the FIA 

Database (FIADB) (Alerich et al. 2004). FIADB consists 

of 12 linked database tables. Each database table provides a 

means of storing data, such as data collected on a sample tree 

or plot, and computed data attributes. The latest version of 

the FIADB provides all the data required to estimate resource 

attributes and associated sampling errors. This structure makes 

it relatively easy to produce flat files for customers who do not 

have access to the database. All of the core report tables in the 

State reports can be produced from these database tables. 

In this paper, we present initial work on the VA program that 

produces not only the core tables for these reports, but also the 

corresponding figures, maps, and text portions of the reports 

including highlights and analysis. In addition, we discuss the 

opportunity to expand this automated report writing into a 

customized, user-defined data query and analysis function.

Methodology

The VA program provides a single interface with the FIADB 

that will produce an entire report for a selected area with a few 

clicks of the mouse. Figure 1 is a flowchart that displays the 

path from the Oracle database to the final report. The figure 

portrays a sequence of actions that are currently performed by 

domain experts (analysts) based on their own experiences and 

education. Humans, however, are not completely separated 

from the analytical process. While some of the process will be 

automated and standardized, analysts still need to check the 

flagged anomalies and make corrections if needed (fig. 2).

The VA program is written as a Web-based application using 

various software development programs. These programs will 

interface with the FIADB using assorted PL/SQL procedures 

that extract the various resource- and sampling-error estimates 

presented in the application. All comparisons, logic checks, 

and computation of highlights are performed using PL/SQL 

procedures and functions. The user interface in VA allows the 

user to define the population of interest for the report being 

generated by using pull-down menus to select the State and 

Figure 1.—Flowchart of information flows in Virtual Analyst.
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inventory year. Once the population has been selected, the 

program executes a series of PL/SQL procedures that generate 

all the basic report tables for the population (fig. 3). These basic 

report tables are created as temporary Oracle database tables 

that exist for the duration of the run and simultaneously display 

report tables on the Web site and, if requested, as publication-

quality PDF files. The VA approach to generating report tables 

differs from other programs that access FIADB in that catalogs 

of estimates and sampling errors are created simultaneously in 

all cases. That is, for every estimate, a corresponding sampling 

error is computed in a temporary Oracle database table. Other 

measures of estimation quality, including variance and number 

of plots where the attribute was observed, are also computed. 

Once the report tables are generated for the inventory of 

interest, identical tables for previous inventories are also 

computed, using the same PL/SQL procedures. If the data for 

more than one previous inventory are available for a population, 

report tables are produced for each of these inventories. These 

tables are then used to generate charts of the data using .NET 

charting software. 

The estimates and sampling errors in the temporary Oracle 

database tables can be quickly accessed by simple PL/SQL 

procedures and functions. These emulate the logic checks and 

comparisons, and highlight identification procedures typically 

performed by the analyst (fig. 4). The results of the procedures 

and functions form the basis of the report text. Output catego-

ries from the procedures and functions may be the following:

1.	 Numerical values (estimates).

2.	 Units (define the unit of measure for an estimate).

3.	 Strings (typically describe an estimate).

4.	 Comments (a special case of a string).

5.	 Highlights (a special case of a string dependent upon a 

numerical object).

Numerical values are measured quantities. Units are string 

objects that define the unit of measure for the values and 

Figure 2.—Flowchart of Virtual Analyst process, with automated and human-mediated decisions and actions in shaded symbols.
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Figure 3.—Flowchart of Virtual Analyst process, with data entry and data checking actions in shaded symbols.

Figure 4.—Flowchart of Virtual Analyst process, with highlight calculation and text generation actions in shaded symbols.
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are always tied to them. Examples include units of volume, 

expressed in cubic meters, or area, expressed in hectares 

or acres. Strings represent categories, such as species or 

forest type groups. Comments are special types of strings, 

generally representing a phrase unique to a particular situation. 

Highlights are terms of precedence or change. Examples 

include “greater than,” “equal to,” or “primary.”

Calls to procedures and functions that mimic the analytical 

processes in the data-mining step of the report-writing phase 

are embedded into the final written report text, such that the 

resulting text is a complete statement, sentence, or paragraph 

included in the final document. Some of the functions access 

a single report table and may simply return the name of the 

forest type that has the largest estimated area in the most 

current inventory of all forest types in the population. Other 

functions may access the same table for multiple inventories, 

e.g., a procedure that returns the name of the forest type that 

increased the most in estimated area between the baseline 

inventory and the current inventory. The complexity and 

number of tables accessed by these procedures and functions 

could be increased.

The VA program has the previous inventory tables in the same 

format as the new inventory, making inventory-to-inventory 

comparisons relatively easy. Furthermore, with sampling 

errors for all estimates (including old inventories), we have 

the potential to conduct statistical tests and avoid highlighting 

differences that are not statistically significant, or identify small 

differences that may be statistically significant but that would 

otherwise go unnoticed.

Results

We will limit our discussion to the analysis of some simple 

report tables, and the associated figures and text portions of 

the report (highlights and analysis). As an example, we used 

data from the 1999–2003 Minnesota annual inventory. The VA 

program generates a basic report table (table 1). Produced at the 

same time are a matching report table of sampling errors and 

tables based on the two previous inventories. These tables form 

the basis of the analysis of forest area by forest type. 

Figures 5a and 5b are examples of information produced in 

association with these tables. The figures show the distribution 

of timberland area by stand age for the white/red/jack pine 

and maple/beech/birch forest type groups. The vertical bars at 

the top of each bar in the histogram show sampling errors for 

each estimate. These graphics can serve both analytical and 

illustrative functions. In the pine graph (fig. 5a), the analyst 

would observe the increased volume in the 11- to 30-year age 

classes and wish to investigate where these young stands are. 

The next graph (fig. 5b) provides an example of the illustrative 

Table 1.—Minnesota, 2003 annual estimate, area of timber land by forest type group and stand age class in thousand acres.

Stand age class (years) 

Forest type group 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100  101+ All ages

White/red/jack pine 62.6 95.9 121.6 120.0 124.9 99.7 72.7 63.6 17.0 21.5 37.1 836.8

Spruce/fir 121.2 131.9 144.3 257.8 436.4 401.0 390.4 362.5 255.9 226.1 490.5 3,218.0

Pinyon/juniper 3.6 4.2 6.5 2.7 16.9

Exotic softwoods 1.6 1.5 3.1

Oak/pine 10.5 22.5 26.1 32.2 33.7 36.4 33.2 17.3 17.8 6.9 3.6 240.1

Oak/hickory 46.2 12.9 16.0 54.0 99.0 178.9 171.0 201.8 145.4 86.7 67.1 1,079.0

Elm/ash/cottonwood 66.5 26.0 50.8 101.7 135.8 171.6 180.0 175.3 95.4 66.2 109.3 1,178.4

Maple/beech/birch 95.2 34.9 48.4 104.7 171.5 303.3 329.4 300.5 173.6 74.5 45.6 1,681.7

Aspen/birch 968.6 722.5 631.2 649.8 874.2 950.5 835.1 427.9 137.0 69.3 31.3 6,297.2

Exotic hardwoods 1.7 2.2 3.8

Nonstocked 204.8 204.8

All groups 1,575.6 1,046.8 1,045.1 1,321.6 1,875.5 2,143.4 2,015.9 1,555.4 844.8 551.4 784.4 14,759.8



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		1  03

Figure 5a and 5b.—Example of graph output from the Virtual Analyst program. The data refer to the white/red/jack pine forest 
type group (top, fig. 5a) and the maple/beech/birch forest type group (bottom, fig. 5b) on timber land in Minnesota, across three 
inventories: 1977, 1990, and 1999–2003.

(5a)

(5b)

function, where a State resource manager might be interested 

in seeing the high volumes of wood in the 51- to 80-year age 

classes. Another example of an illustrative depiction of data is 

a table of volume, area or other variable of interest, parsed by 

categories such as age class or forest type (fig. 6). Currently, 

such tables are generated from the Oracle database into 

camera-ready PDF files using a separate discrete routine. VA 

would incorporate final table generation into a seamless data 

entry–analysis–data display process.

The annual inventory report has traditionally been published 

as a resource bulletin in the format of several pages of 

text, including standard definitions and methodology pages, 

followed by 9 to 12 tables. In the near future, we anticipate that 

the annual report will be more along the lines of a two-page 

summary with highlights. Some tables may be published, but 

most of the data will be available on the Web.

Incorporating this new format, the section below illustrates 

a hypothetical abstract from the prototype annual report and 

includes some analysis of the core report table of area by forest 

type and stand age class and one additional table, volume by 

species and forest type. The strings and values that can be 

changed are denoted by output categories in brackets.



104	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

Figure 6.—Prototype tabular output of estimated timberland area by stand age and forest type group generated by the Virtual 
Analyst program.

•	 Total timberland area is 14.8 [numerical] million acres 

[units]. 

•	 The aspen/birch [string] type is the predominant 

forest type on the landscape, making up more than 42 

[numerical] percent [units] of all timberland. 

•	 Forest types dominated by softwood species make up 

more than 27 [numerical] percent [units] of the timberland 

acreage. 

•	 Spruce/fir [string] is the primary [highlight] softwood 

component by acreage and volume. 

•	 Between 1990 [date] and 1999–2003 [date], the net 

volume of growing-stock trees on timberland increased 

[highlight] by 0.9 [numerical] percent [units], from 15.1 

[numerical] billion cubic feet [units] to 15.2 [numerical] 

billion cubic feet [units].



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		1  05

Conclusions

The VA program facilitates the rapid production of annual 

reports while introducing automated data-mining and error-

checking capabilities. Although the program presented here is a 

prototype, the full version will allow more rapid dissemination 

of analytical reports to our stakeholders while ensuring the 

quality of the data contained therein. Future versions of this 

program could include custom report generation available 

directly to the stakeholders, allowing fully interactive data 

analysis and report production. The VA program is just one 

component of a suite of data analysis/data quality tools, 

including a sophisticated statistical analysis tool, being 

developed by the Pacific Northwest FIA program. These tools 

will enhance resource analysis and improve information quality 

assurance for the national FIA program.
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A Comparison of Tree Crown Condition in 
Areas With and Without Gypsy Moth Activity

KaDonna C. Randolph1

Abstract.—This study compared the crown 

condition of trees within and outside areas of gypsy 

moth defoliation in Virginia via hypothesis tests 

of mean differences for five U.S. Department of 

Agriculture (USDA) Forest Service Forest Inventory 

and Analysis phase 3 crown condition indicators. 

Significant differences were found between the trees 

located within and outside gypsy moth activity, 

but no crown condition indicator was consistently 

different across the 4 years included in the study. 

Results suggest that the crown condition indicators 

may provide some benefit in pinpointing the presence 

of a known stressor and also may provide a starting 

point for identifying unknown stressors.

Objective

The U.S. Department of Agriculture (USDA) Forest Service, 

which is responsible for reporting the status of and trends in 

forest ecosystem health, has programs in Forest Inventory 

and Analysis (FIA), Forest Health Monitoring (FHM), and 

Forest Health Protection that cooperatively monitor forest 

health by means of aerial detection surveys and on-the-ground 

inventories. One of the ways in which changes in forest health 

are detected on the ground is through the measurement of a 

suite of ecological indicators on a network of plots known as 

FIA phase 3 plots (formerly FHM detection monitoring plots) 

(Riitters and Tkacz 2004). 

 

Among the ecological indicators assessed on the FIA phase 

3 plots is tree crown condition. Crown condition has long 

been recognized as a general gauge of forest health because 

healthy crowns are usually distributed symmetrically in a 

predictable manner along the stem and careful examinations 

for deviations from this pattern may indicate a tree undergoing 

stress (Waring 1987). Researchers have different conclusions 

about the relationship between crown condition and tree vigor 

(Anderson and Belanger 1987, Innes 1993, Kenk 1993, Solberg 

and Strand 1999), and even though crown condition indicators 

have been measured since the outset of the FHM program in 

1990 few studies have sought to determine the usefulness of 

crown condition for evaluating forest health (e.g., Juknys and 

Augustaitis 1998, Steinman 2000). Thus, the purpose of this 

study was to assess the practicability of using the phase 3 crown 

condition indicators to detect forest health problems.

One way to gauge the usefulness of crown condition for moni-

toring forest health is to determine whether crown condition in 

areas with a known stress agent differs from that in areas with-

out a known stress agent. If the impact of an obvious stressor 

cannot be observed, then the ability to detect the occurrence of 

subtler and unknown stressors is called into question. In this 

study, tree crown condition in areas of gypsy moth (Lymantria 

dispar Linnaeus) activity was compared to crown condition 

outside the areas of moth activity. Since the gypsy moth feeds 

directly on tree foliage, its impact on crown condition should be 

noticeable if the indicators are adequately sensitive.

Analysis Methods

The study area was confined to Virginia, which first showed 

evidence of gypsy moth defoliation in 1984. Collection of tree 

crown condition data began in Virginia in 1991 and continues 

through the present, but because of the pattern of gypsy moth 

activity and sample size concerns, only data from the 1992–95 

period were utilized. For each year, all phase 3 plots in Virginia 

were assigned to one of five gypsy moth activity categories: 

present, likely present, possibly present, not currently present 

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN 37919. E-mail: 
krandolph@fs.fed.us.
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but present in past, or absent. Each plot was assigned to one 

of these categories based on conditions recorded on the plot 

(tree notes, tree damage codes, percent basal area in oak, plot 

disturbance codes) and proximity of the plot to aerially sketch 

mapped areas of gypsy moth defoliation. Plots were assigned 

to the present category if the tree or plot notes recorded by 

the field crews specifically indicated gypsy moth activity or 

if the plots were within 1 km (0.62 mi) of a mapped area of 

defoliation and had a disturbance code indicating the presence 

of damaging insects or oak trees with damaged foliage, buds, 

or shoots. Assignment of a plot to the likely present, possibly 

present, or present in past category was based on the amount 

of oak basal area on the plot, plot-level disturbance codes, tree-

level damage codes, and past gypsy moth activity. Any plot 

failing to meet the requirements for the present, likely present, 

possibly present, or present in past categories was assigned to 

the absent category. Only two of the five categories, present and 

absent, were used for this particular study. Though the gypsy 

moth feeds on a variety of species, oaks (Quercus spp.) are the 

preferred host; therefore, only data for oak trees on plots with 

five or more living oaks with diameter at breast height (d.b.h.) 

> 12.6 cm were utilized in the analyses. 

	

Two sets of crown condition indicators were included in the 

analyses: those recorded by the field crews (absolute indicators) 

and those calculated from the field data (composite indicators). 

The following were the absolute crown condition indicators 

(USDA Forest Service 2004): 

1.	 Crown density—the amount of crown branches, foliage, 

and reproductive structures that blocks light visibility 

through the projected crown outline.

2.	 Crown dieback—recent mortality of branches with fine 

twigs, which begins at the terminal portion of a branch and 

proceeds inward toward the trunk.

3.	 Foliage transparency—the amount of skylight visible 

through the live, normally foliated portion of the crown, 

excluding dieback, dead branches, and large gaps in the 

crown.

The absolute indicators are visually assessed by the field crews 

and are recorded in 5-percent increments from 0 to 100 percent. 

The composite crown indicators, composite crown volume 

(CCV) and composite crown surface area (CCSA), were 

calculated as

CCV = 0.5∙π∙R2∙CL∙CD

and

where: 

R = crown diameter (meters)/2. 

H = total tree height (meters). 

CL = H*(live crown ratio)/100.

CD = crown density/100 (Zarnoch et al. 2004). 

Crown diameter is the average of the greatest crown width and 

crown width measured along a line perpendicular to the axis 

of greatest crown width and live crown ratio is the percentage 

of the live tree height supporting live foliage. Crown diameter 

and live crown ratio were measured in the field; tree heights 

were not measured in the field and were predicted with FIA 

models. The use of predicted heights for calculating CCV and 

CCSA may mask some of the differences in crown size because 

trees undergoing stress would be expected to be shorter than 

trees free of stress. (Measurement of tree heights on the phase 

3 plots began in 2000, but at the same time measurement of 

crown diameter was dropped. Hence, crown diameter is now 

predicted from models that have the potential to similarly mask 

tree crown condition. See Bechtold et al. [2002] for further 

discussion). Stem diameters, which were needed to predict 

tree height, were not measured between 1992 and 1994, and so 

CCV and CCSA were calculated for 1995 only.

To account for stem size, stand condition, and species impacts 

on crown condition, Zarnoch et al. (2004) recommend 

standardizing and residualizing the crown condition indicators 

so that trees may be combined or compared across species, 

or plots, or both. Their methods were employed in modeling 

CCV and CCSA for each year by species with the simple linear 

regression:

β
0
 + β

1
d.b.h. + β

2
ba

where d.b.h. is diameter at breast height (cm) and ba is stand-

level basal area (m2) per hectare for all trees ≥ 2.5-cm d.b.h. 

4 4

2 2 2
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The residuals from the regression models were standardized 

by species. No single model form was found to be consistently 

adequate for predicting the absolute indicators across species 

and years; therefore, the absolute indicators were standardized 

by species only. 

Means of the standardized and standardized-residualized crown 

condition indicators were calculated by year for the absent and 

present gypsy moth activity categories to test the hypothesis: 

		  H
0
: μ

absent
 = μ

present
 

		  H
1
: μ

absent
 ≠ μ

present.

Calculation of the standardized and standardized-residualized 

crown condition indicator means for both gypsy moth activity 

categories was performed with the SAS software procedure 

SURVEYMEANS (SAS 2001) because this procedure can 

make provision for the FIA sample survey design, which 

results in unequal-sized clusters of trees on the inventory 

plots. Given this survey design, it was simplest to test the null 

hypothesis given above via two-sided 95-percent confidence 

intervals for the difference (μ
absent

 - μ
present

). Two groups were 

declared significantly different at the 0.05 level of significance 

if the confidence interval for (μ
absent

 - μ
present

) did not include 0.

Results and Discussion

Gypsy moth defoliation in Virginia was most severe in 1992, 

when 748,100 acres were defoliated, and in 1995, when 

849,584 acres were defoliated (fig. 1) (Virginia Department of 

Forestry 2005). In 1992 and 1994, six plots met the criteria for 

gypsy moth presence; five plots met the criteria in 1995 and 

three plots in 1993. The number of plots in the absent category 

ranged from 24 in 1992 to 37 in 1994 (table 1). Ten oak species 

were included in the analyses: Quercus alba L., Q. coccinea 

Muenchh., Q. falcata Michx. var falcata, Q. marilandica 

Muenchh., Q. nigra L., Q. phellos L., Q. prinus L., Q. rubra 

L., Q. stellata Wangenh., and Q. velutina Lam. Four of these 

species (Q. marilandica, Q. nigra, Q. phellos, and Q. stellata) 

had less than 30 observations each per year and were grouped 

together as one species for standardizing and standardizing-

residualizing. The number of oak trees included in the analyses 

Figure 1.—Aerial sketch map areas of gypsy moth defoliation 
in Virginia, 1992–95.

1992

1993

1994

1995
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ranged from 73 to 103 for the present category and from 276 to 

494 for the absent category (table 1).

size and inclusion of plots across the entire State. Given the 

sample survey design of the analysis, the confidence interval 

degrees of freedom were dependent on the number of plots in 

the gypsy moth activity categories. The small number of plots 

in the present category resulted in a larger t-value, and thus 

wider confidence intervals, which made it more difficult to 

declare differences significant than it would have been if the 

sample size had been larger. Plots from across the entire State, 

and not just in northern Virginia within the range of gypsy 

moth activity, were included in the absent category. Thus, the 

averages for the absent category may include some effects of 

geographic location. 

The timing of plot assessment also may have contributed to the 

finding of only a few, small significant differences. Gypsy moth 

larvae typically feed from early May to late June (Coulson and 

Witter 1984), though the peak of defoliation may not occur un-

til late July (Liebhold et al. 1997). Phase 3 plots are measured 

throughout the entire summer season (June through August), 

so some plots may be assessed before defoliation climaxes. 

This might have been the case with the three plots in the pres-

ent category in 1993, because all of these plots were measured 

before June 18. For the other years, the plots in the present 

category were assessed as early as June 6 and as late as August 

23: between July 22 and August 3 in 1992; between June 6 and 

June 29, and on August 23 in 1994; and between June 13 and 

July 28 in 1995. Even when measured late in the season, crown 

conditions may not show the effects of gypsy moth defoliation 

(or other defoliation events) because hardwood trees have the 

potential to produce a second flush of leaves if initial defolia-

tion has been severe (USDA Forest Service 2005). Hence, 

the timing of plot assessment may affect the usefulness of the 

crown condition indicator for detecting forest health stressors, 

particularly if the impacts of the stressor are ephemeral or if 

they are manifested after the plot has been assessed. 

Overall, success in detecting differences in this study was due 

in part to a priori knowledge of where gypsy moth defoliation 

occurred (fig. 1). Consider the map in figure 2, which shows the 

1995 plot averages for oak standardized-residualized CCSA. 

The size of the dot indicates the magnitude of deviation from 

the expected species averages, with the larger dots indicating a 

Table 1.—Number of plots and living oak trees in each gypsy 
moth activity category.

Year
Gypsy moth Gypsy moth

 Absent  Present  Absent  Present

(Number of plots) (Number of oak)

1992 24 6 276 90

1993  35 3 461  73

1994  37 6 494 103

1995  36 5 474 97

The standardized and standardized-residualized indicators 

describe deviation from the expected (average) crown condi-

tions for a given population under typical conditions and are 

expressed in terms of standard deviation units from the mean. 

Trees with about average crown conditions will have standard-

ized and standardized-residualized values near 0. Better or 

poorer than average crown conditions will be > or < 0, with the 

direction (positive or negative) depending on the nature of the 

crown condition indicator. For example, high crown dieback 

is indicative of poor crown condition and would correspond 

to positive standardized values. On the other hand, low crown 

density indicates poor crown condition and would correspond 

to negative standardized values. As expected, trees in the pres-

ent category generally exhibited poorer than average crown 

conditions. Trees in the absent category generally exhibited 

average or better than average crown conditions; however, only 

a small number of the differences between the group means 

were significant: crown dieback in 1992, foliage transparency 

and crown dieback in 1994, and composite crown surface area 

in 1995 (table 2). Though significant differences were found be-

tween the crown conditions for trees on plots with and without 

the gypsy moth stress agent, no crown condition indicator was 

consistently different between the two groups.

Care was taken to assign plots to the present and absent 

categories correctly; thus, it was expected that the differences 

between the crown conditions in areas with and without gypsy 

moth activity would have been more extreme. Factors that may 

have impacted the hypothesis testing include the small sample 
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deviation toward smaller (poorer) CCSA. While the dots in the 

area of gypsy moth defoliation are large, they are not clearly 

distinguishable from dots in other parts of the State; e.g., south-

western and east central areas. Thus, unless one already knows 

where forests may be undergoing stress, comparing plot-level 

crown conditions may not pinpoint specific trouble spots, but 

may provide a starting point for further investigation.

Conclusions

The examination of crown conditions within and outside 

areas of known gypsy moth defoliation provided insight into 

Table 2.—Average absolute and composite crown condition indicators by year and gypsy moth activity category (Absent, Present), 
and 95-percent CIs for the difference of the means (Absent – Present).

Indicator
Year

1992 1993 1994 1995

Standardized crown density

Absent 0.15 0.03 0.00 0.15

Present – 0.12 – 0.32 – 0.24 – 0.54

95-percent CI – 0.16, 0.70 – 0.34, 1.04 – 0.31, 0.78 – 0.20, 1.57

Standardized crown dieback

Absent – 0.13 0.01 – 0.02 – 0.06

Present 0.21 – 0.12 0.24 0.32

95-percent CI – 0.62, – 0.04a – 0.21, 0.47 – 0.35, – 0.18a – 0.83, 0.07

Standardized foliage transparency

Absent 0.04 – 0.09 – 0.09 – 0.06

Present 0.33 0.47 0.52 0.55

95-percent CI – 0.66, 0.09 – 1.53, 0.41 – 1.00, – 0.23a – 2.34, 1.12

Composite crown volume
standardized residual

Absent  — b — — 0.10

Present — — — – 0.10

95-percent CI — — — – 0.15, 0.55

Composite crown surface area 
standardized residual

Absent — — — 0.15

Present — — — – 0.31

95-percent CI — — — 0.11, 0.80a

CI = confidence interval.
a Significant difference.
b Insufficient data to calculate the indicator for this year.

Figure 2.—Plot averages for oak standardized-residualized 
composite crown surface area overlying the area of gypsy moth 
defoliation in Virginia in 1995. The size of the dot indicates the 
magnitude of deviation from the expected species averages with 
the larger dots indicating a deviation toward smaller (poorer) 
composite crown surface areas. 
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the practicability of using the crown condition indicators 

to identify trees undergoing stress. Trees on plots in two 

categories of gypsy moth activity had significant differences 

in crown condition, but the differences were neither extensive 

nor consistently significant for an indicator over the time 

period examined. When considered alone, the crown condition 

indicators may help us identify the presence of a known 

stressor, but perhaps only if the general area undergoing stress 

is known already. The crown condition indicators may also 

provide a starting point for identifying unknown stressors, 

though forest health problems may be difficult to distinguish 

if their manifestation in crown condition is subtle. Ongoing 

research continues to examine the usefulness of the crown 

condition indicators as early signals of declining forest health. 

Besides the annually collected phase 3 survey data, designed 

experiments and studies examining the effect of assessment 

timing will refine our expectations for the crown condition 

indicators. 
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Searching for American Chestnut: The 
Estimation of Rare Species Attributes in a 
National Forest Inventory

Francis A. Roesch1 and William H. McWilliams2

Abstract.—American chestnut, once a dominant 

tree species in forests of the Northeastern United 

States, has become extremely rare. It is so rare, 

in fact, that on completion of 80 percent of the 

plot measurements of the U.S. Department of 

Agriculture Forest Service’s most recent inventory in 

Pennsylvania, only 33 American chestnut trees with a 

diameter at breast height ≥ 1.0 in were found, out of 

72,416 sampled trees. This paper discusses auxiliary 

sampling strategies that allow Forest Inventory 

and Analysis (FIA) units to estimate rare species in 

general as a first step in considering the especially 

difficult problems that American chestnut poses. The 

strategies involve (1) an increase of the initial plot 

size, (2) the use of adaptive cluster sampling, and 

(3) a combination of the first two. Adaptive cluster 

sampling was developed for the estimation of rare 

clustered events and is considered here because 

American chestnut is not only rare but also known to 

occur almost exclusively in clusters.

American chestnut (Castanea dentata (Marsh.) Borkh.), once 

a dominant tree species in Eastern U.S. forests, has become 

extremely rare in those same forests (McWilliams et al, 2006). 

It is so rare, in fact, that on completion of 80 percent of the 

plot measurements of the U.S. Department of Agriculture For-

est Service’s most recent inventory in Pennsylvania, only 33 

American chestnut trees were found out of 72,416 sampled 

trees. This paper explores adaptations to the Forest Inventory 

and Analysis (FIA) sample design for estimating attributes of 

rare species in general as a first step in considering the espe-

cially difficult problems that American chestnut poses.

National inventories are best suited to (and funded for) small-

scale problems such as the desire to estimate a level of X per 

million hectares. Related large-scale attributes and rare events, 

however, are often of disproportionate interest, which results 

in a general scale problem within the inventory because the 

rarer an event is, the greater its variance of observation will be 

and the higher the probability is that the event will be missed 

entirely by a small-scale inventory.

A few alternative approaches to detecting and estimating 

rare events would be to increase the sample size, increase the 

sample complexity (by adding a stage or phase, for example), 

proportionally or optimally allocate the sample, increase the 

size of the observation unit, or use adaptive cluster sampling. 

Here we consider the following options that are readily available 

to FIA for increasing the sample of American chestnut without 

increasing the number of sample points:

(1)	 Increase the size of the sample units utilizing the existing 

design features, and alter the size distributions selected by 

the components of FIA’s tri-areal design within the natural 

range of American chestnut (fig. 1), to wit:

a.	 Sample chestnut trees with diameter at breast height 

(d.b.h.) from 1.0 to 5.0 in on the subplot rather than 

the microplot.

b.	 Use the existing design’s previously developed 

macroplot to sample all chestnut trees larger than a 

breakpoint diameter. 

(2)	 Use adaptive cluster sampling with search circles of a fixed 

size dependent upon the expected intra-cluster distribution 

(as in Roesch 1993). 

(3)	 Some combination of options 1 and 2.

Although a detailed discussion of this point is beyond the scope 

of this article, a minor modification of option 3 could be used 

for increased efficiency in the estimation of American chestnut. 

1 Mathematical Statistician, U.S. Department of Agriculture (USDA), Forest Service, Forest Inventory and Analysis, Southern Research Station, Asheville, NC.
2 Supervisory Research Forester, USDA Forest Service, Forest Inventory and Analysis, Northern Research Station, Newtown Square, PA.
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That modification would be to extend the search area for the 

first member of the network (defined below) by a predetermined 

portion of the crew members’ approach to the plot, thereby 

increasing the plot size exclusively for American chestnut. The 

extreme rareness of the American chestnut may warrant such 

an extended search area, and this extension of the search area 

would probably not substantially increase observation time 

because the crew is already traveling to the plot and American 

chestnut is distinctive enough to usually be recognized 

immediately. As long as the area of the extended search is 

known, unbiased estimators can be formed in the same way 

they are for the options we will consider in greater detail. 

Alternatively, if one forsakes the desire for unbiased estimators 

in favor of any indicator of the presence of American chestnut, 

crew members could record any observation of the species 

during the course of their workday. The quality of the resulting 

information would be comparable to that obtained in almost 

all of the botanical studies conducted through the middle of 

the 20th century, and the information obtained could be used as 

a contemporary update to species distribution maps that were 

developed in the same way and are still relied on today. 

The options considered here are described in detail below.

Option 1

Option 1 exploits an adaptable feature of the existing FIA 

design, first by employing the currently underutilized macroplot 

to sample this rare species and second by redefining the various 

plots within the tri-areal design for intensified observations 

on American chestnut. The macroplot, an optional feature in 

the FIA sample design, may be used to augment the sample 

for attributes of regional interest. This option has at least two 

advantages. First, it is somewhat efficient because increased 

selection areas could be limited to plots in areas with a high 

probability of containing the rare event of interest and to 

observations on the species of interest. 

In addition, there would not be any further theoretical 

development or explanation needed for FIA practitioners and 

data users, other than a description of the larger selection areas 

for chestnut trees. The largest disadvantage is that additional 

costs of observation would be incurred on every plot in all 

areas of interest. Some potential also exists for field crew 

confusion with respect to the species-specific plot sizes and the 

identification of plots in high-probability areas.

Option 2

In option 2, the existing inventory is modified by adapting the 

field procedure when American chestnut is observed. Roesch 

(1993, 1994), following the work of Kalton and Anderson 

(1986), Levy (1977), Thompson (1990, 1991a, 1991b), and 

Wald (1947), showed how to do this for forest inventories using 

adaptive cluster sampling, in which unique networks of trees 

are sampled rather than unique trees.

Adaptive designs are usually described as being executed in 

two stages. First a probability sample of units in a population is 

taken and then additional units are selected near those units that 

display a specific condition of interest. Combining probability 

proportional to size sampling schemes common in forestry with 

an adaptive sampling scheme results in a system that can be 

applied to both equal and unequal probability forest inventory 

systems (Roesch 1993). In this article, the initial selection of 

trees by FIA’s tri-areal design forms the basis of the first stage 

(Reams et al. 2005). In general, if a sample tree displays some 

Figure 1.—The FIA plot design. All trees greater than 5.0 in 
d.b.h. are measured on the subplot. Trees greater than 1.0 in 
d.b.h. are measured on the microplot. The macroplot is an 
optional feature currently used in the Pacific Northwest as an 
auxillary sample for large trees.

FIA = Forest Inventory and Analysis.
Source: Bechtold and Patterson 2005.
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rare condition of interest, (e.g., being an American chestnut), 

a specified area is examined for additional chestnut trees. 

This is repeated for every new chestnut found. The goal is to 

choose a distance rule that would identify a reasonable number 

of additional trees for the sample. Achievement of this goal is 

facilitated by a foreknowledge of the spatial distribution of the 

rare event of interest.

Further development assumes that the tree is the sampling 

unit and that there are N trees in the area of interest with 

labels 1,2,...,N. Associated with the N trees are values of 

interest y = {y
1
,y

2
,...,y

N
} and characteristics of interest C = 

{C
1
,C

2
,...,C

N
} (Roesch 1993). In this case, the species itself is 

the characteristic of interest; therefore, if tree i is an American 

chestnut tree, C
i 
= 1, and otherwise C

i 
= 0. This study was 

designed to determine an optimal adaptive sampling design and 

estimators for the presence, size, and fecundity of American 

chestnut within most of its natural range. As an example, 

suppose the variable of interest is total basal area of American 

chestnut trees. Let x
i 
= C

i
y

i
, so if tree i is an American chestnut 

tree, x
i 
= C

i
y

i 
= 1*ba

i
.

The field crew would take the following steps:

(1)	 Conduct the initial sample.

(2)	 For all American chestnut trees conduct the adaptive part 

of the sample:

(a)	 Measure all desired attributes y
i.
 

(b)	 Observe all American chestnut trees that are within 

a circle of radius r from the center of tree i and have 

not already been sampled (i.e., ignore all new trees of 

other species).	  

(c)	 For all newly observed American chestnut trees, 

return to (a).

(d) 	 Stop when no new American chestnut trees are 

observed.

Similarly, the initial FIA design is extended to a network of 

chestnut trees. Each tree is surrounded by a circular area of 

selection. Options for definitions of the radius r are discussed 

below. These options attempt to determine a radius that 

would identify a reasonable number of additional trees for 

the sample—that is, enough additional trees to provide an 

estimation advantage and few enough to be considered during 

the measurement of the field inventory plot. This requires 

us to consider all of the available information on the spatial 

distribution of chestnut trees. It is clear that this extra effort in 

the design stage will be rewarded by the increased efficiency of 

a well-planned adaptive sampling survey.

A cluster is the set of all trees included in the sample as a result 

of the initial selection of tree i. A network is the subset of 

trees within a cluster such that selection of any tree within the 

network by the original sample (step 1 above) will lead to the 

selection of every other tree in the network. Because selection 

of trees for which C
i 
= 0 will not result in the selection of any 

other trees, these trees are networks of size 1. This procedure 

maps the population of N trees into a population of M networks, 

conditioned on C (fig. 2). Each network is sampled with known 

probability because the network population is mapped directly 

onto the tree population. We ignore trees not displaying the 

condition (i.e., for which C
i 
= 0) unless they are in the original 

estimators. This results in unbiased estimators (Thompson 

Figure 2.—Adaptive sampling attributes for a group of six trees 
in a population. A randomly placed point in the initial sample 
can select trees from the sets: {},{1},{2},{3},{4},{5},{1,2},{3,4}, 
{3,4,6},{4,5}, and {4,6}.

Source: Roesch 1993.
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1990). The probability (p
i
) of using tree i in an estimator is 

equal to the union of the selection areas of each tree in the 

network (a
i
) to which it belongs, divided by the area of the 

forest (L
F
).

Estimator of the Population Total

Thompson (1990) showed that an unbiased estimator can be 

formed by modifying the Horvitz-Thompson estimator (Horvitz 

and Thompson 1952) to use observations not satisfying the 

condition only when they are part of the initial sample. We 

can calculate the probability that a tree is used in the estimator 

even though its probability of being observed in the sample 

is unknown. The probability of tree k, in network K, being 

included in the sample from at least one of m plots is:

where:

a
K
 = union of the inclusion areas for the trees in network K to 

which tree k belongs.

L
F
 = the total area of the forest.

For the HT estimator, let:

if the kth tree does not satisfy the 

condition and is not selected in the 

sample, otherwise

Then sum over the v distinct trees in the sample:

The statistical properties of t
HT

 and other adaptive sampling 

estimators are discussed in Roesch (1993).

As its name implies, adaptive cluster sampling can be very 

efficient if the rare condition is distributed in clusters. In adaptive 

cluster sample designs, a compromise must be found between 

the level of new knowledge attained and survey cost. Adaptive 

sampling has at least three advantages: (1) it is efficient because 

only the presence of American chestnut triggers additional effort 

and cost; (2) it can be used on an attribute by attribute basis, so 

adapting the sample for estimation of American chestnut does 

not affect the cost of other estimates; and (3) it nullifies the 

weakness of the existing FIA design for the estimation of rare 

events. Its disadvantages include the potential for field crew 

confusion with respect to species-specific search rules and the 

identification of plots in high-probability areas, and the necessity 

for additional theoretical development and explanation for FIA 

practitioners and data users.

Simulation

To illustrate the considerations that must be taken into account 

when choosing between these options for sampling rare events, 

a simulation utilizing the same population described in Roesch 

(1993) was conducted. In brief, the simulated population was 

built using the coalesced 1981 FIA plot data from Hancock 

County, ME, as seed data. The data were chosen because they 

were conveniently on hand and were sufficient to illustrate 

the attributes of these sampling options. Ten sample points 

were applied to the population 1,000 times and the following 

four sample designs for eight rare tree distributions within the 

population were compared:

(1)	 Bi-areal design.

Microplot: d.b.h. < 5.0 in

Subplot: d.b.h. ≥ = 5.0 in

(2)	 Tri-areal design—breakpoint diameter (9, 12, 15, and 18 in). 

Microplot: d.b.h. < 5.0 in

Subplot: 5.0 in ≤ = d.b.h. < breakpoint diameter 

Macroplot: d.b.h. ≥ = breakpoint diameter 

(3)	 Adapted bi-areal design.

Search radii of 20, 30, 40, 50, and 60 ft

(4)	 Adapted tri-areal design.

Search radii of 20, 30, 40, 50, and 60 ft

We estimated total basal area and mean squared error (MSE) 

for the eight rare species whose spatial distributions are plotted 

individually in figure 3 for each variation of each design. 

Design 1 is the default design that would be used if no special 

consideration were given to the rare species. The varying 

breakpoint diameters affect designs 2 and 4 while the varying 

search radii affect designs 3 and 4.
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Results

Figures 4 through 7 show the simulation’s calculated ratios 

of the MSEs of designs 2, 3, and 4 to design 1 for breakpoint 

diameters 9, 12, 15, and 18 in, respectively. 

Figure 4 represents the heaviest investment in additional 

observations on the macroplots for designs 2 and 4 of those 

studied with a breakpoint diameter of 9 in. For four of the 

eight distributions (tamarack, yellow birch, white spruce, and 

quaking aspen), the reduction in MSE for the tri-areal design 

relative to the bi-areal design is greater than 60 percent; that is, 

the ratios are less than 40 percent. The tri-areal design has the 

least advantage over the bi-areal design in the case of the highly 

clumped sugar maple distribution, with MSE ratios greater 

than 80 percent. In all instances, the plots for the adapted 

bi-areal and adapted tri-areal designs show some advantage 

over their nonadapted counterparts. In all graphs but the sugar 

maple graph, the tri-areal design shows a greater reduction in 

MSE over the bi-areal design than does the adapted bi-areal 

design. The difference is very small in three of the graphs 

(white ash, white spruce, and jack pine) and fairly small in a 

fourth (black spruce). The adapted tri-areal in all cases shows 

the greatest overall reduction in MSE ratios. Note that in most 

cases a threshold can be discerned, beyond which an increase in 

search distance for the adapted designs yields little additional 

MSE reduction. With tamarack and jack pine for example, this 

appears to happen between search distances of 20 and 30 feet. 

With quaking aspen and sugar maple, this threshold appears to 

have occurred before the shortest distance simulated, 20 ft. 

Figure 5 represents a smaller investment in additional 

observations on the macroplots for designs 2 and 4 than did 

figure 4 with an increased breakpoint diameter of 12 in. For six 

of the eight distributions, the ratio of tri-areal design MSE to 

the bi-areal design MSE exceeds the ratio of adapted bi-areal 

design MSE to MSE for the nonadapted bi-areal design. No 

advantage can be discerned for the tri-areal design over the 

bi-areal design for two species (jack pine and quaking aspen). 

The miniscule advantage noted for sugar maple could hardly be 

justified by the six-fold increase in plot size. For the remaining 

species, the tri-areal designs still show a significant advantage 

over their respective bi-areal counterparts. In all instances the 

adapted designs outperform their nonadapted counterparts.

The results in figure 6, for the breakpoint diameter of 15 in, 

show that the diameter distributions of five of the species are 

such that the tri-areal design provides no advantage. It is at this 

breakpoint diameter that an advantage of the adapted bi-areal 

over the unadapted tri-areal is first observed for white spruce.

Figure 7 shows that none of the diameter distributions supports 

an argument for a breakpoint diameter of 18 in or larger.

Figure 3.—The spatial locations of the eight rare species in the 
simulated population described in Roesch (1993).
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Figure 4.—Plots from 1,000 simulations for each species of three mean square error ratios using a breakpoint diameter of 9 in. The 
denominator in each case is the mean square error of the total basal area estimator from the bi-areal design (t

B 
). The numerators 

are (1) the mean square error of the total basal area estimator from the tri-areal design (t
T 
), (2) the mean square error of the total 

basal area estimator from the adapted bi-areal design (t
AB 

), and (3) the mean square error of the total basal area estimator from the 
adapted tri-areal design (t

AT 
). 

MSE = mean square error.
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Figure 5.—Plots from 1,000 simulations for each species of three mean square error ratios using a breakpoint diameter of 12 
in. The denominator in each case is the mean square error of the total basal area estimator from the bi-areal design (t

B 
). The 

numerators are (1) the mean square error of the total basal area estimator from the tri-areal design (t
T 
), (2) the mean square 

error of the total basal area estimator from the adapted bi-areal design (t
AB 

), and (3) the mean square error of the total basal area 
estimator from the adapted tri-areal design (t

AT 
). 

MSE = mean square error.
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Figure 6.—Plots from 1,000 simulations for each species of three mean square error ratios using a breakpoint diameter of 15 
in. The denominator in each case is the mean square error of the total basal area estimator from the bi-areal design (t

B 
). The 

numerators are (1) the mean square error of the total basal area estimator from the tri-areal design (t
T 
), (2) the mean square 

error of the total basal area estimator from the adapted bi-areal design (t
AB 

), and (3) the mean square error of the total basal area 
estimator from the adapted tri-areal design (t

AT 
).

MSE = mean square error.
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Figure 7.—Plots from 1,000 simulations for each species of three mean square error ratios using a breakpoint diameter of 18 
in. The denominator in each case is the mean square error of the total basal area estimator from the bi-areal design (t

B 
). The 

numerators are (1) the mean square error of the total basal area estimator from the tri-areal design (t
T 
), (2) the mean square 

error of the total basal area estimator from the adapted bi-areal design (t
AB 

), and (3) the mean square error of the total basal area 
estimator from the adapted tri-areal design (t

AT 
).

MSE = mean square error.
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Discussion

Estimation of American chestnut attributes is ideal as a test 

case of adaptive sampling for FIA because the species is so 

rare, in stark contrast to its previous abundance, and because 

there is intense scientific interest in the species. A significant 

advantage of the FIA design for estimation of well-dispersed 

forest attributes is the intentionally thorough dispersion of 

the sample plots through the spatial-temporal cube, while this 

very aspect constitutes a significant weakness for estimation 

of forest attributes that occur in rare clusters within the cube. 

An adaptive sampling design laid on top of the FIA design in 

targeted areas could nullify this weakness of the existing design 

for the estimation of this rare event.

Relative cost is a major concern when choosing between 

sampling strategies. The additional monetary cost of the 

adaptive strategy for a particular application depends on 

relative cluster size and occurrence in the sample. These factors 

can be predicted given adequate previous knowledge of the 

population. In the example in Roesch (1994), the additional 

cost of including extra trees was shown to be controllable by the 

distance examined. Within this distance, the species of each tree 

must be determined and if any tree is an American chestnut, 

its d.b.h., and location must be recorded. Because American 

chestnut trees are truly rare and found in clusters, the additional 

cost will be small and the estimate of the per-tree attributes 

will be improved. The size of the search area determines the 

size of the networks of interest found as well as the number 

of additional other trees encountered. Therefore, for any other 

specific attribute one would want to select a minimally sized 

search area dependent on the expected proximity of the target 

trees to each other.

Adaptive cluster sampling provides a way for FIA to monitor 

rare events at a relatively small cost. It also allows flexibility in 

the inventory in that once a particular condition becomes less 

rare, the adaptive sampling procedure can be dropped for that 

condition, and other conditions can be added to the list of those 

adapted for.

This direct application of adaptive sampling should yield much-

improved estimates of American chestnut attributes; however, 

it appears that this method could be used even more efficiently 

for American chestnut with a minor modification. That is, the 

extreme rareness of the American chestnut may warrant an ex-

tended search area for the first member of the network. This is a 

viable option not discussed in the Roesch or Thompson papers 

cited. The search area would be extended by a defined portion 

of the crew members’ approach to the plot. This would increase 

the plot size for American chestnut only, without substantially 

increasing observation time. That is, the crew is already travel-

ing to the plot, and they generally look around while they are 

doing that. American chestnut is so distinctive that it is usually 

recognized immediately. At any rate, the relative advantage of 

the extended plot may be evaluated in a future study.
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Rapid Forest Change in the Interior West 
Presents Analysis Opportunities and 
Challenges

John D. Shaw1

Abstract.—A recent drought has caused composi-

tional and structural changes in Interior West forests. 

Recent periodic and annual inventory data provide 

an opportunity to analyze forest changes on a grand 

scale. This “natural experiment” also provides oppor-

tunities to test the effectiveness of Forest Inventory 

and Analysis (FIA) methodologies. It also presents 

some analysis challenges, because analysts must 

evaluate the relative contributions of data obtained on 

phase 2 and phase 3 (i.e., Forest Health Monitoring) 

plots. In the case of the latter, some variables may 

reveal less-than-catastrophic changes. Evaluation 

of available data may allow FIA analysts to answer 

several longstanding, fundamental questions.

Introduction

Early in 2003, scientists and managers from universities and 

government agencies approached the Interior West Forest 

Inventory and Analysis (IW-FIA) program with questions 

about a widespread episode of drought-related mortality 

they were observing in pinyon-juniper woodlands (primarily 

common pinyon [Pinus edulis Engelm.] or singleleaf pinyon [P. 

monophylla Torr. & Frem.] in combination with any of several 

Juniperus spp.). In response, IW-FIA analysts began to follow 

the progression of mortality in States where annual inventory 

had recently started (Shaw 2005, Shaw et al. 2005). FIA annual 

data revealed an ecosystem-wide mortality episode that varied 

regionally in its intensity. In addition, FIA data showed that 

population-wide mortality, which ranged between 3 and 14 

percent of pinyon basal area at the State scale, was considerably 

lower than suggested by anecdotal reports and ad-hoc surveys, 

some of which suggested 40 to 100 percent mortality of pinyon 

basal area. 

The IW-FIA experience with this “natural experiment” revealed 

some important facts, perhaps the most important being that 

the annual inventory system can provide important information 

about forest change not obtainable from traditional, periodic 

inventories. At the same time, the event raised questions as to 

whether the same analysis could be repeated for other types 

of disturbances and other forest types (Shaw 2005). These 

questions relate not only to events that result in considerable 

mortality, but also events that produce widespread nonlethal 

effects—for example, crown dieback. A more general approach 

to these questions might be “How sensitive to forest change is 

the FIA sample for a given forest type (or species) and type of 

disturbance?” or, to state the issue another way, “We know it’s 

happening, but can FIA see it?”

These concerns are not unique to IW-FIA, but apply to the 

FIA program in a broad way. In his introductory talk at this 

symposium, Reams raised three relevant points: (1) FIA is 

in the business of quantifying trends, (2) FIA analysis and 

reporting have an increasingly ecological emphasis, and (3) 

it has been difficult for FIA to anticipate the “next big issue” 

in forest management. To that list, Guldin added the point 

that consumers of FIA data were not only interested in what 

is happening to the forest, but also where it is happening. In 

this paper, selected data from 16 western species (table 1) are 

explored with the intent of developing an approach for a priori 

sensitivity analysis of FIA data.

1 Analyst, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401. E-mail: jdshaw@fs.fed.us.



128	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

Analysis Approach

Detailed description of disturbances that affect western forests 

is beyond the scope of this article, but we know that landscape-

scale phenomena occur in many forest types—for example, 

bark beetle outbreaks occur in pinyon pines, lodgepole pine, 

and Engelmann spruce, and aspen has been declining due 

to a wide variety of factors. These events are commonly 

related to drought and other stressors. Because the recent 

drought is thought to have caused mortality in forest types 

other than pinyon-juniper, FIA data are analyzed here under 

the assumption that the recent period of drought has caused 

at least some change in other forest types in the past 5 years. 

Qualitative comparisons are made here using the response of 

pinyon-juniper woodlands as a reference (fig. 1).

Several key characteristics of the pinyon-juniper mortality event 

affect our expectations for other species. Most importantly, 

pinyon-juniper woodlands are the most common type in the 

Southwest, comprising approximately 50 percent of FIA plots 

in the States of Arizona, Colorado, Nevada, New Mexico, 

and Utah. This suggests that, in terms of sample size, pinyon-

juniper may provide the best-case scenario with respect to the 

possibility of detecting forest change. FIA has long recognized 

limitations to analysis of rare types because of low sample 

size; all types that remain are “in betweeners” for which the 

adequacy of the samples remain to be assessed.

Another key aspect of the pinyon-juniper type is that 

background mortality is known to be relatively low for species 

that occur in the type, based on results of periodic inventories. 

For example, annual mortality, on a volume basis, was 

estimated at 0.08 to 0.23 percent for common pinyon and 0.14 

percent for singleleaf pinyon, and even lower (< 0.10 percent) 

for juniper species. In contrast, for example, estimates of annual 

mortality for ponderosa pine ranged from 0.21 to 0.48 percent 

in the same inventories (Shaw 2005). At least some of the 

differences among species are likely to be because stand density 

tends to be an accretion process in pinyon-juniper stands, 

whereas stands of most other forest types tend to become 

established with an overabundance of seedlings (or sprouts) 

and undergo self thinning over most of the life in the stand. 

Therefore, capturing episodic mortality becomes an issue of 

separation of “unusual” mortality from background mortality. 

Table 1.—Selected species and distribution by State in the Interior West.

FIA Code Species name Range in Interior West*

15 white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) AZ, CO, ID, NV, NM, UT

19 subalpine fir (A. lasiocarpa (Hook.) Nutt.) All IW-FIA States

63 alligator juniper (Juniperus deppeana Steud.) AZ, NM

65 Utah juniper (J. osteosperma (Torr.) Little) All IW-FIA States

66 Rocky mountain juniper (J. scopulorum Sarg.) All IW-FIA States

69 oneseed juniper (J. monosperma (Engelm.) Sarg.) AZ, CO, NM

93 Engelmann spruce (Picea engelmannii Parry ex Engelm.) All IW-FIA States

106 common pinyon (Pinus edulis Engelm.) AZ, CO, ID, NV, NM, UT, WY

108 lodgepole pine (P. contorta Dougl. ex. Loud.) CO, ID, MT, NV, UT, WY

113 limber pine (P. flexilis James) All IW-FIA States

122 ponderosa pine (P. ponderosa Dougl. ex Laws.) All IW-FIA States

202 Douglas-fir (Pseusotsuga menziesii (Mirb.) Franco) All IW-FIA States

321 Rocky Mountain maple (Acer glabrum Torr.) All IW-FIA States

322 bigtooth maple (A. grandidentatum Nutt.) AZ, CO, ID, NM, UT, WY

746 aspen (Populus tremuloides Michx.) All IW-FIA States

814 Gambel oak (Quercus gambellii Nutt.) AZ, CO, NV, NM, UT, WY

IW-FIA = Interior West-Forest Inventory and Analysis.
* Ranges based on Little (1971, 1976); IW-FIA States include Arizona (AZ), Colorado (CO), Idaho (ID), Montana (MT), Nevada (NV), New Mexico (NM), 
Utah (UT), and Wyoming (WY).
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Because FIA now uses a single fixed-plot design for all forest 

types and pinyon-juniper woodlands tend to have relatively low 

stem density, plots in most other forest types are expected to 

have more tally trees per plot than plots in the pinyon-juniper 

type. This may mitigate the fact that fewer plots are likely 

to be located in other types than in the pinyon-juniper type. 

The actual effect, however, may depend on the nature of the 

disturbance (for example, whether trees are affected singly or 

in patches). On a related note, the typical number of tally trees 

found on an FIA plot is expected to vary according to the range 

of mixtures in which a species may be found. For example, in 

the last periodic inventory of Nevada, which is dominated by 

pinyon-juniper woodland, 590 plots had only one tree species 

present (usually singleleaf pinyon) and 920 plots had two tree 

species present. Only 138 plots included three or more tree 

species. In contrast, aspen has more than 70 associated tree 

species in the West, 45 of which are relatively common and 

many of which occur together. Hence, the abundance of any 

given species on a plot can range from a small fraction of basal 

area to 100 percent. These contrasts suggest that sensitivity 

to forest change may be different for species that occur in 

mixed stands compared with species that are most common in 

monotypic stands.

Finally, species-specific responses to type and severity of 

disturbance may affect the ability to detect change with FIA 

inventories. Although not yet confirmed by remeasurement 

data, it is thought that many of the pinyon trees on which 

drought symptoms (e.g., faded foliage and branch dieback) 

were observed in the past 5 years eventually succumbed. Some 

damage responses are relatively rare in the data because the 

time span between when a tree appears healthy and when it can 

be reasonably judged as dead can be relatively short compared 

with the 5-year window for being considered “recent” mortality. 

As a result, the probability of recording drought-related damage 

on live trees may be relatively low. In effect, this produces a 

binary response—live or dead—for most of the individuals that 

are measured. In contrast, it is common for juniper species, 

which are typically multistemmed, to suffer dieback in a few 

stems, thereby reducing live crown volume. Dead stems persist 

for some time, increasing the probability that a live juniper is 

observed with damage while it is still alive. Hypothetically, at 

least, this situation suggests that junipers may be more likely to 

exhibit a wider range of responses to drought than pinyons. 

For other species, the drought response may resemble that of the 

pinyons, with mortality being the primary detectable response 

in most drought-affected trees and little damage evident on 

survivors, or it may resemble the response of the junipers, 

where mortality is low but damage is common. For any given 

species, the expected response will depend on the species’ 

ecology and the type and severity of disturbance.

Figure 1.—Samples from 2000–04, showing relative number of 
live, dead, and mortality trees. Graph shows resulting pinyon 
mortality estimate over time. Species selected for comparison 
show increasing mortality trends (white fir and subalpine fir) 
or lack of clear trends (aspen and Gambel oak). 
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Looking for Consistency and Trends

In a first attempt to assess the sensitivity of FIA data to mortal-

ity and damage, 16 species (table 1) were selected for com-

parison and contrast in terms of their relative abundance on the 

landscape and the distribution of values recorded for selected 

variables. Ranges of the selected species vary from limited lo-

cal or regional distributions to common occurrence throughout 

the IW-FIA States. Plot data used in this analysis come from 

a combination of annual and periodic inventories conducted 

from 2000 to 2004. Annual inventory was implemented in most 

of the IW-FIA states during this period (table 2), resulting in 

uneven (although generally increasing) geographic coverage in 

any given year. For this reason, the analysis presented here is 

primarily qualitative. 

If FIA data are expected to reveal trends with annual 

resolution, there should be annual consistency in basic 

characteristics of the inventory, such as number of plots visited 

per year or number of plots occurring annually in a given 

forest type. Similarly, the sample should include relatively 

consistent distributions of trees by species and size over time. 

Consistency of the sample is important in light of the fact that 

nonoverlapping sets of plots are measured in successive annual 

panels. Some annual variation in the sample is inevitable, so the 

issue is primarily a matter of how much noise is introduced by 

sample size variation as compared with the magnitude of the 

signal caused by forest changes.

It is currently impossible to evaluate consistency of sample size 

for all eight IW-FIA States because annual inventory has not 

yet been implemented in all States and in some of those only 

one annual panel has been completed. For the four States with 

2 or more complete years of annual data, annual variation in 

the number of plots and number of trees differs by State (fig. 2). 

Annual variation in number of plots is usually within 5 percent 

of the 5-year State average (fig. 2a), and variation in the number 

Table 2.—Type, year, and location of FIA surveys used in this study.

State
Inventory year

2000 2001 2002 2003 2004

AZ none annual (10%) annual (10%) annual (10%) annual (10%)

CO none none annual (10%) annual (10%) annual (10%)

ID periodic periodic periodic annual (10%) annual (10%)

MT none none none annual (10%) annual (10%)

NV none none none none annual (10%)

NM periodic none none none none

UT annual (10%) annual (10%) annual (10%) annual (10%) annual (10%)

WY periodic periodic periodic none none

Figure 2.—Annual variation in number of plots and number 
of tally trees for Interior West-FIA States with two or more 
complete years of annual inventory data.

(a)

(b)

AZ = Arizona; CO = Colorado; MT = Montana; UT = Utah.

AZ = Arizona; CO = Colorado; ID = Idaho; MT = Montana; NV = Nevada; NM = New Mexico; UT = Utah; WY = Wyoming.
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of tally trees is usually within 7 percent of average (fig. 2b). 

This includes plots found to be inaccessible, plots to which 

access has been denied, and plots missed due to fire, weather, 

or other logistical limitations. Some of the annual variation 

may be expected to decrease over time once annual inventory 

is fully implemented and logistical issues are resolved. The 

remainder of variation, partly due to annual panel shift of the 

phase 2 grid and partly due to other causes, is likely to exist 

after full implementation.

Species varied widely in the number of plots on which they 

occurred and the average number of individuals found on a plot 

(fig. 3). As expected, timber species were usually represented 

by more trees per plot than woodland species. Among timber 

species, shade intolerant species known to regenerate in high 

numbers, such as aspen and lodgepole pine, tended to have 

higher numbers of trees per plot than late successional species 

such as subalpine fir and Engelmann spruce. Interestingly, of 

the 16 species examined, 6 were found on a number of plots 

comparable to or greater than the number on which common 

pinyon was found. These species were relatively common in 

the northern IW-FIA states, where pinyon-juniper woodlands 

do not occur. While sample sizes are not exactly comparable 

due to the mixture of annual and periodic plots, it appears that 

rangewide sample sizes of at least some species are comparable 

to that of pinyon-juniper and should be adequate to determine 

rangewide trends.

Detecting Nonlethal Effects

Preliminary analysis of drought-related effects in pinyon-

juniper woodland showed that there was relatively little 

mortality in the juniper component (Shaw et al. 2005). It is 

possible, however, that the drought caused sublethal damage to 

juniper species—e.g., death of some stems in multistemmed 

trees. As a result, it is reasonable to expect that there is a 

“drought signature” in live junipers and, perhaps, for other 

species in which relatively little mortality was observed. Two 

phase 3 indicator variables, crown density and crown dieback, 

were examined for possible trends over the time that most of the 

mortality was observed. It was expected that at least some of 

the species should have experienced changes in crown volume 

during the drought period, and that the changes should be 

reflected as decreases in mean crown density or increases on 

crown dieback over time. 

The number of trees with crown density and dieback observa-

tions (i.e., trees located on phase 3 plots) was relatively small 

compared to the number of tally trees on phase 2 plots over the 

same time period. This difference is expected because there 

are approximately one-sixteenth the number of phase 3 plots 

as phase 2 plots. In 2003 and 2004, the years during which the 

highest number of phase 3 plots was measured, the number of 

crown observations ranged from less than 20 to just more than 

300 for most species. The small number of trees with crown 

measurements suggests that it may be difficult to generalize 

about rangewide trends for some species, especially considering 

the large geographic ranges that are typical of Western species.

Mean crown density ranged between 30 and 60 percent, and in 

any year it was usually within 5 percentage points of the 5-year 

mean for most species (fig. 4a). There appeared to be a slight 

downward trend in mean crown density for many species over 

the 5-year period, although year-to-year variation was high 

compared to the magnitude of the overall trend. Interestingly, 

the rank of mean crown density among species appeared 

as might be expected from general knowledge of crown 

characteristics. The junipers, firs, and spruces tended to be in 

Figure 3.— Select tree species showing number of plots on 
which they occur and average number of tally trees per plot.

RM = Rocky Mountain.
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the upper ranges of density, whereas aspen and Gambel oak 

usually ranked lowest. 

Mean crown dieback values tended to be low (< 8 percent), 

in part because no dieback was recorded on many trees in the 

sample (fig. 4b). Interannual variation in mean dieback values 

tended to be approximately 2 percentage points, but variation 

was much higher for some species. Variation appears to mask 

any existing trends, with the exception of Gambel oak, which 

appears to have suffered increasing dieback between 2001 and 

2004. Although changes in mean values are highly variable, 

distributions of responses appear more informative. In all years, 

the vast majority of dieback observations are in the 0 and 5 

percent categories for all species, with very few observations 

of dieback > 15 percent (fig. 5a). The few observations of high 

dieback tend to occur in 2002 or later, suggesting that there 

may be a “drought signature” in the data. Gambel oak is the 

only species that clearly shows the expected pattern, which 

is not only an increasing mean dieback value, but a shifting 

distribution of values over time (fig. 5b). Similar patterns might 

be observable in other species given larger samples.

Figure 4.—Mean responses for crown variables by species, 
2000–04. Trends of selected species are highlighted. 

(a)

(b)

Figure 5.—Distribution of crown dieback observations for all 
species (a) and Gambel oak (b), 2000–04.
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Conclusions

The IW-FIA experience with drought-related mortality in 

pinyon-juniper woodlands suggests a need to produce similar 

analyses for other species and forest types. Opportunities 

to track trends by species or forest types will depend on the 

magnitude and type of forest change, as well as the effects on 

individual trees (mortality vs. damage) and the representation 

of the species in the sample. Currently, complete sensitivity 

analysis is challenging because plot coverage in the Interior 

West is uneven in time and space. Analysis opportunities 

should improve with time, however, as annual inventory is 

implemented in all states.
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Forests on the Edge: Evaluating 
Contributions of and Threats to America’s 
Private Forest Lands
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Coulston10, and Sara Comas11

Abstract.—The Forests on the Edge project, 

sponsored by the U.S. Department of Agriculture 

Forest Service, uses geographic information systems 

to construct and analyze maps depicting ecological, 

social, and economic contributions of America’s 

private forest lands and threats to those contributions. 

Watersheds across the conterminous United States are 

ranked relative to the amount of their private forest 

land, relative to the contributions of their private 

forest lands to water quality and timber supply, 

and relative to threats from development, wildfire, 

and ozone. In addition, development and wildfire 

threats to private forest land contributions to water 

quality and timber supply are assessed. The results 

indicate that private forest lands are concentrated in 

the Eastern and Southeastern United States and that 

threats to the contributions of private forest lands are 

also concentrated in the same regions. Threats also 

are distributed throughout the North Central, Central 

Hardwoods, and Pacific Northwest regions. The maps 

may be used to focus additional studies on watersheds 

of particular concern.

Introduction

America’s forest lands contribute in a myriad of ways to the 

economic, ecological, and social well-being of the Nation. 

Increasingly, however, forest lands are threatened from a variety 

of sources including urbanization, climate change, invasive flora 

and fauna, wildfire, pollution, fragmentation, and parcelization. 

The increasing emphasis on sustainable forest management 

requires quantitative and spatial assessments of the impacts 

of these threats to forest lands and forest land contributions. 

The Forests on the Edge (FOTE) project, sponsored by State 

and Private Forestry, U.S. Department of Agriculture Forest 

Service, conducts map-based assessments of threats to the 

Nation’s private forest lands using spatial data layers and 

geographic information systems. The Montreal Process criteria 

and indicators provide an appropriate context for framing and 

conducting these assessments (McRoberts et al. 2004). For 

example, Criterion 2, Maintenance of the Productive Capacity 

of Forest Ecosystems, includes indicators related to forest area 

and timber production; Criterion 3, Maintenance of Forest 

Ecosystem Health and Vitality, includes indicators related to 

fire, wind, disease, and insects; and Criterion 4, Conservation 

and Maintenance of Soil and Water Resources, includes 

indicators related to the contributions of forests to water quality. 

The objectives of FOTE are threefold: (1) to construct 

nationally consistent data layers depicting the spatial location of 

1 Forests on the Edge Coordinator, U.S. Department of Agriculture (USDA), Forest Service, State and Private Forestry, Cooperative Forestry Staff, Washington, DC 
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11 Wildlife Specialist, USDA Forest Service, State and Private Forestry, Cooperative Forestry Staff, Washington, DC 20250. E-mail: scomas@fs.fed.us.
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private forest lands and their contributions such as water quality 

and timber supply; (2) to construct similar layers depicting 

threats to the contributions of private forest land from sources 

such as conversion to urban and exurban uses, wildfire, and 

pollution; and (3) to identify watersheds whose private forest 

lands simultaneously make the most important contributions 

and face the greatest threats. 

Methods

Data Layers

All data layers were obtained as or constructed to be nationally 

consistent and were summarized at the spatial scale of fourth-

level watersheds (Steeves and Nebert 1994). Watersheds were 

selected as the analytical units because they highlight the 

important connections between private forests and ecological 

processes. Only watersheds with at least 10 percent forest 

cover of which at least 50 percent is in private ownership were 

considered for the study.

Area of Private Forest Land

A 100-m resolution forest ownership layer was constructed by 

aggregating the classes of the National Land Cover Dataset 

(Vogelmann et al. 2001) into forest and nonforest classes and 

using the Protected Areas Database (PAD) (DellaSalla et al. 

2001) to distinguish ownership and protection categories. The 

emphasis for this study was private forest land, which includes 

tribal, forest industry, and nonindustrial ownerships. Stein et al. 

(2005) provide detailed information on this layer.

Water Quality

Private forest lands provide nearly 60 percent of all water flow 

from forests in the United States and nearly 50 percent of the 

water flow originating on land in the conterminous 48 States. 

Water flow from private forests is generally considered clean 

relative to water flow from other land uses and, therefore, 

makes a positive contribution to water quality. The water 

quality layer depicts the contribution of private forest land to 

the production of clean water and is based on three underlying 

assumptions: (1) water bodies near the heads of hydrologic 

networks are more sensitive to the loss of forest buffers than 

water bodies near the bases of the networks, (2) the presence 

or absence of upstream forest buffers influences water quality 

downstream in the networks, and (3) forest land throughout 

watersheds better indicates the contributions of private 

forest land to water quality than does forest land only in the 

immediate vicinity of water bodies (FitzHugh 2001). 

The water quality layer was constructed from two underlying 

layers: the forest ownership layer and the National Hydrography 

Dataset (USGS 2000), which depicts water bodies in the 48 

contiguous States. The layer was constructed in four steps: (1) 

a 30-m buffer was constructed around all water bodies, (2) the 

buffers were intersected with the private forest land class of 

the forest ownership layer to quantify the amount of private 

forest land in close proximity to water bodies, (3) each buffer 

segment was assigned to one of four categories based on the 

relative position of the segment to the head of its hydrologic 

network, and (4) for each watershed, the percentage of the total 

buffer area in each of the four categories was determined. Water 

quality index (WQI) was then calculated for each watershed as

WQI = 0.6*(A
1
+A

1
*A

2
)+0.4*(0.53*B

1
+0.27*B

2
+0.13*B

3

+0.07*B
4
)

where:

A
1 
= percent of watershed in private forest land. 

A
2 
= percent of total forest land in watershed that is privately 

owned. 

B
1 
= percent of private forest land buffer in the first category 

(nearer head of hydrologic network headwater).

B
2 
= percent of buffer in the second category. 

B
3 
= percent of buffer in third category. 

B
4 
= percent of buffer in fourth category (farthest downstream 

from the head of hydrologic network). 

The 0.6 and 0.4 weightings of the A and B variable 

components, respectively, reflect the third assumption above. 

The relative weightings of the B variables among themselves 

reflect the assumption that each category of buffer is twice as 

important as the following category. 
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Timber Supply Layer

Private forest lands make a substantial contribution to Ameri-

ca’s timber resources, accounting for 92 percent of all timber 

harvested in the United States in 2001 (Smith et al. 2004). 

The timber supply layer depicts the ranking of watersheds 

relative to an index of their private forest land contributions to 

timber supplies and is based on Forest Inventory and Analysis 

(FIA) plot data (http://ncrs2.fs.fed.us/4801/fiadb/) and Timber 

Products Output data (http://www.ncrs.fs.fed.us/4801/regional-

programs/tpo/). The timber supply index (TSI) is based on 

four subindexes of timber contributions of the timberland 

component of private forest land. Timberland is defined by 

the FIA program as forest land that has not been withdrawn 

from production and that is capable of producing 20 ft3/yr of 

industrial wood. For each watershed, the four subindexes are 

calculated as follows: (1) growth index (GI) is the average 

growing stock volume growth rate on private timberland in the 

watershed relative to the average for private timberland in all 

watersheds, (2) volume index (VI) is the average net growing 

stock volume per acre on private timberland in the watershed 

relative to the net volume for private timberland in all water-

sheds, (3) area index (AI) is the ratio of private timberland and 

total private land for the watershed relative to the same ratio 

for all watersheds, and (4) private area index (PI) is the ratio of 

private timberland area and total area in the watershed. TSI was 

calculated for each watershed as 

TSI = PI*(GI+VI+AI).

Development

The development layer depicts predicted threats to private for-

est lands resulting from conversion to urban or exurban uses. 

The layer is based on estimates of current population and hous-

ing density data obtained from the 2000 Census and predic-

tions of housing density increases. A spatially explicit model 

was used to predict the full urban-to-rural spectrum of housing 

densities (Theobald 2005). The model uses a supply-demand-

allocation approach and is based on the assumption that future 

growth patterns will be similar to those in the past decade. 

Future patterns are forecast on a decadal basis in four steps: 

(1) the number of new housing units in the next decade was 

forced to meet the demands of the predicted populations; (2) a 

location-specific average population growth rate from the previ-

ous to current time step was computed for each of three density 

classes: urban, exurban, and rural; (3) the spatial distribution of 

predicted new housing units was adjusted with respect to ac-

cessibility to the nearest urban core area; and (4) predicted new 

housing density was added to the current housing density under 

the assumption that housing densities do not decline over time. 

For these analyses, predicted new housing was not permitted to 

occur on protected private land as indicated by PAD (DellaSalla 

et al. 2001). The spatially explicit housing density predictions 

were combined with the forest ownership layer to identify wa-

tersheds with the greatest predicted conversion of private forest 

land to urban and exurban uses. Stein et al. (2005) provide de-

tailed information on this layer. 

Wildfire

Although wildfire is one of the most compelling threats to 

forest land, particularly in the Western United States, predicting 

wildfire risk is extremely complex and relies on a variety of 

regional models using regional variables. Further, even if the 

models could be readily used to construct a national layer, the 

geographic consistency of the layer would be questionable. 

Therefore, as a surrogate for wildfire risk, FOTE used the 1-km 

by 1-km resolution current fire condition class (CFCC) data 

which depict deviations of fire incidence from historic natural 

fire regimes and estimated efforts necessary to restore stands to 

historic regimes (Schmidt et al. 2002). All private forest lands 

in each watershed were assigned to one of three CFCC classes: 

(1) CFCC
1
, forest lands with fire regimes that are within or 

near historical ranges and that can be maintained by treatments 

such as prescribed fire or fire use; (2) CFCC
2
, forest lands with 

fire regimes that have been moderately altered from historical 

ranges and that may require moderate levels of prescribed 

fire, fire use, hand or mechanical treatment, or a combination 

to be restore the historical fire regime; and (3) CFCC
3
, forest 

lands with fire regimes that have been substantially altered 

from historical ranges and that may need high levels of hand or 

mechanical treatment before fire is used to restore historical fire 

regimes. For each watershed, an index was calculated as

	 CC = CC
1
 + 2*CC

2
 + 4*CC

3
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where CC
i
 is the area of private forest land in class CFCC

i
. 

The weights associated with each class in the calculation of 

CC reflect the assumption that each class is twice as important 

as the next class. The wildfire layer depicts the ranking of 

watersheds relative to their CC index values.

Ozone

Ozone affects forest ecosystems by causing foliar lesions and 

rapid leaf aging, altering species compositions, and weakening 

pest resistance (Chappelka et al. 1997, Miller 1996). It is 

the only gaseous air pollutant that has been measured at 

known phytotoxic levels at both remote and urbanized forest 

locations (EPA 1996). The ozone layer depicts private forest 

land threatened by ground level ozone and was based on late 

summer observations by FIA field crews of ozone damage 

to bioindicator species known to be sensitive to ground level 

ozone. Data for more than 2,500 FIA plots were available for 

the study. Each plot was assigned a biosite value based on a 

subjective assessment by trained observers of the quantity 

and severity of damages (Coulston et al. 2003, Smith et al. 

2003). Inverse distance weighted interpolation was used to 

create a map of ozone damage. This map was then combined 

with the forest ownership layer to identify private forest land 

with elevated levels of ozone damage. For each watershed, the 

percentage of private forest land in moderate or high damage 

categories was calculated. 

Analyses

For each contribution and threat layer, with the exception of 

ozone, the distribution of watershed values was determined, and 

a percentile ranking was assigned to each watershed. Because 

only approximately 10 percent of watersheds satisfying the 10 

percent forest cover and 50 percent private ownership criteria 

had elevated levels of ozone damage, no percentile ranking 

was constructed. For each watershed, development and wildfire 

threats to water quality and timber supply contributions were 

assessed using the average of the watershed’s percentile 

rankings for the contribution and the threat. The results are 

depicted using percentile-based categories of the average of the 

contribution and threat percentiles.

Results

The results are briefly discussed and maps are presented for 

percent private forest land area, water quality and timber supply 

contributions, and development, wildfire, and ozone threats. 

Maps of the threats from development and wildfire to water 

quality and timber supply are also presented and discussed. 

No assessments of threats of ozone to water quality or timber 

supply were made, because so few watersheds had elevated 

levels of ozone damage. 

Watersheds with the greatest percentage of private forest 

land are generally in New England, the Southeast, and the 

Pacific Northwest (fig. 1). The concentration in the East is not 

surprising, because much of the forest land in the West is in 

public ownership. Watersheds whose private forests make the 

greatest contributions to water quality and timber supply align 

closely with the watersheds with greatest amounts of private 

forest land (figs. 2 and 3). 

Development threats to private forest land area are concentrated 

in southern New England and the Southeast, although some are 

also found in the Pacific Northwest (fig. 4). Wildfire threats to 

private forest land, as indicated by the surrogate CC layer, are 

primarily in the northeastern quadrant of the country (fig. 5). 

The two Midwestern areas in this northeastern quadrant, how-

ever, are characterized by low percentages of private forest land 

(fig. 1). With only a few exceptions, watersheds with elevated 

levels of ozone damage were in the east-central portion of the 

country (fig. 6).

Development threats to the contributions of private forest land 

to both water quality and timber supply are concentrated in 

southern New England and the Southeast (figs. 7 and 8). These 

results are as expected, because higher percentile watersheds 

for all three underlying layers are also in southern New 

England and the Southeast. Wildfire threats, as indicated by 

the surrogate CC layer, to both water quality and timber supply 

contributions are distributed throughout the East and Southeast, 

the Lakes States, the Central Hardwoods region, and the Pacific 

Northwest (figs. 9 and 10). 
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Figure 1.—Percentile rankings of watersheds with respect to 
percent of private forest land.

Figure 2.—Percentile rankings of watersheds with respect to 
contribution of private forest land to water quality.

Figure 3.—Percentile rankings of watersheds with respect to 
contributions of private forest land to timber supply.

Figure 4.—Percentile rankings of watersheds with respect to 
percent of private forest land predicted to convert to exurban 
or urban uses by 2030.

Figure 6.—Watersheds with detectable ozone threats.

Figure 5.—Percentile rankings of watersheds with respect to 
wildfire threat to private forest land.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.
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Conclusions

Several conclusions may be drawn from this study. First, private 

forest land is located mostly in the Eastern United States, 

particularly New England and the Southeast, although there 

are also concentrations in the Pacific Northwest. Second, the 

watersheds making the greatest private forest contributions to 

water quality and timber supply are generally the watersheds 

with the greatest percentages of private forest land. Third, the 

watersheds with the greatest private forest land contributions 

Figure 7.—Percentile rankings of watersheds with respect to 
development threat to the contributions of private forest land to 
water quality.

Figure 8.—Percentile rankings of watersheds with respect to 
development threat to contribution of private forest land to 
timber supply.

Figure 10.—Percentile rankings of watersheds with respect to 
wildfire threat to contribution of private forest land to timber 
supply.

Figure 9.—Percentile rankings of watersheds with respect to 
wildfire threat to contribution of private forest land to water 
quality.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

Forests on the Edge. Map produced by Forest Inventory and Analysis, 
Northern Research Station, USDA Forest Service.

to water quality and timber supply are also the watersheds 

most threatened by development. Fourth, the CC surrogate for 

wildfire depicts the greatest threats to watersheds in the central 

part of the Eastern United States and the Pacific Northwest. 

Watersheds depicted by this layer in the central part of the 

United States have relatively small percentages of private forest 

land. Fifth, the FOTE spatial approach to assessing threats to 

the contributions of private forest lands produces useful, visual 

information that is relatively easy to obtain and interpret. The 

only serious impediment associated with this approach is the 
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difficulty in obtaining or constructing nationally consistent data 

layers that depict the contributions and threats of interest.

Future work will include assessment of additional contributions 

such as at-risk species and interior forest and threats such as 

insects, disease, and additional pollutants. In addition, work has 

begun on construction of an Internet-based system that permits 

users to select particular contribution and threat layers, options 

for combining them, and options for depicting the results.

Literature Cited

Chappelka, A.; Renfro, J.R.; Somers, G.L. 1997. Evaluation of 

ozone injury on foliage of black cherry (Prunus serotina) and 

tall milkweed (Asclepias exalta) in Great Smokey Mountains 

National Park. Environmental Pollution. 95: 13-18.

Coulston, J.W.; Smith, G.C.; Smith, W.D. 2003. Regional 

assessment of ozone sensitive tree species using bioindicator 

plants. Environmental Monitoring and Assessment. 83: 113-127.

DellaSala, D.A.; Staus, N.L.; Strittholt, J.R.; Hackman, A.; 

Iacobelli, A. 2001. An updated protected areas database for the 

United States and Canada. Natural Areas Journal. 21: 124-135.

FitzHugh, T. 2001. Watershed characteristics and aquatic 

ecological integrity: a literature review. The Nature 

Conservancy Freshwater Initiative. http://www.freshwater.

org/info/largepdf/litrev/pdf. (10 January 2006).

McRoberts, R.E.; McWilliams, W.H.; Reams, G.A.; Schmidt, 

T.L.; Jenkins, J.C.; O’Neill, K.P.; Miles, P.D.; Brand, G.J. 2004. 

Assessing sustainability using data from the Forest Inventory 

and Analysis program of the United States Forest Service. 

Journal of Sustainable Forestry. 18: 23-46.

Miller, P.R.; Stolte, K.W.; Duriscoe, D.M.; Pronos, J. 1996. 

Extant of ozone injury to trees in the western United States. In: 

Evaluating ozone air pollution effects on pines in the western 

United States. Gen. Tech. Rep. PSW-GTR-155. Washington, 

DC: U.S. Department of Agriculture, Forest Service, Pacific 

Southwest Research Station: 1-6. 

Schmidt, K.M.; Meankis, J.P.; Hard, C.C.; Hann, W.J.; Bunnell, 

D.L. 2002. Development of coarse-scale spatial data for 

wildland fire and fuel management. Gen. Tech. Rep. RMRS-

GTR-87. Fort Collins, CO: U.S. Department of Agriculture, 

Forest Service, Rocky Mountain Research Station. 41 p.

Smith, G.C.; Coulston, J.W.; Jepsen, E.; Prichard, T. 2003. A 

national ozone biomonitoring program—results from field 

surveys of ozone sensitive plants in northeastern forests 

(1994–2000). Environmental Monitoring and Assessment. 87: 

271-291. 

Smith, W.B.; Miles, P.D.; Vissage, J.S.; Pugh, S.A. 2004. Forest 

resources of the United States, 2002. Gen. Tech. Rep. NC-241. 

St. Paul, MN: U.S. Department of Agriculture, Forest Service, 

North Central Research Station. 137 p. http://www.ncrs.fs.fed.

us/pubs/gtr/gtr_nc241.pdf. (28 February 2005).

Steeves, P.A.; Nebert, D.D. 1994. Hydrological unit maps of the 

conterminous United States [Database]. U.S. Geological Survey, 

open-file dataset “huc250,” ed. 1. Reston, VA: U.S. Geological 

Survey. http://water.usgs.gov/GIS/metadata/usgswrd/XML/

huc250k.xml. (10 January 2006).

Stein, S.M.; McRoberts, R.E.; Nelson, M.D.; Theobald, D.M.; 

Eley, M.; Dechter, M. 2005. Forests on the edge: housing 

development on America’s private forests. Gen. Tech. Rep. 

PNW-GTR-636. Portland, OR: U.S. Department of Agriculture, 

Forest Service, Pacific Northwest Research Station. 15 p.



142	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

Theobald, D.M. 2005. Landscape patterns of exurban growth in 

the USA from 1980 to 2020. Ecology and Society. 10(1): 32. 

U.S. Environmental Protection Agency (EPA). 1996. Air quality 

criteria for ozone and related photochemical oxidants. Volumes 

I and II of III, Section 4.0, Environmental concentrations, 

patterns, and exposure estimates. Washington, DC: U.S. 

Environmental Protection Agency, Office of Research and 

Development. EPA/600/P-93/004aF.

U.S. Geological Survey (USGS). 2000. The national hydrology 

dataset. Reston, VA: U.S. Geological Survey. http://nhs.usgs.

gov/chapter 1/chp2_data_users_guide.pdf. (16 December 2005).

Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, 

B.K.; Vandriel, N. 2001. Completion of the 1990s National 

Land Cover Data Set for the conterminous United States from 

Landsat Thematic Mapper data and ancillary data sources. Pho-

togrammetric Engineering and Remote Sensing. 67: 650-662.



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		14  3

Relationships Between the Attributes of 
Standing Live and Dead Down Trees in 
Forests of the Lake States

Christopher W. Woodall1 and Linda Nagel2

Abstract.—Refining the understanding of the rela-

tionship between a stand’s standing live and down 

dead trees in terms of size, density, and biomass at-

tributes may aid efforts to predict fuel loadings based 

on standing tree attributes. Therefore, the objective 

of this study was to compare down dead and standing 

live tree attributes (size, density, and biomass) for in-

ventory plots and identify any possible relationships. 

Study results indicate no relationship between down 

woody material biomass and trees per ha, stand basal 

area, or a stand mean diameter. There appears to be a 

defined limit, however, to maximum observed down 

woody biomass in relation to stand density attributes 

(basal area and trees per ha). This study suggests that 

down woody accumulation dynamics result from sud-

den stand-level disturbances (e.g., blowdowns) and 

infrequent mortality from gradual stand development 

obscures and complicates attempts to broadly summa-

rize relationships between a stand’s standing live and 

down dead attributes in forests of the Lake States.

Fuel Prediction

Following the fire season of 2000 in the United States, forest 

fuel loadings were identified as a knowledge gap in both 

strategic-scale fire hazard management efforts and small-

scale fire incident management activities. Consequently, 

tremendous effort has been expended to estimate fuel loadings 

across the United States. Unfortunately, fuel loadings are 

sampled in most forests only at very low sample intensities. 

This fact, in combination with the heterogeneous spatial 

distribution of fuels, results in a relatively insufficient fuel 

loading dataset with which to estimate fuels at small scales 

across the Nation. Therefore, efforts have been focused on 

developing methodologies to predict the fuel loadings for any 

forest location based on nonfuel attributes such as remotely 

sensed canopy cover information, digital elevation models, 

climate data, and standing live tree attributes. Biophysical 

gradient models (LANDFIRE; www.landfire.gov) (Rollins et al. 

2004) have enabled the prediction of fuels at finer resolutions; 

however, the variance associated with these fine-scale estimates 

may be rather large. 

Despite the development of models to estimate relationships 

between down woody fuels and stand/site attributes, there 

remains a sizeable knowledge gap in fundamental relationships 

between down woody fuel loadings and basic stand attributes. 

How do down woody fuel loadings vary by stage of stand 

development? How do down woody fuels vary by levels of 

standing live tree density? How do fuels vary by standing 

live tree size/density relationships? The inclusion of more 

fundamental models of stand dynamics and fuel loadings may 

aid in the construction of sophisticated biophysical models. 

Therefore, the goal of this study was to refine understanding of 

the relationship between down woody fuel loadings and stand 

attributes in forests of the Lake States with specific objectives 

including (1) to correlate down woody fuel loadings with the 

number of live trees per acre, live basal area per acre, latitude, 

and live tree tons per acre, (2) to determine the relationship 

between the number of down dead and standing live trees per 

acre with respect to tree size class, and (3) to evaluate the 

relationship between the number of live trees per acre and total 

down woody fuel loadings in terms of outliers defining the 

relationship (99th percentile).

1 Research Forester, U.S. Department of Agriculture, Forest Service, Northern Research Station, St. Paul, MN 55108. Phone: 651–649–5141. Fax: 651–649–5140. 
E-mail: cwoodall@fs.fed.us.
2 Assistant Professor, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931. Phone: 906–487–2812. 
Fax: 906–487–2915. E-mail: lmnagel@mtu.edu.
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Data/Analysis

Standing tree and down woody fuel data were acquired from 

the Forest Inventory and Analysis program (FIA) of the U.S. 

Department of Agriculture Forest Service. The FIA program 

is responsible for inventorying the forests of the United States, 

including both standing trees and down woody materials on 

permanent sample plots established across the study area 

(Bechtold and Patterson 2005). In the FIA inventory, 378 plots 

were sampled in forests of the upper Great Lakes States (Min-

nesota, Wisconsin, and Michigan) from 2001 to 2004 (fig. 1). 

Both standing live and down dead woody materials attributes 

were measured on these inventory plots. For details on the es-

tablishment and sampling of standing trees by the FIA program, 

see Bechtold and Patterson (2005). Down woody material 

sampling methods on FIA plots are detailed by Woodall and 

Williams (2005). The largest fuels (more than 1,000-hr fuels), 

with a transect diameter greater than 3.0 in., were sampled on 

each of three 24-ft horizontal distance transects radiating from 

each FIA subplot center at 30, 150, and 270 degrees. Data 

collected for every more than 1,000-hr piece include transect 

diameter, length, small-end diameter, large-end diameter, decay 

class, and species. Fine woody debris (FWD) (1-, 10-, and 

100-hr fuels) was sampled on the 150-degree transect on each 

subplot. Fine woody debris with transect diameters less than 

0.25 in. and 0.25 in. to 1.00 in (1- and 10-hr, respectively) were 

tallied separately on a 6-ft slope-distance transect (14 ft to 20 

ft on the 150-degree transect). Fine woody debris with transect 

diameters of 1.00 to 2.99 in (100-hr) were tallied on a 10-ft 

slope-distance transect (14 ft to 24 ft on the 150-degree tran-

sect) (for more information on fuel class definitions, see Deem-

ing et al. 1977). Per unit area estimates (tons/acre) for the fuel 

hour classes followed Brown’s (1974) estimation procedures 

(for further information see Woodall and Williams 2005). Total 

down woody fuels was a summation of both FWD and coarse 

woody debris (CWD). Logs per acre estimates were determined 

using DeVries (1986) estimation procedures.

Pearson’s correlation coefficients and associated p-values 

were estimated between the following plot-level estimates: 

total woody fuels, live trees per acre, live basal area per acre, 

latitude, live tree tons per acre, and site index. The means and 

associated standard errors were estimated for the variables of 

number of live and down dead trees per acre by standing live 

tree mean diameter class. Finally, the relationship between the 

number of live trees per acre and total woody fuel loadings was 

evaluated by determining the 99th percentile of total woody fu-

els by live tree biomass classes (10 tons/acre class widths). The 

relationship between the 99th percentile of woody fuels and 

midpoint of the live tonnage class was modeled using a linear 

regression model: log
10

 (live tree tons) = log
10

 (total woody fuels).

Stand and Site Correlations

Total woody fuels per acre were not strongly correlated with 

any stand or site attributes. Pearson’s correlation coefficients 

between total fuels and stand/site attributes were live trees 

per acre -0.10 (p-value = 0.05), live tons/acre -0.08 (p-value 

= 0.14), live basal area -0.09 (p-value=0.08), site index 0.03 

(p-value = 0.60), and latitude 0.08 (p-value = 0.13). These 

correlations weakly indicate that (1) forests with larger amounts 

of standing live biomass might have less down dead biomass, 

and (2) forests on higher quality sites and in higher latitudes 

with slower decay rates might have higher amounts of dead 

biomass. More definitive conclusions cannot be made, however, 

given the weak correlation coefficients and predominantly 

nonsignificant p-values.

Figure 1.—Study plot locations in Minnesota, Wisconsin, and 
Michigan, 2001–04.
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Size/Density Relationships

Standing live trees often exhibit a strong relationship between 

the maximum number of trees that may occupy a unit area and 

the average size of those constituent trees (Reineke 1933, Long 

1985). As individual trees grow in size, the total number of 

trees per unit area must decrease to accommodate the growing 

trees—a process known as self-thinning. The observations in 

this study exhibited an obvious self-thinning trend: as the mean 

diameter at breast height of stands increased, the mean number 

of trees per acre decreased (fig. 2). How does the mean number 

of CWD pieces per acre change as these stands experience 

mortality due to self-thinning? Results from this study indicate 

very little change in the number of CWD pieces per acre as 

stands progress through stand development (fig. 2). For Lake 

States forests, the decay rate of fallen trees and the mortality 

rate (or CWD input rate) may be in equilibrium when viewed in 

terms of number of trees and CWD pieces. If decay was slowed 

by colder temperatures, then one might expect more CWD 

pieces in stands in advanced stages of stand development due 

to CWD piece accumulation over time. We found this result 

when we looked at size/density relationships in Lake States 

forests above and below the 45.5 degree latitude. Given the 

nearly zero slope of the CWD pieces per acre by standing live 

tree size, size density relationships of standing live trees may 

not indicate dead and downed wood resources. 

Live Versus Dead Biomass

There appears to be no relationship between the number 

of standing live trees per acre and the total woody fuels in 

study stands (fig. 3). When examined by classes of standing 

live tree biomass (tons/acre), mean total woody fuels still 

shows no relationship with a stand’s standing live tree density            

(table 1). There appears to be no practical way to predict total 

woody fuels based on the standing live tree density for Lake 

State forests. One relationship, however, is overlooked: the 

maximum potential amount of fuels appears to be determined 

by the amount of standing live biomass. When we compare 

total woody fuels to the number of live trees per acre, there 

appears to be an outer limit with the maximum amount of 

fuels negatively related to the number of standing live trees per 

acre (fig. 3). The 99th percentile of total woody fuels per acre 

decreases as classes of standing live biomass increase (table 1). 

A linear regression between the log of 99th percentile of fuels 

and the log of the midpoint of the standing live tree biomass 

class had an r-squared of 0.65 with an approximate slope of 

-1.0. This negative relationship may be viewed conceptually as 

driven by stand development processes (fig. 4). The left side of 

this relationship may be occupied by stands that have had recent 

disturbances that have reduced the amount of standing live tree 

biomass and greatly increased woody fuels. Conversely, logging 

or flood events might have reduced both the biomass of standing 

live and down dead biomass. The right side of this relationship 

Figure 2.—Number of trees/logs per acre by mean standing 
live tree diameter at breast height.

Figure 3.—Total woody fuels (coarse and fine woody debris, 
tons/acre) by number of standing live trees per acre.
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may be occupied by stands that have experienced very little 

disturbance mortality, but rather have density-induced mortality 

fuel input through stand development processes. These stands 

may demonstrate a balance between the decay and input of 

fuels through time as evidenced earlier in this study. Overall, 

the range in fuel loadings appears to decrease as the standing 

live tree density increases.

Conclusions

Relationships between standing live and down dead tree 

attributes in forests of the Lake States are often not statistically 

significant. Stand and site attributes, such as tree density and 

site quality, are not strong predictors of any stand’s down 

and dead woody biomass at the stand level. Furthermore, the 

density of CWD pieces does not follow the same trajectory as 

the density of standing live trees as mean live tree size at the 

stand level increases. Despite the lack of live and dead/down 

tree relationships, standing live tree density may indicate 

maximum fuel loadings in Lake State forests. This study found 

a negative relationship between the 99th percentile of woody 

fuel biomass by classes of live tree biomass. Although the 

amount of fuels may not be estimated using live tree biomass 

as an independent variable, live tree biomass may indicate the 

range of possible fuel loadings—a range possibly driven by 

stand disturbance and development processes.

Figure 4.—Theoretical relationship between standing live tree 
biomass and down dead fuels in forests of the Lake States. 

Table 1.—Mean and 99th percentile of woody fuels (tons/acre) 
by classes of standing live tree biomass (tons/acre).

Standing live tree biomass 
(tons/acre)

Total woody fuels (tons/acre)

Mean 99th Percentile

0.0–9.9 8.3 33.4

10.0–19.9 10.1 64.8

20.0–29.9 8.8 66.2

30.0–39.9 7.2 22.4

40.0–49.9 8.6 58.4

50.0–59.9 11.8 46.3

60.0–69.9 8.0 21.6

70.0–79.9 6.7 18.2

80.0–89.9 6.7 10.2

90.0–99.9 9.7 24.1

100.0–109.9 5.2 11.9

110.0–119.9 4.1 5.9
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Thematic and Positional Accuracy Assess-
ment of Digital Remotely Sensed Data

Russell G. Congalton1

Abstract.—Accuracy assessment or validation has 

become a standard component of any land cover 

or vegetation map derived from remotely sensed 

data. Knowing the accuracy of the map is vital to 

any decisionmaking performed using that map. 

The process of assessing the map accuracy is time 

consuming and expensive. It is very important that 

the procedure be well thought out and carefully 

planned to be as efficient as possible. This paper 

presents a brief review of the current methods used 

in thematic map accuracy assessment. A discussion 

of positional error is included as it is impossible 

to assess thematic accuracy without carefully 

considering positional accuracy. 

Introduction

Assessing the accuracy of thematic maps generated from 

remotely sensed data has become a required component of 

most mapping projects. Researchers assess their maps because 

they wish to determine if a newly developed technique or 

algorithm produces better results than an established method. 

Government agencies often require a measure of accuracy to 

meet the standards set up in the contract for the work. Many 

will use the map as part of a decisionmaking process, while 

others use map accuracy as a guide throughout the mapping 

project to evaluate the accuracy of each stage of the mapping 

process and to improve the map.

Errors come from many sources when generating a thematic 

map from remotely sensed data. Congalton and Green (1993) 

provide a good discussion of the errors that can result if the 

classification scheme is not well understood or if the reference 

data are poorly collected. Lunetta et al. (1991) present a very 

effective diagram and discussion of the various sources of 

error that can accumulate from the beginning of a mapping 

project through to the end. These sources include sensor issues, 

geometric registration, errors introduced by the classification 

process, assumptions made in the accuracy assessment, and 

limitations in the map output, to name just a few. Careful 

consideration of the entire mapping project before it is begun 

can go a long way toward reducing these errors.

Accuracy

Assessing the accuracy of maps generated from remotely sensed 

data requires evaluating both positional accuracy and thematic 

accuracy. While these two accuracies can be assessed separately, 

they are very much interrelated and failure to consider both of 

them is a serious mistake.

Positional Accuracy

Positional accuracy, a measure of how closely the imagery fits 

the ground, is the most common measure of map accuracy. In 

other words, positional accuracy is the accuracy of the location 

of a point in the imagery with reference to its physical location 

on the ground. It is imperative for any accuracy comparison 

that the same exact location can be determined both on 

the image and on the ground. The major factor influencing 

positional accuracy is topography, while sensor characteristics 

and viewing angles can also have some affect. It is commonly 

accepted that a positional accuracy of half a pixel is sufficient 

for sensors such as Landsat Thematic Mapper and SPOT. 

As sensors increase in spatial resolution, such as the 4-m 

multispectral IKONOS data, positional accuracy increases in 

importance and new standards need to be established. These 

standards need to be based on current ability to locate the 

chosen location (sample site) on both the image and the ground.

1 Professor of Remote Sensing and Geographic Information Systems, Department of Natural Resources, 215 James Hall, 56 College Road, University of New 
Hampshire, Durham, NH 03824. E-mail: russ.congalton@unh.edu.
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Positional accuracy is an integral part of thematic accuracy. If 

an image is registered to the ground to within half a pixel and 

a Global Positioning System (GPS) unit is used to locate the 

place on the ground to within about 15 meters, then it is impos-

sible to use a single pixel as the sampling unit for assessing the 

thematic accuracy of the map. If positional accuracy is not up 

to the standard or a GPS is not used to precisely locate the point 

on the ground, then these factors increase in importance and 

can significantly affect the thematic accuracy assessment.

Figure 1 shows an example of positional accuracy. In this 

figure, the digital image is not exactly registered to the Geo-

graphic Information System (GIS) road layer. Therefore, the 

road layer does not line up exactly on top of the roads in the 

imagery. Positional accuracy has historically been based on Na-

tional Map Accuracy Standards and measured in terms of root 

mean square error (RMSE). Most often, the RMSE is computed 

as the sum of the square of the differences between the position 

of the point on one data layer as compared to the position of 

the same point on another data layer (often the ground) using 

the same data that were used to register the layers together. This 

measure is, therefore, not an independent measure of positional 

accuracy. Instead, it would be more useful and more indicative 

of the true accuracy to collect an independent sample of points 

from which to compute the RMSE.

Thematic Accuracy

Thematic accuracy refers to the accuracy of a mapped land 

cover category at a particular time compared to what was 

actually on the ground at that time. Clearly, to perform a 

meaningful assessment of accuracy, land cover classifications 

must be assessed using data that are believed to be correct. 

Thus, it is vital to have at least some knowledge of the accuracy 

of the reference data before using it for comparison against the 

remotely sensed map. Congalton (1991: 42) points out that, 

“Although no reference data set may be completely accurate, it 

is important that the reference data have high accuracy or else it 

is not a fair assessment. Therefore, it is critical that the ground 

or reference data collection be carefully considered in any 

accuracy assessment.”

Accuracy assessment begins with the generation of an error 

matrix (fig. 2), a square array of numbers or cells set out in 

rows and columns, which expresses the number of sample units 

assigned to each land cover type as compared to the reference 

data. The columns in the matrix represent the reference data 

(actual land cover) and the rows represent assigned (mapped) 

land cover types. The major diagonal of the matrix indicates 

agreement between the reference data and the interpreted land 

cover types. 

Figure 1.—Example of positional accuracy. Figure 2.—Example error matrix showing overall, producer’s, 
and user’s accuracies.
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The error matrix is useful for both visualizing image 

classification results and for statistically measuring the results. 

The error matrix is the only way to effectively compare two 

maps quantitatively. A measure of overall accuracy can be 

calculated by dividing the sum of all the entries in the major 

diagonal of the matrix by the total number of sample units in 

the matrix (Story and Congalton 1986). In the ideal situation, 

all the nonmajor diagonal elements of the error matrix would 

be zero, indicating that no area had been misclassified and 

that the map was 100 percent correct (Congalton et al. 1983). 

The error matrix also provides accuracies for each land cover 

category as well as both errors of exclusion (omission errors) 

and errors of inclusion (commission errors) present in the 

classification (Card 1982, Congalton 1991, Congalton and 

Green 1999).

Omission errors can be calculated by dividing the total 

number of correctly classified sample units in a category by 

the total number of sample units in that category from the 

reference data (the column total) (Congalton 1991, Story and 

Congalton 1986). This measure is often called the “producer’s 

accuracy,” because from this measurement the producer of the 

classification will know how well a certain area was classified 

(Congalton 1991). For example, the producer may be interested 

in knowing how many times vegetation was in fact classified 

as vegetation (and not, say, urban). To determine this, the 43 

correctly classified vegetation samples (fig. 2) would be divided 

by the total 48 units of vegetation from the reference data, for 

a producer’s accuracy of 90 percent. In other words, vegetation 

was correctly identified as vegetation 90 percent of the time.

Commission errors, on the other hand, are calculated by divid-

ing the number of correctly classified sample units for a cat-

egory by the total number of sample units that were classified 

in that category (Congalton 1991, Congalton and Green 1999, 

Story and Congalton 1986). This measure is also called “user’s 

accuracy,” indicating for the user of the map the probability 

that a sample unit classified on the map actually represents that 

category on the ground (Congalton and Green 1999, Story and 

Congalton 1986). In figure 2, while the producer’s accuracy 

for the vegetation category is 90 percent, the user’s accuracy is 

only 73 percent. That is, only 73 percent of the areas mapped 

as vegetation are actually vegetation on the ground. However, 

because each omission from the correct category is a commis-

sion to the wrong category, it is critical that both producer’s and 

user’s accuracies are considered, since reporting only one value 

can be misleading. 

It is vital that the error matrix generated for the accuracy 

assessment be valid. An improperly generated error matrix may 

not be truly representative of the thematic map and, therefore, 

meaningless. The following factors must be considered to 

generate a valid error matrix (Congalton 1991):

1.	 Reference data collection.

2.	 Classification scheme.

3.	 Sampling scheme (Congalton 1988b, Hay 1979, Stehman 

1992, van Genderen and Lock 1977).

4.	 Spatial autocorrelation (Campbell 1981, Congalton 1988a).

5.	 Sample size and sample unit (Congalton 1988b, Congalton 

and Green 1999, Hay 1979, van Genderen and Lock 1977).

Failure to consider even one of these factors could lead to 

significant shortcomings in the accuracy assessment process.

Reference Data Collection

Reference data collection is the first step in any assessment 

procedure, and may be the single most important factor in 

accuracy assessment, since an assessment will be meaningless 

if the reference data cannot be trusted. Reference data can be 

collected in many ways, including photo interpretation, aerial 

reconnaissance with a helicopter or airplane, video, drive-

by surveys, and visiting the area of interest on the ground 

(Congalton and Biging 1992). Not all of these approaches are 

valid in every situation and great care needs to be taken to make 

sure that the reference data are accurate.

A key factor in reference data collection is the separation of 

training data from accuracy assessment data. In the not-too-

distant past, many assessments of remotely sensed maps were 

conducted using the same data set used to train the classifier 

(Congalton 1991). This training and testing on the same data 

set resulted in an improperly generated error matrix that clearly 

overestimated classification accuracy. For accuracy assessment 

procedures to be valid and truly representative of the thematic 
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map, data used to train the image processing system should 

not be used for accuracy assessment. These data sets must be 

independent.

Finally, the information used to assess the accuracy of remotely 

sensed maps should be of the same general vintage as those 

originally used in map classification. The greater the time 

period between the imagery used in map classification and the 

data used in assessing map accuracy, the greater the likelihood 

that differences are due to change in vegetation (from 

harvesting, land use changes, etc.) rather than misclassification. 

Therefore, ground data collection should occur as close as 

possible to the date of the remotely sensed data.

Classification Scheme

A classification scheme categorizes remotely sensed map 

information into a meaningful and useful format. The rules 

used to label the map must be rigorous and well defined. An 

effective means of ensuring these requirements are met is to 

define a classification system that is totally exhaustive, mutually 

exclusive, and hierarchical (Congalton and Green 1999). 

A totally exhaustive classification scheme guarantees that 

everything in the image falls into a category; i.e., nothing is left 

unclassified. A mutually exclusive classification scheme means 

that everything in the image fits into one and only one category; 

i.e., an object in an image can be labeled only one category. 

Total exhaustion and mutual exclusivity rely on two critical 

components: (1) a set of labels (e.g., white pine forest, oak 

forest, nonforest, etc.), and (2) a set of rules (e.g., white pine 

forest must comprise at least 70 percent of the stand). Without 

these components, the image classification would be arbitrary 

and inconsistent. Finally, hierarchical classification schemes—

those that can be collapsed from specific categories into more 

general categories—can be advantageous. For example, if it is 

discovered that white pine, red pine, and hemlock forest cannot 

be reliably mapped, these three categories could be collapsed 

into one general category called coniferous forest.

Sampling Scheme

An accuracy assessment very rarely involves a complete census 

or total enumeration of the classified image, since this data 

set is too large to be practical (Hay 1979, Stehman 1996, van 

Genderen and Lock 1977). Creating an error matrix to evaluate 

the accuracy of a remotely sensed map therefore requires 

sampling to determine if the mapped categories agree with the 

reference data (Rosenfield et al. 1982).

To select an appropriate sampling scheme for accuracy 

assessment, some knowledge of the distribution of the 

vegetation/land cover classes should be known. Stratified 

random sampling has historically prevailed for assessing the 

accuracy of remotely sensed maps. Stratified sampling has been 

shown to be useful for adequately sampling important minor 

categories, whereas simple random sampling or systematic 

sampling tended to oversample categories of high frequency 

and undersample categories of low frequency (Card 1982, van 

Genderen et al. 1978). 

Spatial Autocorrelation

Because of sensor resolution, landscape variability, and other 

factors, remotely sensed data are often spatially autocorrelated 

(Congalton 1988a). Spatial autocorrelation involves a 

dependency between neighboring pixels such that a certain 

quality or characteristic at one location has an effect on that 

same quality or characteristic at neighboring locations (Cliff 

and Ord 1973, Congalton 1988a). Spatial autocorrelation 

can affect the result of an accuracy assessment if an error in 

a certain location can be found to positively or negatively 

influence errors in surrounding locations. The best way to 

minimize spatial autocorrelation is to impose some minimum 

distance between sample units.

Sample Size and Sample Unit

An appropriate sample size is essential to derive any 

meaningful estimates from the error matrix. In particular, small 

sample sizes can produce misleading results. Sample sizes 

can be calculated using the equation from the multinomial 

distribution, ensuring that a sample of appropriate size is 

obtained (Tortora 1978). Some researchers have suggested 

using the binomial equation to compute sample size. Given the 

need to create an error matrix, however, the binomial equation 

is inappropriate. A general rule of thumb developed from 

many projects shows that sample sizes of 50 to 100 for each 

map category are recommended, so that each category can be 

assessed individually (Congalton and Green 1999).
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In addition to determining appropriate sample size, an 

appropriate sample unit must be chosen. Historically, the 

sample units chosen have been a single pixel, a cluster of 

pixels, a polygon, or a cluster of polygons. A single pixel is a 

poor choice of sample unit (Congalton and Green 1999), since 

it is an arbitrary delineation of the land cover and may have 

little relation to the actual land cover delineation. Further, it is 

nearly impossible to align one pixel in an image to the exact 

same area in the reference data. In many cases involving single 

pixel accuracy assessment, the positional accuracy of the data 

dictates a very low thematic accuracy. A cluster of pixels (e.g., 

a 3 by 3 pixel square) is always a better choice for the sample 

unit, since it minimizes registration problems. A good rule 

of thumb is to choose a sample unit whose area most closely 

matches the minimum mapping unit of the reference data. For 

example, if the reference data have been collected in 2-hectare 

minimum mapping units, then an appropriate sample unit may 

be a 2-hectare polygon. 

Analysis Techniques

Once an error matrix has been properly generated, it can 

be used as a starting point to calculate various measures 

of accuracy in addition to overall, producer’s, and user’s 

accuracies. Two techniques have been found to be extremely 

useful. The first is a discrete multivariate technique called 

Kappa (Bishop et al. 1975), which can be used to statistically 

determine (1) if the remotely sensed classification is better 

than a random classification, and (2) if two or more error 

matrices are significantly different from each other. Kappa 

calculates a KHAT value (Cohen 1960), which is a measure of 

the actual agreement of the cell values minus the chance (i.e., 

random) agreement (Congalton and Mead 1983, Rosenfield 

and Fitzpatrick-Lins 1986) and can be viewed as a measure of 

accuracy. The KHAT value can be used to determine whether 

the results in the error matrix are significantly better than a 

random result (Congalton 1991). The KHAT accuracy value 

inherently includes more information than the overall accuracy 

measure since it indirectly incorporates the error (off-diagonal 

elements) from the error matrix. In addition, confidence limits 

can be calculated for the KHAT statistic, which allows for an 

evaluation of significant differences between KHAT values 

(Congalton and Green 1999). 

Secondly, the analysis of the error matrix can be taken yet 

another step further by normalizing the cell values. An iterative 

proportional fitting technique, called Margfit, can be used to 

perform this normalization. Because the cell values in each 

row and column in the matrix are forced to sum to one, each 

cell value becomes a proportion of one, which can easily 

be multiplied by 100 to obtain percentages. Consequently, 

producer’s and user’s accuracies are not needed because the 

cell values along the major diagonal represent the proportions 

correctly mapped. Congalton et al. (1983) argue that the 

normalized accuracy is a more inclusive measure of accuracy 

than either KHAT or overall accuracy because it directly 

includes the information in the off-diagonal element of the 

error matrix. Because each row and column sums to the same 

value, different cell values (e.g., different forest cover classes) 

within an error matrix and among different error matrices can 

be compared despite differences in sample sizes. The software 

for performing both the Kappa and Margfit analyses is available 

from the author.
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The Spatial Distribution of Riparian Ash: 
Implications for the Dispersal of the Emerald 
Ash Borer

Susan J. Crocker1, W. Keith Moser2, Mark H. Hansen3, and 

Mark D. Nelson4

Abstract.—A pilot study to assess riparian ash 

connectivity and its implications for emerald ash 

borer dispersal was conducted in three subbasins 

in Michigan’s Southern Lower Peninsula. Forest 

Inventory and Analysis data were used to estimate 

ash biomass. The nineteen percent of plots in riparian 

physiographic classes contained 40 percent of ash 

biomass. Connectivity of riparian and upland ash was 

assessed using the spatial pattern analysis program 

FRAGSTATS. Higher mean proximity and patch 

cohesion was found among riparian patches. Greater 

connectivity and high ash biomass in riparian patches 

may facilitate spread of this insect.

Introduction

The emerald ash borer (EAB) (Agrilus planipennis Fairmaire, 

Coleoptera: Buprestidae), a native of Asia, was initially 

discovered in the United States in May 2002. Although the 

method of introduction is unknown, it is believed that EAB 

arrived in solid wood packing material (i.e., crates and wood 

pallets) transported to Detroit, Michigan (Haack et al. 2002). 

The extent of its damage and its life history traits indicate 

that EAB has been established in the United States since the 

early 1990s (Herms et al. 2004). Although the majority of 

devastation has affected ash trees in southeastern Michigan, 

EAB has dispersed throughout Michigan’s Lower Peninsula and 

into Indiana, Ohio, and Windsor, Ontario. In addition, isolated 

EAB-positive locations have been identified in Michigan’s 

Upper Peninsula (Michigan Department of Agriculture 2005), 

Maryland, and Virginia (Herms et al. 2004). 

In the United States, EAB is known only as a pest to ash 

(Fraxinus spp.). Although EAB is a threat to all ecosystems 

where ash is found, EAB poses a substantial risk to riparian 

forests. Riparian forests tend to have high biodiversity (Goforth 

et al. 2002) and serve ecologically important roles in forest 

ecosystems, which enhance their value and vulnerability. 

Throughout Michigan, ash, particularly black and green ash, 

is a dominant overstory component of riparian forests (Tepley 

et al. 2004). White ash, largely an upland species, is typically 

found on dry to dry-mesic sites; however, in the Southern 

Lower Peninsula (SLP), white ash is often found growing 

along the margins of wet-mesic deciduous swamps (Barnes and 

Wagner 2004). Because ash species occupy different sites, it 

is important to understand how the spatial arrangement of ash 

may influence EAB dispersal patterns. 

Not only are riparian ash at risk for EAB infestation, they may 

serve as EAB dispersal conduits. Preliminary research from a 

case study at an infestation site in Tipton, MI, offers evidence 

that riparian forests may facilitate EAB dispersal by channeling 

the direction of movement (McCullough et al. 2004). This study 

found that larval gallery density decreased with increasing 

distance from the source of infestation and that EAB seemed 

to display directional dispersal, as the majority of infested trees 

followed the path of a drainage ditch (McCullough et al. 2004). 

Therefore, presence of ash in riparian forests creates potential 

corridors of available habitat that may direct the course of 

dispersal into uninfested areas. 
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E-mail: scrocker@fs.fed.us.
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3 Mathematical Statistician, USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. 
4 Geographic Information System Specialist, USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. 
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It is widely believed that corridors connecting similar patches 

of habitat facilitate the movement of organisms (Tewksbury 

et al. 2002). Haddad and Baum (1999) found that a contrast 

between corridor and surrounding habitat enhanced the 

effectiveness of corridors in increasing butterfly density within 

suitable corridor-linked patches. These studies suggest that 

ash patches with high connectivity may facilitate dispersal 

along connected corridors and have higher EAB densities. In 

addition, if corridors of ash habitat are bordered by contrasting 

or unsuitable habitats, especially in the fragmented SLP, these 

areas may be more susceptible and have higher rates of spread. 

Therefore, assessments of the spatial distribution of riparian ash 

may help predict directionality of dispersal.

The purpose of this study is to evaluate the spatial arrangement of 

ash habitat patches and assess the connectivity of riparian ash. To 

accomplish this goal, we will (1) map ash biomass and riparian 

ash distribution for the entire Lower Peninsula, (2) compare ash 

abundance in the SLP by physiographic class, and (3) calculate 

connectivity indexes for riparian and upland ash forest patches 

for three subbasins in the SLP. Our motivation is to identify 

the importance of riparian ash as it relates to the direction and 

rate of EAB dispersal, and provide information that may help 

mitigate the rapid spread of this insect.

Methods

Study Area

Ash biomass was mapped for the entire Lower Peninsula      

(fig. 1); however, specific analysis of FIA plots was conducted 

only in the SLP. The SLP includes Allegan, Barry, Berrien, 

Branch, Calhoun, Cass, Clinton, Eaton, Genesee, Gratiot, 

Hillsdale, Huron, Ingham, Ionia, Jackson, Kalamazoo, Kent, 

Lapeer, Lenawee, Livingston, Macomb, Monroe, Montcalm, 

Muskegon, Oakland, Ottawa, Saginaw, St. Clair, St. Joseph, 

Sanilac, Shiawassee, Tuscola, Van Buren, Washtenaw, and 

Wayne Counties (fig. 1).

The study area for the connectivity analysis included three 

subbasins (classified by the Natural Resources Conservation 

Service and U.S. Geological Survey) located in the SLP: 

Detroit, Maple, and Thornapple (fig. 1). Subbasins are defined 

by the Watershed Boundary Dataset as eight-digit hydrologic 

unit codes (HUCs), formerly the lowest watershed accounting 

unit. Each eight-digit HUC represents approximately 448,000 

acres (Laitta et al. 2004). 

Mapping Ash Distribution

Forest inventory data were obtained from all FIA plots 

measured in the Lower Peninsula between 2000 and 2005. 

Forested plots were brought into Arc Map 9.0 and were used 

to create an interpolated surface of ash biomass using the 

ordinary cokriging method (ESRI 2004); log transformed 

biomass of all ash species and log transformed biomass of 

all tree species were used as covariates. Once the predicted 

surface of ash biomass was created, nonforest areas were 

masked using a land cover dataset for the Lower Peninsula, 

developed by the Integrated Forest Monitoring Assessment 

and Prescription (IFMAP) project, to reveal predicted ash 

Figure 1.—Study area. The Southern Lower Peninsula and the 
Detroit, Maple, and Thornapple subbasins.

SLP = Southern Lower Peninsula.
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biomass on forested land area only. Riparian ash forest types 

were mapped for the Lower Peninsula. These forest types were 

selected from (1) wetland vector polygons mapped from aerial 

photographs by the U.S. Fish & Wildlife Service during an 

inventory of national wetlands (National Wetlands Inventory 

[NWI]) data), and (2) pixels from the IFMAP land cover 

dataset that were classified as lowland deciduous (IFMAP land 

cover classification is derived from Landsat Thematic Mapper 

satellite imagery). Riparian ash forest types from NWI data 

are defined as Palustrine system, forested or scrub-shrub class, 

with the subclass or secondary subclass equal to the broadleaf 

deciduous category (in which ashes, among others, are canopy 

dominants). 

Estimates of Ash Abundance

Total ash biomass was calculated for all FIA plots in the SLP 

measured between 2000 and 2005 by multiplying oven-dry 

tree biomass and the current number of trees per acre, then 

decoding by all species of ash. Ash biomass was summarized 

by physiographic class code, and estimates were compared 

by riparian and upland site. Physiographic classes—narrow 

floodplains/bottomlands, broad floodplains/bottomlands—

and all hydric classes were defined as riparian; all other 

physiographic classes were considered upland.

Fragmentation Analysis

An IFMAP raster image file was extracted using a mask 

for each of the three subbasins. Three separate raster grids 

containing only those land cover/land use pixels within the 

boundary of each subbasin were created. The grids were then 

input into the spatial pattern analysis program for categorical 

maps, FRAGSTATS, in which landscape connectivity metrics 

were calculated for riparian and upland ash patches (McGarigal 

et al. 2002). Under IFMAP forest type classification, lowland 

deciduous and northern hardwood cover types represented 

riparian and upland ash patches, respectively. For estimates 

of fragmentation, the mean proximity index (McGarigal et al. 

2002) was used and is defined as

		

               PROX_MN =	 (1)

where:

a
ijs

 is the area of patch i of patch type j within specified distance 

s of patch ij (the focal patch); h
ijs

 is the distance between patch 

ijs and the focal patch (based on patch edge-to-edge distance, 

computed from cell center to cell center); and n
i 
is the total 

number of patches in class i. The patch cohesion index was 

calculated as an estimate of connectivity and is defined as

	

COHESION =	  (2)

	

where:

p
ij
 is the perimeter of patch i of patch type j in terms of number 

of cell surfaces, a
ij
 is the area of patch ij in terms of number 

of cells and A is the total number of cells in the landscape 

(McGarigal et al. 2002).

Results

A map of log transformed ash biomass for all ash species in the 

Lower Peninsula was created (fig. 2). Ash biomass is relatively 

low throughout much of the Northern Lower Peninsula. In 

contrast, high proportions of ash biomass are found in the SLP. 

Although forests in the SLP tend to have higher ash biomass, 
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Figure 2.—Ordinary cokriged interpolation of log transformed 
ash biomass in the Lower Peninsula of Michigan.
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the forests are made up of smaller parcels, as the degree of 

forest fragmentation decreases from south to north. Riparian 

ash forest types are distributed throughout the Lower Peninsula 

(fig. 3). Though concentrated in the central portion of the 

Lower Peninsula, riparian ash forest types make up much of 

the ash biomass in the SLP. Throughout the Lower Peninsula, 

riparian ash forest types form narrow, sinuous bands and tend 

to be clustered around watercourses. 

The majority of forest area in the SLP is classified as uplands 

(table 1). A total of 1,714 plots were sampled and 19 percent 

were in riparian physiographic classes. Although making 

up less than a quarter percent of total area, plots in riparian 

physiographic classes held 40 percent of ash biomass. Mean 

ash biomass was higher in riparian plots at 17,546 pounds per 

acre; upland plots had a mean ash biomass of 6,290 pounds 

per acre (table 1). Twenty-four percent of plots in riparian 

physiographic classes (or riparian plots) had no ash biomass; 

55 percent of plots in upland physiographic classes (or upland 

plots) had no ash biomass. 

The mean proximity index for riparian forest type patches 

was greater than upland patches in two of the three subbasins 

(table 2). Lowland deciduous forest type patches in the 

Figure 3.—Distribution of riparian ash forest types in the 
Lower Peninsula of Michigan.

Table 1.—Analysis of FIA plots by physiographic class code, 
Southern Lower Peninsula of Michigan, 2000–05.

 
Floodplain 

physiographic 
class

Upland 
physiographic 

class

Total number of plots 327 1,387

Total ash biomass (lbs/acre) 5,737,567 8,724,879

Mean ash biomass/plot (lbs/acre) 17,546 6,290

Standard deviation 24,463 13,461

Number of plots with no ash 80 760

Table 2.—Landscape metrics for lowland deciduous and northern hardwood forest types in three subbasins in the Southern Lower 
Peninsula of Michigan.

 
Subbasin

Detroit Maple Thornapple

Fo
re

st
 ty

pe Lo
w

la
nd

 d
ec

id
uo

us

Total area (acres) 7,112.92 27,726.92 23,052.28
Percentage of landscape (%) 1.90 4.58 4.25
Number of patches 5,323.00 14,422.00 17,022.00
Mean patch area (acres) 1.34 1.92 1.35
Mean proximity index (MPI) 4.98 19.43 6.98
Standard deviation of MPI 19.28 86.43 28.20
Connectance index 0.39 0.22 0.23
Patch cohesion index 82.46 89.39 82.19

N
or

th
er

n 
ha

rd
w

oo
d

Total area (acres) 20,449.21 12,579.94 29,452.22
Percentage of landscape (%) 5.45 2.08 5.42
Number of patches 21,299.00 10,625.00 16,471.00
Mean patch area (acres) 0.96 1.18 1.79
MPI 2.75 1.73 9.27
Standard deviation of MPI 4.30 4.15 57.28
Connectance index 0.25 0.18 0.18
Patch cohesion index 67.81 70.62 85.59

FIA = Forest Inventory and Analysis.
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Detroit, Maple, and Thornapple subbasins had mean proximity 

index values of 4.98, 19.42, and 6.98, respectively. Northern 

hardwood forest type patches had mean proximity indices of 

2.75, 1.73, and 9.27 in the Detroit, Maple, and Thornapple 

subbasins, respectively. Patch cohesion had greater variability 

for northern hardwood forest patches than for lowland 

deciduous patches. In northern hardwood forest patches, the 

patch cohesion index was 67.81 in the Detroit subbasin, 70.62 

in the Maple subbasin, and 85.59 in the Thornapple subbasin 

(table 2). On average, the patch cohesion index was higher in 

lowland deciduous patches and was more stable, ranging from 

82.46 to 89.39 to 82.19 in the Detroit, Maple, and Thornapple 

subbasins, respectively. Average landscape area is 3.58 percent 

in riparian plots and 4.32 percent in upland plots. Northern 

hardwood patches occupied an average of 20,827 acres per 

subbasin, while lowland deciduous patches contained an 

average of 19,297 acres per subbasin. 

 

Discussion

Riparian forests are associated with many types of surface 

waters (Palik et al. 2004), including rivers and streams. As 

a result of this association, riparian forest types often have a 

linear, sinuous pattern that is influenced by stream flow. This 

pattern of distribution is suitable for guiding EAB dispersal 

and maximizing the distance an insect will travel. Therefore, 

the spatial distribution of riparian ash may be important in 

facilitating long-distance dispersal of EAB in the SLP by 

funneling EAB movement along corridors of suitable ash 

habitat, particularly in areas bordered by unsuitable or non-ash 

environments. Although riparian ash forests do not account 

for a total area greater than upland ash forests, average ash 

biomass is higher in riparian forest types. The damage potential 

and potential capacity for supporting EAB density is therefore 

higher in riparian ash forest types. EAB represents a substantial 

risk to riparian forests in the highly fragmented SLP because 

riparian ash forest types create corridors of potential EAB 

habitat and contain a high proportion of ash. These factors 

increase the vulnerability of riparian forests to EAB and 

enhance the ability to direct dispersal.

The ability to direct dispersal is related to spatial arrangement. 

The mean proximity index measures the relative fragmentation 

and isolation of similar patch types (McGarigal et al. 2002). 

Higher mean proximity values for riparian forest patches 

indicate that riparian patches were surrounded by a higher 

number of similar patch types than were upland patches. 

Similar to the mean proximity index, the patch cohesion index 

is a measure of the physical connectedness of corresponding 

patch types (McGarigal et al. 2002). Patch cohesion was 

higher in lowland deciduous patches, which is an indication 

that riparian forest patches offer greater connectivity between 

patches relative to upland, northern hardwood forest types. 

Higher connectivity between riparian ash patches increases the 

likelihood of stronger EAB travel along riparian corridors. 

Although this study is preliminary, initial results suggest that 

(1) the forests in the SLP, where the distribution of riparian ash 

is great, are highly fragmented; (2) riparian ash forest types 

make up a small percentage of total area but contain a large 

amount of ash biomass; and (3) riparian ash forest types are 

more highly connected to patches of similar forest type than 

are upland ash forest types. Thus, the spatial distribution and 

pattern of riparian ash abundance in the SLP may influence the 

direction and rate of EAB spread by allowing EAB to quickly 

increase radial dispersal along narrow, connected corridors. 
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The Investigation of Classification Methods 
of High-Resolution Imagery

Tracey S. Frescino1, Gretchen G. Moisen2, Larry 

DeBlander3, and Michel Guerin4

Abstract.—As remote-sensing technology advances, 

high-resolution imagery, such as Quickbird and 

photography from the National Agriculture Imagery 

Program (NAIP), is becoming more readily 

available for use in forestry applications. Quickbird 

imagery is currently the highest resolution imagery 

commercially available. It consists of 2.44-m (8-ft) 

resolution multispectral bands ranging from blue 

to near infrared and a panchromatic band acquired 

simultaneously at 0.61-m (2-ft) resolution. In the 

near future, NAIP will provide annually updated, 

orthorectified, natural color, aerial photography at 

1-m resolution across the continental United States. 

Our objective was to investigate two classification 

methods: an individual tree crown delineation and 

classification procedure and a technique using 

Feature Analyst software for classifying high-

resolution Quickbird and NAIP photography. Both 

methods were found to be effective for discriminating 

different vegetation types using Quickbird and NAIP 

photography, although the Quickbird imagery proved 

to be superior to the NAIP photography according to 

visual and numerical assessments. 

The numerical accuracy of the resulting maps 

ranged from 48 percent to 63 percent at the Level II 

classification, in which a class was determined based 

on the plurality of the species within approximately 

a hectare of the point. At the Level III forest and 

nonforest classification, the numerical accuracies 

ranged from 89 percent to 94 percent. The visual 

assessments revealed good results, especially at Level 

III forest and nonforest classifications. We believe 

that these assessments show strong potential for their 

use as ancillary products in Interior West FIA’s forest 

resource estimation procedures and should be further 

pursued.

Introduction

The U.S. Department of Agriculture (USDA) Forest Inventory 

and Analysis Program (FIA) strives to produce better 

information with lower costs and increased frequency. The 

objective of FIA is to estimate broad-scale forest population 

totals and to track trends and detect changes in our Nation’s 

forests. In the past, inventories were conducted and estimates 

produced on a periodic basis (every 5 to 20 years). The 1998 

Farm Bill, however, requires a proportion of all field plots to 

be measured (1 out of 10 in the Western United States and 1 

out of 5 in the East) each year on all lands in the United States, 

and forest population estimates must be updated. In an effort to 

become more efficient, the Interior West (IW) region of FIA is 

investigating high-resolution remotely sensed products to assist 

in obtaining the information requirements of this legislation 

while reducing inventory costs. 

With the technological advancement of satellite systems, high-

resolution satellite imagery, such as Quickbird, is becoming 

more readily available for use in forestry applications. 

Currently, Quickbird imagery has the highest resolution 

commercially available. It consists of 2.4-m (7.9-ft) resolution 

multispectral bands ranging from blue to near infrared and a 

panchromatic band acquired simultaneously at 0.6-m (2.0-ft) 

resolution. The Quickbird satellite was launched in October 

1 Forester, U.S. Department of Agriculture (USDA), Forest Service, Rocky Mountain Research Station, Ogden, Utah 84401. E-mail: tfrescino@fs.fed.us.
2 Forester, USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah 84401. E-mail: gmoisen@fs.fed.us.
3 Research Forester, USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah 84401. E-mail: ldeblander@fs.fed.us.
4 Remote Sensing Specialist, CLC-Camint Inc., 227 Boulevard St-Joseph, Gatineau (Hull), Quebec, Canada J8Y 3X5. E-mail: m.guerin@clc-camint.com.
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2001 and is owned and operated by DigitalGlobe (http://www.

digitalglobe.com). Quickbird has a geolocational accuracy 

within 23 meters, an imaging swath 16.5-km (10.2-mile) 

wide, 128 gbits image storage capacity onboard, and an off-

axis unobscured design telescope with an 11-bit dynamic 

range (DigitalGlobe 2005). These characteristics present an 

opportunity to identify individual crowns of vegetation.

In addition to Quickbird, another high-resolution product we 

examined is aerial photography from the National Agricultural 

Imagery Program (NAIP), which is available for download 

from the Internet (http://www.apfo.usda.gov). The NAIP 

acquires digital ortho imagery during the agricultural growing 

season of the continental United States. The photography 

is orthorectified, natural color, 1-m resolution photography 

with a horizontal spatial accuracy matching within 3 m of an 

orthorectified reference digital ortho quarter quad (DOQQ). 

With resolution, timely acquisitions, and availability, this 

product is very desirable as a modeling tool or for identifying/

locating vegetative features on the ground.

Numerous algorithms are being developed for delineating 

individual tree crowns (Culvenor 2002, Definiens 2003, Leckie 

et al. 2003, Pouliot et al. 2002). CLC-Camint, Inc., uses its 

own proprietary methodology for delineating and classifying 

tree crowns using Quickbird imagery. This methodology uses 

an automated individual tree crown (ITC) classification and 

object-based segmentation procedure (Gougeon 1995, Gougeon 

1997) to generate a digital map of tree crowns integrated into 

a Geographical Information System. The ITC algorithm uses 

a valley-following approach (Gougeon 1995) to delineate 

unique tree crowns. This approach searches for the shaded 

areas between crowns and removes (masks out) these areas, 

leaving objects representing the crown of a tree. The method 

uses the Quickbird imagery to create a digital layer depicting 

each unique tree crown. These delineated crowns are further 

classified by species type based on identified training sites 

(or trees), along with multispectral, textural, structural, and 

contextual analysis tools. Signatures are developed for each 

individual tree crown, and a maximum likelihood decision rule 

assigns it to a species type class. 

An alternative automated procedure for extracting features is 

implemented in Feature Analyst, software developed by Visual 

Learning Systems, Inc. (http://www.vls-inc.com). Feature Ana-

lyst is a user-friendly, automated machine learning approach for 

extracting land cover features, or objects based on user-speci-

fied examples. Feature Analyst uses spectral and spatial pattern 

recognition techniques to extract features from high-resolution 

digital imagery. Where traditional classifiers use color and tone 

to extract features, Feature Analyst uses characteristics such as 

size, shape, color, texture, shadow, association, and pattern to 

extract features of interest. Although Feature Analyst has the 

functionality of delineating individual tree crowns, only stand-

level classifications were generated for this study. 

Our interest for this study was to investigate the capabilities 

of Feature Analyst and how it compares with CLC-Camint’s 

ITC process for producing map products using high-resolution 

Quickbird imagery and high-resolution NAIP photography. 

Three analyses were conducted in this study. First, we tested the 

accuracy of the ITC algorithm for delineating and classifying 

crowns in a diverse forest area in the southern Rocky Moun-

tains of Utah using Quickbird imagery. Second, we tested the 

accuracy of Feature Analyst for classifying forest stands in the 

same area applied to Quickbird imagery. Third, we once again 

tested the accuracy for classifying forest stands using Feature 

Analyst, but this time applied to NAIP photography. 

Methods

Area of Interest

IW-FIA staff identified a 100 km2 area of interest (AOI) within 

the southern Rocky Mountains of Utah that represented a 

diverse number of forest and species types. The AOI is east 

of Beaver, UT, within the Fishlake National Forest (fig. 1). 

The area was selected for its diversity of species types and 

altitudinal range with the intent to examine the performance 

of the ITC and Feature Analyst methods across multiple 

ecosystems that occur in the Western States. Within this area, 

elevation values range from 1,920 m (6,298 ft) to more than 

3,000 m (9,840 ft). The species types reflect this elevational 

gradient with pinyon pine and juniper species at the lower 
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elevations, oak and mahogany hardwood species at mid ranges, 

and aspen, Douglas fir, subalpine fir, and Engelmann spruce at 

higher elevations. The area also encompasses the Beaver River, 

which typically includes riparian vegetation types.

ITC Delineation and Classification/Quickbird

A map of individual tree crowns, with species identified, was 

produced using the ITC process over the AOI. The process of 

producing this map involved multiple steps carried out by staff 

at IW-FIA and CLC-Camint, as outlined in table 1. 

The Quickbird imagery for the AOI was provided as courtesy 

of DigitalGlobe CLC-Camint defined the specifications of the 

Quickbird scene and preprocessed the imagery. The acquired 

scene was approximately 300 km2 in size, surrounding the AOI. 

This scene increased the range of altitudinal gradient to more 

than 1630 m (5,346 ft), from approximately 1,815 m (5,953 ft) 

to more than 3,450 (11,316 ft) at Mount Baldy Peak. The scene 

was received from DigitalGlobe radiometrically calibrated and 

corrected for sensor- and platform-induced distortions. CLC-

Camint performed an orthorectification procedure based on a 

1:24,000 map and mapped the scene. 

At this stage, CLC-Camint applied an initial unsupervised 

classification technique to delineate sites with unique, 

homogenous signatures occurring on the image, with the help 

of aerial photographs. These areas were identified as potential 

training sites, which were delineated by a georeferenced point 

shapefile. A total of 170 training sites were identified. These 

sites were then located by IW-FIA on aerial photographs and 

labeled according to nine classes (table 2) of homogenous 

species or predominant mix of species based on the area around 

the sites. Each label was then given a number ranging from 0 to 

100, indicating the percent confidence of the interpretation. The 

170 labeled training sites were sent back to CLC-Camint for use 

in their ITC delineation and classification procedures. 

CLC-Camint next performed the automated ITC delineation 

and classification procedure. The ITC valley-following 

algorithm does not work well in areas with sparse crowns (i.e., 

Figure 1.—The AOI in the southern Rocky Mountains of Utah.

Table 1.—The process between IW-FIA and CLC-Camint to 
develop a map product delineating individual tree crowns.

Main activities Group in charge

Acquire Quickbird scene CLC-Camint
Unsupervised classification, identify 

training sites
CLC-Camint

Assign labels to training sites IW-FIA
ITC delineation and classification CLC-Camint
Review results and field check training 

sites
IW-FIA

Refine classification CLC-Camint
Accuracy assessment CLC-Camint/IW-FIA
Delineate stands CLC-Camint
Accuracy assessment CLC-Camint/IW-FIA
Cost assessment CLC-Camint/FS-RMRS

Table 2.—The list of classes used for classification in the 
individual tree crown process.

Code Species type

1 Spruce/fir
2 White fir
3 Aspen
4 Mahogany
5 Pinyon
6 Juniper
7 Oak/maple
8 Other hardwoods
9 Nonforest

FS-RMRS = Forest Service, Rocky Mountain Research Station; ITC 
= individual tree crown; IW-FIA = Interior West-Forest Inventory and 
Analysis.

AOI = area of interest.
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pinyon and juniper species types) where there are no shadows 

between the trees (Gougeon and Leckie 2001). Consequently, 

an eCognition (Definiens 2003) procedure was applied to these 

areas prior to running the ITC algorithm. The ITC classification 

process involved two steps: a first-run classification based 

on the 170 training sites, and a second-run classification 

performed after reviewing the results of the first classification. 

For the second classification, ancillary information and/or 

new training information may be added in areas having many 

misclassifications. The results for this paper include output 

from the first classification. Currently, we are running the 

second classification, after reviewing the results of the first 

classification, field checking the original set of training sites, 

and identifying and labeling 130 additional training sites. The 

second classification will therefore use 300 correctly identified 

training sites along with ancillary data from a 10-m digital 

elevation model.

Feature Analyst/Quickbird 

A map of forest stands, with forest types identified, was 

produced using Feature Analyst over the same area of the 

Quickbird image. This process was carried out by IW-FIA staff. 

Although the same point training sites as the ITC procedure 

were used, we created polygons surrounding these points 

for use as training sites in the Feature Analyst classification 

because Feature Analyst uses characteristics such as shape, 

texture, association, and pattern. Additional training polygons, 

determined from our field visit, were also delineated and 

resulted in a total of 300 sites for classification. Labels were 

assigned at a stand level based on Level I class assignments 

representing the dominant species, the dominant species 

associations, or a nonforest type (table 3).

The color infrared Quickbird imagery was used, including 

green, red, and near infrared bands as well as a 10-mr, U.S. 

Geological Survey digital elevation model (DEM) obtained 

from the Automated Geographic Reference Center Web site 

(http://agrc.its.state.ut.us/). All bands were resampled to a pixel 

size of 4.8 m, the smallest pixel size. For feature recognition, we 

set the pixel search pattern to a “Manhattan” style with a width 

of five pixels (fig. 2). Feature Analyst was set to run a wall-to-

wall classification of the Level I classes resulting in a map with 

a minimum map unit size of 24 pixels (about 1 hectare).

Table 3.—The list of Level I classes used for Feature Analyst 
classification and for assessing accuracy.

Code Species type
Number of

training sites

1 Spruce-fir 8

2 Spruce-fir/aspen 9

3 Aspen/spruce-fir 15

4 Aspen 20

5 Aspen/white fir 9

6 White fir/aspen 3

7 White fir 16

8 White fir/mahogany 9

9 Mixed conifer 9

10 Cottonwood 9

11 Mahogany 18

12 Mahogany/pinyon-juniper 10

13 Pinyon-juniper/mahogany 11

14 Pinyon-juniper 19

15 Pinyon-juniper/oak 12

16 Oak/pinyon-juniper 12

17 Oak 19

18 Oak/mahogany 9

19 Chained woodland 14

20 Nonstocked timberland 11

21 Meadow 18

22 Agriculture 7

23 Road 10

24 Water 6

25 Barren 7

26 Shadow 10

Figure 2.—The five-pixel, Manhattan search pattern used for 
feature recognition.
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Feature Analyst/NAIP 

A map of forest stands, with forest types identified, was 

produced with Feature Analyst using NAIP photography 

within the study area. This process was also carried out by 

IW-FIA staff. The same 300 polygon training sites as the 

Feature Analyst/Quickbird process were used, but because of 

the misregistration between the NAIP photography and the 

Quickbird imagery, all polygon training sites were individually 

shifted to match the corresponding area. 

The natural color NAIP photography was used, including blue, 

green, and red bands, as well as the 10-m USGS DEM. All 

bands were resampled to a pixel size of 1.0 m, the smallest 

pixel size. We set the pixel search pattern to a “Manhattan” 

style with a width of five pixels (fig. 2) for feature selection. 

Feature Analyst was set to run a wall-to-wall classification 

resulting in a map with a minimum map unit of 24 pixels 

(about 1 hectare).

Accuracy Assessment

Map accuracy and map comparisons were based on visual and 

numerical assessments at a stand level. A visual assessment 

was performed for each map to determine the reliability of 

the results of the ITC crown delineation and classification 

and the Feature Analyst results using Quickbird imagery 

and NAIP photography. For the ITC procedure, the visual 

assessment was based on the accuracy of the crown delineation 

and the classification of each crown. For the results of the 

Feature Analyst stand classifications using Quickbird and 

NAIP products, visual assessments were examined at three 

class levels: Level I included all 26 classes that were used 

for training (table 3); Level II included nine classes based 

on the plurality of species including one class with all 

nonforest classes (table 4); and Level III included two classes 

representing forest and nonforest. 

For a more objective, numerical assessment and comparison 

of the three maps, an independent test set of 100 points was 

randomly selected within the extent of the Quickbird image and 

applied to each map. The points were assigned classes based 

on interpretation of 1:16,000 stereo aerial photographs and 

expert knowledge. These classes were compared to the maps 

based on the three class levels mentioned above for the visual 

assessment of the Feature Analyst classifications. For the maps 

generated using Feature Analyst, the test points were compared 

directly to the intercepted pixel class of the map. The ITC 

map involved two steps. First, the individual tree crowns were 

evaluated at each point and a stand-level class was assigned 

based on approximately a hectare or more area surrounding the 

point. Then, these class assignments were compared to the class 

assignment of the test set. 

Error matrices were generated for each map and a percent 

correctly classified (PCC) and a Kappa statistic were calculated 

to provide a numerical statistic of accuracy. The accuracy and 

comparisons were evaluated at the three different class levels. 

Results

ITC Delineation and Classification/Quickbird

Based on a visual evaluation of the ITC product compared 

to the panchromatic Quickbird image, the ITC procedure 

performed fairly well delineating individual tree crowns. In 

areas of low crown densities with pinyon and juniper species, 

the delineation process generally picked up most of the tree 

crowns (fig. 3). In some of these areas, though, it seemed like 

larger pinyons and junipers were split into more than one crown 

and smaller trees were not captured at all (e.g., the gray circles 

Table 4.—The list of Level II classes used for Feature Analyst 
classification and for assessing accuracy.

1 Spruce-fir 17

2 Aspen 44

3 White fir 25

4 Mixed conifer 9

5 Cottonwood 9

6 Mahogany 28

7 Pinyon-juniper 42

8 Oak 40

9 Chained woodland 14

10 Nonstocked timberland 11

11 Nonforest 58

Code Species type
Number of

training sites
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in fig. 3). These conditions were a result of the eCognition 

procedure completed on the lower density areas prior to the 

ITC valley-following approach. The ITC valley-following 

algorithm performed adequately in depicting changes in stand 

densities, such as the different aspen stands shown in figure 4. 

This process did not perform well in areas having steep terrain, 

where tree shadows were long and narrow and/or there were 

many downed trees. For both of these conditions, the ITC 

algorithm placed trees incorrectly (fig. 5). 

Although the ITC classification performed well in some 

areas, overall it needs improvement. Most of the classification 

difficulties were related to changes in elevation and aspect. For 

example, pinyon and juniper species on northern slopes were 

typically misclassified as spruce/fir and white fir species. Also, 

in the higher elevations, spruce/fir and aspen species tended to 

be misclassified as pinyon, juniper, and mahogany species. 	

The results of the numerical assessment for each class level 

are shown in table 5. When comparing the Level I class values 

interpreted from the first iteration ITC product to the 100 ran-

domly selected test point values, 32 percent of the points were 

correctly classified with a Kappa value of 0.25. For the Level II 

class values, 48 percent of the points were correctly classified 

with a Kappa of 0.37. For the Level III classes, 90 percent of 

the points were correctly classified and a Kappa of 0.56. 

Feature Analyst/Quickbird

Figure 3.—Visual comparison of ITC product with Quickbird 
panchromatic image in a pinyon-juniper forest type. (a) 
Panchromatic image. (b) Panchromatic image with crown 
delineation product overlayed. The circles show examples 
where trees were not delineated using ITC process.

Figure 4.—Visual comparison of ITC product with Quickbird 
panchromatic image in an aspen forest type with different 
densities. (a) Panchromatic image. (b) Panchromatic image 
with ITC overlay. 

Figure 5.—Visual comparison of ITC product with Quickbird 
panchromatic image in a mixed aspen-conifer forest type. (a) 
Panchromatic image. (b) Panchromatic image with ITC overlay. 

(a) (b)

(a) (b)

(a) (b)

Table 5.—Numerical assessment of ITC process, Feature 
Analyst using Quickbird imagery, and Feature Analyst using 
NAIP photography including PCC and Kappa.

Classification process Statistic
26 

classes
11 

classes
2 

classes

ITC/Quickbird
PCC 32 48 90
Kappa 0.25 0.37 0.56

Feature Analyst/
	 Quickbird

PCC 41 63 94
Kappa 0.37 0.57 0.69

Feature Analyst/ 
	 NAIP

PCC 23 51 89
Kappa 0.19 0.43 0.50

ITC = individual tree crown.

ITC = individual tree crown.

ITC = individual tree crown; NAIP = National Agricultural Imagery 
Program; PCC = percent correctly classified.

ITC = individual tree crown.
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The visual evaluation of the Feature Analyst classification of 

the Quickbird image compared to the color infrared Quickbird 

image indicated fairly good results. Figure 6 shows an area 

with aspen and mixed white fir/aspen stands. In this example, 

the classification performed relatively well in distinguishing 

aspen and white fir/aspen stands but confused mahogany with 

some of the more dense white fir areas (figs. 6b, 6c). At the 

Level III forest and nonforest classification (fig. 6d), Feature 

Analyst performed very well. 

The results of the numerical assessment are shown in table 5. 

For the Level I class, the PCC of the Feature Analyst map using 

Quickbird imagery was 41 percent with a Kappa value of 0.37. 

The Level II class had a PCC of 63 percent and a Kappa of 

0.57 while the Level III class had a PCC of 94 percent and a 

Kappa of 0.69. 

 

Feature Analyst/NAIP

Figure 7 shows an example of the Feature Analyst classification 

of the NAIP photograph compared to the color infrared 

Quickbird image for the same area in Figure 6. Although the 

visual assessment of the results of the classification looks very 

different than that of the Feature Analyst classification of the 

Quickbird image, the results from the numerical assessment 

are fairly good. At the Level I classification, the PCC was only 

23 percent with a Kappa at 0.19 (table 5). For the Level II 

classification, the PCC was much higher at 51 percent with a 

0.43 Kappa value. The Level III class had a PCC of 89 percent 

with a Kappa of 0.50 (table 5). This increasing accuracy is 

noticeable visually as well. 

The PCC and Kappa values of the Feature Analyst map using 

NAIP photography were generally lower than the map using 

Quickbird imagery. With many classes (Level I) the PCC and 

Kappa of the NAIP map were much lower than the Quickbird 

Figure 6.—An example of the Feature Analyst classification 
using Quickbird imagery in aspen and mixed aspen/white fir 
stands. (a) Quickbird color IR image, (b) Quickbird color 
IR image with Level I classification overlayed, (c) Quickbird 
color IR image with Level II classification overlayed, and 
(d) Quickbird color IR image with Level III classification 
overlayed. Here, the forest class is colored black.

(a) (b)

(c) (d)

Figure 7.—An example of the Feature Analyst classification 
using NAIP photography in aspen and mixed aspen/white fir 
stands. (a) NAIP natural color image, (b) NAIP image with 
Level I classification overlayed, (c) NAIP image with Level II 
classification overlayed, and (d) NAIP image with Level III 
classification overlayed. Here, the forest class is colored black.

(a) (b)

(c) (d)

IR = infrared.

NAIP = National Agricultural Imagery Program.
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map at 18 percent and 0.18, respectively. With fewer classes 

(Level II), however, the PCC and Kappa of the NAIP map 

were only 12 percent and 0.14 lower, respectively, than the 

Quickbird map. 

Discussion

Our investigation of high-resolution products was an initial 

test of the usefulness of the resulting map products in 

providing ancillary information to IW-FIA’s forest resource 

estimation process. We based this investigation on both visual 

observations and numerical accuracy of the resulting map 

products as well as the time and costs devoted to the methods 

used to generate the products.

The visual evaluation of the map products revealed the confor-

mity of the maps to expert knowledge and highlighted specific 

areas of concern. For the ITC delineation and classification 

product, most of the concerns were related to the species clas-

sification. As mentioned previously, the assessments were based 

on the first iteration of the classification effort. The final clas-

sification will most likely improve with the addition of the new 

training sites and ancillary information, such as elevation and 

aspect. Another issue discovered through the visual assessment 

was the consequences of long shadows in the areas of steep ter-

rain and where there were many downed trees. These issues will 

need resolution within the valley-following algorithm. 

Feature Analyst performed successfully as an alternative 

automated procedure for classification at a stand level, using 

both Quickbird imagery and NAIP photography. Most of the 

issues involved sensitivity of the classes defined, the number 

of classes, and the training samples used for classification. 

We created a fairly comprehensive list of classes based on 

the species occurring in the area and common associations 

that occurred in a stand. Common types with many training 

sites, such as aspen and pinyon and juniper, were well 

classified, but less common types, such as cottonwood and 

water, were overestimated. One characteristic of Feature 

Analyst that was not explored in this study was its learning 

ability. Classifications can be refined by delineating areas that 

were misclassified or classified correctly and rerunning the 

algorithm. This process is more time consuming but may be 

worth pursuing, especially for classes that are less common. 

The numerical assessment showed that the Feature Analyst 

classification using Quickbird imagery had the highest 

percentage of correctly classified points and the highest Kappa 

at all class levels. Again, these were preliminary comparisons 

to the first iteration classification of the ITC process including 

fewer training sites and no ancillary data. Also, the stand-level 

comparisons were based on visual interpretations of classes 

defined by individual crown delineations, not the automated 

stand delineation process included with the ITC product. Still, 

Feature Analyst proved to be competitive with the ITC process 

at a stand level. Further investigations at a crown level are 

necessary. 

The Quickbird imagery proved to be superior to the NAIP 

photography both visually and numerically, most likely because 

of its availability at a higher resolution, as color infrared, and at 

a higher bit size. Notably, the characteristics of NAIP including 

accessibility, resolution, and acquisition frequency make NAIP 

more appealing than Quickbird imagery for future analyses. 

Although the ITC process and Feature Analyst are automated 

procedures, the generation of training sites is not yet automated. 

Defining the classes and delineating training sites is a tedious 

and time-consuming step that is essential for high-quality 

classifications. The level of detail and number of classes needed 

should be considered when defining the classes. Time allocated 

to photo interpretation and field visitation should be considered 

when delineating the training sites. The accuracy and experi-

ence of the photo interpreters should also be considered when 

delineating the training sites. 
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Conclusions

The objective of this study was to evaluate CLC-Camint’s 

automated ITC delineation and classification approach and to 

investigate and compare two alternative automated methods for 

classifying stands within a diverse forested area near Beaver, 

UT. The numerical accuracy of the resulting maps ranged 

from 48 percent to 63 percent at the Level II classification, 

in which a class was determined based on the plurality of the 

species within approximately a hectare of the point. At the 

Level III forest and nonforest classification, the numerical 

accuracies ranged from 89 percent to 94 percent. The visual 

assessments revealed good results, especially at Level III. We 

believe that these assessments show strong potential for their 

use as ancillary products in IW-FIA’s forest resource estimation 

procedures and should be further pursued. 
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Measurement of Forest Disturbance 
and Regrowth With Landsat and Forest 
Inventory and Analysis Data: Anticipated 
Benefits From Forest and Inventory 
Analysis’ Collaboration With the National 
Aeronautics and Space Administration and 
University Partners

Sean Healey1, Gretchen Moisen2, Jeff Masek3, Warren 

Cohen4, Sam Goward5, Scott Powell6, Mark Nelson7, Dennis 

Jacobs8, Andrew Lister9, Robert Kennedy10, and John 

Shaw11

Abstract.—The Forest Inventory and Analysis (FIA) 

program has partnered with researchers from the 

National Aeronautics and Space Administration, the 

University of Maryland, and other U.S. Department 

of Agriculture Forest Service units to identify 

disturbance patterns across the United States using 

FIA plot data and time series of Landsat satellite 

images. Spatially explicit predictions of biomass 

loss and gain from 1972 to 2002 will be produced in 

2-year intervals using 25 Landsat scenes distributed 

throughout the country. The map-based analyses 

that will be made possible through this collaboration 

will complement FIA’s current ability to track 

disturbances at the county and State level. 

Overview of the Collaboration

The Forest Inventory and Analysis (FIA) program has entered 

into a collaborative agreement with a diverse team of scientists 

for the purpose of using historical Landsat data to measure 

forest disturbance and regrowth since 1972. FIA analysts 

across the country are working with other U.S. Department of 

Agriculture (USDA) Forest Service scientists and collaborators 

from the National Aeronautics and Space Administration 

(NASA), the University of Maryland, and Oregon State 

University to create biennial maps of forest biomass change. 

The project has the following three stated goals:

1.	 To characterize disturbance regimes for forests across the 

United States and portions of Canada.

2.	 To evaluate the variability of post-disturbance forest 

regrowth. 

3.	 To develop techniques that enable FIA analysts to study 

the disturbance history of any forested area in the country. 

This collaboration has the potential to significantly improve 

FIA’s capacity to monitor the forest changes resulting from 

disturbance. Historical Landsat imagery has been used to 

map the occurrence of several types of forest disturbances, 
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including harvest (e.g., Cohen et al. 2002, Healey et al. 2005, 

Sader 1995), fire (e.g., Cocke et al. 2005), insect activity 

(e.g., Skakun et al. 2003), and storm events (e.g., McMaster 

2005). In addition to mapping the occurrence and extent of 

disturbances, a few studies have attempted to measure their 

effect, either in general classes of tree mortality (Franklin et al. 

2000, Jin and Sader 2005, Skakun et al. 2003) or as continuous 

variables representing change in an element of forest structure 

(Collins and Woodcock 1996, Healey et al. 2006b, Olsson 

1994). The scope and precision of the maps to be produced 

through the current collaboration are unique. Biennial estimates 

of biomass loss and gain will be produced for areas across 

the continental United States and portions of Canada at the 

resolution of the Landsat pixel (~ 30 m). This production of 

highly specific (in time, space, and degree) estimates of change 

over an area of almost 1 million square km is only possible 

through the combined expertise of the assembled partners. 

The following section describes the relevant capacities of 

each of the partners and the contributions they are expected 

to make. The final section of this paper contains a discussion 

of the possible benefits to FIA of the products and techniques 

resulting from this effort. 

Collaborators

NASA

The Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) is a NASA-funded program based at 

the Goddard Space Flight Center. The goal of this program 

(http://ledaps.nascom.nasa.gov/ledaps/ledaps_NorthAmerica.

html) is to map forest disturbance and regrowth across the 

North American continent using three dates of Landsat 

imagery (1975, 1990, 2000). In meeting the significant 

logistical challenges of processing such a large number of 

images, LEDAPS has developed several automated algorithms 

for critical tasks such as removal of atmospheric effects, 

radiometric normalization, orthorectification, and disturbance 

detection (table 1). These algorithms will support not only the 

processing of the imagery needed in this project, but will also, 

once validated, be available to FIA for use in other projects. 

The LEDAPS continentwide disturbance maps will be available 

by mid 2006. Because of the decadal sampling interval for 

these maps, it is likely that a portion of disturbances will not 

be detected. Vegetation regrowth following a disturbance 

can mask the disturbance’s spectral signal if the sampling 

frequency is low (Healey et al. 2005, Jin and Sader 2005). 

Through the current collaboration, disturbance rates will be 

identified in more than 25 Landsat scenes across the country 

with imagery acquired at 2-year intervals from 1972 to the 

present using methods discussed below. These scenes will be 

chosen in a national-scale sampling framework so that the 

resultant disturbance maps may be used in concert with the 

LEDAPS product to improve national-level estimates of forest 

disturbance rates. 

FIA

The national network of inventory plots maintained by FIA 

has a sampling intensity of at least one plot per 6,000 acres 

(approximately 1,400 plots per Landsat scene). In addition to 

measuring biometric characteristics such as biomass and basal 

Table 1.—Relevant processing algorithms under development by Landset Ecosystem Disturbance Adaptive Processing System.

Algorithm 
name

Description Current status

lndcal Landsat-5 and Landsat-7 calibration and conversion to top-of-atmosphere reflectance Operational

lndsr Aerosol retrieval, atmospheric correction, conversion to surface reflectance Operational/still in testing

lndcsm Create cloud/shadow/snow mask Prototype exists

lndreg Precision image-to-image matching via Ground Control Points and orthorectification Operational/still in testing

lnddm Disturbance mapping using Disturbance Index (Healey et al. 2005) Operational/still in testing

lndcom Direct surface reflectance compositing across multiple acquisitions without Bidirectional Reflectance 
Distribution Function adjustment

Prototype exists 
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area at each plot, FIA records the likely cause and estimated 

year of forest disturbances occurring at each plot between 

measurements. FIA’s plot data may be used in several ways 

to train and validate satellite-based forest change detection 

algorithms. A plot may be viewed categorically according to 

its binary FIA plot-level disturbance attribute, in which case it 

could be used to support the mapping of the location, but not 

the intensity, of disturbances. If a plot has been measured both 

before and after the identified disturbance, then the degree of 

damage may be assessed in terms of change in a stand attribute 

such as live volume or biomass. In this case, predictive models 

of disturbance intensity may be built using the relationship 

between the degree of measured physical change and the 

spectral differences seen in pre- and post-disturbance imagery. 

Plots that have not been revisited may still support efforts 

to map disturbance intensity. Measurements of attributes 

such as biomass from any date may be associated with 

contemporaneous imagery, and, if there is adequate radiometric 

normalization among images across time, a date-invariant 

predictive spectral model for that attribute may be produced. 

If that model is uniformly applied to normalized imagery from 

different dates, differences in predicted conditions may contain 

significant information about the intensity of local disturbances 

(Healey et al. 2006b). 

FIA scientists, having long had access to the spatial coordinates 

of the Nation’s largest forest inventory, have made important 

strides both in the modeling of biophysical variables using 

remotely sensed data (e.g., Blackard et al. 2006, Frescino et 

al. 2001, Lister et al. 2004, McRoberts et al. 2002, Moisen 

and Frescino 2002) and in the assessment of those models 

(Czaplewski and Patterson 2001, Edwards et al. 1998, Pat-

terson and Williams 2003). In this respect, it is likely that FIA 

personnel will be instrumental both in interpreting information 

from FIA plot records and in modeling that information. FIA 

analysts will also be instrumental at the local level in helping 

identify the causes of mapped disturbances. Finally, FIA will 

have a role in communicating the results of this project as dis-

turbance trends are included in regional and national reports. 

Other USDA Forest Service and University Partners

While FIA’s scientists have used satellite imagery and plot data 

to map forest conditions across large areas, the program has 

little experience in mapping forest changes. In contrast, other 

USDA Forest Service collaborators and those from the Univer-

sity of Maryland and Oregon State University have a good deal 

of experience in developing (Cohen et al. 1998, Huang et al. 

2000, Powell 2004), testing (Cohen and Fiorella 1998, Healey 

et al. 2005), and applying (Cohen et al. 2002) Landsat-based 

change detection algorithms. Because of this experience, USDA 

Forest Service and university partners will have a leading role 

in developing methods for mapping change. As stated earlier, 

these methods will use historical Landsat imagery to both mea-

sure the intensity of forest disturbances and plot the regrowth 

of disturbed stands. Illustrating the degree to which this project 

will draw on the strengths of all collaborators, the change de-

tection algorithms developed by the USDA Forest Service and 

university researchers will rely on both the mass preprocessing 

techniques designed by NASA personnel and the plot data and 

modeling techniques provided by FIA. 

Benefits to FIA

This collaboration will greatly increase the spatial precision 

with which FIA can characterize disturbance across the United 

States. FIA’s sample-based estimates of forest conditions 

typically are made at the county or State level to assure the 

consideration of a statistically adequate number of plots. 

Although the estimation of forest attributes at the county level 

using FIA plot data is statistically straightforward, it precludes 

more spatially explicit analyses. This project will produce 

estimates of forest change at the scale of the Landsat pixel       

(~ 30 m), permitting fine-scale analyses of disturbances such as 

harvests, fires, and wind events that are not possible using the 

sample-based paradigm. Study of the spatial patterns of forest 

recovery will likewise be possible. This section will describe 

several potential applications of this project’s change products 

that may be of use to FIA. 
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Harvest Detection

The basic products resulting from this project will be spatially 

explicit biennial estimates of biomass loss or gain within 

approximately 25 Landsat scenes. To translate these pixel-scale 

predictions into maps of disturbance, likely causes of each 

predicted disturbance will have to be identified. This process 

will likely focus on spatially contiguous patches of pixels 

displaying abrupt drops in estimated biomass. Assignment of 

disturbance type may be automated using rules regarding the 

size, shape, spatial complexity, or texture of each patch (e.g., 

Cohen et al. 2002). Formulation of these rules will have to be 

made in consultation with FIA analysts and other local experts. 

Once the sources of individual disturbances are identified, 

spatial and temporal trends in harvests and other types of 

disturbance may be conducted. 

Harvest is a significant cause of forest disturbance in many 

managed landscapes. Harvests that remove most or all of the 

trees in a stand have been mapped using Landsat imagery 

with relatively high accuracy (e.g., Cohen et al. 2002, Hall 

et al. 1989, Sader and Winne 1992). Several projects have 

also suggested the potential for the use of historical Landsat 

imagery to map partial harvests (Collins and Woodcock 1996, 

Olsson 1994, Sader et al. 2003). Landsat’s short-wave infrared 

bands may be particularly useful in modeling the degree of 

canopy removal involved with a harvest (Healey et al. 2006b; 

Olsson 1994).

The production of spatially and temporally explicit maps of 

disturbance will enable FIA to augment its current timber 

output records. It will be possible to summarize harvest trends 

since 1972 by any combination of geographic variables, in-

cluding landowner, forest type, topography, or climate. For ex-

ample, in a study supporting the monitoring component of the 

Northwest Forest Plan, Healey et al. (2006a) reported trends in 

clearcut harvesting for both Federal and non-Federal landown-

ers in Oregon and Washington from 1972 to 2002 (fig. 1). The 

study showed that while non-Federal forest owners continued 

to harvest at relatively high levels during the 1990s (the period 

coinciding with the Forest Plan), clearcutting of Federal forests 

virtually stopped.

It is technically possible to create similar estimates of harvest 

by geographic variables using only FIA data because many 

of these variables are stored as plot characteristics. Satellite-

based estimates, however, have at least three advantages. First, 

while FIA survey protocols and designs may have changed 

over the past 30 years, the continuity of the Landsat series 

since 1972 will allow relatively uniform measurement of 

disturbance in all time periods. Second, the specificity of plot-

based estimates of harvest levels is limited by the conditions 

represented in the sample; harvest levels by a particular 

type of owner on particular slopes may only be estimated if 

a sufficient number of plots share those conditions. Lastly, 

disturbance maps resulting from this project may also be used 

to support purely spatial analyses for which sample-based 

methods are poorly suited. Healey et al. [2006a] looked at the 

size of clearcuts across time and owners (fig. 2), showing that 

Federal forest administrators have consistently used clearcuts 

that are approximately half the size of non-Federal owners. 

FIA plot data alone could not support this type of study. Other 

spatial attributes of harvests that may be of interest to FIA are 

proximity to streams or population centers, spatial aggregation, 

and edge ratio. Thus, while FIA currently has the capacity to 

study harvest levels at the county or State level, the use of plot 

and Landsat data to create harvest maps will provide significant 

insight into how harvests are distributed across the landscape.

Figure 1.—Harvest rates in western Oregon and Washington 
on USDA Forest Service, BLM, and non-Federal lands, 1972–
2002. Shown is the annualized percentage of all forest land 
harvested using clearcut methods. 
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Source: Data from Healey et al. (2006a).
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Fire Mapping

The USDA Forest Service, through its Remote Sensing 

Applications Center (RSAC), currently supports two large-

scale fire monitoring programs. Burned Area Reflectance 

Classification maps are produced at RSAC for many forest 

fires using pre- and post-fire Landsat images. These maps 

categorize reflectance differences associated with fires, and 

these differences are then considered along with ancillary data 

to produce categorical maps of fire severity. These maps are not 

created for all fires, however, and do not produce an explicit 

estimate of forest lost. RSAC’s other fire-monitoring program 

is the MODIS Active Fire Mapping Program, a collaboration 

with NASA Goddard, the University of Maryland, the National 

Interagency Fire Center, and the Missoula Fire Sciences Lab. 

This project identifies likely areas of fire activity using the 

thermal band from the MODIS instruments on the Terra and 

Aqua satellites. An effort is under way to further classify these 

active fire maps into fire severity classes. This classification 

may then be used in conjunction with data from FIA plots 

within each severity class to create rapid characterizations of 

the forest types affected by each level of fire severity. 

The current Landsat-based project will complement the 

MODIS-based efforts in that, although fire loss estimates will 

not be as immediate, they will have greater spatial resolution 

and they will be in the form of discrete predictions of biomass 

reduction at the pixel level. In addition, maps will be available 

for fires occurring in the pre-MODIS era. The information 

implicit in these maps regarding the spatial distribution of 

fire effects may have several applications. LANDFIRE, a 

collaboration between the USDA Forest Service and several 

other Federal and private partners (www.landfire.gov), is 

creating maps of fuel conditions in the West using FIA data 

to train Landsat imagery. Fire intensity maps from the current 

project may be used to update LANDFIRE fuel layers. Maps 

of fires and other types of disturbance may likewise be used to 

update habitat maps (e.g., Lint 2005). Because fires can create 

conditions favorable for some forest pathogens (Gara 1988), 

maps of fire damage may also be of use in guiding forest health 

monitoring activities.

Storm Damage Assessment

Hurricanes and other storms can cause widespread forest 

damage. Storm damage, however, may be localized; differential 

mortality rates may result from topography, stand structure, 

or other factors (Millward and Kraft 2004). Although FIA 

currently has the capacity to estimate volume loss at the county 

or multicounty level, it has no way to monitor local storm 

effects. Spatially explicit estimates of storm damage may 

provide insight into storm risk at the stand level, particularly 

in relation to local topography. Going forward, it may also 

be possible to use post-storm imagery in a “rapid response” 

mode. In areas where change detection algorithms have already 

been trained with plot data and historical Landsat imagery, 

obtaining forest change estimates would require only the 

normalization of a post-storm image and the application of the 

existing algorithm. Although ephemeral storm effects such as 

standing water may somewhat reduce the accuracy of damage 

estimates obtained immediately after a storm, such estimates 

may nevertheless have value in pinpointing areas of highest 

damage. This information may be used to direct salvage crews 

or damage assessment surveys. At least 2 of the 25 Landsat 

scenes to be processed through this project depict major storm-

affected areas (1989’s Hurricane Hugo in South Carolina and 

the 1999 Boundary Waters wind event in Minnesota). There 

is substantial FIA plot data from both before and after each of 

these storms, allowing assessment of this project’s estimates of 

storm damage.

Figure 2.—Mean patch size of clearcut harvest units on USDA 
Forest Service, BLM, and non-Federal lands in western Oregon 
and Washington, 1972–2002.

1972–77     1977–84    1984–88    1988–92  1992–96  1996–2000  2000–02

BLM = Bureau of Land Management; FS = Forest Service.
Source: Data from Healey et al. 2006a.
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Post-Disturbance Recovery

Just as this project’s estimates of biomass over time may 

be of use in identifying disturbances, the same estimates 

may allow measurement of the rate of subsequent biomass 

accumulation. Successional recovery following disturbance 

can be a highly variable process, both within and across 

ecosystems (Yang et al. 2005). The consequences of slow 

recovery after a disturbance may include erosion (Agee 1993) 

and the delay of timber production. Spatially explicit recovery 

information, like spatial disturbance information, may be used 

to complement FIA plot-based estimates. Historical recovery 

maps may be used to update fuel and habitat maps, and they 

may be considered with other geographic variables to create 

context-dependent models of recovery. Such models may be 

useful to managers considering the need for or likely success 

of active recovery efforts following large-scale disturbances 

such as fires or storms. The temporal resolution of the biennial 

Landsat imagery used in this project may be a particular benefit 

in the monitoring of post-disturbance stand dynamics. The 

5- or 10-year remeasurement intervals used by FIA may be 

less suited than biennial Landsat imagery to characterizing the 

potentially rapid changes (Oliver and Larson 1996) occurring 

after a disturbance. Thus, though FIA plot-based estimates 

may be used to estimate recovery rates at the county or State 

level, Landsat-based maps of forest recovery may add detail to 

our understanding of how recovery is spatially and temporally 

distributed. 

Summary

This collaboration represents an opportunity for FIA to greatly 

expand the spatial information that it can provide to stakehold-

ers and clients. An approach to forest change detection is being 

developed specifically to take advantage of the existing FIA 

database. The intrinsically spatial information resulting from 

this approach will complement the program’s current ability 

to make area-based estimates of disturbance. Several applica-

tions of this spatial information in the monitoring of harvests, 

fires, storms, and regrowth have been suggested in this paper. 

The disturbance histories of 25 sample areas across the country 

are now being processed using Landsat imagery and FIA data. 

When these initial analyses have been completed, the change 

detection algorithm, the critical image processing tools devel-

oped by the LEDAPS program, and the maps of disturbance 

and regrowth will be available to FIA for future studies. 
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The Status of Accurately Locating Forest 
Inventory and Analysis Plots Using the 
Global Positioning System 

Michael Hoppus1 and Andrew Lister2

Abstract.—Historically, field crews used Global 

Positioning System (GPS) coordinates to establish 

and relocate plots, as well as document their general 

location. During the past 5 years, the increase in 

Geographic Information System (GIS) capabilities 

and in customer requests to use the spatial relation-

ships between Forest Inventory and Analysis (FIA) 

plot data and other GIS layers has increased the 

value of and requirements on measurements of plot 

locations. To meet current FIA business require-

ments, it is essential that GPS locations be accurate. 

The Northeast FIA program (NE-FIA) used Rockwell 

Precision Lightweight GPS Receivers (PLGRs) in 

the late 1990s. This moderately priced unit enables 

accurate navigation and reasonably accurate locations 

under a canopy without the requirement of dif-

ferential correction. NE-FIA tested the PLGR on 12 

surveyed points (2 nonforested and 10 forested) and 

determined the average deviation of GPS coordinates 

from the known point to be 8.0 m with a standard 

deviation of 2.0 m. On a set of Maine plots measured 

in 1999 and again in 2004 using the PLGRs, 85 

percent of the paired GPS positions were within 

12.5 m of each other. Six percent of the paired plots 

were separated by more than 20 m. These indications 

of location accuracy are reasonable; however, 15 

percent of the plots still have questionable locations. 

This inaccuracy is a concern for those doing GIS 

analysis and modeling. In a few cases, gross errors 

were encountered due to GPS unit malfunction or 

user error. Furthermore, significant problems with 

reprojections of plot locations from different datums 

were identified by additional tests with two different 

GPS brands on a survey course. Solutions to these 

problems and proposed FIA GPS protocol recom-

mendations are discussed.

Introduction

During the 1990s, the U.S. Department of Agriculture Forest 

Service Forest Inventory and Analysis (FIA) program began 

collecting Global Positioning System (GPS) coordinates for its 

field plots. Before the use of GPS, plot locations were recorded 

in the field by pin-pricking an aerial photograph at the image of 

the center of the plot position. The pinprick on the photo was 

then transferred to a U.S. Geological Survey map to determine 

the geographic coordinates. Plot position coordinates provided 

by GPS should be more accurate and much more efficient to 

collect and record.

The GPS receiver most used by the FIA program was the 

Rockwell Precision Lightweight GPS Receiver (PLGR). Its 

selection as the primary unit by FIA was justified for field 

work under forest tree canopies. It is relatively lightweight 

and inexpensive. It uses standard inexpensive batteries. It has 

five channels, can average multiple position calculations, has 

a flexible setup menu for customizing position collection and 

presentation, and provides reasonable accuracies most of the 

time for both plot location and field navigation under a forest 

tree canopy. When it was purchased, it had one other advantage 

over all other GPS units available. Because it was built for 

the military to be used in battle, the PLGR did not have any 

position degradation due to Selective Availability (SA). SA is 

an artificial signal degradation that causes location errors of 

100 meters or more. Except for the PLGR, GPS equipment 

required post processing of the field-recorded data, or the errors 

would routinely exceed 100 meters. Post processing of the many 

1 Research Forester, U.S. Department of Agriculture (USDA), Forest Service, Northeastern Research Station, Forest Inventory and Analysis, Newtown Square, PA 
19073. E-mail: mhoppus@fs.fed.us.
2 Research Forester, USDA Forest Service, Northeastern Research Station, Forest Inventory and Analysis, Newtown Square, PA 19073. 
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GPS positions collected over very large areas required more 

expensive hardware and software, plus time-consuming efforts 

to acquire the differential correction files needed to reduce 

errors. The Federal Government disabled SA on May 1, 2000.

The obvious disadvantage of the PLGR GPS unit is that 

the positions could not be differentially corrected for errors 

from atmospheric and ionospheric effects or clock errors. 

Furthermore, the plot positions had to be manually entered 

into a data logger (or written on paper), which makes them 

vulnerable to transcription errors. 

FIA plots in some States and public lands were located using 

GPS equipment that provided differentially corrected results. 

Differential correction was the exception. The PLGR units now 

are being replaced by new equipment. Nearly all plots have at 

least one location provided by GPS. All newly acquired plots 

will use GPS positioning. Hundreds of FIA data users are 

relying on accurate locations. How accurate are these locations? 

Should we collect additional GPS locations on plots that 

already have a GPS position? What GPS collection methods 

and GPS equipment purchase decisions might help ensure 

accurate plot locations? 

FIA Plot Accuracy

The Need

The demand for using FIA plots as a valuable data layer in 

Geographic Information Systems (GIS) and remote sensing 

analyses and mapping has increased dramatically since the 

program started using GPS for more accurate locations. The 

increase in GIS capabilities and in customer requests to use the 

spatial relationships between FIA plot data and other GIS layers 

has increased the value of and requirements on measurements 

of plot location accuracy. To meet current FIA business 

requirements, it is essential that GPS locations be accurate. 

For example, FIA sample stratification requires that plots be 

as close as possible to true locations to accurately exploit the 

imagery-plot link. In Connecticut, one-third of the forested 

plots are within 60 m of the forest edge. An evaluation of the 

effect of FIA plot and satellite pixel location error indicated 

that when the combined errors reached 50 m, the resulting 

forest/nonforest map classification error ranged from 4 to 

10 percent (McRoberts and Holden 2006). Recent direction 

from the national FIA management has charged us with 

increasing our geospatial product output, a process that also 

requires the best possible GPS data. The FIA program created 

a Spatial Data Services Center so customers outside of the 

FIA program can use the data spatially without compromising 

plot confidentiality. More than 145 requests for service were 

received in 2005. As GIS data and imagery (e.g., large scale 

imagery; State forest land, protected areas and other boundary 

files) become more accurate, it is absolutely critical that 

our spatial reference information be as accurate as possible. 

With accurate spatial locations, not only can we exploit these 

advances, but also confidently stand behind the data we supply 

to customers who will be using them. 

PLGR Accuracy

FIA plot location accuracy is expected to be as good as that 

provided by typical resource mapping grade GPS units used by 

the National Forest System. In general, the PLGR often does 

not provide the same level of accuracy as the differentially 

corrected positions of the GPS units used by the rest of the 

USDA Forest Service. Historically, FIA plot GPS coordinates 

were intended to assist field crews in establishing and 

relocating the plots, as well as to document general location. 

The current edition of the FIA Field Manual requires that the 

quality (accuracy) of 99 percent of GPS positions be within 

42.7 m. The average error of most GPS receivers, including the 

PLGR, is much lower than 42.7 m, but positions are not that 

accurate 99 percent of the time. This FIA measurement quality 

objective cannot be used to indicate the current quality of GPS 

positioning and is rarely checked or reported. 

In field tests of PLGR accuracy conducted by Richard 

McCullough of the Northeast FIA program (NE-FIA), surveyed 

markers scattered under a dense 80-ft-tall deciduous forest 

canopy were located with an average error of 8 m (standard 

deviation = 2.0 m). By comparison, a set of Maine FIA plots 

measured in 1999 and again in 2004 using the PLGR reveals 

similar distance offsets between the measurements in time 1 

and those in time 2, with some notable differences (fig. 1). Half 
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the separation distances were less than 5.5 m. Only 20 percent 

of the distances exceeded 10 m; however, 4 percent exceeded 

20 m and 2 percent of the separation distances were greater 

than 1 km. Small separation distances do not verify accuracy, 

but rather suggests precision, from which we can infer 

accuracy. It is unlikely that two GPS units used 5 years apart 

would give locations of the same ground plot so close together 

by chance. The most likely reason for this phenomenon is that 

the units were close to measuring “true” location. Because all 

of these plots were forested, the PLGR seems to be remarkably 

accurate on average. The essential field procedure required to 

determine which plot locations are accurate is to remeasure. 

Remeasurement identifies a potential inaccuracy with one or 

both of the GPS coordinates. Users can flag suspect plots and 

remove them from GIS and remote sensing analyses. 

As indicated above, plot location errors of about 20 m can 

result in map classification errors of 10 percent when combined 

with common image pixel position errors. Investigators in the 

North Central FIA unit found the average separation distance 

of 1,145 remeasured plots was 13.6 m (standard deviation = 

46.2 m).

Datum Errors

Another source of error with the PLGR, which we have also 

found to occur in other types of GPS units used by FIA, is 

an inaccurate datum conversion formula used to convert 

coordinates of positions from World Geodetic System 1984 

(WGS 84) to North American Datum 1927 (NAD 27). Datums 

define a set of constants specifying the coordinate system used 

for geodetic control. GPS software calculates coordinates in 

the datum WGS 84 and coverts them within the unit to display 

coordinates for other datums selected by the user. Most FIA 

plots were collected using NAD 27 because most available 

maps were based on that datum. The conversion formula used in 

the PLGR causes location errors of about 12 m in the Northeast 

and other regions. The solution is to collect data in NAD 83, 

which is nearly identical to WGS 84 and is currently mandated 

by the Forest Service Handbook 6609.15, Standards for Data 

and Data Structures. The standard use of NAD 83 will provide 

more integrated and accurate data, reduce errors in GPS data, 

and align FIA with the current Agency and Federal standards.

Starting immediately, all FIA GPS coordinates should be 

collected using NAD 83, and all of the previous collected 

GPS coordinates acquired using NAD 27 must be converted 

to NAD 83. To correctly change a coordinate collected in a 

non-WGS84 datum (e.g., NAD 27) back to WGS 84, and 

then subsequently to NAD 83, the operator needs to first use 

the reverse of the transformation method that the GPS unit 

applied. For example, the NAD 27 coordinates collected by the 

PLGR can be converted in ArcGIS using the transformation 

method called “NAD_1927_TO_WGS_1984_4.” The GPS 

unit’s documentation or technical support staff can supply 

the transformation parameters needed. To choose a datum 

transformation method to apply in ArcGIS, consult http://

support.esri.com/index.cfm?fa=knowledgebase.whitepapers.

viewPaper&PID=43&MetaID=302. This Internet site lists 

the transformation method name and the parameters used by 

ArcGIS to perform the transformation. Conventional wisdom 

in the GPS community is that it is always appropriate to use 

North American Datum Conversion (NADCON) to transform 

any NAD 27 GPS coordinate to NAD 83. This assumption is 

generally correct, unless your GPS does not use NADCON to 

convert from WGS 84 to NAD 27. If NADCON is used with 

PLGR data, the location errors are retained.

Another datum error common with the PLGR is the unexpected 

(and unknown to field crews) reversion of the unit to its default 

datum, WGS 84, without the user selecting it. In several 

Figure 1.—Frequency distribution of the separation distance 
between pairs of Precision Lightweight GPS Receiver positions 
of 570 remeasured FIA plots (1999–2004).

Separation distance (meters)

FIA = Forest Inventory and Analysis; GPS = Global Positioning System.



182	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

regions in the northeast, all the FIA plot locations were found 

to have been collected in WGS 84 instead of the “selected” 

NAD 27. The reason for this uncommanded reversion is 

unknown, although battery power interruption is suspected. 

The discovery was made when many of the plots in the region 

were remeasured. Had this not been the case, there would be no 

way to tell that the separation distances of the coordinates were 

averaging 50 or so m in one general direction of 260 degrees. 

Normally the separation distances would be expected to be 

less than 10 m and bearing randomly in all directions. If the 

distance separation between remeasured plot locations are all 

about the same distance and bearing as a map coordinate varies 

between NAD 27 and NAD 83, it is likely to be caused by 

collecting the plots in WGS 84 instead of the assumed NAD 27 

datum (figs. 2 and 3). The lesson is clear: collect FIA plots in 

NAD 83 (coordinates are within 1 m of WGS84) and remeasure 

all plots until the accuracy is confirmed.

GPS Replacements for the PLGR

During the past few years, FIA has replaced the PLGR with no 

fewer than six other brands of GPS hardware with various com-

binations of software and system configurations. This replace-

ment is due mainly to increased hardware problems with the 

PLGR because of extended field service. Choice of replacement 

units is still very much influenced by a combination of capabil-

ity and cost. NE-FIA required 60 replacement units, so cost 

was a big issue. Several units were tested on a surveyed field 

course with markers both under a heavy forest canopy and in 

the open. The GPS unit finally selected has 12 channels, a built 

in real-time differential correction system called Wide Area 

Augmentation System (WAAS), and the ability to radio the 

position to a field datalogger for electronic storage using Blue-

tooth technology. NE-FIA helped in the design of the software 

that resides in the field datalogger, which has a detailed setup 

menu allowing the selection of datum, PDOP limits (PDOP is 

a measure of accuracy based on the geometry of well-spaced 

GPS satellites), and the ability to average multiple positions. 

Multiple field tests of this system over several months show    

an error of 5.5 m (standard deviation = 3.2 m) under a dense 

80 ft deciduous canopy. In the open, the root mean square error 

(RMSE) was 2.2 m (standard deviation = 0.9 m).

Multiple studies of how well a dozen currently available 

resource mapping and consumer-grade GPS systems function 

under forest canopies have been recently published (Bolstad    

et al. 2005, Piedallu and Gegout 2005, Sigrist et al. 1999, 

Tucek and Ligos 2002, Wing et al. 2005). These studies indi-

cate that the sophistication of GPS equipment has a significant 

affect on position accuracy. Furthermore, accuracies are much 

better in the open than in forested areas. What is surprising is 

that the average error of all of the units, except one, was less 

Figure 2.—Frequency distribution of the separation distance 
between pairs of Precision Lightweight GPS Receiver positions 
of 157 remeasured FIA plots (1997–2003) where it is highly 
likely that all or most of the measured pairs are acquired using 
different datums (NAD 27 and NAD 83).

Distance between plots (meters)

FIA = Forest Inventory and Analysis; GPS = Global Positioning System; 
NAD = North American Datum.

Figure 3.—Frequency distribution of the direction between 
pairs of Precision Lightweight GPS Receiver positions of 157 
remeasured FIA plots (1997–2003) where it is highly likely that 
all or most of the measured pairs are acquired using different 
datums (NAD 27 and NAD 83).

Direction of offset (degrees)

FIA = Forest Inventory and Analysis; GPS = Global Positioning System; 
NAD = North American Datum.
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than 7 m under a closed forest canopy. Another useful fact was 

that differential correction has much less effect on the accuracy 

of forested plots. Apparently, errors caused by multipath 

signals due to signal reflections off trees are much greater than 

the errors that differential corrections can reduce (Piedallu and 

Gegout 2005). In one study, no significant differences were 

found between GPS units using WAAS-corrected, differentially 

corrected, and uncorrected positions (Bolstad et al. 2005). 

WAAS requires the GPS unit to receive a position correcting 

signal from a satellite. The signal can be blocked by trees and 

other obstructions. Within a mature forest, the signal may be 

available less than 50 percent of the time (Bolstad et al. 2005). 

Artificially introduced errors from a SA signal could change 

the value of differential corrections in the future.

These studies point out the following techniques that could 

help FIA crews lower errors:

•	 Raising the antenna height to at least head height or higher 

increases accuracy (Bolstad et al. 2005, Sigrist et al. 

1999).

•	 The higher the PDOP, the worse the accuracy. Under a 

canopy, however, a requirement for a low PDOP may 

cause very long acquisition times and more error due 

to multipath signals because the unit is forced to use 

satellites lower on the horizon that have to send their 

signal through more trees. PDOP under a forest canopy 

is 35 percent higher than in the open. Consider using a 

PDOP limit of eight (the standard is six) under a heavy 

forest canopy when PDOP stops position collection 

(Sigrist et al. 1999). In general, lower PDOP produce 

more accurate positions under a forest canopy (Piedallu 

and Gegout 2005).

•	 Turn the GPS on in the open and then walk into the forest. 

It takes five times more signal strength to initially acquire 

a signal than to keep it (Wilent 2002).

•	 More expensive GPS units are more accurate under all 

conditions (Piedallu and Gegout 2005).

•	 Position errors decrease linearly with the logarithm of 

the number of position calculations averaged into a final 

position. Don’t limit the number too much.

•	 The bigger the nearby trees, the worse the accuracy. Offset 

plots near big trees (Piedallu and Gegout 2005).

FIA GPS Considerations

•	 Remeasure all GPS plot locations. A single FIA plot 

location provided by GPS cannot be determined accurate 

unless it is compared to a reference. Digital ortho quads 

could be used to evaluate accuracy, but no proven protocol 

exists. How many times should a plot be remeasured and 

what should the threshold for separation distance be for 

acceptable accuracy? Because the current industry average 

for GPS accuracy under a forest canopy is about 5 m, a 

reasonable FIA measurement quality objective (MQO) 

would be three separately calculated GPS locations all 

within 10 m of each other. At that time, an average of 

the three positions will be calculated for the final plot 

location. Keep all GPS locations in the database for users 

to evaluate. If the program must have an “official” location 

for each plot, then use the last one collected. After meeting 

the MQO, the calculated average shall be the best and final 

position for the plot unless some other evidence indicates 

an error.

•	 Begin recording GPS in NAD83, which is currently 

an Agency requirement. Convert all plot locations 

previously collected in NAD27 to NAD83 using the 

correct procedures as described above. This conversion 

will require careful attention to maintaining records in the 

database. Always keep a copy of the original record.

•	 Build into the data recorder a way to flag a measurement 

that is more than a specified number of meters (e.g., 20 

m) from the position that the field crew is directed by 

the office staff to locate (indicated in the datalogger by 

“office_lat /long”). This could be done via a mathematical 

equation and an if/then statement, which would raise the 

chances of catching gross errors in the field.

•	 Standard metadata should be developed for all GPS 

information. These data should include the equipment 

serial number, date, datum, number of positions averaged, 

and other parameters required by the FIA program.

•	 Require that all field crews, including contract crews, 

receive adequate training for the field collection of GPS 

positions. 

•	 Create a FIA GPS steering committee to include data 

collection staff, analysts, and techniques development 



184	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium

members. Require all GPS equipment that is used 

to provide official plot locations be approved by the 

committee after evaluating approved field test results.

The GPS coordinate is one of the most important single 

measurements taken on the plot. It is in no way analogous to 

measuring aspect or slope (which is measured with basically 

foolproof, mechanical devices, and which does not contain 

many numerical values). Rather, it is prone to hardware, 

software, operator, and random, unexplainable errors. As we 

have shown, systematic, gross errors exist in the current GPS 

data. Every GIS analyst in FIA is intensely concerned with this 

issue, and it is vital that we address it immediately at both a 

local and national level.
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Mapping Forest Inventory and Analysis 
Forest Land Use: Timberland, Reserved 
Forest Land, and Other Forest Land

Mark D. Nelson1 and John Vissage2

Abstract.—The Forest Inventory and Analysis (FIA) 

program produces area estimates of forest land use 

within three subcategories: timberland, reserved 

forest land, and other forest land. Mapping these 

subcategories of forest land requires the ability to 

spatially distinguish productive from unproductive 

land, and reserved from nonreserved land. FIA 

field data were spatially interpolated to produce 

a geospatial data set of forest site productivity. A 

geospatial data set of lands reserved from wood 

products utilization was delineated from the Protected 

Areas Database. The combination of these two 

geospatial data sets, along with a geospatial data set 

of forest land cover, provided an initial approach 

for mapping three subcategories of forest land use. 

Compared with inventory estimates, the mapping 

approach led to similar estimates of forest land area, 

overestimates of timberland and reserved forest land, 

and an underestimate of other forest land. Additional 

work is needed to improve geospatial data sets of 

forest site productivity. 

Introduction

Detailed surveys of the Nation’s forest land are conducted 

through the Forest Inventory and Analysis (FIA) program of 

the U.S. Department of Agriculture (USDA) Forest Service. 

Through the FIA program, design-based estimates of forest 

land area by estimation units (e.g., counties, States, regions) 

and the Nation are produced. Bechtold and Patterson (2005) 

provided FIA definitions of forest and nonforest land (appendix 

A), which include land use constraints and measures of 

1 Research Forester, U.S. Department of Agriculture (USDA), Forest Service, North Central Research Station, St. Paul, MN 55108. E-mail: mdnelson@fs.fed.us.
2 Supervisory Forester, USDA Forest Service, North Central Research Station, St. Paul, MN 55108. 

minimum tree stocking, forest land area, and forest land width. 

Furthermore, using FIA definitions, forest land use can be 

differentiated into three subcategories: timberland, reserved 

forest land, and other forest land (appendix A). FIA sub-

categories of forest land are defined by site productivity and 

reserved status, (i.e., availability or unavailability of forest land 

for wood product utilization) (fig. 1).

 

FIA estimates represent forest land use (e.g., forest land 

not currently developed for a nonforest use) (appendix 

A), while satellite-image-based data sets and their derived 

estimates represent forest land cover. A mapping approach for 

differentiating land use versus cover would provide a more 

consistent basis for comparing classified satellite imagery with 

FIA estimates of forest land area. Nelson et al. (2005) explored 

the efficacy of satellite-image-derived forest land cover maps 

for portraying forest land use in the United States by comparing 

estimates obtained from FIA data, the USDA Natural Resources 

Conservation Service’s National Resources Inventory), and 

Figure 1.—Decision rules for classifying forest land into 
timber land, reserved forest land, and other forest land.
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four satellite-image-derived data sets: 1991 Forest Cover Types 

(Zhu and Evans 1994), 1992–93 Land Cover Characteristics 

(Loveland et al. 2000), 2001 Vegetation Continuous Fields 

(Hansen et al. 2002), and the 1992 National Land Cover Data 

set (NLCD) (Vogelmann et al. 2001)). The four satellite-image-

derived land cover maps differ in date of image acquisition, 

classification scheme, and spatial resolution, and show varying 

degrees of similarity with inventory estimates of forest land use 

across the conterminous United States (CONUS).

 

Differentiation of forest land use maps into FIA’s three 

subcategories of forest land would allow for validation and 

integration of satellite image products with inventory estimates 

of forest land use. In this paper we address approaches to 

mapping timberland, reserved forest land, and other forest land.

Data and Methods

Forest Land Cover

The circa 1992 NLCD is a 30-m spatial resolution national land 

cover data set produced and distributed by the U.S. Geological 

Survey Center for Earth Resources Observation and Science. 

Landsat Thematic Mapper imagery from the early 1990s and 

other sources of geospatial data were used in the classification 

system, and provided the basis for a consistent hierarchical 

approach to defining 21 classes of land cover across CONUS 

(Vogelmann et al. 2001). We produced a forest/nonforest cover 

map by grouping five NLCD classes into a “forest” class: 

transitional (33)3, deciduous forest (41), evergreen forest (42), 

mixed forest (43), and woody wetland (91). The remaining 16 

NLCD classes were aggregated into a “nonforest” class. For 

ease of processing and for integration with other geospatial data 

sets of coarser spatial resolution, the 30-m forest/nonforest data 

set was rescaled to a 250-m spatial resolution forest/nonforest 

data set.

Forest Land Use

Area estimates of forest land use per State were obtained 

from Forest Resource Assessment 2002 tables on U.S. forest 

resources, as part of the Forest and Rangeland Renewable 

Resources Planning Act of 1974 (RPA), P.L. 93-378, 99 Stat. 

4765 (USDA 2003). RPA data primarily were derived from 

FIA data, except for portions of some Western States where 

National Forest System lands were inventoried independently 

(Smith et al. 2001, USDA Forest Service 2003). RPA 2002 

source dates ranged from 1983 to 2000 with an average 

acquisition year of 1994 (Smith et al. 2004). Inventory 

estimates of forest land area were obtained by multiplying 

total land area by the mean proportion of forest land from 

forest inventory plot observations (Scott et al. 2005). Although 

sufficient RPA data exist for Southeast and South Central 

Alaska, portions of the State’s interior have few field plot data. 

Likewise, Hawaii has few or no field plot data. Therefore, 

analyses in this study were constrained to CONUS.

Forest Land Productivity

Observations from forest inventory plots were used for spatially 

modeling forest site productivity. Publicly available geographic 

location coordinates, land use codes, and productivity attributes 

were queried from the RPA 2002 database. The resulting 

records totaled 167,920 forested condition observations on 

155,149 RPA plots, and some plots had multiple forested 

conditions. Nonforest conditions were excluded from the 

query.
 
Site Class Code (SITECLCD) is the inventory attribute 

that describes site productivity of each condition observation 

(Miles et al. 2001) (table 1). Area-weighted site productivity 

(SITEPLT) was calculated for each plot as

	 (1)

where ic  is the condition proportion (CONDPROP) of the 

ith of N  forested conditions on a plot, is  is the approximate 

midpoint of the range of site productivity values associated 

with each SITECLCD for the ith condition
 
(table 1), and C  

is the sum of condition proportions (sum of ic s) across all 

N  forested conditions on a plot. For some plots, condition 

proportions summed to < 1.0 when plots contained both 

3 The correct numerical designation for the transitional class is 33; its designation as 31 in Vogelmann et al. (2001) is attributed to a manuscript error (Vogelmann, 
EROS Data Center, U.S. Geological Survey, personal communication, 10 October 2001).

SITEPLT
cisii

N

C
= =

∑ ( )
1
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forested and nonforested conditions, or when forested 

conditions did not contain trees of suitable size from which 

to determine site productivity, and this resulted in a no data 

value for SITECLCD. Excluded from analyses were condition 

records having SITECLCD values of -1 or 0 (not recorded 

or no data, respectively), or CONDPROP values of 0. Plot 

location accuracy was determined by spatially joining plot 

locations to a geospatial data set of county boundaries (ESRI 

Data & Maps 2002) and comparing county Federal Information 

Processing Standards codes between plots and county 

boundaries, and a subset of plots with erroneous location 

coordinates were excluded from analyses.

Spatial interpolation of site productivity was performed using 

the ArcGIS Geostatistical Analyst software package and the 

Inverse Distance Weighted (IDW) interpolator, with 75 percent 

of plot observations used for training data and 25 percent for 

test data. Analyses using IDW interpolations with power levels 

1 (IDW), 2 (IDW2), and 3 (IDW3) resulted in mean prediction 

error and root mean square error values, respectively, of 0.3422 

and 31.07 for IDW; 0.2665 and 32.15 for IDW2; and 0.2198 

and 33.76 for IDW3. Subsequent analyses included only the 

IDW interpolation, which was converted to an ArcInfo GRID 

with 250-m spatial resolution and was masked to exclude areas 

outside of CONUS. Pixels with interpolated site productivity 

values greater than 20 ft3/ac were considered to meet the 

criteria for the definition of timberland, given that such land is 

forested and is not reserved. 

Forest Land Reserved Status

A suite of land ownership and protection categories is included 

in Gap Analysis Program (GAP) State maps. The Conservation 

Biology Institute aggregated the State GAP map products and 

other sources of geospatial data into a comprehensive North 

American data set known as the Protected Areas Database 

(PAD) (DellaSala et al. 2001). Version 3 of the PAD (PAD 

2005) was used in this study for differentiating reserved from 

nonreserved lands. The PAD includes two designations of 

land protection status: (1) GAP codes and (2) Categories for 

Conservation Management as defined by the International 

Union for the Conservation of Nature (IUCN) (appendix B). 

Based on local knowledge and preliminary assessments, IUCN 

categories I–V (appendix B) were defined as representing 

reserved lands, and selecting them resulted in a subset of 37,844 

reserved land polygons from the 345,861 PAD polygons within 

CONUS. Areas within CONUS not designated as reserved 

according to the PAD data were defined as nonreserved lands. 

Polygons representing reserved and nonreserved lands were 

rasterized to a 250-m resolution data set for ease of integration 

with other data layers.

Geospatial Analysis

ArcGIS software was used to combine the geospatial data sets 

of NLCD forest/nonforest classes, interpolated site productivity 

values, and PAD reserved land into a single raster layer. Using 

these three geospatial data sets and the criteria defined in figure 1,      

a new data set was attributed with categories of timberland, 

reserved forest land, other forest land, and nonforest land. Per-

State pixel counts and resulting area estimates of each land use 

category were summarized by intersecting a geospatial data set 

of detailed State boundaries.

Statewide RPA estimates of forest land, timber land, reserved 

forest land, and other forest land were compared with modeled 

geospatial estimates to produce area weighted root mean square 

deviations (RMSD) using methods derived by Häme et al. 

(2001):

	 (2)

Table 1.—Site Productivity Class (SITECLCD), approximate 
midpoint productivity value (SITECLMID), and resulting forest 
land use category for nonreserved forest land.

SITECLCD
Cubic feet/
acre/year

SITECLMID Forest land use

1 225+ 225.0 Timber land

2 165–224 195.0 Timber land

3 120–164 142.5 Timber land

4 85–119 102.5 Timber land

5 50–84 67.5 Timber land

6 20–49 35.0 Timber land

7 0–19 10.0 Other forest land
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where ai  is the area of the ith state, A  is the total area across 

CONUS (sum of ai s for all states), and p
ir

ˆ  and p
is

ˆ  denote 

the estimated proportion of forest land, timber land, reserved 

forest land, or other forest land area in the ith state obtained 

from the RPA (r) and modeled (s) estimates.

Results

The map of CONUS timber land, reserved forest land, other 

forest land, and nonforest land (fig. 2) revealed local spatial 

distributions of forest land subcategories. Although areas of 

reserved forest land are evident across CONUS, the largest 

blocks are most prevalent in the Western United States, where 

national parks and wilderness areas are more abundant. In 

nonreserved areas, most forest land is portrayed as timberland, 

except for arid portions of Southwestern United States, 

where site productivity values are lower. Compared with RPA 

estimates of CONUS forest land use, map based area estimates 

were 1 percent lower for forest land, 8 percent higher for 

timberland, 12 percent higher for reserved forest land, and 58 

percent lower for other forest land (fig. 3). The comparison 

between map and RPA statewide estimates resulted in largest 

area-weighted RMSDs for forest land and other forest land; 

reserved forest land had the smallest RMSD (fig. 4).

Discussion

The NLCD-based estimate of CONUS forest land area was 

about 1 percent less than the RPA inventory estimate, but per-

State estimates differed by wider margins, and had an RMSD 

of 5.8 percent. Inclusion of the NLCD “transitional” class 

may have offset some of the expected differences between 

forest land use (e.g., RPA) and forest land cover (e.g., NLCD), 

because the “transitional” class includes forest clearcuts and 

M
ill
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n 
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re

s

Forest land Timber land Reserved 
forest

Other forest

Forest land Timber land Reserved 
forest

Other forest

Figure 2.—Conterminous United States map of nonforest (white) 
and forest land subcategories: timber land (light gray), reserved 
forest land (medium gray), and other forest land (black).

Figure 3.—Comparison of RPA-based and map-based area 
estimates of conterminous United States forest land and three 
subcategories: timber land, reserved forest land, and other 
forest land.

RPA = Forest and Rangeland Renewable Resources Planning Act of 
1974.

RPA = Forest and Rangeland Renewable Resources Planning Act of 
1974; RSMD = root mean square deviations.

Figure 4.—Area-weighted root mean square deviations 
between RPA-based and map-based statewide area estimates 
of conterminous United States forest land and three 
subcategories: timber land, reserved forest land, and other 
forest land.
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other areas of forest regeneration not typically recognized by 

satellite imagery as forest cover. Differences between modeled 

estimates and RPA estimates of CONUS timberland and 

reserved forest land were moderately larger than for forest 

land, but RMSDs were smaller (fig. 3, fig. 4). The modeled 

estimate of other forest land was 59 percent smaller than the 

RPA estimate, and the RMSD for other forest land was the 

largest of any forest category at 5.9 percent. Reserved forest 

land, however, appears to be represented adequately using PAD 

2001 IUCN Categories I–V when combined with the NLCD 

forest/nonforest data set.

 

Interpolation of forest site productivity, using RPA plot data 

with public coordinates and IDW, lead to overestimation of 

productive forest land (site productivity classes 1–6) and 

underestimation of unproductive forest land (class 7). At least 

two factors could have contributed to this bias. First, the NLCD 

data set used for representing forest land appears to under-

represent RPA estimates of forest land on unproductive sites. In 

six arid Southwestern States, more than 10 percent of all forest 

land is considered other forest land. The RPA estimates of other 

forest land were Arizona (20 percent), California (16 percent), 

Colorado (11 percent), Nevada (13 percent), New Mexico     

(14 percent), and Utah (19 percent). NLCD-based estimates of 

total forest land in these six States were 12–38 percent lower 

than RPA estimates (Nelson et al. 2005). In contrast, NLCD-

based estimates of total forest land were 10–61 percent greater 

than RPA estimates in States where other forest land comprised 

less than 5 percent (often less than 1 percent) of all forest 

land. Second, the use of RPA productivity class midpoints 

may not be representative of the distribution of productivity 

within each class range. One or both of the midpoints from the 

two least productive classes may be too large. For example, a 

hypothetical interpolation of plots equally distributed among 

only these two classes—midpoint 10 for the 10 to19 class, and 

midpoint 35 for the 20 to 49 class—would produce mean a site 

productivity value of about 22.5 ft3/ac, which is greater than the 

timberland threshold of minimum productivity (20 ft3/ac).

Conclusions

Currently available land cover and land use data provide a basis 

for mapping FIA attributes, but additional assessment of forest 

cover mapping is recommended, especially in areas of lower site 

productivity. Specifically, work is needed to improve geospatial 

data sets of forest site productivity. Future approaches may 

include optimizing class midpoints and incorporating other 

geospatial data sets, such as ecological units or topographic 

information. Work is ongoing to improve mapping of land use 

versus land cover and forest cover versus tree cover.
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Appendixes

Appendix A.—Forest Inventory and Analysis definitions of 

forest land use; from glossary of Bechtold and Patterson 

(2005).

forest (forest land). Land that is at least 10 percent stocked 

by forest trees of any size, or land formerly having such tree 

cover, and not currently developed for a nonforest use. The 

minimum area for classification as forest land is 1 ac. Roadside, 

streamside, and shelterbelt strips of timber must be at least 

120-ft wide to qualify as forest land. Unimproved roads and 

trails, streams and other bodies of water, or natural clearings 

in forested areas are classified as forest, if less than 120 ft in 

width or 1 ac in size. Grazed woodlands, reverting fields, and 

pastures that are not actively maintained are included if the 

above qualifications are satisfied. Forest land includes three 

subcategories: timberland, reserved forest land, and other forest 

land.

nonforest. Areas defined as nonforest land, census water, or 

noncensus water.

other forest land. Forest land other than timberland and 

reserved forest land. It includes available and reserved low-

productivity forest land, which is incapable of producing 20 

cubic ft of growing stock per acre annually under natural 

conditions because of adverse site conditions such as sterile 

soil, dry climate, poor drainage, high elevation, steepness, or 

rockiness.
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reserved forest land. Land permanently reserved from 

wood products utilization through statute or administrative 

designation.

timber land. Forest land that is producing or capable of 

producing in excess of 20 cubic ft per acre per year of wood at 

culmination of mean annual increment. Timber land excludes 

reserved forest lands.

Appendix B.—Categories for Conservation Management, 

International Union for the Conservation of Nature.

I.	 Strict nature reserve/Wilderness area.

II. 	 National Park.

III. 	 Natural Monument.

IV. 	Habitat/Species Management Area.

V. 	 Protected Landscape/Seascape.

VI. 	Managed Resource Protected Area: protected area 

managed mainly for the sustainable use of natural 

ecosystems.



192	 2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		19  3

Use of LIDAR for Forest Inventory and 
Forest Management Application

Birgit Peterson1, Ralph Dubayah2, Peter Hyde3, Michelle 

Hofton4, J. Bryan Blair5, and JoAnn Fites-Kaufman6

Abstract.—A significant impediment to forest 

managers has been the difficulty in obtaining large-

area forest structure and fuel characteristics at useful 

resolutions and accuracies. This paper demonstrates 

how LIDAR data were used to predict canopy bulk 

density (CBD) and canopy base height (CBH) for an 

area in the Sierra National Forest. The LIDAR data 

were used to generate maps of canopy fuels for input 

into a fire behavior model (FARSITE). The results 

indicate that LIDAR metrics are significant predictors 

of both CBD (r2 = 0.71) and CBH (r2 = 0.59). In sum-

mary, LIDAR is no longer an experimental technique 

and has become accepted as a source of accurate and 

dependable data that are suitable for forest inventory 

and assessment. 

Introduction

In this article we present an overview of the use of LIDAR 

for forest inventory and canopy structure mapping and 

explore the efficacy of a large-footprint, waveform-digitizing 

LIDAR for the estimation of canopy fuels for utilization in 

fire behavior simulation models. Because of its ability to 

measure the vertical structure of forest canopies, LIDAR is 

uniquely suited among remote sensing instruments to observe 

canopy structure characteristics, including those relevant 

to fuels characterization, and may help address the relative 

lack of spatially explicit fuels data. Two canopy structure 

characteristics have been identified that help quantify these 

fuel loads: canopy bulk density (CBD) and canopy base height 

(CBH). These have been adopted for fire behavior modeling 

(Sando and Wick 1972, Scott and Reinhardt 2001). CBD is 

defined as the mass of available canopy fuel per unit canopy 

volume and CBH is the lowest height in the canopy where there 

is sufficient fuel to propagate fire vertically into the canopy 

(Scott and Reinhardt 2001). 

This article provides a brief, simple description of the 

different types of LIDAR systems and how they work and 

summarizes previous research utilizing LIDAR for landsurface 

characterization. It also examines the use of large-footprint, 

waveform-digitizing LIDAR data to predict and create maps of 

CBD and CBH as well as the use of LIDAR-derived products 

to run a fire behavior model. LIDAR metrics are compared 

to field-based estimates of CBD and CBH and, based on the 

regression models resulting from these comparisons, maps of 

CBD and CBH are generated that are then tested as inputs into 

a fire behavior model. 

LIDAR

LIDAR (frequently used synonymously with the term laser 

altimetry) provides a direct and elegant means to measure the 

structure of vegetation canopies (Dubayah and Drake 2000). 

LIDAR is an active remote sensing technique in which a 

pulse of light is sent to the Earth’s surface from an airborne or 

spaceborne laser. The pulse reflects off of canopy materials such 

as leaves and branches. The returned energy is collected back 

at the instrument by a telescope. The time taken for the pulse 

1 U.S. Department of Agriculture (USDA), Forest Service, Rocky Mountain Research Station; currently at U.S. Geological Survey Center for Earth Resources 
Observation and Science, Sioux Falls, SD 57198. E-mail: bepeterson@fs.fed.us.
2 Department of Geography, 1150 LeFrak Hall, University of Maryland, College Park, MD 20742. E-mail: dubayah@umd.edu.
3 Department of Geography, 1150 LeFrak Hall, University of Maryland, College Park, MD 20742. E-mail: phyde@geog.umd.edu.
4 Department of Geography, 1150 LeFrak Hall, University of Maryland, College Park, MD 20742. E-mail: mhofton@geog.umd.edu.
5 National Aeronautics and Space Administration, Goddard Space Flight Center, Building 32, Greenbelt, MD 20771. E-mail: james.b.blair@nasa.gov.
6 USDA Forest Service, Tahoe National Forest, 631 Coyote Street, Nevada City, CA 95959. E-mail: jfites@fs.fed.us.
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to travel from the instrument, reflect off of the surface, and be 

collected at the telescope is recorded. From this ranging infor-

mation various structure metrics can be calculated, inferred, 

or modeled (Dubayah and Drake 2000). A variety of LIDAR 

systems have been used to measure vegetation characteristics. 

Most of these are small-footprint, high pulse rate, first- or 

last-return-only airborne systems that fly at low altitudes. 

Other, experimental LIDAR systems are large footprint and full 

waveform digitizing and provide greater vertical detail about 

the vegetation canopy. Dubayah et al. (2000) and Lefsky et 

al. (2002) provide thorough overviews of use of LIDAR for 

landsurface characterization and forest studies.

Canopy height, basal area, timber volume and biomass have 

all been successfully derived from LIDAR data (Drake et al. 

2002a, Drake et al. 2002b, Hyde et al. 2005, Lefsky et al. 1999, 

Maclean and Krabill 1986, Magnussen and Boudewyn 1998, 

Means et al. 1999, Naesset 1997, Nelson et al. 1984, Nelson et 

al. 1988, Nelson 1997, Nilsson 1996, Peterson 2000). Many of 

these studies rely on small-footprint systems. Small-footprint 

LIDARs have the advantage of providing very detailed mea-

surements of the canopy top topography. Most small-footprint 

(5-cm to 1-m diameters) systems are low flying and have a high 

sampling frequency (1,000 to 10,000 Hz). Although small-foot-

print systems typically do not digitize the return waveforms, 

the high frequency sampling produces a dense coverage of the 

overflown area. This can provide a very detailed view of the 

vegetation canopy topography; however, the internal structure 

of the canopy is difficult to reconstruct because data from the 

canopy interior are sparse (Dubayah et al. 2000).

Recently, LIDARs have been developed that are optimized 

for the measurement of vegetation (Blair et al. 1994, Blair et 

al. 1999). These systems have larger footprints (5- to 25-m 

diameters) and are fully waveform digitizing, meaning that the 

complete reflected laser pulse return is collected by the system. 

LIDAR remote sensing using waveform digitization records 

the vertical distribution of surface areas between the canopy 

top and the ground. For any particular height in the canopy, the 

waveform denotes the amount of energy (i.e., the amplitude of 

the waveform) returned for that layer (Dubayah et al. 2000). 

The amplitude is related to the volume and density of canopy 

material located at that height (fig. 1). 

Subcanopy topography, canopy height, basal area, canopy 

cover, and biomass have all been successfully derived from 

large-footprint LIDAR waveform data in a variety of forest 

types (Drake et al. 2002a, Dubayah and Drake 2000, Hofton 

et al. 2002, Hyde et al. 2005, Lefsky et al. 1999, Means et al. 

1999, Peterson 2000). For example, results from Hofton et al. 

(2002) show that large-footprint LIDAR measured subcanopy 

topography in a dense, wet tropical rainforest with an accuracy 

better than that of the best operational digital elevation models 

(such as U.S. Geological Survey 30-m DEM products). Means 

et al. (1999) used large-footprint LIDAR to recover mean 

stand height (r2 = 0.95) for conifer stands of various ages in 

the Western Cascades of Oregon. Drake et al. (2002a) found 

that metrics from a large-footprint LIDAR system were able 

to model plot-level biomass (r2 = 0.93) for a wet tropical 

rainforest. Dubayah et al. (2000), Dubayah and Drake (2000), 

and Lefsky (2002) provide a thorough overview of forest 

structure derived using large-footprint LIDAR. In sum, LIDAR 

is a proven method for deriving many characteristics relevant 

to forest management. LIDAR data have also been used to 

measure canopy structure relevant to fire behavior modeling 

Figure 1.—Illustrations showing sample waveforms for 
different cover types in the Sierra Nevada. (a) Waveform return 
from bare ground—no canopy return. (b) Waveform return 
for a short, dense forest stand. The canopy return blends in 
with the ground return. (c) Waveform return for a tall, dense 
forest stand. The waveform shows layering in the canopy and 
the ground return is clearly defined. (d) Waveform return for a 
tall, sparse forest stand. The waveform shows a distinct upper 
canopy layer and a layer of low-lying vegetation that mixes in 
with the ground return. The stand diagrams were created with 
the Stand Visualization System based on field measurements.

(a) (b)

(c) (d)

Waveform amplitude Waveform amplitude

Waveform amplitude Waveform amplitude

Bare ground
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(Andersen et al. 2005, Morsdorf et al. 2004, Riaño et al. 2003, 

Riaño et al. 2004, Seielstad and Queen 2003) and this specific 

application is explored in the remainder of this paper. 

Study Site and Data Collection

The study area is located in the Sierra National Forest in the 

Sierra Nevada mountains of California near Fresno (fig. 2) and 

covers a wide range of vegetation types (e.g., fir, pine, mixed 

conifer, mixed hardwood/conifer, meadow), canopy cover, and 

elevation. Common species of the region include red fir (Abies 

magnifica A. Murr.), white fir (Abies concolor (God. & Glend.) 

Hildebr.), ponderosa pine (Pinus ponderosa Dougl. ex Laws.), 

Jeffrey pine (Pinus jeffreyi Grev. & Balf.), and incense cedar 

(Libocedrus decurrens Torr.), among others. Canopy cover 

can range from completely open in meadows or ridge tops to 

very dense, especially in fir stands. The study area extends 

over nearly 18,000 ha of U.S. Department of Agriculture Forest 

Service and privately owned lands. The topography varies 

considerably with some areas characterized by very steep slopes 

and an elevation range between approximately 850 and 2,700 m. 

The LIDAR data used in this study were collected by the Laser 

Vegetation Imaging Sensor (LVIS) (Blair et al. 1999). LVIS is 

a large-footprint LIDAR system optimized to measure canopy 

structure characteristics. LVIS mapped a 25- by 6-km area of 

the Sierra National Forest in October of 1999 in a series of 

flight tracks (fig. 2). Flying onboard a NASA C-130 at 8 km 

above ground level and operating at 320 Hz, LVIS produced 

thousands of 25-m diameter footprints at the surface. 

Field data were collected in the summers of 2000–02 in the 

Sierra National Forest. Circular plots were centered on LIDAR 

footprints and measured 15 m in radius. The 15-m radius was 

chosen to ensure complete overlap with the LVIS footprint and 

to account for trees located beyond the 12.5-m radius of the 

footprint with crowns overhanging the footprint. Within these 

plots all trees over 10-cm diameter at breast height (d.b.h.) 

(diameter at breast height) were sampled. Measurements 

included tree height, height to partial crown, partial crown 

wedge angle, height to full crown, four crown radius 

measurements, and distance and azimuth relative to the plot 

center. Tree crown shape and species were also recorded. 

Derivation of CBD and CBH

The data from the 135 plots were used to calculate field-based 

CBD according to an inventory-based method. The original 

methodology was presented in Sando and Wick (1972) and 

relied on conventional field-sampled data (e.g., height, d.b.h., 

stem count density) to derive quantitative observations of 

canopy fuels. This method was subsequently modified for 

inclusion in Fire and Fuels Extension to the Forest Vegetation 

Simulator (Beukema et al. 1997). As described by Scott and 

Reinhardt (2001) a vertical profile of bulk density is derived 

by first calculating the foliage and fine branch biomass for 

each tree in the plot, then dividing that fuel equally into 1-foot 

(0.3048-m) horizontal layers from the base of the tree’s crown 

through to the maximum tree height and finally summing the 

Figure 2.— Schematic showing the location of the study 
site, plot distribution, and footprint-centered plot design. (a) 
Locator map of the study area in the Sierra Nevada, northeast 
of Fresno. (b) The study area was delimited by swaths of LVIS 
data covering the region. The combined area of the swaths 
is approximately 25 by 6 km. (c) The individual plots were 
colocated with the LVIS footprints. Each circular plot (15-m 
radius) is centered on an LVIS footprint with its own waveform.

(a)
(b)

(c)

LVIS = Laser Vegetation Imaging Sensor.
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fuel loads contributed by each tree in the plot for all 1-foot seg-

ments. CBD is estimated by finding the maximum of a 4.5-m 

deep running average for the horizontal layers of CBD. CBH is 

typically defined as the height in the profile at which the CBD 

reaches a predetermined threshold value. In this study, CBH 

is defined as the height in the profile at which the bulk density 

equals or exceeds 0.011 kg/m3 (Scott and Reinhardt 2001).

CBD and CBH were derived from LIDAR data for waveforms 

that were coincident with the study’s field plots. This process 

involved several steps. First, LIDAR metrics were identified 

as potential predictors based on previous work deriving other 

biophysical characteristics from waveform data such as canopy 

cover, basal area, and biomass. The LIDAR metrics selected 

were canopy height (HT), canopy height squared (HT2), canopy 

energy (CE), canopy energy/ground energy ratio (CE/GE), 

lowest canopy return (L), canopy depth (D), peak amplitude 

(MAX), and the height of median cumulative canopy energy 

(HMCE) (fig. 3). 

Second, individual waveforms were normalized by dividing 

the energy present in each waveform bin (representing the 

energy returned for each vertical resolution unit, in this 

case approximately 30-cm deep) by the total energy in the 

waveform. The normalization process accounts for flight-to-

flight as well as footprint-to-footprint variations in energy in the 

waveform, caused, for example, by flying at day versus night or 

by the incident angle of the laser beam. Normalization allows 

for easier comparison of waveform-derived metrics.

Third, the waveform metrics listed above were calculated for 

each of the normalized waveforms. HT was determined by 

subtracting the range to the ground (defined as the midpoint 

of the last peak) from that of the first detectable canopy return 

above noise. HT2 is the squared value of HT. CE and GE are 

derived by separating the waveform into a canopy portion and 

a ground portion and then summing the bin values for those 

portions of the waveform. L is the height of the bottom of the 

canopy portion of the waveform. D is the vertical extent of the 

canopy portion of the waveform. MAX is the peak amplitude 

value in the canopy portion of the waveform. HMCE is the 

height at which the cumulative energy in the canopy portion 

of the waveform reaches the 50th percentile. Several additional 

metrics were derived to predict CBH from the cumulative 

canopy energy profile. The additional LIDAR-derived CBH 

metrics include the 0.5th-, 1st-, 5th-, and 10th-percentile heights of 

the cumulative canopy energy.

A transformation was also applied to the LVIS waveforms. 

Some previous studies (Lefsky et al. 1999, Means et al. 1999) 

have maintained that LIDAR waveform data need to be adjusted 

to correct for shading of lower foliage and branches by higher 

foliage and branches. This adjustment consists of applying an 

exponential transform to the waveform (modified MacArthur-

Horn [1969] method) and is described in detail in Lefsky et al. 

(1999). The transform has the effect of increasing the amplitude 

of the waveform return from the lower part of the canopy.

Once the LIDAR metrics were calculated, they were used as 

explanatory variables in multiple linear regression analyses 

to determine which set of metrics best predicted CBD and 

CBH. Separate regression equations were derived for different 

vegetation types. The vegetation type categories used in this 

study were red fir, white fir, ponderosa pine, miscellaneous 

pine (comprised of Jeffrey pine, sugar pine, and lodgepole 

Figure 3.—Schematic of an individual LIDAR waveform 
showing LIDAR metrics. A pulse of laser energy reflects off 
canopy (e.g., leaves and branches) and the ground beneath, 
resulting in a waveform. The amplitudes of individual peaks 
in the waveform are a function of the number of reflecting 
surfaces at that height. The different LIDAR metrics used in 
this study are superimposed on the waveform. 

Waveform amplitude
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pine), Sierra mixed conifer, mixed hardwood conifer/mixed 

hardwood, and meadow/bare ground. Because the number of 

plots in two of the vegetation classes (white fir and ponderosa 

pine) was small, some explanatory variables were dropped 

out of the regression equations for these classes. Stepwise 

regression techniques were used to determine which variables 

should be dropped because they had relatively low explanatory 

power. The same suite of LIDAR metrics were recalculated 

from the waveforms once the modified MacArthur-Horn 

transformation was applied. The metrics derived from the 

transformed waveforms were then used as variables in the same 

series of regression analyses for the different vegetation types 

as described above. 

The LIDAR-predicted and field-derived CBD compared rather 

well. The r2 value of 0.71 (p < 0.0001, root square error (RSE) 

= 0.036) is based on the correlation between the collective 

observed and predicted estimates of CBD. The regression 

analyses were then repeated using the transformed LIDAR 

data. This dropped the r2 value to 0.67. The comparison 

between the LIDAR-based and field-based estimates of CBH is 

also rather good. For CBH, the regression model was improved 

when using the LIDAR metrics derived from the transformed 

waveform. The r2 using the transformed data was 0.59 (p < 

0.0001, RSE = 0.573) as compared to an r2 of 0.48 using the 

metrics from the original waveform. Again, the reported r2 for 

the CBH derivation is based on the correlation between the 

collective observed and predicted estimates.

The differences between the various vegetation-type specific 

regression models most likely reflect structural differences 

among the various forest stands included in the study. For most 

of the vegetation types the relationship between the LIDAR-

metrics and field-derived CBD is fairly strong (i.e., r2 > 0.6), 

the exception being the mixed conifer class (r2 = 0.3811), 

where, in the higher range of values, the predicted CBD was 

lower than the observed CBD. The greatest error in predict-

ing CBD occurred in stands characterized by a dense canopy 

layer of mid and understory trees with a few dominant tree 

crowns interspersed. The equations used to calculate CBD 

from the field data could be overestimating the canopy loads 

of the codominant and subdominant trees. The trees in denser 

stands have crowns that are often irregular in shape, meaning 

that actual fuel load for these trees is likely much lower than 

predicted when a regular shape is assumed in an algorithm. In 

addition, there is considerable variation in crown shape among 

species. White fir, for example, tends to be rather cone shaped 

while sugar or ponderosa pine crowns are more parabolic. 

Furthermore, the field-based estimates of CBD only consider 

the fraction of fuels made up of fine (e.g., foliar) material rather 

than the total biomass in the plot, which is recorded by the 

LIDAR waveform. 

We believe that at least part of the error in the CBH derivation 

can be attributed to the fact that trees less than 10 cm d.b.h. 

were not sampled in the field. For certain plots (especially 

mixed conifer) this excludes a significant number of smaller 

stems and could lead to an erroneously high derivation of CBH 

from the field data. The omission of smaller trees could cause 

the amount of material assigned to the lower part of the density 

profile to be less than it should be.

Other factors such as slope and varying footprint size (due to 

changes in surface elevation) were explored to determine if they 

might be a source of error for both the CBD and CBH LIDAR 

derivations. No relationship between the residuals of the 

regression and these factors could be discerned, however.

Interestingly, the results of the CBH regression analyses 

show that LVIS metrics that were derived from waveforms 

transformed using the modified MacArthur-Horn method were 

better able to predict CBH (r2 = 0.59) than the untransformed 

metrics (r2 = 0.48). The transform increases the amplitude of 

the return in the lower portion of the waveform and therefore it 

has a greater impact on the metrics derived from that part of the 

waveform. The overall effect of the transform was to lower the 

height of several metrics. This caused the correlation between 

predicted and observed CBH at the shorter end of the range 

(0–2 m) to improve, thereby also improving the overall r2. The 

poorest results were again for the mixed conifer class. 
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FARSITE Simulations

The fire behavior model used in this study is the Fire Area 

Simulator (FARSITE, Finney 1998). FARSITE is a Geographic 

Information System-based fire behavior model in common use 

with agencies throughout the Unites States. In all, FARSITE 

has eight input layers (Finney 1998). The first five (elevation, 

slope, aspect, fuel model, and canopy cover) are all that are 

needed to simulate surface fires. The last three (canopy height, 

CBD, and CBH) are needed to model crown fire behavior. 

Once the regression models for CBD and CBH were developed 

they were used to derive CBD and CBH from all of the LVIS 

waveforms in the study area. First, the required LIDAR metrics 

were calculated from the waveforms. Then the LVIS data 

were classified by land cover type and the vegetation-type 

specific regression models were applied. This created point 

data of CBD and CBH for the entire study area. These point 

data were then gridded into 25-m raster layers using ArcInfo. 

These grids are hereafter referred to as LVIS grids. An inverse 

difference weighting (IDW) technique was used for gridding 

and to compensate for gaps in the data caused by irregularities 

in the flight lines. To complete the set of canopy structure data 

needed to run FARSITE, an LVIS-derived canopy height grid 

was also created. Hyde et al. (2005) validated the LVIS canopy 

height measurement for the Sierra Nevada study site. For this 

study, the height data were also gridded to 25 m using the IDW 

technique. 

Once the LVIS grids were created they were first compared to 

canopy height, CBD, and CBH data layers that were generated 

using conventional methods, referred to hereafter as CONV 

grids. The CONV grids were only available for a smaller part 

of the study area—at the far southeastern end of the flight lines. 

Therefore, the LVIS grids were clipped to match the extent of 

the CONV grids. There are obvious differences between the two 

sets of data. Of particular note is the increased spatial heteroge-

neity contained in the LVIS grids relative to the CONV grids. 

FARSITE was then run twice: once using the LVIS canopy 

structure grids and once using the CONV input grids. All other 

spatial inputs were kept constant as was the point of ignition. 

The wind and weather input data used for the two model runs 

were representative of a dry, warm day and the simulated 

duration was set to 40 hours.

Figure 4 shows the output (crown fire/no crown fire status) for 

the two model runs. The extent of the fire spread is very similar 

for both of the model runs. Though occurring in similar loca-

tions, the occurrence of crown fire as discrete clusters in the 

LVIS output is very different from the larger, continuous areas 

of crown fire shown in the CONV output grid. In the LVIS out-

put grid the crown fire clusters appear to be associated with the 

presence of higher CBD values and lower CBH values, which 

are assumed to promote the spread of fire to the canopy. Future 

research will explore not only the effect of increasing or de-

creasing the canopy structure values on model outputs but also 

the effect of increased spatial heterogeneity in the input layers.

Figure 4.—FARSITE crown-fire/no-crown-fire outputs for two 
model runs using LVIS and CONV canopy structure inputs.

Conclusions

LIDAR systems of different types have had success in recover-

ing forest structure characteristics for a variety of vegetation 

types in a comparatively simple and direct manner. In recent 

years LIDAR has become recognized as a valuable remote 

sensing tool for forest inventory and structure mapping and is 

gaining in use for informing forest management decisionmak-

ing. Because of its ability to measure canopy structure both 

horizontally and vertically, LIDAR has potential for providing 

the type of forest structure required for fuels estimation and 

fire behavior modeling. The results of this paper demonstrate 

that waveform data from a large-footprint system may provide 

Crown fire No crown fire

CONV = conventional; LVIS = Laser Vegetation Imaging Sensor.
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the spatially explicit forest structure needed for fire behavior 

modeling. We will continue to explore and improve on methods 

for deriving CBD and CBH from LIDAR. One option to be 

considered is to incorporate various remote sensing data from 

other sensor types into a fusion-based approach for deriving the 

canopy structure variables. These results also have implications 

for remote-sensing-based inventory at larger scales. ICESAT 

and other near-future space-based LIDAR systems are or will 

likely be large footprint and waveform digitizing. Though these 

are not imaging systems, the global samples of three-dimen-

sional structure that they will provide can be incorporated into 

forest inventory.
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Area-Independent Sampling for Basal Area

James W. Flewelling1 

Abstract.—An unbiased direct estimator of total 

basal area for a stand (Flewelling and Iles 2004) 

is reviewed. Stand area need not be known. The 

estimator’s primary application is in conjunction with 

a randomly positioned grid of sample points. The 

points may be centers for horizontal point samples or 

fixed-area plots. The sample space extends beyond 

a stand’s boundary, though only trees within the 

boundary are tallied. Measured distances from sample 

trees to stand boundaries are not required.

Introduction

Most methods of estimating basal area for a stand are area 

dependent in that they are the product of an estimated basal 

area per hectare and a known or estimated area. A major 

concern in applying these methods is the avoidance of edge 

bias. Such bias can arise when the distance from a tree to the 

stand’s edge affects its sampling probability and the estimator is 

not able to fully account for the varying probabilities. Unbiased 

estimators do exist, but are difficult or impossible to apply with 

complex stand boundaries. Methods which adjust for edge bias 

are reviewed by Schreuder et al. (1993). The “walkthrough” 

solution (Ducey et al. 2004) offers an operationally simpler 

alternative to the mirage method of Schmid-Haas (1969, 1982). 

The foregoing methods confine sample points to being within 

the stand boundaries. Schmid-Haas (1982: 264) also suggested 

a substantively different approach to the edge bias problem: 

“One possibility is obvious; sample plots whose centre lies 

outside the area under investigation are also included in the 

sample, care being taken to ensure that the probability density 

for such plot centers is the same as for those within the (stand) 

area.” That concept is embodied in the toss-back method by 

Iles (2001) and in the area-independent method reviewed here.

Sample Protocol and Estimators

The sampling protocol addressed here is that of a regular grid of 

sample points. The orientation of the grid is predetermined. A 

starting point is randomly located within an area corresponding 

to a grid cell, and the sample points extend indefinitely to areas 

inside and outside the stand. Other protocols are addressed by 

Flewelling and Iles (2004). Each sample point may be the center 

of a fixed-area plot or a horizontal point sample. No distinction 

is made between sample points that fall inside the stand, and 

those that fall outside the stand. At each point, only the sample 

trees within the stand are considered. 

For fixed-area plots, the estimator of total basal area is

Ĝ  =A
g
 × Σ g

i	
(1)

 

where A
g
 is the area per grid point as established by the grid 

spacing, g
i 
is the basal area per hectare on the ith sample plot, 

and the summation is over all sample plots. For horizontal point 

samples, the estimator is

Ĝ  = T × F × A
g
	 (2)

where F is the basal area factor and T is the total tree count, 

summed over all sample points. Modified versions of horizontal 

point sample may use several different basal area factors 

depending on tree size, and may invoke fixed-area plots for 

certain ranges of tree sizes. The generalized estimator for these 

modified samples is

	 (3)

where F
v
 is a variable basal area factor, the first summation is 

over all sample points, and the second summation is over all the 

trees at a particular sample point. For tree sizes being sampled 

with an angle gauge, F
v
 is the basal area factor of the gauge. For 

1 Consulting biometrician, 9320 40th Avenue N.E., Seattle, WA 98115. E-mail: jwflew-wmen@yahoo.com.
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tree sizes being sampled with fixed area plots, F
v
 is the ratio of 

the tree’s basal area to the plot area. 

Discussion

The most likely application of the area-independent estimator 

is for stands where the area is unknown. An example is in the 

determination of the basal area of that portion of a stand which 

excludes riparian corridors whose extent and area are unknown. 

The appeal of the area-independent estimator is not limited to 

stands with unknown areas. This estimator and the toss-back 

method both are unbiased for any stand geometry and are rela-

tively easy to use. The exact delineation of the stand boundary 

in the vicinity of the sample points is not required. Independent 

random errors in the location of sample points would seem 

not to introduce bias. This lack of sensitivity to location error 

is not shared by methods that limit sample points to a stand’s 

interior; this feature could be used to advantage by using hand-

held Geographic Positioning System units to navigate to sample 

points. An operational difficulty of the method is that some of 

the sample points outside of the stand may be inaccessible; for 

those sample points, the selection of sample trees will be much 

more difficult than making a prism sweep.

The Forest Inventory and Analysis (FIA) program is generally 

not concerned with individual stands. Instead, forest attributes 

are sought within populations such as States or counties, and by 

various condition classes such as forest cover type. The FIA’s 

grid of ground plots have a constant sampling density and could 

be analyzed with the area-independent estimator to make unbi-

ased estimates of basal area by cover type. The FIA sampling 

program, however, is multiphase; the first phase measures or 

estimates forest area (Reams et al. 2005), and could potentially 

subdivide the forested area into condition classes. Hence, area-

dependent estimators for basal area and other attributes are be-

ing used; these should be presumed to have lower variance than 

would the area-independent estimators. 
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On Estimation in k-tree Sampling

Christoph Kleinn and František Vilcko1

Abstract.—The plot design known as k-tree sampling 

involves taking the k nearest trees from a selected 

sample point as sample trees. While this plot design 

is very practical and easily applied in the field for 

moderate values of k, unbiased estimation remains 

a problem. In this article, we give a brief introduc-

tion to the history of distance-based techniques 

in forest inventory sampling, present a new and 

simple approximation technique for estimation, and 

describe how to eventually develop a design-unbiased 

estimator. This article draws on two manuscripts that 

were recently published (Kleinn and Vilcko 2006a, 

Kleinn and Vilcko 2006b), in which more details are 

elaborated.

Introduction

The plot design known as k-tree sampling, in which from a 

sample point the k nearest trees are taken as sample trees, 

is a practical response design if k is not too big. We call this 

approach here “classical k-tree sampling” to distinguish it from 

variations such as the point-centered quarter method (fig. 1) or 

T-square sampling. (e.g., Krebs 1999). 

Estimation for k-tree sampling is frequently done in a design-

based manner with expansion factors that “expand” the per-plot 

observation to per-hectare values. One of the frequently used 

estimation approaches for classical k-tree sampling is to use the 

distance to the k nearest tree as radius of a virtual circle plot 

and calculate a per-plot expansion factor. Another approach is 

to take the mean distance to the k tree from all n sample points 

to calculate an overall expansion factor to be applied to all       

n sample points. 

It had long been known, however, that k-tree sampling is not 

an unbiased estimator, but leads on average to a systematic 

overestimation of the population parameters. From simulation 

studies on different populations, Payandeh and Ek (1986) 

suggest that the relatively rare application of k-tree sampling 

in forest inventory has to do with the lack of an unbiased 

estimator. While some authors see minor problems regarding 

application of k-tree sampling because it is practical and 

because the bias in the commonly used estimators was found 

to be modest in many cases (Krebs 1999), others tend to advise 

against it when unbiased estimation is an issue because it 

violates basic principles of statistical sampling (e.g., Mandallaz 

1995, Schreuder 2004).

Empirical approaches for estimation have been investigated 

and various techniques are available. One may distinguish two 

major groups of estimators: (1) design-based estimators that 

attempt to find from the k-tree sample a suitable plot size that 

allows good extrapolation, and (2) approaches under model 

assumptions in which estimation depends on the spatial pattern 

that needs to be captured and described from the sample. Picard 

et al. (2005) give a comprehensive overview of many of these 

approaches.

1 Institute of Forest Management, Georg-August-Universität Göttingen, Büsgenweg 5, D-37077 Göttingen. E-mail: ckleinn@gwdg.de.

Figure 1.—Two strategies of k-tree sampling. Left: the 
“classical” k-tree plot, in which the k trees nearest to a sample 
point (+) are taken as sample trees. Right: the point-centered 
quarter method, in which the space around the sample point 
is subdivided into four quadrants; in each of those the nearest 
trees is taken so that k = 4.

Source: Kleinn and Vilcko (2006a).
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In this article, we give a brief overview of the history of k-tree 

sampling and present a new and simple empirical approxima-

tion technique for the classical k-tree plot that is elaborated in 

Kleinn and Vilcko (2006a). The way toward designing unbiased 

estimation is shown in the last section. More details about that 

approach are in Kleinn and Vilcko (2006b). 

On the History of k-tree Sampling

Loetsch et al. (1973) state that the first use of distance 

techniques in forestry applications was mentioned in the book 

“Forstmathematik” (forest mathematics) by König (1835). 

König (1835), in fact, had recognized and elaborated with 

empirical results that stand attributes such as number of stems 

and basal area depended on inter-tree distances. He developed 

a model (presented as a table) with which he determined basal 

area per hectare as a function of mean stand diameter and 

average distance between trees. This model obviously was not 

a point-to-tree distance technique, however, but a tree-to-tree 

distance technique. These tree-to-tree distance techniques 

were further developed for forest inventory in the 1940s and 

1950s (among others, Bauersachs 1942, Köhler 1952, Weck 

1953). Essed (1957) analyzed these tree-to-tree distance 

techniques and explicitly pointed to the problem of systematic 

overestimation. 

According to a literature review, Stoffels (1955) was among 

the first to elaborate point-to-tree distance sampling in forest 

inventory. His target attribute was number of stems per 

hectare (density). He investigated three-tree sampling and 

recommended to count tree number three only half (meaning 

that in the three-tree sample there were actually only two and 

a half trees counted), which was a simple empirical way to 

attempt compensating for the then unexplainable systematic 

overestimation. In Germany, with the studies of Prodan (1968) 

and Schöpfer (1969a, 1969b), k-tree sampling was broadly 

introduced into practical application of forest management 

inventories. Those authors recommended k = 6 because they 

found it to be a practical number for application and good in 

terms of statistical performance. Prodan (1968) knew about 

the systematic overestimation with the simple expansion 

factor approach that became clear in simulation studies in test 

stands. To correct for that bias he recommended taking the 

attributes of the sixth tree only half because that tree was only 

half contained in the sample plot. While this ad-hoc approach 

is difficult to justify in theoretical terms, various simulation 

studies have shown that it works reasonably well under many 

conditions (Lessard et al. 1994, Payandeh and Ek 1986).

In general, k-tree sampling has not been as readily used for 

forest inventory as fixed area plots and relascope sampling. 

A number of recent applications have been found, however, 

many of them under difficult conditions in tropical forested 

landscapes: Hall (1991, Afromontane catchment forests); 

Lynch and Rusdyi (1999, Indonesian teak plantations); Sheil 

et al. (2003, East Kalimantan natural forests); and Picard et 

al. (2005, Mali savannah). The test data used for simulations 

in this present study come from the Miombo woodlands in 

Northern Zambia.

A New and Simple Technique for Estimation in 
Classical k-tree Sampling

The systematic overestimation of the expansion factor-based 

estimator for the classical k-tree plot has been described and 

illustrated early by Essed (1957). By taking the distance to 

the k tree as a radius of a virtual sample plot, one defines 

systematically the smallest possible circular sample plot for the 

contained k trees and, therefore, the largest possible expansion 

factor—which leads immediately to the observed systematic 

overestimation. Using the distance to the (k+1) tree as plot 

radius for a k-tree plot, the expansion factor (and therefore 

the estimations) would be smaller and thus lead to systematic 

underestimation.

If using the distance to the k tree as plot radius produces a 

systematic overestimation and the distance to the (k+1) tree 

causes a systematic underestimation, we may conclude that the 

“true” (i.e., adequate for estimation) circular plot radius must 

be in between.
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Our idea is simply to use an average plot size from the 

two distances to the k and k+1 tree, in which we tested two 

approaches of calculating the plot radius:

(1)	 The radius is calculated as arithmetic mean of the 

distances d
k
 to the k and d

k+1
 to the k+1 tree.

(2)	 The radius is calculated as geometric mean of the 

circular plot areas from r = d
k
 and r = d

k+1
. This may be 

geometrically interpreted as the arithmetic mean of the 

circle plots with radii d
k
 and d

k+1
.

The bias of the these two approaches in comparison to Prodan’s 

(1968) approach is given in figure 2, in which results of a 

simulation study using a tree map are shown. With all three 

estimators, a clear positive bias exists, which is, however, 

smaller for our two approaches, particularly for small values 

of k. For about k = 5 onward, the bias for the three approaches 

is about the same. We should mention here that Prodan (1968) 

presented his approach only for k = 6. We applied it here in 

a manner analogous to k =2..12. Approach (1), in which the 

plot radius is calculated from the arithmetic mean of d
k
 and 

d
k+1

, produces consistently a smaller bias than approach (2), 

although the differences are small.

Of course, a simulation study on but one tree map is not an 

evidence of general superiority, but it may be an indication of 

promising performance. Kleinn and Vilcko (2006a) present 

additional simulations with other maps with different spatial 

patterns with similar results.

Seeing it from a practical point of view and in comparison to 

Prodan’s (1968) approach, for the new approaches one must 

make one more measurement: the distance to the k+1 tree. This 

measurement adds some additional effort, because the k+1 tree 

must be determined. For relatively small values of k, however, 

this additional effort is expected to be small.

Toward a Design Unbiased Estimator

In Kleinn and Vilcko (2006b), the authors develop a design 

unbiased estimator for the classical k-tree plot. The approach 

draws on the inclusion zone concept, in which a polygon is 

drawn around each sample tree with the area of the polygon 

a measure for the inclusion probability of this particular tree. 

Once the inclusion probability of all sample trees is known, the 

Horwitz-Thompson estimator can be used to obtain an unbiased 

estimator. 

The inclusion zone approach is closely linked to the infinite 

population approach (Eriksson 1995, Mandallaz 1991), also 

referred to as continuous population approach (Williams 2001). 

In these approaches, a forest area is considered an infinite 

population of sample points of which a subset is selected as 

a sample. That means that the dimensionless points are the 

sampling elements, and not trees or plot areas. The value that 

is being assigned to a dimensionless point comes from the 

surrounding trees. It is the plot design that defines how these 

trees around the sample point are to be selected. For fixed-area 

circle plots, for example, all trees up to a defined distance 

from the sample point are included. In relascope sampling, 

this distance is not constant but depends on tree diameter and 

basal area factor. In k-tree sampling it is the first, second, etc. 

k nearest tree to the sample point that are included and that 

determine the value assigned to this particular sample point.

Figure 2.—Bias of estimating basal area from k-tree plots 
with k = 2..12 with different estimators. The two approaches 
introduced here are contrasted to Prodan’s (1968) approach 
in which the k tree is counted half so that the k-tree sample 
actually becomes a (k-0.5)-tree sample. While Prodan (1968) 
proposed that approach for k = 6 only, we applied it here 
to k = 2..12. The results are from simulations on a tree map 
from the Miombo woodlands in Northern Zambia. Our new 
approaches exhibit smaller bias, in particular for small values 
of k. For about k > 6, the bias is about the same for all three 
compared approaches.
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It is more instructive here, however, not to follow that described 

sample-point-centered approach, but to use a tree-centered 

approach (Husch et al. 1993), which leads immediately to the 

definition of inclusion zones. Around each tree we build an in-

clusion zone such that this particular tree is selected by a sam-

ple point if it falls into that inclusion zone. It is then obvious, 

by application of basic principles of geometric probabilities, 

that the area of this inclusion zone (divided by the total area of 

the inventory region) defines the probability of selection of that 

particular tree from which the inclusion probability also can be 

derived for probabilistic sampling approaches. 

Size and shape of the inclusion zone is exclusively defined 

by the plot design that is being used. For fixed-area circular 

sample plots, the inclusion zones are circles centered around 

the trees and with the same size as the sample plot. In 

relascope sampling, inclusion zones are also circular but size is 

proportional to the tree’s basal area.

To build an unbiased estimator for any plot design, it is 

sufficient to search for the individual inclusion zones of all 

sampled trees. Eventually, for k-tree sampling, that means that 

we must find, around an individual sampled “target” tree, the 

area in which a sample point that falls there has the target tree 

as nearest, second-nearest, etc. k nearest neighbor. For k = 1 

the solution is simple; the searched inclusion zone polygon are 

the commonly known Voronoi diagrams or Dirichlet polygons, 

which have been used in different contexts in forestry (e.g., 

Lowell 1997, Moore et al. 1973, Overton and Stehman 1996).

In Kleinn and Vilcko (2006b), the authors elaborate on 

inclusion zones for k > 1. These inclusion zones contain the 

set of all points around the target tree for which this particular 

tree is either the first, second, etc. k neighbour. Those polygons 

are called higher order Voronoi diagrams. Okabe et al. (1999) 

describe approaches for their construction. To do so, the tree 

positions of neighboring trees must be known; i.e., mapped 

up to a certain distance. ��������������������������������������     Figure 3������������������������������     illustrates the approach for 

k = 3, depicting the inclusion zone for all three sample trees. 

In this case, the coordinates of 15 trees need to be mapped to 

determine this inclusion zone. 

Shape and size of the inclusion zone depends exclusively 

on tree positions and not on any attribute value of the target 

tree. That means that a considerable quantity of additional 

measurements needs to be done to be able to build the inclusion 

zones. The proper distance around the sample trees that these 

position measurements need to be done still has not been 

determined. 

When the inclusion zones of all k sample trees are known, then 

also the inclusion probabilities are known, and the Horwitz-

Thompson estimator is immediately an unbiased estimator. 

While application of the Horwitz-Thompson estimator is 

cumbersome for calculation, Valentine et al. (2001) suggest 

an easier way: one imagines that the tree-specific value of the 

target attribute is distributed evenly over the inclusion zone, 

thus forming a density that is constant over the entire inclusion 

zone. At a selected sample point, one observes the density 

values of all those inclusion zones that contain the sample 

point. The sum of these density values is the observation that 

Figure 3.—Inclusion zones for three trees in a k-tree plot for    
k = 3. The sample point is marked by x. The three circled small 
x’s are the three nearest trees. The three differently hatched 
polygons are the inclusion zones for these trees. Tree positions 
are marked as dots. To determine the inclusion zones for the     
k = 3 trees, the positions of all trees marked with bold gray 
dots need to be known.

Source: Kleinn and Vilcko (2006b).



2005 Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium		  207

is used at that point. Another simple approach for calculation 

would be the one that is commonly used in relascope sampling 

building on the tree-specific expansion factors.

Conclusions

The inclusion zone approach allows building a design-

unbiased estimator (elaborated in detail in Kleinn and Vilcko 

2006b). The inclusion zones in k-tree sampling are built as 

higher order Voronoi polygons. Their size and shape vary 

and depend exclusively on the position of the surrounding 

trees, a significant difference from inclusion zones of other 

plot designs. With respect to the expected precision, it is 

important to note that the size of the inclusion zone—and 

therefore the inclusion probability as well—is not proportional 

to any tree attribute. Therefore, it is expected that overall 

performance of k-tree sampling is inferior to other plot designs. 

This hypothesis, however, is currently being researched by 

simulation studies. With an unbiased estimator available, it 

is now possible for the first time to compare k-tree sampling 

to other plot designs, in which also for k-tree sampling an 

unbiased estimator can be used (e.g., Lessard et al. 2002, 

Payandeh and Ek 1986). 

Whether our approach will be of relevance for practical 

field application depends on whether it will be possible to 

do the required tree mapping around the sample trees with a 

reasonable amount of effort. Such research is currently ongoing 

in the research group of the authors; from a selected sample 

point, polar coordinates of neighboring trees are determined by 

electronic compass and laser distance meter. The measurement 

devices are linked to a computer that calculates immediately 

the Voronoi polygons and indicates whether these polygons 

change when more and farther trees are included into the 

mapping; if the polygons do not change any more then tree 

mapping can be stopped.

It is likely, however, that approximations to estimation will 

continue to be of great practical relevance. Therefore, a simple 

approximation approach has been presented in the first half 

of this paper (elaborated in more detail in Kleinn and Vilcko 

[2006a]). In addition, it is a subject of research whether 

simple methods could approximately determine the size of the 

inclusion zones; for example, by simple regression modeling 

with the distance to the k trees being the independent input 

variables.
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An example that demonstrates area estimation procedures is 

given in the supplement (FIA documentation 2005) to Bechtold 

and Patterson (2005).

The phase 1 data is shown in table 1.

Thus, the phase 1 estimate is an H x 1 vector n’, where H is 

the number of strata, and its proportions in the H x 1 vector w. 

The field sites that are visited are held in an entirely different 

H x 1 vector n; in the context of this example, it is left to the 

field crew to decide how much of a plot is out of the population. 

The expansion factor— how much area a plot represents—is 

determined by A
T
 (114,000 acres for this hypothetical county), 

times n’
h
 divided by (n’n

h
), where h is the appropriate subscript 

of each vector. 

The phase 2 data is shown in table 2.

Thus, the plot count is held in N, while the row-wise 

proportions are held in W. For example, the number of plots 

that were photointerpreted to be forest and verified to be forest 

by the field crew is 7.3. Given that the photointerpreter called 

a dot forest, we find that there was an 83.9 percent chance 

that the field crew agreed. Given that the photointerpreter 

called a dot nonforest, we find that there was a 13.2 percent 

chance that the field crew found it to be forested. Given that 

the photointerpreter called a dot census water, we find that 

1 Information Technology Specialist, U.S. Department of Agriculture, Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN 37919. 
E-mail: jmccollum@fs.fed.us.

Table 1.—Phase 1 data.

Phase 1 strata Photo dots/pixel count Stratum weight
Plot count, excluding out

of population
Phase 1 expansion factor

ATn’h / (n’nh)

1 (A) Forest land 	n’1 = 	75 w1 = 0.5515 	n1 = 	8.7 7226.1663

2 (B) Nonforest land 	n’2 = 	44 w2 = 0.3235 	n2 = 	6.8 5423.8754

3 (C) Census water 	n’3 = 	17 w3 = 0.125 	n3 = 	2 7125

n’  = 	1 36  n = 17.5

Grid-Based Sampling Designs and Area 
Estimation

Joseph M. McCollum1

Abstract.—The author discusses some area and vari-

ance estimation methods that have been used by per-

sonnel of the U.S. Department of Agriculture Forest 

Service Southern Research Station and its predeces-

sors. The author also presents the methods of Horvitz 

and Thompson (1952), especially as they have been 

popularized by Stevens (1997), and shows how they 

could be used to produce estimates of variance on the 

fly from plots with static expansion factors. The au-

thor also extends the ideas of Horvitz and Thompson 

to the Forest Health Monitoring ozone grid. 

Introduction

Bayesian analysts speak of “prior” and “posterior” distribu-

tions. The prior distribution is the initial estimate, and the 

posterior distribution is the corrected estimate. In the Forest 

Inventory and Analysis (FIA), the prior estimate is called phase 

1, and is based solely on the dot count (if photointerpreters are 

estimating land cover) or pixel count (if remote sensing data is 

used). The posterior estimate is called phase 2, and is based on 

phase 1 but corrected for field calls. 
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there was a 35 percent chance that the field crew found it to be 

forested. Thus, the phase 2 estimate is merely p = WTw, where 

matrix transposition is indicated by a superscript T, and one 

need only multiply by A
T
 to get a, the land area estimate. 

Doing this calculation, we obtain p = [0.5493 0.3215 0.1292]T, 

which in acres for this hypothetical county would be a = 

[62,620 36,648 14,732]T. Now, suppose we check the Census 

Bureau’s gazetteer for this hypothetical county and it tells us 

that there are 59,569,965 m2 (14,720 acres) of water in the 

county, representing 0.1291 of the county’s total area. Alas, a 

contradiction is raised: the estimate is ever so slightly different 

from its known value. 

The Statistics Band’s proposed resolution to this contradiction 

may be found in the statement, “If census water is known (i.e., 

subtracted from A
T
), condition classes in census water would be 

treated as out of the population, the same as plots that straddle 

national boundaries” (FIA documentation 2005). This statement 

seems to imply that merely dropping the census water column 

from N or W is enough, without any adjustment necessary to w
3
. 

If we drop the census water column from N and then recompute 

W, we get a = [63,615 35,665 14,720]T, almost a 1,000-acre 

increase in forest and nearly the same decrease in nonforest. 

Census water, however, should be filtered out of the w vector as 

well, although w
3
 should not be reduced all the way to zero. 

Thus, it is appropriate to ask, “What other prior distribution 

v, most consistent with the existing prior distribution w, when 

multiplied into the confusion matrix (WT), gives a posterior 

with the known amount of census water?” 

First, the total weight (sum of the vector’s components) should 

be 1. Second, the weighted sum of census water should equal 

the amount of census water in the gazetteer. Third, the weights 

for the unknown components should be proportional to their 

phase 1 estimates. The following are the formal equations:

v
1
 + v

2
 + v

3
 = 1	 (1)

w
1,3

 v
1
 + w

2,3
 v

2
 + w

3,3
 v

3
 = p

3
 = 0.1291	 (2)

	

	 (3)

where:

w
i,j
 = the weights from the confusion matrix W, and 

w
i
 = the weights from the phase 1 estimate w.

Solve this system and get v = [0.55169 0.32366 0.12465]T, and 

now p = WTv = [0.5494 0.3215 0.1291]T, while a = [62,629 

36,651 14,720]T. If w differs greatly from v, there are at least 

three possibilities. First, field crews may have misidentified 

census water as noncensus water, or vice versa. Second, there 

might be bias in the phase 1 estimate. For instance, digital 

photography may not cover the population. Producers of digital 

orthophotos may have deliberately excluded vast areas of 

territorial sea. Third, the estimate could be biased if the centers 

of the phase 1 cells are different from the remainder of the 

phase 1 cells. 

Table 2.—Confusion matrix.

Forest Nonforest  Census water Total

Forest 	 n1,1 = 	7.3 	 n1,2 = 	0.4 	 n1,3 = 	1  	 n1,● = 	8.7

	 w1,1 = 	0.839 	 w1,2 = 	0.046 	 w1,3 = 	0.115

Photointerpretation nonforest 	 n2,1 = 	0.9 	 n2,2 = 	5.567 	 n2,3 = 	0.333 	 n2,● = 	6.8

 	 w2,1 = 	0.132 	 w2,2 = 	0.819 	 w2,3 = 	0.049

Call census 	 n3,1 = 	0.7 	 n3,2 = 	0.5 	 n3,3 = 	0.8 	 n3,● = 	2

	 Water 	 w3,1 = 	0.35 	 w3,2 = 	0.25 	 w3,3 = 	0.4  

		  Total 	 n
●,1 = 	8.9 	 n

●,2 = 	6.467 	 n
●,3 = 	2.133 	 n

●,●=	1 7.5
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Expansion Factors

Once a is estimated, these acres must be apportioned to 

plots by expansion factors. In work done by personnel of 

predecessors to the Southern Research Station, plots were not 

stratified according to photointerpretation. If anything, they 

were stratified by ownership, but ownership was determined 

by the field crews. Typically, expansion factors were calculated 

by dividing the estimate of forested acres by the number of 

forested plots. Return to the original solution, where a = 

[62,620 36,648 14,732]T. Now divide 62,620 by the number 

of forested plots (as determined by the field crew), 8.9, to get 

an expansion factor of 7,036 acres per plot. A plot such as #14 

in Supplement 5, or any such plot, that is 60 percent forested 

would have an expansion factor of 7,036 x 0.60 = 4,221 acres 

for this particular condition. 

Meanwhile, there are 36,648 acres of nonforested land, divided 

by 6.467 nonforested plots (as determined by the field crew), 

and this yields an expansion factor of 5,667 acres per plot. A 

plot such as #14 in Supplement 5 that is 40 percent forested, or 

any such plot, would have an expansion factor of 5,667 x 0.40 

= 2,267 acres. 

With the two conditions taken together, plot #14 is apparently 

4,221 acres / (4,221 acres + 2,267 acres) = 65 percent forested. 

This percentage is called the adjusted condition proportion. 

Horvitz-Thompson

Horvitz and Thompson (1952) produced a fairly elegant 

method that does not require use of an adjusted condition 

proportion. Their method of estimating area is equivalent 

to that of the Statistics Band. Plot #14 in Supplement 5 was 

photointerpreted as forest. The field crew found the plot to 

be 60 percent forested. Thus, the expansion factor for that 

condition is 60 percent times the phase 1 acres (7,226, shown 

in table 1), or 4,336 acres. The expansion factor for the 

nonforested condition is 40 percent, or 2,890 acres. 

Meanwhile, plot #3 was photointerpreted to be nonforest. The 

field crew found it to be 90 percent forested and 10 percent 

nonforested land, so the condition expansion factors are 4,882 

and 542 acres, respectively. Again, there is no need for an 

adjusted condition proportion. The price for this simplicity is that 

plots in different strata now carry a different number of acres.

The total number of forested acres is the same in both methods, 

but the number of acres assigned to any particular plot is likely 

to differ from method to method. Thus, the estimate of area 

will be unaffected, but because acreage expansion factors are 

allotted differently, the estimates of volume, biomass, and total 

basal area, for instance, will be different. 

Estimated Standard Errors

If there are only two strata of unknown proportions, the 

following equation for the variance of forested area, s2(p
1
), may 

be used. In McCollum (2003), it was derived from Goodman 

(1960, 1962), although this equation was used before then. It 

may also be derived from Schumacher and Chapman (1954). 

	 (4)

The Statistics Band offers two different formulae for variance 

estimation. One is for use with stratified random sampling:

	 (5)

where:

A
T
 = the total area of the area of interest (e.g., a county). 

n = the total number of plots.

h = an index variable indicating the stratum.

H = the total number of strata.

W
h
 = the weight of stratum h (defined in this paper as w

h
).

n
h
 = the number of plots in stratum h.

       = the mean of the plot proportions in the domain of interest 

           d assigned to stratum h. 
hd

P
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The other formula was for use with double sampling for 

stratification:

	 (6)

where:

n’ = the total number of pixels.

n’
h
 = the number of pixels in stratum h.

       = the estimated proportion of the population in the domain 

          of interest d.

All other symbols are as defined in equation (5). 

The Statistics Band points out that these formulas are difficult, 

if not impossible, to implement with static expansion factors 

and arbitrary subsets of plots.

 

Inclusion Probabilities

Horvitz and Thompson (1952) as well as Yates and Grundy 

(1953) have developed a couple of estimators that could handle 

the problem of calculating standard errors on a subset of plots 

with static expansion factors. It would be necessary to attach 

the inclusion probability and the joint inclusion probability for 

a plot of each stratum to the plot record. 

The Horvitz-Thompson estimator for variance is:

	 (7)

The Yates-Grundy estimator is:

	 (8)

where: 

π
I
 = the inclusion probability for plot I. 

π
i,j
 = the joint inclusion probability for plots i and j. 

y
i
 = the measured value on plot k (expanded acres, volume, 

biomass, etc.).		

Cochran (1977) observes that:

	

	 (9)

and 

	 (10)

The fact that the inclusion probabilities and the joint inclusion 

probabilities do not sum to 1 is difficult to grasp at first, but 

in the example, if there are n’ pixels or neighborhoods of dots 

in the population, and n of them are sampled, the inclusion 

probability will on average be equal to n / n’. 

To estimate inclusion and joint inclusion probabilities, some 

assumptions have to be made. It is simplest to treat the plot list 

as a random selection from the list of pixels. Thus, a plot is un-

derstood to be no larger than a pixel, and pixels are assumed to 

be independent. In reality, adjacent Landsat Thematic Mapper 

pixels are not independent; a subplot is about one-fifth the size 

of such a pixel. 

Under these assumptions, inclusion probability for plot i in 

stratum h is:

	 (11)

where h(i) is a function assigning plot i to stratum h.

Joint inclusion probability for plot i in stratum h and plot j in a 

different stratum, k, is:

	 (12)

For i and j in different strata, r will typically equal 0 (because 

no plot has been removed from the second stratum), and for i 

and j in the same stratum, r will typically equal 1. The simplest 

assumption for a model without replacement is that t = 0 for 

plots i and j in different strata, and t = 1 for plots i and j in the 

same stratum. This assumption produces the largest estimate 

of variance for Horvitz-Thompson and Yates-Grundy. This 

estimate can be improved on, however. There are 27 phase 1 
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dots per phase 2 cell, and it is known to which strata the dots 

belong. Thus, t can equal the number of phase 1 dots belonging 

to the same stratum as plot j. 

Ozone Grid

Another use of the Horvitz-Thompson estimator would involve 

analysis of the current ozone data. The Horvitz-Thompson 

estimator is:

	 (13)

For the 2002 field season, ozone symptoms were collected on 

an entirely different grid (Smith et al. 2001). The four strata 

were as follows:

Stratum 0: 1 ozone plot per 5,862,400 acres (one plot per 256/7 

historic phase 3 cells).

Stratum 1: 1 ozone plot per 1,465,600 acres (one plot per 64/7 

historic P3 cells).

Stratum 2: 1 ozone plot per 1,139,911 acres (one plot per 64/9 

historic P3 cells). 

Stratum 3: 1 ozone plot per 641,200 acres (one plot per 4 

historic P3 cells). 

Expansions and contractions of the grid are easy to do if the 

factors are of the form T = h2 + hk + k2; frequently used factors 

are T = 3 (h = 1, k = 1), 4 (h = 2, k = 0), and 7 (h = 2, k = 1). 

There are 27 phase 2 plots per historic P3 cell. The current 

ratio is 16.0:1 in some States and 16.2:1 in others. (McCollum 

and Cochran 2005). 

Stratum 0 included all areas that were < 7.5 percent forest, plus 

all areas that were > 90 percent pinyon-juniper, a species not 

sensitive to ozone. Stratum 1 included all areas of low-ozone 

risk. Stratum 2 included areas of moderate ozone risk. Stratum 

3 included all areas of high-ozone risk.

With such a sample design, it is inappropriate to report results 

based on a raw plot count. A weighted average is far more 

appropriate. Stevens (1997) called a sample design similar 

to this one a multidensity, randomized-tesselation, stratified 

design. Inclusion probabilities could be calculated by dividing 

the number of ozone plots in each risk stratum by the number 

of phase 1 photointerpretation dots that fall in that stratum. 

If tabulating the number of phase 1 dots in each ozone risk 

stratum is impractical, then an alternative could be tabulating 

the number of phase 2 plots in each ozone risk stratum. If there 

is no difference between strata in terms of actual ozone risk and 

it is proper to use raw plot count for the ozone grid, then the 

sample design does not capture areas of ozone risk.  

Conclusions

First, a retrieval system ought to be able to incorporate Horvitz-

Thompson or Yates-Grundy variance estimators easily, although 

it is not clear that an ordinary user could construct either estima-

tor. Other variance estimators may also be constructed on the fly. 

Second, the author recommends against abandoning expansion 

factors, and in favor of keeping static expansion factors. 

Separate expansion factors will be required for inventory and 

remeasurement, and the old inventory plus the remeasurement 

will not equal the new inventory. Expansion factors should be 

based on the entire cycle. To get an unbiased estimate from 

one panel or one subcycle of data, the author points out that 

remeasurement data should be available, and it could be noted 

what plots have been dropped since the last cycle. 

Third, the author recommends that census water be enumerated 

in the manner set forth in this paper. 

Last, the author recommends that the ozone data be analyzed by 

stratum.
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New Methods for Sampling Sparse 
Populations

Anna Ringvall1

Abstract.—To improve surveys of sparse objects, 

methods that use auxiliary information have been 

suggested. Guided transect sampling uses prior 

information, e.g., from aerial photographs, for the 

layout of survey strips. Instead of being laid out 

straight, the strips will wind between potentially 

more interesting areas. 3P sampling (probability 

proportional to prediction) uses information not 

available prior to the survey (e.g., the quality of 

downed logs), for selection of substrates for species 

inventories. Then, the surveyor’s judgments of the 

substrates’ suitability for the species of interest are 

used as the base for selection. Initial studies have 

shown that these methods have a potential to improve 

the efficiency of surveys of sparse populations.

Introduction

Biodiversity-oriented surveys often need to survey objects 

that from, a sampling perspective, are sparse or rare, which is 

problematic because precision of estimates generally will be 

low unless large areas are covered. In traditional forest surveys, 

oriented towards variables of interest for timber production, 

systematically distributed plots have turned out to be a cost-

efficient method. When sampling sparse objects, however, the 

walking time is a proportionally large part of the cost for the 

survey. In that case, plot-based methods tend to be inefficient 

because only a small area is covered by the sample and a 

relatively long time is spent traveling between plots. With a 

transect-based method such as a strip survey, a larger area is 

covered for the same walking distance, which should be more 

cost-efficient (Ståhl and Lämås 1998).

Due to the problems of sampling sparse objects, probability 

sampling methods are sometimes abandoned for purposive 

sampling. In these cases, satellite images, aerial photos, or 

different types of maps together with knowledge about species’ 

preferences are used to select areas to survey. In the surveyed 

areas, surveyors use their knowledge of species’ habitat and 

substrate preferences to search for the species of interest. 

Such use of auxiliary information is also ����������������������  useful in probability 

sampling�����������������������������������������������������          , both in the design and in the estimation phase, to 

improve the precision of estimates (e.g., Thompson 1992).

This article presents an approach for sampling sparse objects in 

which the same type of information and knowledge that is used 

in purposive surveys is utilized but in a probability sampling 

context. The approach has two steps, which can be used together 

or independent of each other. In the first step, information from 

satellite images or aerial photos is used to improve the design 

of a strip survey. In the second step, the surveyor’s knowledge 

of species’ substrate preferences is used for a more efficient 

subsampling of substrates for species inventories. Step one is a 

new method called guided transect sampling (Ståhl et al. 2000) 

and step two is an existing method, 3P sampling (probability 

proportional to prediction), but with a new application 

(Ringvall and Kruys 2005). The idea behind the approach is to 

use probability sampling methods to replicate a skilled surveyor 

purposively seeking for the species of interest. 

Guided Transect Sampling

In the first step, information that can be obtained prior to 

the survey is used. For example information obtained from 

satellite images or aerial photos can be available and used at 

different scales. For example, if information is available at 

a stand scale it can be used to stratify stands and sample the 

1 Assistant Professor, Swedish University of Agricultural Sciences, Department of Forest Resource Management and Geomatics, S-901 83 Umeå, Sweden. E-mail: 
Anna.Ringvall@resgeom.slu.se.
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more interesting strata more frequently. If the information is 

available at a pixel level, it can be used in a plot-based design 

(at least theoretically) for stratification of pixels. For sparse 

objects, however, it is probably most efficient to use all time 

in the forest to actually survey, which means using a transect-

based method. Guided transect sampling (GTS) is one way of 

using auxiliary information with a high spatial resolution in the 

design of transect-based surveys. 

 An overview of the method is given in figure 1. Before the 

survey, the whole area is divided into a grid cell system with 

cells of some certain size. For each cell, a covariate value is 

obtained with help of remote sensing. The covariate is some 

variable that is related to the object of interest. In the first stage, 

wide strips are selected in the area to be surveyed, for example, 

with simple random sampling. Inside each selected wide strip 

a transect is selected across the strip by successively selecting 

one grid cell in each column. The selection of this survey line 

can be made in different ways, but the general idea is that it is 

in some way based on the covariate values in each grid cell. 

Some straightforward alternatives will later be described. 

A strip survey is then conducted along the selected line. It 

should be a continuous survey but it is so far approximated by 

a survey of the entire grid cells selected. Instead of being laid 

out straight, the strip will wind between the potentially more 

interesting areas. 

The total of the quantity of interest in each selected first stage 

strip can be estimated with a Horvitz-Thompson estimator as

Where:

n
i
 = the number of sampled grid cells in first stage strip i.

y
ij
 = the value of the variable of interest in grid cell j, first stage 

strip i.

π
ij
 = the inclusion probability of this grid cell. 

The inclusion probabilities depend on how the second stage 

selection of the survey strip is carried out. The covariate 

information can be further used for estimation purposes by 

using a generalized ratio estimator

Figure 1.—An overview of guided transect sampling. Prior 
to the survey, the area of interest is partitioned into a grid 
cell system (top left). For each grid cell a covariate value 
is assessed (top right). In the first stage, wide strips are 
randomly selected (bottom right), and in the second stage, 
survey strips are selected within the selected first stage trips 
by successively selecting one grid cell in each column based 
on the covariate data. 
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where X
i
 is the total of covariate values in first stage strip i 

and iŶ and iX̂  are the Horvitz-Thompson estimator of the 

total of the variable of interest and of the covariate variable, 

respectively. How estimates are made for the whole area of 

study depends on how first stage strips are selected. For more 

details about estimation, variances, and derivation of inclusion 

probabilities see Ståhl et al. (2000).

Selecting the transect within the ��������������������������������    selected first stage strips can 

be done in different ways���������������������������������������       . This selection is referred to as the 

strategy for guidance since it can be seen as it is guided by 

the covariate information. Two straightforward alternatives for 

the strategy of guidance are shown in figure 2. With case 1, 

transitions are made to one of the neighboring cells in the next 

grid cell column. The selection of the grid cell to enter is made 

with probability proportional to the covariate values in the 

neighboring cells in the next column. The inclusion probability 

for a particular grid cell will depend both on the covariate value 

in the grid cell and its neighboring cells in the same column 

but also on the inclusion probabilities in the neighboring grid 

cells in the previous column so when calculating inclusion 

probabilities, recursive calculation will be needed. This strategy 

for guidance is rather short-sighted because at each step only 

the covariate information in the next column is used. Instead 

case 2 might be a better use of the covariate information. In 

this case, many transects are first simulated with transitions 

between grid cells made as in case 1; i.e., with probability 

proportional to the covariate values in the neighboring cells. 

For each simulated transect the covariate values in all grid 

cells passed are summed giving a sum Q for each transect. One 

whole transect is then selected with probability proportional 

to the sum of covariate, the Q-value. The inclusion probability 

for a particular grid cell will then be the sum of the Q-values 

for all transects that pass that particular grid cell divided by 

the sum of the Q-values for all transects simulated. With this 

strategy, transects that passes many interesting cells will have 

a higher probability of being selected. Case 1 in this article is 

equal to case 1 in Ståhl et al. (2000). Case 2 in this article is 

similar to case 3 in Ståhl et al. (2000), but with the difference 

that the probability of transition to a neighboring grid cell is 

proportional to the covariate value in the grid cell. Case 3 in 

Ståhl et al. (2000) is an equal probability of transition to all 

neighboring cells in the next column.

Evaluation

The two described cases for the strategy of guidance were 

evaluated in simulated forest types. Although simulated they 

were created to resemble a real sampling situation. The forest 

types were created to resemble conifer forest with spots of 

deciduous trees and the object of interest considered to be 

some red-listed species connected to deciduous trees. GTS 

was compared with a standard strip survey with an equal area 

sampled with both methods. Comparisons were made in terms 

of standard errors of estimates. For details about the simulated 

forests and how comparisons were made, see Ståhl et al. 2000. 

The results of the comparison are shown in figure 3 for the case 

in which ratio estimators were applied, both in GTS and in the 

strip survey. The width of the first stage strips in GTS was five 

grid cells. When the object of interest is rather common, the 

methods perform equally well, but with a decreasing abundance 

Figure 2.—Two alternatives for the selection of survey strips 
in the second stage. With case 1, transitions between grid cells 
are made with probability proportional to the covariate values in 
the neighboring cells in the next grid-cells column. With case 2, 
one whole transect is selected with probability proportional to 
its Q-value, the sum of covariate values in all cells passed by 
the transect. 
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of the object of interest GTS is an improvement over a standard 

strip survey. The two cases considered were equivalent, so case 2 

did not imply a better use of the available information as had 

been suggested.

Unrestricted GTS

With the strategies for the second stage guidance presented 

above, only one cell in each column is selected, which can be a 

restriction because interesting areas can only partly be covered. 

As an alternative, unrestricted GTS has newly been suggested 

(Ringvall et al. [in press]). With this variant of GTS, the first 

stage strips are skipped and transects are selected directly 

through the whole area (fig. 4). 

With unrestricted GTS, a large amount of transects are first 

simulated according to certain restrictions, such as how many 

cells that must be passed and how transitions between cells are 

made. Besides giving a higher probability to cells with a higher 

covariate value, a higher probability can be given to continue in 

the same direction to avoid too many changes of direction. For 

each simulated transect, the values of covariate in cells passed 

are summed, the Q-value, and finally one transect is selected 

with probability proportional to this Q-value (case 2). Hence, 

there is a higher probability of selecting a transect that passes a 

lot of interesting areas.

In the first evaluation of the performance of unrestricted GTS 

in simulated forest types, however, unrestricted GTS was only 

a rather limited improvement in comparison with the earlier 

suggested two-stage design (Ringvall and Ståhl 2007). 

3P Subsampling

In the second step of the suggested approach, information 

that can only be obtained when at the sampling location (e.g., 

information about the quality of downed logs) is utilized. 

Whether a plot or strip survey, a species survey on all included 

substrates can be time consuming. Some sort of subsampling 

procedure might then be needed. In a purposive survey of 

specific species, the surveyors use their knowledge of species 

Figure 3.—Comparison of the performance of two cases of 
guided transect sampling and a strip survey in six forest types. 
Ratio estimators were used both in guided transect sampling 
and in the strip survey. Forest types are ordered with a 
decreasing abundance to the right. 

Figure 4.—Example of a selected survey strip with unrestricted 
guided transect sampling, with which the first stage strips are 
skipped and transects are simulated directly through the whole 
area of interest.
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and substrate preferences to search for the species where they 

are likely to be found. In a probability sampling framework,   

3P sampling has been suggested as a way to use this knowledge 

for a more efficient subsampling of substrates (Ringvall and 

Kruys 2005). In the original setup, the selection of sample 

trees is based on a quick measurement of the volume (e.g., 

Husch et al. 2003). In this context, the selection for sample 

trees is based on the surveyor’s judgment of the probability for 

finding the species of interest on a given substrate on a scale 

0–1. The probability that a substrate is selected for species 

survey is then proportional to this judge. The judge could also 

be for the substrates quality for a group of species surveyed on 

a scale 0–1. The result is that more time will be spent on the 

potentially more interesting substrates although all substrates 

have a probability of being selected.

Evaluation

The potential of using 3P sampling in this context was 

tested in a survey of needle lichens growing on the bark 

of old and coarse oak trees (Ringvall and Kruys 2005). To 

see the difference between different judges, three surveyors 

participated in the study. During the survey the probability 

of finding the species Cyphelium inquinans (Sm.) Trevis was 

judged by the surveyors. 3P subsampling was compared with 

a simple random subsampling in terms of standard errors of 

estimates. Comparisons were made both for estimates of the 

number of occurrences of the species Cyphelium inquinans 

(one occurrence was one tree with presence of the species) 

and for the number of occurrences of a group of nine species 

surveyed. The later case was a test for the ability of the 

judgment of the probability of finding a specific species to 

serve as a judgment for the substrate’s suitability for a group 

of species. In one area, 3P sampling was a large improvement, 

while the improvement was more modest in the other (table 1). 

In the first area, a clear difference existed between the “good” 

and the “bad” trees. In the other area, it was more difficult to 

distinguish the good substrates. For details about the study and 

further results see Ringvall and Kruys (2005).

Conclusions

In this article, an approach for improving the efficiency of 

surveys of sparse objects by using the same type of information 

and knowledge used in purposive surveys has been presented. 

The evaluations of the methods in the approach have shown 

that they are promising. The evaluations made so far, however, 

are rather limited and mainly based on simulated forest types. 

Before the methods can be recommended and used in real 

applications, further evaluations are needed. Further, although 

the methods imply a considerable improvement there is still 

a risk that, with a reasonable sampling effort, the precision of 

estimate will be too poor. 

Both practical and theoretical problems still need to be solved 

or considered. A theoretical problem is, for example, variance 

estimation in unrestricted GTS. Another problem is the 

availability of auxiliary information. For GTS to be useful, the 

auxiliary information much be easily available and at a low 

cost. k-Nearest Neighbor estimates providing for larger areas 

are a good example of such information. ���������������������   Also�����������������    in these cases, 

however, the precision of estimates of sparse objects tends to be 

very low. For example, standard errors of estimates of volume 

of deciduous trees can sometimes be as high as more than 100 

percent (e.g., Mäklelä and Pekkarinen 2001). The suggested 

methods are based on so called unequal probability sampling, 

Table 1.—The standard errors of a 3P subsampling with a ratio estimator given in percent of the standard errors of a simple 
random subsamplinga, on an average for three surveyors, and, within parentheses, the range of their results. 

Variable
Area 1

(%)
Area 2

(%)

No. of occurrences of Cyphelium inquinans 46 (38–50) 84 (66–99)

No. of occurrences of nine surveyed lichens 58 (56–63) 88 (79–96)

a (SE of 3P sampling/SE of simple random sampling)*100; values below 100 indicates that 3P sampling performed better than simple random 
sampling. Results are for a subsampling fraction of 0.5.
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and the risk of using such methods is well-known in sampling 

theory (e.g., Thompson 1992). If units have been assigned very 

low probability of inclusion while they actually have a high 

value of the variable of interest, the precision of estimates will 

be very poor. One way of preventing this is to not allow units to 

have too low probability of inclusion.

In contrast to these problems, the fast development in the 

Geographic Information System and field computer area and 

emerging techniques and improvements in the remote sensing 

area are promising for a possible implementation of these 

methods. The approach was described as it resembles the way a 

skilled surveyor walks through the forest, which might appeal 

to people who otherwise would prefer purposive methods. 
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Location Uncertainty and the Tri-Areal 
Design

Francis A. Roesch1

Abstract.—The U.S. Department of Agriculture 

Forest Service Forest Inventory and Analysis 

Program (FIA) uses a field plot design that 

incorporates multiple sample selection mechanisms. 

Not all of the five FIA units currently use the entire 

suite of available sample selection mechanisms. 

These sampling selection mechanisms could be 

described in a number of ways with respect to the 

optional mechanism known as the annular plot. The 

annular plot is an auxiliary sampling mechanism 

intended for sampling rare attributes of interest. One 

explanation is that the subplot, which samples all 

trees greater than or equal to 5 in diameter at breast 

height (d.b.h.), is surrounded by an annular plot, 

concentric with the subplot for the estimation of rare 

but regionally important events. To date this selection 

mechanism has only been used to increase the sample 

of larger trees above a predefined d.b.h., known as 

a breakpoint diameter. Alternatively, the selection 

mechanisms could be viewed as disjoint concentric 

circles. The subplot in this latter view would sample 

all trees that are greater than or equal to 5 in and less 

than the breakpoint diameter. The larger circle can 

be referred to as a macroplot and it serves as the sole 

sampling mechanism for trees greater than or equal 

to the breakpoint diameter. This article focuses on the 

importance of clarity between these two descriptions 

and the estimation bias that can result from a 

misunderstanding of the distinctions between them, 

especially with respect to change estimates.

Introduction

The U.S. Department of Agriculture Forest Service Forest 

Inventory and Analysis (FIA) program uses a field plot design 

that is fairly represented by figure 1. The sampling selection 

mechanisms represented by the plot design could be described 

in a number of ways with respect to the annular plot portion 

of the design. The annular plot is an auxiliary sampling 

mechanism for rare attributes of interest. One explanation is 

that the subplot samples all tree greater than or equal to 5 in 

diameter at breast height (d.b.h.) and is enclosed by a circle of 

radius 24 ft. The annular plot is concentric with the subplot, 

beginning at a distance of 24 ft from subplot center and ending 

at 58.9 ft from subplot center, forming an annulus around the 

subplot. FIA allows this selection mechanism for rare, but 

regionally important, events. Until now, the annular plot has 

only been used to increase the sample of larger trees with a 

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Southern Research Station, Asheville, NC.

Figure 1.—The Forest Inventory and Analysis plot design, 
showing the annular plot view, in which the sample areas are 
disjoint, and the macroplot view, which is analogous to discrete 
horizontal point sampling. In the later view, the sample areas 
overlap.
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predefined d.b.h., known as a breakpoint diameter. The annular 

plot view treats the microplot and subplot as the primary 

sample and the annular plot, consisting of an annulus around 

the subplot, as an auxiliary sample. 

Alternatively, the selection mechanisms could be viewed as 

disjoint overlapping circles. The subplot in this case would 

sample all trees that are greater than or equal to 5 in and less 

than the breakpoint diameter. The larger circle can be referred 

to as a macroplot, and it constitutes the entire sample of trees 

greater than or equal to the breakpoint diameter. For simplicity 

we’ll call the former description the annular plot view and 

the latter the macroplot view. This article focuses on the 

importance of clarity between these two descriptions and the 

estimation bias that can result from a misunderstanding of the 

distinctions between them.

Bechtold and Patterson (2005) define both the bi-areal and 

the tri-areal plot designs. In relation to the development found 

there, the annular plot view would hold that the bi-areal design 

is common throughout the United States and that some regions 

may choose to include an auxiliary sample collected on annuli 

surrounding each of the subplots. The macroplot view differs 

in that each region applies either a bi-areal or a tri-areal design, 

which coincide exactly only by the definition of the sample 

selected from the microplot. That is, the subplot samples a 

different population partition in the tri-areal design than in 

the bi-areal design, with the macroplot existing in only the 

tri-areal design. The estimators for a single point in time given 

in Bechtold and Patterson (2005) can be derived through either 

view. A practical advantage of the annular plot view is that if 

the auxiliary sample is not conducted in some regions, then 

the entire population is still sampled by an identical primary 

sample.

Enter the Temporal Dimension

An important class of variables exists for which a partitioning 

of the macroplot into the inner macroplot (equal to the area 

of the subplot) and the outer macroplot (equal to the area of 

the annular plot) is necessary. That class of variables consists 

of those whose ranges are to be partitioned by the various 

selection mechanisms, and whose measures can change over 

time. D.b.h. is possibly the most important member of this class 

of variables. 

It is easy to show that from an instantaneous point of view, 

the macroplot view and the annular plot view both define a 

probability sample. FIA, however, measures a temporally 

continuous rather than an instantaneous population. From 

this perspective, as stated previously, we see that when the 

macroplot is used to sample large trees (say those with 

d.b.h. ≥ 25 in), it constitutes three distinct samples of that 

population. These three samples are (1) a sample (K
1
) of trees 

that have been measured since they attained the 1-in class, 

selected with probability k
1
 (proportional to the area of the 

microplot); (2) a sample (K
2
) of trees that have been measured 

since they attained the 5-in class, selected with probability 

k
2
 (proportional to the area of the subplot minus the area of 

the microplot); and (3) a sample (K
3
) of trees that have been 

measured since they attained the breakpoint diameter, selected 

with probability k
3
 (proportional to the area of the annular 

plot). Ignoring or not explicitly acknowledging the distinction 

between these samples has the potential to bias estimators of 

survivor value growth by two of the three primary compatible 

estimation systems published for remeasured horizontal point 

samples, due to the resulting location uncertainty. I’ll follow 

others and refer to these three systems as Beers-Miller (Beers 

and Miller 1964), Van Deusen (Van Deusen et al. 1986), and 

Roesch (Roesch 1988, 1990; Roesch et al. 1989, 1991, 1993) 

estimators. The problem arises implicitly rather than explicitly 

in the first two systems, because, if data are collected and stored 

under the macroplot view, and there is a non-zero quality-

control tolerance for horizontal distance from plot center, there 

would be no way of determining for certain whether a large 

tree recorded as physically located near the edge of the subplot 

and previously unrecorded was previously missed, previously 

smaller than 5 in d.b.h., or actually on the annular plot. This 

knowledge is necessary for strict application of the Beers-

Miller and Van Deusen survivor growth estimators because 

they both require use of time 1 inclusion probabilities. The 

Roesch survivor growth estimator relies on time 2 inclusion 

probabilities and therefore would sidestep the problem.
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The survivor sample (“s”) consists of sample trees measured 

and above a merchantability limit on consecutive occasions, 

while the new sample (“n”) consists of trees that were above 

the merchantability limit on both occasions, but eligible to be 

sampled for the first time on the second occasion. For clarity 

we’ll define the estimators:

Beers-Miller:		

Van Deusen:		

Roesch:		

where:

S
1
 =	 estimate of time 1 value of the “s” sample using time 1 

inclusion probabilities.

S
1
’ =	 estimate of time 1 value of the “s” sample using time 2 

inclusion probabilities.

S
2
 =	 estimate of time 2 value of the “s” sample using time 2 

inclusion probabilities.

S
2
’ =	 estimate of time 2 value of the “s” sample using time 1 

inclusion probabilities.

n
2
 =	 estimate of time 2 value of the “n” sample using time 2 

inclusion probabilities.

n
1
’ =	 model estimate of time 1 value of the “n” sample with 

time 2 inclusion probabilities.

As a point-sampling estimator of survivor growth, ˆ
RS was 

shown in the citations above through simulations to dominate 

the other estimators in terms of squared error loss. It does, 

however, require predictions of time 1 values that are not 

required of the other two estimators in the absence of location 

error. In the absence of location error, all three estimators are 

unbiased estimators for survivor growth (Beers and Miller 

1964, Van Deusen et al. 1986, Roesch 1988). We will show 

below that location error contributes to a bias in the Beers-

Miller estimator and the Van Deusen estimator (but not in the 

Roesch estimator) through two mechanisms:

(1)	  Rounding error.

(2)	  Measurement error allowed by the measurement quality 

objective (MQO).

These errors are depicted in figure 2. Rounding error 

contributes positive bias to the inclusion probability, while 

measurement error allowed by the MQO contributes bias and 

variance. The bias from measurement error is due simply to a 

symmetric linear error being applied to a point on the radius of 

a circle.

No Measurement Error

Assume that the field crew is not required to determine of the 

location of trees with respect to K
1
, K

2
, and K

3
, leaving sample 

assignment to be inferred from the distance from subplot or 

microplot center, which is rounded and recorded to the nearest 

1/t foot, where t is a positive integer. This use of rounded 

distances will result in sample trees that appear to be in the 

“s” sample that are actually in the “n” sample, thus creating 

“apparently missed” trees. 

For now, also assume that our concern is with merchantable 

value growth of above-threshold trees. In this case we can 

ignore the microplot and concentrate on the effects of the 

tolerance definitions at the border between the subplot and the 

annular plot. Distance measures are continuous variables that 

are recorded in discrete units. A recording of distance d would 

result from rounding of the true distance D in the interval 

 feet. The difference between D and d is 

known as rounding error. Assume trees are randomly distributed 

over the land area. Then D is randomly distributed within the 

Figure 2.—Two potential errors associated with measurement 
along a radius: rounding to a discrete result and the tolerance 
allowed by the MQOs.

MQO = measurement quality objective.

Rounding Error

MQO Tolerance
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annulus bounded on the inside by  and on the outside 

by . This annulus (A) has an area of:

	 (1)

D is distributed within the annulus as:

p (D) ~ ( )( ) 1 / 2p D Dπ:
.

Example

Set d = 24 ft. and t = 10, then the annulus has an area of 

This would appear small relative to the nominal area of the 

subplot, which is   The area outside of 

the subplot boundary that would appear inside of the boundary 

after rounding lies between 24 and 24.05 ft and is equal to:

( ) [ ]
2

1 24 12 2 2 2 2
24 24 ft ft 2.4 0.0025 ft 2.4025 ft22 4t t t

π π π π+ − = + = + =
             

resulting in an unrecognized selection bias due to rounding 

error of  percent.

In a strict application of the Beers-Miller estimator  in 

the presence of rounding error, we might assume the apparently 

missed trees (truly members of the “n” sample) were actually 

missed (i.e., apparently members of the “s” sample), and subtract 

an estimate of time 1 value from their time 2 value, expand that 

by the inverse of the subplot area, and add it to the estimate 

of survivor growth, creating a positive bias ( r
Bb ), because the 

value growth of these trees should not have been included in the 

survivor growth estimate. Therefore the expected value of the 

Beers-Miller estimator in the presence of rounding error is:

( ) ( ) ( ) ( ) ( )2 1 2 1
ˆ ˆ 1.00417

r r r

B B B BE S E S b E s s E b s s′ ′= + = − + ≈ −

because the expected value of the bias due to rounding error is 

( ) ( )2 10.00417
r

BE b s s′≈ − .

Conversely, in a strict application of the Van Deusen estimator

, we would mistakenly subtract an estimate 

of time 1 value expanded by the inverse of the subplot from the 

time 2 value estimate expanded by the inverse of the macroplot. 

The result will often be a relatively large negative number. 

Because the apparently-missed tree was actually in the “n” 

sample, no time 1 value should have been subtracted, therefore 

a negative bias results. The expected value of the Van Deusen 

estimator in the presence of rounding error in this case is: 

because the expected value of the bias is:

To use the Roesch estimator ( ), in the 

presence of rounding error, the apparently missed trees would 

be treated in the same manner as the trees in the “n” sample 

even though they appear to belong in the “s” sample. That is, 

we would predict the time 1 value and subtract it from the time 

2 value, and then multiply the result by the inverse of the time 2 

inclusion probability, so the selection bias would not affect the 

survivor growth estimator.

In the Presence of Measurement Error

Suppose that the following quality control standards for 

horizontal distance are enforced:

Tolerance: 

Microplot: ± 1t  ft

Subplot: ± 2t  ft from 0-22.9 feet; ± 3t  foot for > 23 feet 

Macroplot: ± 4t  ft

To simplify the discussion, we’ll also assume that the tolerance 

is to be met 100 percent of the time and our concern is with 

merchantable value growth. Therefore, we can ignore the 

microplot and concentrate on the effects of the tolerance 

[ ] 2 2
2.4 0.0025 ft 2.4025 ftπ π+ =
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definitions at the border between the subplot and the annular 

plot. A recording of distance d could result from a true distance 

D in the interval  feet. Assume 

trees are randomly distributed over the land area. 

This annulus (A) has an area of:

		

	  (2)

Again D is distributed within the annulus:

p (D) ~                 .

The additional error in (2), above rounding error in (1), is 

within-tolerance measurement error.

If we assume that the horizontal distance error follows any 

symmetric distribution, more trees will mistakenly appear to 

be inside of the division line than outside of the division line. 

Therefore, to calculate the allowed measurement error selection 

bias, note that we must first calculate the ratio of annular area 

external to the division line to the annular area internal to the 

division line:

This ratio R is then applied to the selection area to determine 

the bias:

Conclusions

We have noted that even a very accurate horizontal distance 

measurement will contribute an unnecessary bias of about 0.5 

percent, because a distance of 24.05 ft would be recorded as 

24 ft. The last two rows of table 1, where t
4
 equals 3 and 6 ft, 

clearly show that horizontal distance tolerances that would be 

quite reasonable if one merely intended to be able to relocate 

very large trees would contribute to substantial bias if that same 

measure were later used to determine sample membership with 

respect to K
2
 and K

3
. Conversely, a field determination of “in 

subplot” or “in annular plot” will have an equal variance to the 

Table 1.—The selection bias (b) at 24 ft and its effect on the 
expected value of the bias in the Beers-Miller estimator when 
horizontal distance is rounded to 0.1 ft at each MQO tolerance (t

4 
).

Selection bias effect on the Beers-Miller estimator for FIA

t4 b(d=24,t=10,t4 ) E (bB
rt)

0.1 0.00002 0.00419(s’2-s1)

0.5 0.00042 0.00459(s’2-s1)

1.0 0.00173 0.00590(s’2-s1)

3.0 0.01555 0.01973(s’2-s1)

6.0 0.06220 0.06637(s’2-s1)

( )

2 22 2 1 1( , , ) 1 21 14
42 2 2 42 2

, 1, 4 2

R d t t
d d t d d d t

t t t t

b d t t
d

π π

π

 
                                        

+
− − − − + − − + −

−

−

=

              

2
4 41 ( , , )4 4
2 2

2

t t
R d t t dt

t

d

 
 

  
    

  

− + −

=

Table 1 shows the selection bias (b) at 24 ft and its effect on the 

expected value of the bias in the Beers-Miller estimator when 

horizontal distance, rounded to 0.1 ft at five MQO tolerances of 

t
4
 equal to 0.1, .05, 1.0, 3.0, and 6.0 ft, is used to determine tree 

location. 

( )( ) 1 / 2p D Dπ:

MQO = measurement quality objective.
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use of horizontal distance for this purpose, but should not be 

biased. This observation is of concern because the assignment 

of the trees to areas (subplot or annulus) might not be recorded 

under the macroplot view of the sample design but is critical for 

Beers-Miller and Van Deusen growth estimates. In the former 

(chosen for use by FIA), growth below the threshold diameter 

for trees currently above the threshold diameter is measured 

exclusively on the subplot, making it necessary to distinguish 

between the area of the subplot and that of the annular plot. The 

alternative design-based Van Deusen estimator is more efficient 

because it uses the growth information from the annular 

plot that is ignored by the Beers-Miller estimator. Under the 

conditions investigated, it would suffer from an expected bias 

equal in magnitude to that of the Beers-Miller estimator, but 

of opposite sign. The model-based Roesch estimator would 

not incur bias due to location error, given an unbiased time 

1 estimator for trees in the “n” sample. These predictions 

contribute a variance component to the Roesch estimator that 

is not present in the other estimators. That additional variance 

component will usually be smaller than the variance reduction 

achieved by the use of auxiliary information.

Although the subplot-microplot analogy to the annular plot-

subplot issue is not trivial in all cases, we haven’t discussed 

it here because it has less effect on value growth estimation 

because most value equations have a result of 0 below 5 in 

d.b.h., and those that do not have a very low result. 

The Beers-Miller and Van Deusen estimators are inherently 

unbiased estimators. Therefore, the bias discussed in this paper 

would be an unnecessary artifact of collecting and storing data 

under the macroplot view if caution were not taken to prevent 

the confounding of the K
1
, K

2
, and K

3
 samples. 
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The Poor Man’s Geographic Information 
System: Plot Expansion Factors

Paul C. Van Deusen1

Abstract.—Plot expansion factors can serve as a 

crude Geographic Information System for users of 

Forest Inventory and Analysis (FIA) data. Each FIA 

plot has an associated expansion factor that is often 

interpreted as the number of forested acres that the 

plot represents. The derivation of expansion factors is 

discussed and it is shown that the mapped plot design 

requires a different expansion factor than the old 

periodic plot design.

Introduction

Plot expansion factors are important to most users of U.S. 

Department of Agriculture Forest Service Forest Inventory and 

Analysis (FIA) data. Expansion factors are typically viewed 

as the number of forested acres that a plot represents. In fact, 

they are constructed to ensure that the sum of all expansion 

factors for plots in a particular county is equal to FIA’s current 

estimate of the forested acres in the county. Therefore, there 

is some basis in reality for this view of expansion factors. 

A potential downside to the standard view is the implication 

that somehow the plot with the largest expansion factor is 

most important, i.e., it should be given the most weight in 

an analysis. This is not generally true because all plots were 

initially selected with equal probability. Plots may receive 

different weights due to a poststratification process that is 

performed in some regions, but this has nothing to do with 

initial selection probability. The purpose here is to show how 

expansion factors are derived and to point out the implications 

of using them in several common analyses.

Expansion Factor Computation

The rule of thumb that leads to the formula for plot expansion 

factors is that expansion factors within a county must sum to 

the forest area in the county. This leads immediately to

	 (1)

where A
c
(i) and n

c
(i) are the forest area and number of plots 

in county c, which contains plot i. The same rule applies for 

poststratification with the additional proviso that the sum of 

expansion factors in stratum h and county c must sum to the 

stratum area in the county. Poststratified weights are then 

computed as

	 (2)

where A
c,h

(i) and n
c,h

(i) are the stratum h forest area and number 

of plots in county c which contains plot i.

Expansion factors computed with equation (1) should not be 

used in an analysis of the data to give varying weights to the 

plots. They have no relationship to the plot selection probability 

and do not indicate the importance of the plot in any way. This 

is not necessarily true for the poststratified weights (equation 2). 

Some FIA regions use these weights to compute stratified means 

and variances (Bechtold and Patterson 2005, Van Deusen 2005). 

Computations With Poststratified Weights

Plot expansion factors can provide a clever mechanism for 

users to compute stratified means and variances using standard 

formulas for weighted means. The generic formula for the 

stratified sample mean (Thompson 2002, Cochran 1977) is

	 (3a)

where:
N = total population size.
N

h
 = the number of population elements in stratum h.

1 Principal Research Scientist, National Council for Air and Stream Improvement, Inc., 600 Suffolk Street, Fifth Floor, Lowell, MA 01854. E-mail: PVanDeusen@
ncasi.org.
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yh  = the estimated mean for stratum h. 

An unbiased estimator of the stratified variance is

	 (3b)

Equations (3a) and (3b) are formulated in terms of total 

population size (N) for the area of interest, but N is unknown in 

most forest inventory settings. This equation can be converted 

to a useful form for FIA data by ignoring the finite population 

correction factor and replacing Ns with As to get

	 (4a)

and		

	 (4b)

where the variance estimate for plots in the same stratum is

	 (4c)

Equations (4a) and (4b) are based on the assumption that the 

stratum areas are known. In practice, these values might come 

from counting pixels on a classified raster image that covers 

the region of interest. For the purposes here, assume that the 

variance of area estimates is small enough to ignore. A further 

complication is that equation (4c) must be recomputed for 

each county and stratum and there may not always be sufficient 

observations in all county strata.

It is easy to show (Van Deusen 2005) that equations (4a) and 

(4b) are implemented for unmapped plots with the following 

weighted mean and variance equations:

	 (5a)

and

	 (5b)

where       is estimated from equation (4c). The county and 

stratum of the plots can be ignored for equation (5a) because 

this data is incorporated into the expansion factors. The 

variance (      ) in equation (5b), however, changes for each 

county and stratum. This variance could be problematic 

if sample size in a particular stratum is small. Regardless, 

expansion factors are a very useful component of the FIA 

database (FIADB) for the old periodic data. 

It can be shown (Van Deusen 2005) that when working with 

mapped plots the weights must be changed to
                                              where a

i
 is the proportion of plot 

i that falls into the condition of interest. This means that the 

weights must be modified for each mapped condition. This 

eliminates the simplicity of working with poststratified data in 

the FIADB and only a very committed user should attempt to 

use the weights to compute stratified estimates with mapped 

plot data. The weighted estimation formulas (5a) and (5b) also 

change for mapped plots (Van Deusen 2005).

Conclusions

Plot expansion factors provide users with information on for-

ested area by county. In this sense, they serve the same purpose 

as a Geographic Information System. Users need to understand, 

however, that these weights were derived to ensure that the 

expansion factors for all plots in a county add to the forest area 

in the county. Trying to extract additional information by using 

expansion factors as weights in a statistical analysis of the plot 

data is not justified. Some FIA regions incorporate poststratifi-

cation information into plot expansion factors that enable one 

to extract the forest area by strata for a county. This information 

is difficult to properly use for mapped plot data and most users 

of the FIADB should probably ignore it.
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Improving Coarse Woody Debris 
Measurements: A Taper-Based Technique

Christopher W. Woodall1 and James A. Westfall2

Abstract.—Coarse woody debris (CWD) are dead 

and down trees of a certain minimum size that are an 

important forest ecosystem component (e.g., wild-

life habitat, carbon stocks, and fuels). Accurately 

measuring the dimensions of CWD is important for 

ensuring the quality of CWD estimates and hence 

for accurately assessing forest ecosystem attributes. 

To improve the quality of CWD diameter and length 

measurements, two quality control methods were 

used to estimate field-applicable taper thresholds to 

reduce measurement errors. Results indicated that 

both the taper outlier and taper model methods may 

be used to set thresholds for detection of egregious 

CWD dimension measurement errors. The taper 

outlier method determines the thresholds using three 

times the interquartile range of taper and a new metric 

of relative size. The taper model approach predicts 

large-end diameter based on small-end diameter and 

length. Both methods may be broadly applied to 

CWD pieces, regardless of decay, size, and species. 

Overall, incorporation of CWD taper attributes into 

field data recorders may allow “on the fly” assess-

ment of possible measurement errors in the field.

National Inventory of Coarse Woody Debris

As defined by the U.S. Department of Agriculture Forest 

Service’s Forest Inventory and Analysis (FIA) program, coarse 

woody debris (CWD) are down logs with a transect diameter ≥ 

3 in and a length ≥ 3 ft (Woodall and Williams 2005). CWD are 

sampled during the third phase of FIA’s multiscale inventory 

sampling design (USDA Forest Service 2004, Woodall and 

Williams 2005). CWD are sampled on transects radiating from 

each FIA subplot center. Each subplot has three transects 24 ft 

in length. Information collected for every CWD piece inter-

sected by the transects are transect diameter, length, small-end 

diameter, large-end diameter, decay class, species, and presence 

of cavities. Transect diameter is the diameter of a down woody 

piece at the point of intersection with a sampling transect. 

Decay class is a subjective determination of the amount of 

decay present in an individual log. Decay class 1 is the least 

decayed (freshly fallen log), while decay class 5 is an extremely 

decayed log (cubicle rot pile). The species of each fallen log 

is identified through determination of species-specific bark, 

branching, bud, and wood composition attributes (excluding 

decay class 5 CWD pieces). 

To date, the FIA program provides the only nationwide, 

pseudosystematic sampling of CWD resources. Forest fire, 

carbon, and wildlife sciences all depend on quality CWD 

data to provide information for numerous investigations and 

assessments (Woodall and Williams 2005). Therefore, ensuring 

the quality of CWD measurements is critical for ensuring the 

national credibility of FIA’s down woody materials inventory.

CWD Measurement Errors

Accurate measurement of the dimensions of CWD pieces is 

essential for quality estimates of CWD weight/volume. Because 

CWD are measured in tandem with other field measurements, 

field crews sometimes inadvertently confuse the differing 

measurement precisions required of standing live and down 

dead trees. The diameters of standing live trees are measured 

to the nearest tenth of an inch, while the diameters of down 

dead trees are measured to the nearest inch. Additionally, field 

crews may record an additional digit for heights (e.g., turning 

1 Research Forester, U.S. Department of Agriculture (USDA), Forest Service, North Central Research Station, St. Paul, MN 55108. Phone: 651–649–5141. 
Fax: 651–649–5140. E-mail: cwoodall@fs.fed.us.
2 Research Forester, USDA Forest Service, Northeastern Research Station, Newtown Square, PA 19073–3294. 
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18-ft CWD pieces into 180-ft oddities). Although this error is 

very rare, its occurrence can lead to extreme errors in plot-level 

estimates of CWD attributes. Using hypothetical data for one 

subplot (table 1), the differences in uncorrected and corrected 

CWD piece measurements can result in plot-level estimates 

nearly 50 times larger than the corrected estimate. Overall, 

rather obvious measurement errors on a relatively small 

proportion of FIA inventory plots may be skewing population 

estimates across the United States when left uncorrected.

Using the taper of an individual CWD piece as one metric of its 

spatial dimensions is attractive for application for CWD data 

quality control. First, taper incorporates all three dimensional 

measurements of CWD pieces, so if even one of the dimension 

measurements is in error it will be reflected in taper. Second, 

a well-established base of knowledge on the taper of standing 

trees may be used to develop new CWD taper equations 

(Martin 1981). Finally, a single metric of taper may be easily 

programmed into PDRs, allowing for rapid field application. 

Therefore, the objectives of this study are (1) to estimate mean 

taper of CWD pieces by classes of transect diameter, species, 

and decay class, (2) to determine a methodology for using 

CWD taper outliers to identify CWD measurement errors, 

(3) to use a taper model (small diameter = f[large diameter, 

length]) to identify CWD measurement errors, and (4) to 

recommend a methodology for reducing CWD measurement 

errors based on study results.

Data/Analysis

The study data set consisted of individual CWD piece 

measurements sampled by the FIA program across the Nation 

from 2001 to 2004 (fig. 1). The information for every CWD 

piece included transect diameter, small-end diameter, large-end 

diameter, length, decay class, and species. The study data set 

had 20,018 observations and 190 individual tree species.

Figure 1.—States (filled in) in which CWD measurements were 
taken for taper study.

Table 1.—Coarse woody debris uncorrected and corrected data 
for one hypothetical FIA subplot. 

Type
CWD
piece

Small-end 
diameter (in)

Large-end 
diameter (in)

Length (ft)

  Uncorrected 1 3 40 10

2 4 6 140

3 30 70 34

  Corrected 1 3 4 10

2 4 6 14

3 3 7 34

A Taper Solution?

The most desirable methodology for reducing field 

measurement errors is to prevent them at the source: field 

inventory crews. Crews enter data into Portable Data Recorders 

(PDRs) that often check for ranges in tree diameter at breast 

height, species, and length, among numerous other variables. 

If a simple metric of a CWD piece’s dimensions could be used 

to ascertain acceptable CWD measurements, then this metric 

could be rapidly implemented into field crew PDRs. Taper is 

one metric of tree spatial dimensions that might be applied to 

CWD pieces. Taper is defined as change in a tree’s diameter 

over a defined length (inches/foot). For this study, the taper of 

CWD pieces will be defined as

Taper
cwd

=(D
L
-D

S
)/L	 (1)

where: 

D
L
 = the large-end diameter (in).

D
S
 = the small-end diameter (in.).

L = the total length (ft).

CWD = coarse woody debris; FIA = Forest Inventory and Analysis.

CWD = coarse woody debris.
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Mean taper and standard errors were determined for CWD 

pieces by classes of transect diameter, decay class, and species. 

CWD taper outliers were determined by estimating the 

Interquartile Range (IQR) of CWD tapers and multiplying the 

IQR times three. Observations not within ± three times IQR of 

the median value were considered outliers. To investigate the 

effect of abnormally long CWD pieces, a metric of Relative 

Size (RS) was estimated by dividing length by large-end 

diameter. RS outliers were examined using the same outlier 

methodology (IQR times three) as with taper. Finally, a taper 

model was used to examine taper:

	 (2)

	 (3)

where:

E(.) = the statistical expectation.

D
s
 = the small-end diameter.

L = the total length.

D
l 
= the large-end diameter.

DC
i
 = decay class indicator variables.

β
i
 = parameters to be estimated.

    = the random errors term.

Taper Outliers

Mean tapers (in/ft) increased with increasing transect diameter 

and with increasing states of CWD decay, but varied with 

no discernible pattern by species group (table 2). When we 

examine the distribution of taper by transect diameter class, 

taper appears to be constrained by the small-end diameter of 

CWD pieces (fig. 2). Most observations had taper below 1 in/ft; 

however, there were numerous outliers with tapers approaching 

12 in/ft. CWD pieces with a small-end diameter of 30 in had 

an exceedingly large number of taper outliers. Because field 

crews measure standing trees to the nearest tenth of an inch 

and CWD pieces to the nearest inch, 3 in is the most common 

small-end diameter measurement for CWD pieces and is 

probably accidentally entered as 30 in into field PDRs. Based 

on interpretation of means, taper appears to be most dependent 

on the transect diameter of the CWD piece and thus should be 

an integral variable for taper outlier identification. 

The percentile distribution of CWD tapers was determined and 

used to define an interval beyond which a taper observation 

would be considered an outlier +/- three times IQR (table 3). 

The median taper for all observations was 0.14 in/ft with 99 

percent of taper observations below 1.33 in/ft. The IQR was 

estimated to be 0.155 in/ft, creating an acceptable taper interval 

of 0.000 to 0.6073. Unfortunately, this interval did not include 

pieces that taper too little such as a CWD piece with a small-

end diameter of 5 in, a large-end diameter of 7 in, and a total 

Table 2.—Mean and associated standard errors for CWD taper 
by transect diameter class, decay class, and species groups.

Variables Classes
Mean taper 

(in/ft)
Standard error

Transect 
diameter 
(inches)

3.0–7.9 0.170 0.002

8.0–12.9 0.236 0.004

13.0–17.9 0.311 0.016

18.0 + 0.760 0.045

Decay class 1 0.197 0.011

2 0.191 0.004

3 0.205 0.004

4 0.224 0.005

Species 
groups

Spruce/fir/cedar 0.187 0.005

Pines 0.217 0.005

Maples 0.211 0.010

Birches 0.171 0.010

Hickories 0.242 0.049

Oaks 0.256 0.010

Figure 2.—Distribution of taper by CWD small-end diameter.

Small-end diameter (inches)
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CWD = coarse woody debris.
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length of 150 ft. Another CWD dimensional metric, RS, may be 

used to help indicate suspect CWD dimensional measurements. 

Trees with relatively long lengths should have corresponding 

increases in large-end diameters. For instance, a length of 80 ft 

and a large-end diameter of 4 in appear questionable because 

most trees do not have 80 ft of length between a 4-in large-

end diameter and the top of the tree (or end of branch). Thus, 

large RS values would indicate a suspect relationship between 

large-end diameters and lengths. The percentile distributions 

of RS for all study observations were determined, once again 

using three times IQR to define an outlier interval (table 3). 

The median RS was 2.359 ft/in with 99 percent of observations 

below 9.333. The IQR for RS was estimated to be 2.267 ft/in, 

creating an acceptable RS interval of 0 to 9.159 ft/in. Based on 

the study dataset, the taper and RS intervals “flagged” 5 percent 

of observations as being possible outliers.

Model-Based Approach

The taper model (eq. 2) had an r-squared of 0.69 with a root 

mean squared error of 2.07. The linear model was fitted using 

CWD decay classes as indicator variables due to differences in 

taper attributable to the decay of CWD pieces. In an operational 

sense, the taper model predicts small-end diameter given a set 

of field measurements (large-end diameter, length, and decay 

class). Also, the model error variance (eq. 3) is based on large-

end diameter and length with the standard error as the square 

root of the variance. The small-end diameter prediction +/- two 

times the standard error allows for creation of an interval over 

which the small-end diameter measurement is likely to be valid. 

The model parameters for equation (2) were estimated to be          

β
0
 =1.5928, β

1
 = -0.05229, β

2
 = 0.5323, β

3
 = -0.1578, β

4
 = -0.1128, 

and β
5
 = -0.0702. Estimates of parameters for equation (3) were 

δ
1
 = 0.000913 and δ

2 
= 2.4191. Given these parameter estimates 

and the defined interval (+/- two times standard error), the taper 

model would have excluded 7.1 percent of the study data set 

observations. 

Field Recommendations

Currently, range checks are used with numerous field variables 

(e.g., permissible codes for tree species) to maintain the quality 

of field measurements. Differences in precision required for 

standing tree and down, dead tree measurements exacerbate 

measurement errors in the field. These errors may be reduced 

by implementing simple data checks programmed into PDRs. 

The taper outlier and model methods both possess attributes 

attractive for field implementation. Both approaches can be 

easily programmed into PDRs. In addition, they both may be 

used to “flag” a small number of field measurements (between 

5 and 7 percent of field measurements as demonstrated in this 

study). There is a balance between the quality of measurements 

and the efficiency of the sample protocols used to acquire CWD 

measurements. The key is to pick a method that increases the 

quality of measurements while not impacting measurement 

efficiency or complexity. Given these prerequisites, the outlier 

method may be deemed superior to the model method given 

its simplicity and ability to easily adjust the interval (3, 3.5, or 

4 times IQR). Despite its complexity, however, the adjustable 

variable interval of the model method (1.5, 2, or 2.5 times 

the standard error) might be advantageous in certain field 

applications. Whether the taper or model method is selected 

for field implementation, both offer efficient alternatives for 

increasing the quality of CWD dimensional measurements and 

both should be tried in field situations.

Table 3.—Order statistics for CWD taper and relative size. 

Percentiles Taper Relative size

100 (Maximum) 12.333 56.000

99 1.333 9.333

95 0.513 6.000

90 0.375 5.000

75 (Quartile 3) 0.238 3.667

50 (Median) 0.143 2.359

25 (Quartile 1) 0.083 1.400

10 0.000 0.833

5 0.000 0.600

1 0.000 0.300

0 (Minimum) 0.000 0.023

IQR (Q3-Q1) 0.155 2.267

CWD = coarse woody debris.
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Evaluating Ecoregion-Based Height-
Diameter Relationships of Five Economically 
Important Appalachian Hardwood Species 
in West Virginia

John R. Brooks1 and Harry V. Wiant, Jr.2

Abstract.—Five economically important Appa-

lachian hardwood species were selected from five 

ecoregions in West Virginia. A nonlinear extra sum 

of squares procedure was employed to test whether 

the height-diameter relationships, based on measure-

ments from the 2000 inventory from West Virginia, 

were significantly different at the ecoregion level. For 

all species examined, the null hypothesis was rejected 

indicating that at least one of the ecoregion specific 

parameters was not equal to zero. In addition, 56 per-

cent of the paired ecoregion tests indicated significant 

height differences. Across all species and ecoregion 

combinations, average height error ranged from –3.6 

to 7.6 ft for the statewide model.

Introduction

Height-diameter relationships are the driving force behind 

most tree volume, form, and weight relations. In a recent 

study by Jiang et al. (2004), yellow poplar (Liriodendron 

tulipifera L.) tree form and cubic foot volume were found to 

be statistically different between two major ecological regions 

in West Virginia. To further investigate whether the underlying 

height-diameter relationship also varied by ecoregion, the 2000 

Forest Inventory and Analysis (FIA) data for West Virginia 

(Griffith and Widmann 2003) was used for evaluation. Five 

economically important Appalachian hardwood species were 

selected for study and included black cherry (Prunus serotina 

Ehrh.) (BC), red oak (Quercus rubra L.) (RO), red maple 

(Acer rubrum L.) (RM), sugar maple (Acer saccharum Marsh.) 

(SM), and yellow poplar (YP). Species specific measured total 

tree heights and diameters were used to fit the well-known 

Chapman-Richards growth model to determine whether the 

height-diameter relationship was statistically different by 

ecoregion. This technique has been employed for both jack pine 

(Pinus banksiana Lamb.) and black spruce (Picea mariana 

(Mill.) in Ontario (Peng et al. 2004, Zhang et al. 2002). Results 

from the jack pine study indicated that provincial models 

resulted in an average bias of 1 to 10 percent when applied to 

each ecoregion in Ontario (Zhang et al. 2002). The objectives 

of this study are to evaluate whether ecoregion-based diameter-

height relations are statistically justified, to test for differences 

between ecoregions for the five hardwood species selected, and 

to evaluate the percent bias associated when a statewide model 

was compared to individual ecoregion models.

Methods

West Virginia was divided into five major ecoregions based 

on a combination of current subregions for Region III and IV 

(Bailey et al. 1994) and the land-based regions identified by 

the U.S. Soil Conservation Serivce (USDA Soil Conservation 

Service 1981). 

This allocation was made on a county-by-county basis based on 

the county designation of the FIA plot location and the major 

subregion (by area) represented by each county. The following 

five major subregions employed are depicted in figure 1:

CALG: Central Allegheny Plateau.

CUPM: Cumberland Plateau and Mountains.

EALG: Eastern Allegheny Plateau and Mountains.

1 Associate Professor Forest Biometrics, West Virginia University, 322 Percival Hall, Morgantown, WV 26506–6125. E-mail: jrbrooks@mail.wvu.edu. 
2 Joseph E. Ibberson Chair, Forest Resources Mgt., Penn State University, School of Forest Resources, 212 Ferguson Building, University Park, PA 16802. 
E-mail: hvw3@psu.edu.
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NARV: Northern Appalachian Ridges and Valleys.

SARV: Southern Appalachian Ridges and Valleys.

The 2000 FIA data for West Virginia (Griffith and Widmann 

2003) was used as the base data. A subset of the individual tree 

data was selected based on trees with measured diameters and 

total heights and the species identified previously. The ecore-

gion classification was added based on the county designation 

of the FIA plot location. The resultant dataset included 1,379 

BC, 2,083 RO, 5,725 RM, 3,826 SM, and 3,714 YP.

The Chapman-Richards growth function was selected to model 

the nonlinear relationship between tree diameter and height due 

to its biologically interpretable coefficients (Pienaar and Turn-

bull 1973) and its documented flexibility for modeling height-

diameter relationships in forest tree species (Fang and Bailey 

1998; Huang et al. 1992; Pienaar and Shiver 1980, 1984). The 

Chapman-Richard function is a three parameter model of the 

form

{ }( )4.5 1 *H Exp D
γ

a β= + − − 	 (1)

where:

H = total tree height (ft).

D = diameter at breast height (d.b.h.) (in).

a, b, r = asymptote, scale and shape parameters.

To test for differences between the overall model (state) and 

each ecoregion, a nonlinear extra sum of squares procedure 

was employed (Neter et al. 1996). This procedure involves the 

use of dummy variables for the ecoregions in the full model 

form, while the reduced model form is represented by a three-

parameter model representing the height-diameter relationship 

across all ecoregions (statewide). The full model form uses the 

following indicator variable (r
i
) approach to represent the five 

ecoregions:

If ecoregion = EALG, r
1
 = 1, all other r

i 
= 0.

If ecoregion = CUPM, r
2
 = 1, all other r

i
 = 0.

If ecoregion = NARV, r
3
 = 1, all other r

i
 = 0.

If ecoregion = SARV, r
4
 = 1, all other r

i
 = 0.

If ecoregion = CALG, all r
i 
= 0.

The form of the full model for each species tested is

	 (2)

where:

	 H = total height for a specific species (ft).

	 r
i
 = indicator variable for region r

i
, i = 1.4.

	 D = tree d.b.h. for a specific species (in).

	 a, b, r = parameters to be estimated from the data.

The full model form has 15 parameters and an error sum of 

squares (SSE
F
) with N-15 degrees of freedom (df

F
), where 

N is the total number of trees for each species-specific test. 

The form of the reduced model is that of equation (1) and has 

three parameters and an error sum of squares (SSE
R
) with N-3 

degrees of freedom (df
R
). The full model test has the following 

null and alternative hypotheses for each of the five species:

H
0
: 

                
1 2 3 4 1 2 3 4 1 2 3 4

0a a a a β β β β γ γ γ γ= = = = = = = = = = = =

and

H
a
: at least one parameter is not equal to 0.

Rejecting the null hypothesis would indicate that the height-

diameter relationship is not the same for all ecoregions. Failure 

to reject the null hypothesis would indicate that the reduced 

model form (equation [1]) could be applied to all ecoregions. 

These tests were conducted independently for each of the five 

species investigated.

Figure 1.—Identification of the five ecological regions within 
West Virginia used to evaluate height-diameter relationships.

Central Allegheny Plateau and Mountains
Eastern Allegheny Plateau and Mountains
Cumberland Plateau and Mountains
Northern Appalachian Ridge and Valley
Northern Appalachian Ridge and Valley
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In addition, similar test were conducted for each of the 10 

pairwise ecoregion comparisons for each of the five hardwood 

species investigated. The same indicator variable approach was 

applied to the specific ecoregion test where the full model was 

of the form

	 (3)

and the reduced model form is that of equation (1). The full 

model form has six parameters to be estimated and an error 

sum of squares (SSE
F
) with N-6 degrees of freedom (df

F
). The 

reduced model is the same as previously identified. For each 

species tested, the full model test has the following null and 

alternative hypotheses:

0 1 1 1
: 0H a β γ= = =  

and

H
a
: at least one parameter is not equal to 0.

Rejecting the null hypothesis would indicate that the height-

diameter relationship is not the same for both ecoregions 

tested. Failure to reject the null hypothesis would indicate that 

the reduced model form (equation [1]) could be applied to 

both ecoregions for that species. These tests were conducted 

independently for each of the five species investigated.

The significance of the full and reduced model comparisons are 

based on an F-test of the form

	

It is possible that significant differences can be identified 

but these differences may not be of practical significance. To 

evaluate the magnitude of the differences between using the 

ecoregion specific and statewide models, the mean height 

prediction error ( ), standard deviation of the prediction error 

(S
e
), and the prediction bias as a percent of mean actual height 

(Bias %) were calculated and defined as follows:

	 (4)

	 (5)

	 (6)

where:

	 m = number of trees for each species.

	 iH  = measured height of tree i.

	 iĤ  = predicted height of tree i.

	 H  = mean of observed tree heights.

Two comparisons were made. One compared the ecoregion 

specific prediction equation and actual total height and 

one compared the statewide model and the actual height 

measurement.

Results

An initial test was conducted to determine whether the height-

diameter relationship for each of five economically important 

Appalachian hardwood species could be modeled with a single 

three-parameter Chapman-Richards growth model. For all 

species tested, the null hypothesis was rejected, indicating that 

at least one of the ecoregion parameters was not equal to zero. 

P-values for this test ranged from < 0.0001 (SM, RM, and RO) 

to 0.0054 (BC) (table 1). Results of the initial statewide test 

led to further comparisons of individual ecoregion models. The 

same full and reduced model approach was employed to test 

differences between the 10 combinations of the five ecoregions 

identified (fig. 1). Of the 10 comparisons, the null hypothesis 

was rejected in 3 comparisons for BC and 7 comparisons for 

RO and RM when using a single comparison alpha value of 

0.05 (table 2). Rejection of the null hypothesis indicates that the 

height-diameter relationship between the two ecoregions tested 

are not the same.

Existence of statistically significant differences between the 

ecoregions tested does not dictate that these differences are of 

practical significance. For each of the five species examined, 

the average error ( ), standard deviation of the prediction error 

(S
e
), and percent bias ( )%Bias  between the actual total height 

and predicted total height based on the statewide based height 

model was examined (table 3). Across all species and ecoregion 

combinations, average height error ranged from –3.6 to 7.6 feet 

( ) ( ){ } ( )1 1

1 1 1 1
4.5 1

r
H r Exp r D

γ γ
a a β β

+
= + + − − +  
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for the statewide model. The average percent bias ranged from 

–5.3 to 12.1 percent. Average percent bias for the ecoregion-

based models ranged from –0.06 to 0.04 percent.

To visually examine the differences in height curves by 

ecological region, height curves based on each ecoregion for 

YP as well as the statewide model are displayed in figure 2. For 

YP, very little difference can be ascertained from trees less than 

20-inches d.b.h. For other species (SM, RO and RM), visual 

separation can be discerned by the 15-inch class. For BC, this 

separation occurs by the 10-inch class.

Table 1.—Results of the full and reduced model comparisons indicating whether a single height-diameter model could be used 
across all five ecoregions examined.

Species test
Full model Reduced model

N F-value P-value
dfF SSEF dfR SSER

BC 1,364 227,591 1,376 232,308 1,379 2.3558 0.0054

RO 2,068 305,301 2,080 352,005 2,083 26.3630 < 0.0001

RM 5,710 705,396 5,722 714,415 5,725 6.0839 < 0.0001

SM 3,811 500,292 3,823 512,491 3,826 7.7439 < 0.0001

YP 3,699 609,529 3,711 615,036 3,714 2.7850 0.0009

BC = black cherry; RM = red maple; RO = red oak; SM = sugar maple; YP = yellow poplar.

Figure 2.—YP total height prediction based on statewide and 
ecoregion-based models.

Table 2.—P-values associated with the full and reduced model tests for height-diameter relations between all combinations for the 
five ecoregions in West Virginia.

Ecoregion test
Species

BC RO RM SM YP

CUPM vs CALG 0.2158 0.0816 0.0832 0.6316 0.6467

EALG vs CALG 0.0562 0.0991 0.4161 0.0013 0.0455

NARV vs CALG 0.1460 < 0.0001 < 0.0001 < 0.0001 0.0025

SARV vs CALG 0.1031 < 0.0001 < 0.0001 0.6064 0.2071

EALG vs CUPM 0.2745 0.6139 0.0093 0.0668 0.0718

NARV vs CUPM 0.0136 < 0.0001 0.0553 < 0.0001 0.0007

SARV vs CUPM 0.1992 0.0109 0.0231 0.3407 0.0360

NARV vs EALG 0.0129 < 0.0001 < 0.0001 < 0.0001 0.0018

SARV vs EALG 0.1477 0.0003 < 0.0001 0.1108 0.1050

NARV vs SARV 0.0071 < 0.0001 0.0002 < 0.0001 0.0038

BC = black cherry; CALG = Central Allegheny Plateau; CUPM = Cumberland Plateau and Mountains; EALG = Eastern Allegheny Plateau and 
Mountains; NARV = Northern Appalachian Ridges and Valleys; RM = red maple; RO = red oak; SARV = Southern Appalachian Ridges and Valleys; 
SM = sugar maple; YP = yellow poplar.

CALG = Central Allegheny Plateau; CUPM = Cumberland Plateau 
and Mountains; EALG = Eastern Allegheny Plateau and Mountains; 
NARV = Northern Appalachian Ridges and Valleys; SARV = Southern 
Appalachian Ridges and Valleys; YP = yellow poplar.
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Discussion

The analysis indicates that statistical differences in the height-

diameter relationship exist between the ecoregions identified 

in the current study. These differences, however, are only in 

the magnitude of 4 to 8 feet. Whether these differences are of 

practical significance depends on the practitioner’s willingness 

to accept this magnitude of error. Use of ecoregion-based 

height models reduces the height prediction error and the data 

suggest that this difference is significant in at least half of the 

ecoregion-based tests for the hardwood species investigated. 

The effect of these height-diameter differences on individual 

tree volume differences is currently unknown.

Table 3.—Prediction error and model fit statistics for five species in each of the five ecological regions within West Virginia.

CALG BC 471 57.7558 57.7566 12.58 0.00 58.5705 0.8147 12.62 1.39

CUPM BC 48 62.1875 62.1860 11.20 0.00 59.7648 – 2.4227 11.87 – 4.05

EALG BC 450 64.3356 64.2974 13.50 – 0.06 63.2847 – 1.0509 13.58 – 1.66

NARV BC 138 54.2174 54.2069 12.17 – 0.02 57.4757 3.2583 12.62 5.67

SARV BC 272 60.7353 60.7195 12.91 – 0.03 59.8830 – 0.8523 13.07 – 1.42

CALG RM 1,718 57.4499 57.4373 10.97 – 0.02 57.1181 – 0.3319 10.98 – 0.58

CUPM RM 743 54.5303 54.5242 11.05 – 0.01 55.1978 0.6675 11.09 1.21

EALG RM 1,853 59.6487 59.6419 11.48 – 0.01 59.2049 – 0.4438 11.53 – 0.75

NARV RM 525 53.2762 53.2913 10.65 0.03 55.3875 2.1113 10.94 3.81

SARV RM 886 55.9029 55.9107 10.86 0.01 55.5765 – 0.3264 11.01 – 0.59

CALG RO 476 71.6555 71.6588 12.12 0.00 68.0394 – 3.6160 12.78 – 5.31

CUPM RO 280 69.2571 69.2694 12.02 0.02 67.4228 – 1.8343 12.16 – 2.72

EALG RO 436 73.0803 73.0723 13.12 – 0.01 70.8743 – 2.2060 13.38 – 3.11

NARV RO 398 55.3719 55.3753 12.46 0.01 62.9613 7.5895 15.53 12.05

SARV RO 493 64.3753 64.3729 10.93 0.00 64.7406 0.3654 11.00 0.56

CALG SM 1,498 56.1195 56.1106 11.11 – 0.02 55.9268 – 0.1927 11.12 – 0.34

CUPM SM 410 58.2659 58.2399 12.22 – 0.04 57.4155 – 0.8504 12.26 – 1.48

EALG SM 992 59.2218 59.2340 11.67 0.02 58.2318 – 0.9900 11.79 – 1.70

NARV SM 417 53.7770 53.7723 11.97 – 0.01 57.7511 3.9741 12.80 6.88

SARV SM 509 57.7819 57.8012 10.85 0.03 57.7023 – 0.0796 10.86 – 0.14

CALG YP 1,316 74.5266 74.4997 13.10 – 0.04 74.5036 – 0.0230 13.11 – 0.03

CUPM YP 1,030 71.3990 71.3782 12.41 – 0.03 71.1402 – 0.2588 12.43 – 0.36

EALG YP 1,027 76.0448 76.0245 13.15 – 0.03 75.8475 – 0.1973 13.20 – 0.26

NARV YP 93 60.9462 60.9714 11.12 0.04 65.3363 4.3900 12.29 6.72

SARV YP 248 71.5282 71.5141 12.14 – 0.02 71.7536 0.2254 12.31 0.31

Ecoregion specific model Statewide model

Ecoregion Species N H Ĥ Se Bias% Ĥ Mean error Se Bias%

BC = black cherry; CALG = Central Allegheny Plateau; CUPM = Cumberland Plateau and Mountains; EALG = Eastern Allegheny Plateau and 
Mountains; NARV = Northern Appalachian Ridges and Valleys; RM = red maple; RO = red oak; SARV = Southern Appalachian Ridges and Valleys; 
SM = sugar maple; YP = yellow poplar.
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Using Forest Inventory and Analysis Data To 
Model Plant-Climate Relationships

Nicholas L. Crookston1, Gerald E. Rehfeldt2, and Marcus 

V. Warwell3

Abstract.—Forest Inventory and Analysis (FIA) 

data from 11 Western conterminous States were 

used to (1) estimate and map the climatic profiles of 

tree species and (2) explore how to include climate 

variables in individual tree growth equations used 

in the Forest Vegetation Simulator (FVS). On the 

first front, we found the FIA data to be useful as 

training data in Breiman’s (2001) Random Forests 

classification and regression tree algorithm to relate 

climate variables to the presence and absence of 

species, thereby defining a species’ contemporary 

climate profile. Predicted bioclimatic maps are 

presented for Douglas fir (Pseudotsuga menziesii) 

and Engelmann spruce (Picea engelmannii). On the 

second front, a preliminary modification of the basal 

area increment equation used in the FVS is presented 

that includes climate drivers. The focus of this work 

is to start the process of building a new growth 

equation suitable for use in FVS so that climate 

can be taken into account when predicting forest 

dynamics. A framework is introduced that integrates 

the climate-driven increment equation with genetic 

response functions that represent the adaptiveness of 

populations to climate change.

Introduction

Climatic factors play a controlling role in shaping tree 

distributions (Langlet 1936, Pearson and Dawson 2003, 

Turesson 1922, Woodward 1987), and it follows that these 

factors are also important in determining growth and mortality 

(Rehfeldt et al. 2003). These facts, coupled with knowledge 

that our climate is changing (Houghton et al. 2001), suggest 

that tree distributions will change, and that the growth and 

mortality rates inherent in forest growth and yield models will 

be questioned. 

How much difference could global warming and associated 

changes in precipitation make in (1) the distribution of trees, 

and (2) individual tree growth over the next 60 to 90 years? 

This time span is well within the expected lifetime of many of 

the trees currently growing in the West and is therefore quite 

relevant to those preparing forest management plans. The Forest 

Vegetation Simulator (FVS) (Crookston and Dixon 2005, Stage 

1973, Wykoff et al. 1982) is a tool used in preparing those 

plans. Modification of this model to account for climate change 

is therefore necessary. 

In this article, Forest Inventory and Analysis (FIA) data from 11 

Western conterminous States are used to (1) develop bioclimatic 

models for the occurrence of Douglas fir (DF) (Pseudotsuga 

menziesii) and Engelmann spruce (ES) (Picea engelmannii) and 

(2) calibrate a modified version of the diameter growth model 

for DF to includes climate variables. The bioclimatic models 

of species occurrence define the species’ contemporary climate 

profile. For contemporary climate, maps of this profile are 

predictions of the current species distribution. 

Adding climate predictors to the growth model in FVS and 

recalibrating it using FIA observations of growth, provides a 

prediction equation that is intuitively appealing but conceptually 

incomplete. FIA measurements of growth capture the growth 

response to climate for trees growing in contemporary climates, 

but not for currently living trees growing in future climates. 

1 Operations Research Analyst, U.S. Department of Agriculture (USDA), Forest Service, Rocky Mountain Research Station, 1221 South Main, Moscow, ID 83843. 
E-mail: ncrookston@fs.fed.us.
2 Research Plant Geneticist (retired), USDA Forest Service, Rocky Mountain Research Station, 1221 South Main, Moscow, ID 83843. E-mail: grehfeldt@fs.fed.us.
3 Plant Geneticist, USDA Forest Service, Rocky Mountain Research Station, 1221 South Main, Moscow, ID 83843. E-mail: mwarwell@fs.fed.us.
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Current observations reflect the current states of (1) genetic 

adaptation and (2) competitive relationships at play at the 

time of measurement. Therefore, relationships based only on 

those measurements cannot be used to represent the growth 

response to climate change. A conceptual framework for 

further modifying this growth model to represent tree responses 

to climate change is presented. This conceptual framework 

recognizes that trees genetically adapt to their climates and 

that trees from different genotypes will respond differently to 

climate change. 

Methods

Climate Data

The Rehfeldt (2005) climate model consists of thin plate 

spline surfaces from which a set of climate indicators were 

predicted. The model is calibrated for all locations within the 

conterminous Western United States and southwestern Canada, 

from longitudes between 102 °W and 125 °W and latitudes 

between 31 °N and 51 °N. The predictions are based on weather 

observations normalized for 1961 to 1990, the period defined 

by meteorologists for calculating climatic normals. We believe 

that these normals suitably overlap the time period of the FIA 

plot data collected between 1980 and 2004.

Actual plot latitude, longitude, and elevation data were used, 

rather than the publicly available fuzzed and swapped locations, 

as input into the climate model. Table 1 lists the variables 

that were computed for each location; these variables, plus 20 

interaction terms, form the list of climate predictors that were 

used in the analysis.

Tree Data

Tree data were compiled primarily from three FIA sources. 

For Idaho, Montana, Wyoming, Nevada, Utah, Colorado, 

New Mexico, and Arizona, the data were retrieved from the 

FIA Web site (retrieved March 2005 from http://ncrs2.fs.fed.

us/4801/fiadb) and merged into a single database. A key feature 

of these data is that every FIA plot location is represented in the 

data, not just those in forested zones. For Washington, Oregon, 

and California, version 1.4-1 of the Integrated Database (IDB) 

(Waddell and Hiserote 2004) was combined with newer Na-

tional Information Management System (NIMS) data provided 

directly by the Pacific Northwest FIA unit. Combining the 

data was necessary because the IDB contains plots only from 

forested zones while the NIMS data has plot records for both 

forested and non-forested zones. The FIA plot design is gener-

ally a cluster of four subplots with a total size of about 0.07 

ha for most tree measurements (Bechtold and Patterson 2005). 

Note that the IDB contains data collected by Federal agencies 

other than FIA and the sampling designs are not the same. The 

data in the IDB normalizes the data structure of these disparate 

inventories, providing a convenient source for analysis.

Presence and Absence Modeling

Breiman’s (2001) Random Forests classification and regression 

tree algorithm was used to model the presence and absence of 

an individual species. Details of these methods are presented by 

Rehfeldt et al. (2006). 

Briefly, Random Forests built a set of 150 to 200 independent 

classification and regression trees. For each tree, a bootstrap 

Table 1.—Climate variables and their acronyms used as 
independent variables in regression analyses.

Name	                                 Definition

mat mean annual temperature

mtcm mean temperature in the coldest month

mmin minimum temperature in the coldest month

mtwm mean temperature in the warmest month

mmax maximum temperature in the warmest month

map mean annual precipitation

gsp growing season precipitation, April through September

tdiff summer-winter temperature differential, mtwm-mtcm

dd5 degree-days > 5 °C

dd0 degree-days < 0 °C

mindd0 minimum degree-days < 0 °C

sday Julian date of the last freezing date of spring

fday Julian date of the first freezing date of autumn

ffp length of the frost-free period

gsdd5 degree-days > 5 °C accumulating within the frost-free 
period

d100 Julian date the sum of degree-days > 5 °C reaches 100

ami annual moisture index, dd5/map

smi summer moisture index, gsdd5/gsp

pratio ratio of summer precipitation to total precipitation, 
gsp/map 
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sample of the observations was drawn. Each case was defined 

by the presence/absence data and the climate variables. The 

bootstrap sample was used to build the tree and observations 

left out of the sample were used to compute the classification 

error. A prediction was made by running a case down each 

regression tree resulting in one classification for the case. The 

class that receives the plurality of votes—a vote is a regression 

tree predicting a specific class—is the predicted class for a case. 

Generally, we ran Random Forests twice. In the first run, all the 

climate variables were included, and in the second run, the 10 

or so most important variables (variable importance is scored 

by Random Forests) from the first run were used to make runs 

with larger numbers of regression trees. The latter analysis was 

then used to predict the presence or absence of the species at 

each 1-km grid cell in the study area.

Several versions of Random Forests are available. The one we 

used is in R (R Development Core Team 2004) and is based on 

the original program written by Leo Breiman and Adele Cutler 

(Liaw and Wiener 2005). 

Basal Area Increment Modeling

To incorporate climate predictors into FVS, there must be a 

relationship between increment and climate variables. Figure 1 

is a scatter diagram of hexagons in which the intensity of black 

is proportional to the number of observations in each hexagon. 

This plot shows (1) the maximum growth for DF occurs at a 

mean annual temperature (mat) of about 10 °C, (2) high growth 

observations are essentially absent at low temperature sites,   

(3) that upper range of observations essentially stops at about 

13 °C, and (4) that the data contains a huge amount of variability. 

Similar plots were studied for other climate variables. Studying 

plots like these suggested that a relationship in the data exists 

between growth and climate, and that relationship should be 

modeled in a way that provides for a maximum growth to occur 

below the maximum value of climate predictors. 

Wykoff’s (1990) basal area increment model is used in FVS. 

The dependent variable, delta-diameter-squared (dds), is 

directly proportional to basal area increment. The model was 

fit to the natural log of dds to address the statistical properties 

of errors and because the log transformation linearized the 

essential relationship between the key variables. In the resulting 

model, dds is a product of tree size, site, and competition. 

Tree dbh is the tree size measure. Competition is measured by 

crown ratio (CR), crown competition factor (CCF) (Krajicek 

et al. 1961), and the amount of basal area in trees larger than 

the subject tree (BAL). Variables that measure site include 

slope, aspect, elevation, geographic location, and habitat type 

(Daubenmire and Daubenmire 1968). 

To incorporate climate predictors, we modified Wykoff’s model 

by replacing habitat type and geographic location with mat and 

mean annual precipitation (map). In addition to replacing these 

two site terms, CCF was replaced by total plot basal area (BA) 

as done by Stage and Wykoff (1998) to simplify calculations, 

and Elev2 was removed because it did not improve the model. A 

squared term mat and map would have provided for a maximum 

growth increment (as the scatter plots indicated would be 

warranted), but those terms also did not statistically improve the 

model. The resulting equation is

		

	 (1)

Figure 1.—Observed Douglas fir diameter increment plotted 
over mat. The intensity of gray is proportional to the number of 
observations inside a hexagon. The maximum growth for this 
species occurs at about 10 °C and there are only incidental 
observations above 13 °C.
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The nonclimate predictors were derived from the FIA data. 

Plot BA and BAL were computed at the FIA subplot level. 

Slope and Aspect were taken for the condition in which the 

tree was growing. A condition is a mapped subdivision of the 

plot that describes homogeneous area. BA was backdated to the 

beginning of the growth measurement period by adding recent 

mortality. No attempt was made to back date plot density for 

recent growth. Tree dbh was backdated by subtracting measured 

increment. Past 10-year increment data was measured using 

increment cores and not based on measures based on successive 

observations of diameter. When more than one measurement 

for a given location was found in the data, only the first 

measurement was used. 

Note that predictors BAL, BA, CR, and dbh are influenced by 

climate, but for this preliminary analysis we did not address this 

issue. Nor did we address two additional statistical issues that 

should be addressed in a final study: (1) the log transformation 

introduces bias when dds is back transformed and (2) the 

sample trees are clustered on plots and therefore the errors are 

partially correlated. Neither of these issues influence the main 

points made below.

Results

Species Distributions

The classification error for DF is 9.4 percent and for ES it is 9.9 

percent. At just under 10 percent, the classification error falls 

into the category of excellent for comparisons of this type (Lan-

dis and Koch 1977). The most important variables (table 1) for DF 

predictions are ami, map, tdiff·map. For ES they are map·mtc, 

dd5/gsp, and ami (in the order specified). These variables mea-

sure major elements of temperature, precipitation, and seasonal 

interactions. Grid locations of 1 km predicted to be within the 

climatic profiles of DF and ES (fig. 2) are presented along with 

Little’s (1971) species distribution maps.

Predicting Diameter Increment

Table 2 contains values for parameters of equation (1) for DF. 

All are highly significant (P<.001, 61,761 observations), and 

have signs and magnitudes that are generally consistent with 

previous work (Stage and Wykoff 1998, Wykoff 1990). The 

model accounts for about 66 percent of the variance in log 

(dds). Attempts to use climate variables other than mat and map 

did not materially improve the model. Note that Elev is a likely 

surrogate for climate but attempts to fit the model without it 

resulted in a poorer model. The modeled response to mat and 

map is illustrated in figure 3.

Figure 2.—The white areas are the predicted distribution 
FIA-style plots that have one or more Douglas fir trees (left), 
or Englemann spruce (right), mapped at a 1-km grid on a 
shaded relief map. The black lines are Little’s (1971) mapped 
distributions. The inset on the left is a small area showing the 
relative resolution of the predictive model versus Little’s map. 
The inset on the right is Sweetgrass Hills, MT, an area that was 
omitted from Little’s range map but correctly predicted to have 
Englemann spruce. 

Table 2.—Regression estimates for equation (1) fit to the 
Douglas fir data.

Parameter
Corresponding 

predictor
Unit Value

b0 Intercept dds is in2 – 4.088

b1 ln(dbh) dbh is in 1.051

b2 dbh2 dbh is in – 0.0003178

b3 BAL/log(dbh+1) BAL in ft2/acre – 0.008130

b4 Slope[cos(Aspect)] % and radians 0.01973

b5 Slope[sin(Aspect)] % and radians – 0.07356

b6 Slope % – 0.0845

b7 Slope2 %2 – 0.4575

b8 Elev ft – 0.00008782

b9 CR % 0.01468

b10 BA ft2/acre 0.0003967

b11 ln(mat+10) °C 0.9160

b12 ln(map) mm 0.2260
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Discussion

Species Distributions

Rehfeldt et al. (2006) explore the results of these analyses in 

detail. They also present results for seven additional species, 

provide predictions for the biotic communities of Brown et al. 

(1998), and make predictions on how predicted global warming 

will cause major shifts in the spatial distribution of contempo-

rary climate profiles.

The Random Forests predictions are, in our view, astonishingly 

good. To the casual observer this raises the question that the 

procedure is overfitting the data. Note that Breiman (2001) 

has proven that the method cannot overfit the data, and we 

found no evidence that the classification error approached 

zero as parameters were added. To the contrary, as superfluous 

predictor variables are added, prediction errors increase. 

Predicting Diameter Increment

The modified diameter increment model (fig. 3) predicts that 

an increase or decrease in temperature or precipitation will 

translate directly into a corresponding increase or decrease 

in growth. On the surface, therefore, it would appear that we 

have achieved our goal of modifying the FVS growth equation 

so that it is sensitive to global warming. The curves, however, 

illustrate the breadth of physiologic plasticity within the 

species, not within individual trees. Individual trees are adapted 

to only a portion of the environmental heterogeneity faced by 

the species. The equation, therefore, is suitable for predicting a 

change in growth given a change in climate only to the extent 

that the individual trees undergoing the climate change are 

adapted to the new climate. The adaptive response of individual 

trees, measured by the response for individual genotypes, 

determines the individual growth response to climate change 

(Langlet 1936; Rehfeldt et al. 1999, 2002, 2003). 

Figure 4 illustrates the response of populations of trees to 

gradients in mat. For geneticists, a population is an artificial 

grouping of trees all of which are adaptively similar and, 

therefore, grow in similar environments. An implication from 

Figure 3.—The effects of temperature and precipitation on 
diameter increment as portrayed by equation (1). The dark 
lines indicate the approximant range of the temperature and 
precipitation measurements coincident with observations of 
Douglas fir growth. 

Figure 4.—Diagrammatic representation of the response of 
populations to mean annual temperature and competitive 
pressures from other populations. The realized niches of each 
population is limited to the locations on the curves that are not 
overlapped. Population D is growing at its optimum mat, which 
also happens to be the optimum for the species as a whole, 
while other populations are growing below their own optimums 
and their individual optimums are below the population 
optimum.
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figure 4 is that if mat increases in a forest currently inhabited 

with trees from population A, a forester will observe an 

increase in growth up to the optimum for population A and then 

observe a decrease in growth at mat levels that are still much 

lower than the optimum for the species as a whole. To capture 

the increase in growth one would expect from a warming 

climate, the trees from population A must be replaced with 

members of a more suitable population.

To incorporate climate variables into FVS, two kinds of 

information must be integrated: (1) thousands of observations 

from the FIA plots represent observations from the realized 

niche (figs. 1 and 3) and (2) results from the genetic 

experiments (as represented by the stylized drawing in figure 4) 

that represent the fundamental niche.

Our suggestion for integrating these model components is 

illustrated in figure 5. At the beginning of simulations, and 

so long as climate change does not occur, the growth for 

individual trees follows equation (1). Growth under climate 

change scenarios is a function of the corresponding solid lines. 

In a simulation, each tree will be represented by a different 

solid line. The parameters for the shape and location of the 

solid line are derived from species-specific relationships 

developed from common garden experiments. For trees 

growing in the extremes of a population, the mean realized 

niche (circles) is much further to the left of the corresponding 

optimum for the population (triangles).

It is reasonable to question why approaches like those of 

Wensel and Turnblom (1998) and Yeh and Wensel (2000) were 

not chosen as the basis for our efforts. These researchers related 

annual deviations from model-based estimates of growth to 

contemporary weather. The models used did not contain climate 

variables. Their work is relevant to the job of accounting for 

short-term deviations around average trends while our approach 

concentrates on accounting for shifts in the averages. Despite 

this difference in temporal resolution, the dearth of data 

available for understanding climate effects on growth justifies 

further work toward capitalizing on both fronts. 

Another question is why we are not proposing using so-called 

process-based models to account for these effects. For example, 

why not use the weather-driven model built by Milner et al. 

(2002)? That group adapted Running and Coughlan’s (1988) 

whole stand physiological model (Forest-BGC) to an individual 

tree, distance independent model for use with FVS. Forest-BGC 

contains empirical components that drive the disaggregation of 

net biomass production to individual trees. The net production 

is nonspecific, assuming that a suitable photosynthetic engine 

exists on the site. The species present on the site, and the 

assumptions that they are appropriately adapted, are exactly 

the same for Forest-BGC as for the Wykoff-style diameter 

increment model. That is, they too fail to account for the 

genetic factor. 

Figure 5.—Diagram shows how the proposed combined model 
should work. The dotted line is the base increment model 
(equation [1] with 800 mm of precipitation, dbh = 30 cm, 80 
percent crown, no basal area in larger trees, flat ground, and 
other predictors set at their sample means), and the circles 
correspond to three example locations along the mat gradient. 
The two arrows illustrate the difference in predicted growth 
using dotted lines model and the solid lines for an increase in 
mat from 5 to 9 °C.
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Conclusions

FIA data proved useful in predicting species distributions, 

and the Random Forests program proved to be a powerful tool 

for this purpose. In addition, these data, coupled with climate 

data, provide a strong basis for building models of diameter 

increment as a function of contemporary climate. These data 

alone, however, do not provide a way to predict increment in 

the face of climate change. Measurements are needed from 

individual trees growing in places where growth has been 

followed through periods of climate change that are about equal 

in magnitude to the magnitude of the future expected change, 

or where members of genetic populations (provenances) 

have been planted in a range of climatic conditions and then 

monitored. In either case, the broad-scale measurements of 

diameter increment supplied by FIA have a place in this work.
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A k-Nearest Neighbor Approach for 
Estimation of Single-Tree Biomass

Lutz Fehrmann1 and Christoph Kleinn2

Abstract.—Allometric biomass models are typically 

site and species specific. They are mostly based 

on a low number of independent variables such as 

diameter at breast height and tree height. Because 

of relatively small datasets, their validity is limited 

to the set of conditions of the study, such as site 

conditions and diameter range. One challenge in the 

context of the current climate change discussion is to 

develop more general approaches for reliable biomass 

estimation. One alternative approach to widely used 

regression modelling are nonparametric techniques.

In this paper we use a k-Nearest Neighbor (k-NN) 

approach to estimate biomass for single trees and 

compare the results with commonly used regression 

models. The unknown target value of a certain tree 

is estimated according to its similarity to sample tree 

data stored in a database.

Introduction

Estimation of forest biomass has gained importance in the 

context of the legally accepted framework of the United             

Nations Framework Convention on Climate Change and the 

Kyoto Protocol. Reliable and general estimation approaches for 

carbon sequestration in forest ecosystems are needed (Brown 

2001, Joosten et al. 2003, Rosenbaum et al. 2004, Wirth et al. 

2003). In the past, the standard methodology in single-tree 

biomass estimation was based on fitting parametric regression 

models with relatively small datasets. Numerous models have 

been built from destructive sampling studies, most of which are 

allometric functions. They allow predicting tree biomass as a 

function of easily observable variables like such as diameter at 

breast height (d.b.h.) and tree height. Typically, these models are 

specific to the tree species and site conditions of the underlying 

particular study. Extrapolation beyond this set of particular con-

ditions is critical.

Different attempts have been made to derive more general 

functions by meta-analyses of the published equations (e.g., 

Jenkins et al. 2003, Zianis and Mencuccini 2004, Chave 2005).              

In many cases such studies have been constrained by the 

absence of primary data and are focused on the reported re-

gression functions only (Montagu et al. 2004). Therefore, one 

major goal of future research in the field of single-tree biomass 

estimation can be seen in the generalization of models based 

on compilation of empirical data from sample trees. Once a 

suitable single-tree database is given, nonparametric modelling 

approaches, such as the k-Nearest Neighbor (k-NN) method, 

might be suitable alternatives to regression modelling. The basic 

difference is that nonparametric models do not require concrete 

queries before they are developed.

Methods

k-NN Technique

The k-NN approach is a nonparametric and instance-based 

machine learning algorithm. It is known as one of the oldest 

and simplest learning techniques based on pattern recognition 

and classification of unknown objects. It was described as 

a nonparametric approach for discriminant analysis (lazy 

similarity learning algorithm) by Fix and Hodges (1989) or 

Cover and Hart (1967), for example.

This approach classifies an unknown feature of an object (an 

instance) based on its “overall” similarity to other known 

1 Institute of Forest Management, Georg-August-Universität Göttingen, Büsgenweg 5, D-37077 Göttingen. E-mail: lfehrma@uni-forst.gwdg.de.
2 Professor of Forest Assessment and Remote Sensing, Institute of Forest Management, Georg-August-Universität Göttingen, Büsgenweg 5, D-37077 Göttingen. 
E-mail: ckleinn@gwdg.de.
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objects. Therefore, the instances with known target values are 

stored in a database (the so-called training data).

To estimate the unknown feature of a query instance, the most 

similar known instances are identified by means of a set of 

known variables. The weighted or unweighted mean of the 

target variable of a number k of nearest instances (neighbors) 

to the unknown instance is then assigned. To identify the most 

similar training instances, it is necessary to define measures 

of similarity and quantify their distance or dissimilarity to the 

query instance (Haendel 2003).

In contrast to parametric models, the result of the k-NN 

estimation is not a “global function” for the entire feature 

space, but a local approximation of the target value that 

changes in every point of the feature space depending on the 

nearest neighbours that can be found for a certain query point 

(Mitchell 1997).

In forestry, applications of this approach can be found in Haara 

et al. (1997), Korhonen and Kangas (1997), Maltamo and 

Kangas (1998), Niggemeyer (1999), Tommola et al. (1999), 

and Hessenmöller (2001). In this paper, the methodology is 

mainly used to estimate stand parameters or as an alternative 

to parametric growth models. Sironen et al. (2003) applied 

a k-NN approach for growth estimations on single-tree data. 

Applications of different nonparametric approaches including 

k-NN are also in Malinen (2003a, 2003b), Malinen and 

Maltamo (2003), and Malinen et al. (2003).

The k-NN technique has long proved applicable and useful in 

the context of integration of satellite imagery into large-scale 

forest inventories estimations (Moer and Stange 1995, Tomppo 

1991). Satellite images are classified using the similarity of 

spectral signatures of single-pixel values (Holmström et al. 

2001, McRoberts et al. 2002, Stürmer and Köhl 2005).

For local approximation of a continuous target value, the k-NN 

algorithm assigns the mean of the target values of a certain 

number of most similar training instances to the query instance as

						    

	 (1)

Where:

( )qxf̂  is the estimator for the unknown target value of a query 

instance x
q
.

( )ixf  are the known target values of training instances. 

k is the number of nearest neighbours used for estimation.

To quantify the dissimilarity between instances and to identify a 

number of k nearest neighbours, known measures of proximity 

from multivariate analyses, such as discriminant or cluster 

analysis, may be used. For practical application the Minkowski 

metric or L-norm is a suitable and flexible multivariate distance 

measure (Bortz 1989, Backhaus et al. 1996):

	 (2)

where:

d
i,j
 = the distance between two instances i and j, x

ir
 and x

jr
 being 

the values of the rth variable for the respective instance.

n = the number of considered variables.

 c ≥ 1 = the Minkowski constant. 

In case of c  = 1, the result of this metric is the so called 

Manhattan or taxi driver distance, which is the sum of all 

variables differences. For c = 2, this measure is the Euclidean 

distance in an n-dimensional feature space.

To take the unequal importance of different variables for 

the development of the target value into account and to 

avoid the distorting influence of different scaled feature 

spaces, the variables have to be standardized and weighted 

according to their influence. Because the single variable 

distances are explicitly obvious in the given distance metric, 

the standardization and weighting can be included in the 

calculation of an overall distance by modifying it to the 

following:
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δ
r
 = a standardization factor that can be coupled to the range of 

the variable. 

In our study we set δ
r
 to 2σ

r
 whereas σ is the standard deviation 

of the respective variable.

Even if both steps are a kind of transformation of the feature 

spaces of the considered variables, one should distinguish 

between feature standardization and weighting. While stand-

ardization is necessary to ensure the comparability of the single 

variable distances, the weighting of the different variables in a 

multidimensional space is an expression of their unequal rel-

evance for the target value (Aha 1998, Wettschereck 1995).

Feature weighting can have a great influence on the 

identification of the nearest neighbours, making it relevant for 

the quality of the derived estimation. Suitable weighting factors 

can be derived from several alternatives. Tomppo et al. (1999) 

proposes deriving feature weights based on the coefficient of 

correlation between the different variables and the target value. 

Another possibility is using the relation between the regression 

coefficients of the included variables from a suitable regression 

model to derive the weighting factors. Iterative optimization 

algorithms such as genetic algorithm or simulated annealing 

can also be used to find an appropriate relation of feature 

weighting factors (Tomppo and Halme 2004).

 

If the distances between a query point and all training instances 

in the database are known and the k nearest neighbours are 

identified, they can also be used to derive a weighted mean. 

According to Sironen et al. (2003), or similarly Maltamo and 

Kangas (1998), the weighting of the neighbours according to 

their distance can thereby be derived as

	 (4)

where:

 w
k
 = the weight of the kth neighbour.

d
q,i

 = the distance between a query point x
q
 and the neighbour x

i.
 

t = a weighting parameter that influences the kernel function. 

Implementing this distance-weighted mean as estimator formula 

(1) becomes

	��� (5)

In this case, the estimator is equivalent to the Nadaraya-Watson 

estimator (Atkeson et al. 1997, Haendel 2003, Nadaraya 1964, 

Watson 1964). Because of the decreasing influence of training 

instances with increasing distance, all training instances can be 

included in the estimation process in this approach, which is 

also known as Shepard’s method (Shepard 1968).

Even if the k-NN algorithm is referred to as a nonparametric 

method in the context of searching a number of nearest 

neighbours, this description does not apply for the distance 

function that is used. In the basic k-NN approach, the weighting 

factors for the different variables, which are normally defined 

in a deterministic manner, and the parameters k, n, c, δ and t of 

the above mentioned distance function (3) and estimator (5) are 

defined globally.

As a result of an asymmetric neighbourhood at the extremes 

of the distribution of observations, instance-based methods 

come with a typical bias-variance dilemma. The number of 

neighbours considered in the estimation must be determined as 

a compromise between an increasing bias and the decreasing 

variance of estimates with an increasing number of neighbours 

(Katila 2004). To find an approximation for an optimal number 

for k, we applied the root mean square error (rMSE%) as 

error criterion. The objective criteria is the minimization of 

the rMSE% by means of a leave-one-out cross validation with 

a changing size of the considered neighbourhood and/or the 

parameter setting in the distance and weighting function. In a 

cross validation, a query instance is a tree that is excluded from 

the training instances and for which estimation is derived based 

on the N-1 remaining trees. Each training instance is in turn 

used as query instance (Malinen et al. 2003). The rMSE% is 

then calculated as
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where:

 x
ir
 = the observed value of variable r for instance i.

irx̂  = the respective estimated value. 

n = the number of observations. 

rx̂  = the mean of estimates for the target variable r. 

Because of the high number of possible parameter 

combinations, the iterative process was reduced to about 50 

different combinations in which the determination of the 

starting values for the feature weights were based on expertise 

obtained from the relation of regression coefficients as result of 

a regression analysis with the respective variables.

Reference Model

As reference to the k-NN estimations we derived an allometric 

regression model based on the same dataset. Independent 

variables are dbh and tree height. To consider for inherent 

heteroscadicity, an ordinary least square (OLS) regression was 

built with log transformed variables and aboveground biomass 

(agb) as the dependent variable (Sprugel 1983). The estimated 

regression coefficients are shown in table 1.

Data

To evaluate the k-NN approach in comparison to parametric 

regression models, we built a single-tree biomass database with 

training instances from various destructive biomass studies. 

In this study we used a subset of N = 323 Norway spruce trees 

(Picea abies [L.] Karst.) that were compiled from different 

publications and datasets from central Europe. Parts of the 

database come from a study of Wirth et al. (2003). Additional 

datasets were taken from literature and project reports.

Results

Calculating the distance between a query point and all 

training data leads to a certain order of instances according to 

their similarity to the unknown query instance (fig. 1). For the 

given example, at first only the variables dbh and tree height 

were used in the distance function. Using a nearest neighbour 

bandwidth, the distance to which neighbours are considered 

for the estimation is set to the distance of the kth neighbour 

(Atkeson et al. 1997). 

The disadvantage of this approach is that a fixed bandwidth 

selection may increase bias  as result of the asymmetric 

neighbourhood in the extremes of the feature space. 

Nonparametric approaches such as the k-NN method are known 

to be inappropriate for any kind of extrapolations. In addition, 

a certain edge effect exists within the feature range of the 

training data. This fact makes it difficult to compare the k-NN 

based estimations with a given regression model. Figure 2 

shows the effect of increasing the neighbourhood, especially on 

estimations for the biggest trees in this dataset.

The smaller size of the considered neighbourhood leads to a 

lower bias at the extremes of the feature space. At the same 

Table 1.—Estimated coefficients, R², and residual standard error  for the allometric reference model. Dependent variable is agb in 
kilogram dry mass.

Model formulation Linearized form ln(a) b c R² Residual standard error

agb=a*dbhb hc ln(agb)=ln(a)+b*ln(dbh)+c*ln(h) – 2.651 1.888 0.699 0.98 0.1864

Figure 1.—Training data ordered according to their distance 
and their respective target values (agb) for a given query point.
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time, however variance is obviously increasing because fewer 

values of the target values are averaged.

The resulting rMSE% values for different sizes of the 

neighborhood were calculated by means of a leave-one-out 

cross validation of the whole dataset for different values of k. 

Figure 3 shows that in case of the underlying data and the used 

variables, a minimum error can be found for three neighbors. It 

must be considered that this optimum size of the neighborhood 

is only valid for the given parameter setting and this certain 

dataset. The respective rMSE% calculated for the adapted 

reference model was about 19 percent lower than that of the 

k-NN estimation.

A lower error can be achieved by integrating further single-tree 

variables, such as tree age or crown length. Figure 4 shows an 

example where these additional variables were included in the 

distance calculation. It is obvious that the optimal number of 

neighbours changes in this case to five. The amount of available 

training data with information for these search variables 

decreased to 181 trees. 

One possibility to lower the influence of the systematic 

error is to use a kernel function that attenuates the influence 

of neighbours according to their increasing distance. The 

distance-weighting function we used in this approach can be 

modified by changing the parameter t. As figure 5 shows, we 

achieved the lowest errors without any distance weighting in 

this case. Different simulations with other tree species and 

different combinations of variables showed that the influence 

of the parameter t on the error is highly dependant on the 

underlying dataset and the choice of search variables. Similar 

to the determination of the parameter c that influences the type 

of distance metric as well as the relation of feature-weighting 

factors, the optimum parameter setting differs highly between 

different datasets. 

Figure 2.—Observed agb and estimations based on k = 3 and 
k = 15 neighbors.

Figure 3.—rMSE % and Bias% of the k-NN estimation calcu-
lated in a leave-one-out cross validation for different sizes of 
the considered neighbourhood. In this case only the variables 
d.b.h. and tree height were included in the distance function.

Figure 4.—rMSE% and Bias% for a certain parameter setting 
using the variables d.b.h., tree height, tree age, and crown 
length for the distance function.
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Discussion

In the given example, the errors of the k-NN estimations were 

higher than those of an allometric regression model derived 

from the same dataset and with the same independent variables. 

One reason for the errors is that we only used one combination 

of feature weights and/or parameter settings. The goal of this 

study was primarily to evaluate the general applicability of the 

k-NN method for single-tree biomass estimation. Future work 

will be focused on optimization of this method for the given 

purpose.

Another reason for the comparatively bad performance of 

the approach in comparison to the given regression model 

is that the number of training data as well as the number of 

variables included in the distance function was untypically 

low for a nonparametric method. One advantage of the k-NN 

method is that it is easily possible to include a high number 

of independent search variables in the distance function. This 

advantage was not used in this basic and general example.  

More variables and information components can be included 

in the estimation process. For examples, the process could 

include site parameters such as the height above sea level, the 

site quality, geographic coordinates, or further information on 

tree species. If enough variables with a certain discriminatory 

power in the context of dissociating trees of different species 

are available and are able to bring the training data in a correct 

order according to their distances, estimations over different 

species are possible.

For the optimization of the k-NN estimations, the high number 

of parameters for the distance and weighting function we used 

in this example causes problems. An approximation for an 

optimal combination or relation of parameters can be found 

by using iterative processes such as optimization algorithms. 

The target in this case is the minimization of the error criterion 

(e.g., the rMSE%) by a stepwise change of the parameter 

settings. For the given example we only used a low number of 

iterations, whereas the starting values were predefined based 

on expertise gained in the regression analysis and the first 

experience with a software application of the k-NN algorithm. 

It must be assumed that the given intermediate results are far 

from an optimal solution and that future work can enhance 

the performance of the k-NN method which might then be an 

alternative to the given approaches, particularly in the context 

of the generalization of biomass models.

Conclusions

Trees can be interpreted as instances of more or less one 

basic form, consisting of an individual pattern of principal 

components such as stem, branches, leaves, and roots. If 

certain key variables on a single-tree level are known, pattern 

recognition algorithms such as the k-NN method can be used to 

identify the most similar instances (trees) from a database and 

use their known target values to derive estimations for unknown 

instances. Often additional meta-information about forest 

stands, site characteristics, or species-specific information 

such as mean wood density are available and can be used in the 

context of this methodology. Different authors (Hessenmöller 

2001, Malinen 2003a, Sironen et al. 2003) have proved this 

nonparametric method applicable and useful as well for single-

tree applications, in which its performance is obviously highly 

dependent on the amount of training data. One of the main 

future challenges in the field of biomass estimation will be 

the generalization of estimation approaches and/or models. 

Figure 5.—Influence of the distance-weighting parameter t on the 
development of the rMSE% for different sized neighborhoods.
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To ensure a certain reliability of the generalized models, the 

compilation of destructive sampled data will be necessary. If 

it is possible to implement a single-tree database in a central 

and free accessible place, instance-based methods can also be 

applied as server-client applications in future.
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A Bayesian Approach To Multisource Forest 
Area Estimation
 

Andrew O. Finley1 and Sudipto Banerjee2

Abstract.—In efforts such as land use change 

monitoring, carbon budgeting, and forecasting 

ecological conditions and timber supply, demand 

is increasing for regional and national data layers 

depicting forest cover. These data layers must permit 

small area estimates of forest and, most importantly, 

provide associated error estimates. This paper 

presents a model-based approach for coupling mid-

resolution satellite imagery with plot-based forest 

inventory data to produce estimates of probability 

of forest and associated error at the pixel level. The 

proposed Bayesian hierarchical model provides 

access to each pixel’s posterior predictive distribution 

allowing for a highly flexible analysis of pixel and 

multipixel areas of interest. 

Introduction

Most large forest inventory programs use stratified estimation 

techniques to couple inventory data collected from field plots 

and ancillary data, such as satellite imagery, to increase the 

precision of their estimates. Satellite imagery has provided a 

useful and cost effective source for deriving the data layers 

required for stratified estimation (McRoberts et al. 2002). 

These stratified estimation techniques can produce satisfactory 

estimates and precision for medium to large geographic areas, 

but they typically fail to satisfy precision expectations for 

small areas. Obtaining forest area estimates for small areas 

requires more spatially intensive sampling designs, more and 

different kinds of ancillary data, and/or methods that extract 

more information from inexpensive sources of ancillary data. 

The increased costs associated with more intense sampling and 

a larger suite of ancillary data often precludes these approaches. 

Therefore, approaches to make better use of common and 

affordable satellite imagery merit consideration. 

This paper presents a model-based approach that can be used 

to couple field inventory data from the Forest Inventory and 

Analysis (FIA) program of the U.S. Department of Agriculture 

(USDA) Forest Service with mid-resolution satellite imagery 

to predict pixel-level forest probability with associated error 

estimates. The Bayesian hierarchical model presented provides 

access to each pixel’s full predictive distribution from which 

we calculate the desired inferential statistics. Further, when 

combined with an appropriate area estimator, these individual 

pixel estimates can provide area and error estimates for 

arbitrary areas of interest (AOI). 

This paper builds a logistic-regression-based Bayesian 

hierarchical model for incorporating spatial structure then 

describes methods for parameter estimation of fixed effects and 

random spatial effects. A procedure for model-based prediction 

of probability of forest in arbitrary AOIs is described. 

Statistical Modeling

Nonspatial Logistic Model

We first outline a basic logistic model that can be used for 

modeling the forestation. Suppose we have 1i … n= , ,  subplots. 

Based on the percent canopy cover and additional forest struc-

ture variables, FIA records single condition subplots as either 

forest or nonforest. We set iy  as the binary variable designating 

this classification with 1iy =  denoting that subplot i  is forest-

ed and 0iy =  otherwise. Conditional on the set of independent 

variables (spectral characteristic for us), say ix  for subplot i , 

1 Research Fellow, University of Minnesota, Department of Forest Resources, 115 Green Hall, 1530 Cleveland Avenue North, St. Paul, MN 55108. E-mail: afinley@
stat.umn.edu.
2 Assistant Professor, University of Minnesota, School of Public Health, Division of Biostatistics, A460 Mayo Building, MMC 303, 420 Delaware Street Southeast, 
Minneapolis, MN 55455. E-mail: sudiptob@biostat.umn.edu.
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we assume that the iy s follow an independent and identically 

distributed (i.i.d.) Bernoulli distribution,  with 

( 1 | ) ( )i i iP y p= =x x . The association between the dependent 

data vector 1( )ny … y= , ,y , and the  matrix of m  spectral 

independent variables 1[ ]T T
nX …= , ,x x , where each T

ix  is the 

 vector of spectral characteristics for the i -th point, is mod-

eled through a logistic link regression 

	 (1)

where q = (q
1
,..., q

m
)  is the vector of parameters to be 

estimated. 

Letting Data  denote all the available information, say X,y  

above, the likelihood function for the data given the above 

model is 

	 (2)

This yields the corresponding log-likelihood function as 

	 (3)

Typically, from equation (3) iterative methods are used to 

obtain the maximum likelihood estimates of the parameters q 

(Amemiya 1985). These methods, however, rely on asymptotic 

(for large samples) distributional assumptions that are rarely 

verifiable in practice. Alternatively, we adopt a Bayesian 

paradigm (Gelman et al. 2004) that enables direct probabilistic 

inference for all the model parameters by first specifying prior 

distributions for them and subsequently using the likelihood 

in equation (2) to obtain the posterior distribution. In practice, 

therefore, if p(q)is the prior distribution for q, the posterior 

distribution of q is given by 

Such inference typically proceeds from drawing samples from 

the posterior distributions of the parameters. Markov chain 

Monte Carlo (MCMC) integration methods (Gelman et al. 

2004) provide samples from the full posterior distribution of q 
that can subsequently be used for inference. 

Logistic Model with Spatial Random Effects

The unexplained residual uncertainty associated with the 

mean function in equation (1) does not accommodate spatial 

correlation among subplot observations. Ignoring the spatial 

structure can impair the precision of predictions. A two-stage 

hierarchical model allows us to incorporate spatial structure 

into the basic model. The first stage of the hierarchical model 

adds spatial random effects to the mean structure in equation 

(1). If the subplots are spatially referenced (e.g., Easting-

Northing or some other coordinate system) as 1{ }nS …= , ,s s , 

we can envision the response as ( ) 1iy =s  or 0  depending on 

whether the subplot is forested. Within the augmented model, 

the probability that ( ) 1iy =s  depends on spatially-referenced 

independent variables, ( )ix s  for subplot is , the parameters q, 

and the location specific random effects ( )iw s : 

	 (4)

In the present context,  and D defines the surface of 

interest within . 

The second stage of the hierarchical model is to specify 

the spatial random effects. Specifically, we presume that 

 is drawn from a Gaussian Process 

with mean zero and  is an exponential 

correlation function (Banerjee et al. 2004). This implies 

 where  is the  

vector of spatial random effects and R is the  correlation 

matrix with elements  where  is 

the Euclidean distance between locations is  and js . The 

spatial process is described by the spatial decay parameter f 

and the spatial effect variance . Customarily, we describe 

the effective range 0d  of the spatial process by solving 

. 

The Priors and Likelihoods

With the addition of the random effects, we have the parameter 

set , with length 2m n+ + . A Bayesian analysis 

requires that we assign appropriate prior distributions p(Ω)  to 

each parameter. A flat prior can be assigned to q (i.e., ), a 

vague Inverse Gamma prior for , and Uniform 

for . The posterior distribution for Ω becomes 

	 (5)
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where 1( ( ) ( ))T
ny … y= , ,y s s  is the  response vector and 

( )L S; ,w y  is the data likelihood, modified from equation (2) as

 

	 (6)

with . The Gaussian Process 

specification implies that the  is a multivariate normal 

. The log-posterior is 

	 (7)

In the numerical implementation, the prior on ø is treated a 

bit differently. As stated above, its prior is Uniform with the 

condition 

	 (8)

In principle, this condition is problematic when the posterior is 

log-transformed (i.e., ); however, this is easily treated 

in the sampling approach described in the following section.

Posterior Sampling

The Metropolis-Hastings algorithm was used to generate 

the marginal posterior distribution for each parameter in Ω. 

Initially, candidate values for the parameters were drawn as a 

single block from a multivariate normal density. In an attempt 

to maintain a ~23 percent acceptance rate (Gelman et al. 1996), 

we adjusted the diagonal elements (i.e., the tuning values) of 

the multivariate normal  matrix. In our trials, however, it 

proved extremely difficult to achieve a reliable acceptance rate 

that would indicate sufficient mixing. In fact the acceptance 

rate in our initial trials was typically < 1 percent, while a 

healthy rate should hover around 23 percent (Gelman et al. 

2004). Therefore we split Ω into its components, and drew 

candidate values for q, , f, and w separately. This process 

required four sequential Metropolis-Hastings steps, where q 

and w were still block updated. In this scheme, we monitored 

four separate acceptance rates, and generally found much 

better mixing; this was further improved by specifying the 

covariance structure among the q (i.e., off diagonal values) as 

the dispersion of a multivariate normal proposal for q. 

As noted in the previous section, the Uniform prior on f 

required that it be treated a bit differently than the other 

parameters. Specifically, each candidate value of f drawn from 

the normal proposal density was applied to the conditional 

statement (8). If the candidate f passed (8), it proceeded 

through the Metropolis-Hastings iteration; otherwise, the 

candidate was discarded and subsequent candidates were drawn 

until the condition was satisfied. 

Prediction

Once the samples  are obtained from the posterior dis-

tribution (i.e., the retained post burn-in sample) , the 

Bayesian prediction framework is especially simple. The poste-

rior predictive distribution we seek is 

	 (9)

where 0s  denotes the location for which the vector 0( )x s  

is known and we wish to predict 0( )y s . Samples from 

equation (9) are obtained by composition sampling: for 

each Ω(k) from the posterior sample we simply compute 

 for 1k … N= , , . Program-

matically, we first generate a vector of N  samples from 0s

’s location effect with each element defined by a draw from a 

normal distribution with mean 

	 (10)

and variance 

	 (11)

where  is the  vector with i -th element given by 

. Then, a vector of probabilities is generated 

with each element defined by equation (4) replacing ( )isx  and 

( )iw s  with 0( )sx  and 0( )w s . The resulting sample is precisely 

a sample from the desired predictive distribution in equation 

(9). A forest probability map can be created using the posterior 

mean or median (or, for that matter, any other quantile) by 

simply carrying out the above predictive sampling over a grid 

of sites. Creating the associated uncertainty map for these 

predictions is just as simple. For the grid of sites, compute the 
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uncertainty summary (standard deviation or range) from the 

predictive sample. We point out that the standard deviations 

computed from MCMC output are biased as these samples are 

correlated (Gelman et al. 2004). This bias becomes negligible, 

however, as the size of the MCMC sample becomes large. This 

sample, being in our control (subject to computational limits), 

is usually taken large enough and this issue is not serious. 

Estimating Multiple Pixel AOI

Once complete posterior distributions are obtained for the 

pixel-level forest probabilities, interest often turns to obtaining 

forest area for multipixel AOIs. To be precise, suppose we are 

interested in a region composed of AN  pixels, say  

(perhaps after suitable relabeling of the is ’s). An estimate of 

the fraction of the forest area in A  is given in terms of the 

corresponding probabilities at the pixel level by 

	
(12)

Hence, samples ( )
1{ } MCMCNk

A kF =  from the posterior 

distribution ( )Ap F Data  are immediately obtained from 
( )

1{ ( ( ) )}k N
i kP Y Data =s  using equation (12), once the latter 

are obtained using the methods described in the preceding 

section. Note that any other functional, such as the total area 

inside A  under forests , where A  denotes the area 

of the region A  are also immediately accessible to posterior 

inference.

Summary

This paper described a logistic regression model with 

hierarchical random spatial effects that can be used to couple 

field inventory data from the FIA program with mid-resolution 

satellite imagery to predict pixel-level forest probability with 

associated error estimates. Once the model’s parameters are 

estimated by the Metropolis-Hastings algorithm, composition 

sampling is used to delineate each pixel’s predictive distribution 

from which we calculate the desired inferential statistics. These 

pixel specific predictive distributions of probability forest are 

then combined to provide forest area and error estimates for 

multipixel AOIs. 
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Compatible Taper Algorithms for California 
Hardwoods

James W. Flewelling1

Abstract.—For 13 species of California hardwoods, 

cubic volume equations to three merchantability 

standards had been developed earlier. The equations 

predict cubic volume from the primary bole, forks, 

and branches, but do not differentiate between the 

sources of the wood. The Forest Inventory and 

Analysis (FIA) program needed taper equations 

that are compatible with the volume equations. An 

algorithm (Flewelling 2004) predicts various numbers 

of solid wood pieces representing the primary bole 

and branches, each piece having a predicted inside 

bark and outside bark profile. No actual data on 

branch size distribution was used. 

Introduction

The Forest Inventory and Analysis (FIA) program and other 

sections of the U.S. Department of Agriculture (USDA) Forest 

Service have been using a wide variety of volume equations 

and taper systems, often developed for different standards. It 

would be beneficial to standardize taper methodologies because 

they are generally independent of utilization conventions. 

An unpublished report on available West Coast volume and 

taper equations (Flewelling et al. 2003) does not cite any 

profile equations for these hardwood species; several options 

for conditioning taper equations to match specified volume 

equations are cited. The special difficulties with merchantable 

wood in multiple stems or branches, however, are not 

commonly a consideration in compatibility between taper and 

volume equations. Furthermore, the National Volume Equation 

Library (NVEL), a standardized software package maintained 

by the USDA Forest Service Forest Management Service 

Center, does not include protocols for handling prediction 

equations that specifically deal with multiple stems. Hence, no 

road map dictates exactly how to proceed.

The NVEL framework generally requires that a taper equation 

be integratable to volume, and should be able to give diameter 

inside bark at any height. When volume is from multiple stems 

or branches, a taper function can not be used for both of those 

purposes. A true solution for a multistemmed tree would require 

that each pathway from the ground to a merchantable diameter 

limit be estimated in terms of height, total length, diameter, 

and perhaps straightness. A model of that complexity would be 

extraordinarily difficult to construct under the best of circum-

stances. As there are no real data available, the realism of any 

attempt to describe piece-size distribution is necessarily limited.

Pillsbury and Kirkley (1984) sampled 13 species of hardwoods 

throughout their native range in California, all of which had 

a diameter at breast height (d.b.h.) of 5 inches or greater. The  

species, along with the FIA species codes, are listed in table 1. 

Decadent trees and trees with major defects were avoided. 

Exacting measurements were made with the Spiegel Relaskop, 

with an objective of accurately determining shape and volume 

for all trees, even the most deliquescent. In addition, bark 

thicknesses were sampled at various heights. Three types of 

cubic volumes were computed for each sample tree. Regression 

equations were developed to predict these volumes as functions 

of d.b.h., total height, and species. The following three volumes 

are all in cubic feet:

TVOL	 Total aboveground volume of wood and bark, 

including the stump, but excluding foliage. 

CV4	 Volume of wood from a 1-foot stump to a 4-inch 

small-end outside bark diameter. Excludes the bark 

and foliage. This volume is referred to as WVOL in 

Pillsbury and Kirkley (1984). 

1 Consulting biometrician, 9320 40th Avenue Northeast, Seattle, WA 98115. E-mail: jwflew-wmen@yahoo.com.
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CV9	 Volume of wood from a 1-foot stump to a 9-inch 

small-end outside bark diameter. Excludes the 

bark and foliage. Every segment included must be 

from straight merchantable sections at least 8-feet 

long. This sawlog volume is referred to as SVOL in 

Pillsbury and Kirkley (1984).

and Souter. Hence, Oregon white oak seems to have significant 

amounts of volume apart from the principal bole, and that 

volume can be distributed among many different braches.

Algorithm

An algorithm has been developed that predicts multiple wood 

pieces for a tree of a given species, d.b.h., and total height. 

Each predicted piece has a predicted length and predicted 

inside bark taper function. Outside bark diameters are obtained 

by using the inside to outside bark diameter relationships 

in Pillsbury and Kirkley (1984). The merchandizing of the 

individual pieces can be performed to any standards after the 

piece sizes and their profiles have been predicted.

The method makes explicit use of the TVOL and CV4 

equations from Pillsbury and Kirkley (1984) in addition to 

their bark thickness relationships. It also uses several newly 

developed empirical equations, and makes use of profile 

equations developed for the primary boles of white oak in 

the South (Clark et al. 1991), and of bigleaf maple in British 

Columbia (Kozak 1994). The full algorithm and coefficients 

are presented by Flewelling (2004). The coefficients were set 

for each species by an optimization procedure with an objective 

of a close agreement between the three predictions from the 

volume equations and the corresponding volumes inferred from 

the taper equations for the inferred wood segments.

A single example is given to illustrate the algorithm. Consider 

a Pacific madrone with a d.b.h. of 17 inches and a total height 

of 50 feet. The algorithm predicts the taper curves for the 

segments listed in table 2. The summed TVOL and CV4 in 

the table are in exact agreement with predictions from the 

Pillsbury and Kirkley (1984) equations. The summed CV9, 

22.66 cubic feet, falls short of the 27.70 cubic feet predicted by 

the volume equation. The profile for each segment is a scaled 

copy of a portion of the predicted bole profile for a white oak 

with the same d.b.h. and total height. The lower bole segment 

has a diameter-scale factor set such that the scaled inside bark 

diameter at breast height, plus the double bark thickness from 

the Pillsbury and Kirkley equation, equals the desired d.b.h. 

Table 1.—Species list. 

FIA code	 Common name	 Scientific name

312 Bigleaf maple Acer macrophyllum 
361 Pacific madrone Arbutus menziesii 
431 Giant chinkapin Castanopsis chrysophylla 
631 Tanoak Lithocarpus densiflorus 
801 Coast live oak Quercus agrifolia 
805 Canyon live oak Quercus chrysolepis 
807 Blue oak Quercus douglasii 
811 Engelmann oak Quercus engelmannii 
815 Oregon white oak Quercus garryana 
818 California black oak Quercus kelloggii 
821 California white oak Quercus lobata 
839 Interior live oak Quercus wislizeni 
981 California laurel Umbellularia californica 

The differences in volume between the primary bole and the 

entire tree including forks and branches can be substantial, yet 

most taper-based approaches to volume modeling would ignore 

the contributions of the forks and branches. An indication of 

the magnitude of the differences in approaches can be obtained 

by comparing Pillsbury and Kirkley’s (1984) predictions with 

predictions derived from primary-bole data. For an oak in the 

deep South with a d.b.h. of 24 inches and height of 90 feet, 

Clark and Souter (1996) estimate primary-bole CV4 and CV9 

as 97.9 and 94.9 cubic feet, respectively. Greater CV4 volumes 

are predicted by the Pillsbury and Kirkley equations for all 

the species they considered, with a median prediction of 130 

cubic feet. Another difference is that the CV9 to CV4 ratio is 

almost 1 in the foregoing primary-bole example, and is much 

smaller for the Pillsbury and Kirkley equations. For example, in 

Oregon white oak, the predicted CV4 and CV9 are 159 and 86 

cubic feet, respectively, implying some 73 cubic feet of volume 

between 4 inches and 9 inches in diameter. That difference 

corresponds to about 24 pieces of wood that taper from 9 

inches to 4 inches in outside bark diameter; the computation 

here assumes that each such piece is 3 cubic feet, which is the 

difference between CV4 and CV9 in the example from Clark 

FIA = Forest Inventory and Analysis.
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The upper bole segment has a diameter-scale factor set at 

.8254, and an implying discontinuity in the profile at 20.5 feet. 

The large branch segments use the same diameter scale factor 

as for the upper bole, and a height-scale factor of .6878. The 

small branch segments have large-end outside bark diameters 

of 4 inches; their profiles are the same as for the small-diameter 

end portions of the large branch segments. The scale factors and the 

length of the lower bole segment are from species-dependent 

equations that depend on d.b.h., total height, and species.

Results

The algorithm has been tested for the full range of d.b.h.s and 

heights in the Pillsbury and Kirkley (1984) data. TVOL is 

always recovered exactly. CV4 is usually recovered exactly. 

The predicted trends of CV9 versus d.b.h. and total height are 

similar to those from the volume equations, with discrepancies 

that are usually not more than 10 percent for trees with 

d.b.h.s more than 15 inches. For lesser d.b.h.s, the percentage 

discrepancies can be larger. The results are plausible for d.b.h.s 

as low as 4.5 inches, and for heights as low as 20 feet.

Discussion

Sawlog volume equations and taper equations make predictions 

that are essentially different and sometimes incompatible at 

the level of an individual tree. For the smaller tree sizes, the 

volume equation prediction of CV9 is often for a value that is 

smaller than the lowest possible volume of an 8-foot sawlog. 

Arguably the volume equation may be ill conditioned. On the 

other hand, for d.b.h.s of about 10 inches the volume equation 

may be predicting a CV9 value that is a valid expectation, even 

though that may be less than the minimum volume of a single 

8-foot sawlog. The taper equations can predict zero volume, or 

an amount of volume that corresponds to a sawlog of 8 feet or 

more, but they can not predict intermediate CV9 volumes. This 

is one of several reasons for differences in CV9 predictions 

between the volume equations and the algorithm.

The three volume equations do fall into the correct rank order 

within the range of the data. They are not, however, always in 

reasonable accord. In the more extreme extrapolations, TVOL 

may be predicted to be less than CV4. Hence, any taper system 

that is forced to exactly replicate the equation-predicted vol-

umes would sometimes produce absurd results or totally fail.

One weakness of this project is that none of the original data 

were available. If the three volume statistics for each tree 

had been available, the optimization procedure could have 

minimized the errors between volumes inferred from the taper 

equations and actual volumes, which would have been a more 

satisfactory approach as it would bypass any lack of fit in the 

Pillsbury and Kirkley (1984) equations. The lack of original 

data also precluded any check on the reasonableness of the 

predicted numbers and sizes of branches.
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height of 50 feet. Volumes of the segments are per piece. 

Segment Count
Length

(ft)
TVOL

(ft3)
CV4
(ft3)

CV9
(ft3)
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Upper main 1.00 29.5 6.41 5.86 0.00

Large branches 2.48 20.3 4.41 4.03 0.00

Small branches 13.25 7.3 0.21 0.00 0.00

Total 17.73 46.29 38.52 22.66

d.b.h. =diameter at breast height.
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Sample-Based Estimation of Tree Species 
Richness in a Wet Tropical Forest 
Compartment

Steen Magnussen1 and Raphaël Pélissier2

Abstract.—Petersen’s capture-recapture ratio 

estimator and the well-known bootstrap estimator are 

compared across a range of simulated low-intensity 

simple random sampling with fixed-area plots of 

100 m2 in a rich wet tropical forest compartment 

with 93 tree species in the Western Ghats of India. 

Petersen’s ratio estimator was uniformly superior 

to the bootstrap estimator in terms of average error 

(bias) and mean absolute error. The observed richness 

always had the largest negative bias. A large negative 

bias of 25 percent persisted even when approximately 

10 percent of the area was sampled. Estimated 

confidence intervals had poor coverage rates. A 

proposed variance estimator for the observed richness 

performed well.

Introduction

Obtaining an unbiased and precise estimate of the number of 

forest tree species (S) currently growing in a region, State, or 

country poses a challenge. The number of species observed in 

a statistically valid sample is downwardly biased, and historic 

data and tree distribution maps may not reflect current realities 

(Guralnick and Van Cleve 2005).

A forest survey would ideally provide an unbiased and precise 

estimate of S for the populations of interest. Research into the 

species estimation problem was pioneered by Arrhenius (1921), 

Fisher et al. (1943), and Good and Toulmin (1956). We now 

have a plethora of estimators and estimation procedures (Bunge 

and Fitzpatrick 1993, Walther and Moore 2005). Rare species, 

easily missed in typically low-intensity forest survey sampling, 

exert a disproportionate influence on the results (Link 2003, 

Mao and Colwell 2005). Samples with a poor representation of 

rare species cannot be expected to yield reliable estimates of S.

Can we expect a typical low-intensity forest survey to provide 

an acceptable estimate of S? Experience with sample-based es-

timation of S for tree species is limited. Schreuder et al. (1999) 

assessed 10 modifications of Chao’s and Lee’s nonparametric 

estimators by resampling two large data sets with 4,060 forest 

inventory plots from Missouri and 12,260, from Minnesota, 

respectively. Sample sizes in the order of 500 to 700 were 

deemed necessary to keep bias below 15 percent. Sample sizes 

of 80 produced a negative bias of about 40 percent. Palmer 

(1990) performed resampling with very small circular plots of 

2 m2 in the Duke Forest (North Carolina, United States) and 

found that the nonparametric second-order jackknifed and that 

the bootstrap estimators performed best in terms of accuracy 

and precision. Hellmann and Fowler (1999), in a similar resam-

pling study with 25 m2 plots, found the second-order jackknifed 

estimator to be the best for low-intensity sampling (< 10 percent 

of area sampled). Gimaret-Carpentier et al. (1998a) found Chao’s 

estimator(s) to be superior to the generalized jackknifed estima-

tor for estimating richness in a wet, species-rich tropical forest.

The objective of this study is to introduce and assess the 

performance of Petersen’s ratio estimator of richness 

(Thompson 1992) in low-intensity simple random sampling 

with fixed-area plots in a wet, species-rich tropical forest 

compartment. Petersen’s ratio estimator, which rests on a 

minimal set of assumptions, is easy to calculate and lends itself 

to a bootstrap estimation of sampling errors, but has so far not 

been used for the purpose of tree species-richness estimation. 

The bootstrap estimator serves as a reference benchmark as it 

is a widely known and equally simple estimator (Bunge et al. 

1995, Schreuder et al. 1999).

1 Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada. E-mail: steen.magnussen@nrcan.gc.ca.
2 UMR Botanique et Bioinformatique de l’Architecture des Plantes (AMAP), TA40/PS2, 34398 Montpellier Cedex 05, France.
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Material and Methods

Data from a 28-ha forest compartment in the Kadamakal 

Reserve Forest (Kadagu District, Karnatiaka State, India) 

near the village of Uppangala in the Western Ghats mountain 

range (lat. 12º30’N by long. 75º39’W; 500–600 m ALT) are 

used for this study. The forest type is Dipterocarpus indicus–

Kingiodendron pinnatum–Humboldtia brunonis (Pascal 1982). 

Five strips with a width of 20 m, oriented north-south, 100 m 

apart, and 180- to 370-m long, were stem mapped (Pascal and 

Pélissier 1996). Species and spatial location were determined 

for all trees with a diameter at breast height (d.b.h.) ≥ 30 cm. 

Pascal and Pélissier (1996) found 1981 such trees (635 trees per 

ha), representing 93 species (S = 93).

The five 20-m-wide survey lines, totaling 1,560 m in length, 

were subdivided into 312 100 m2 rectangular (5 m by 20 m) 

plots. Simple random sampling (SRS) with sample sizes           

n = 10, 15, ..., 30 plots without replacement was simulated.   

Accordingly, between 3.2 and 9.6 percent of the area was sam-

pled. The area sampled is denoted by A
s
. Sampling, followed by 

estimation of species richness (S), was repeated 2,000 times for 

each sample size.

Let OBSS be the number of species encountered in n sample 

plots. Encountered species are labeled by an index i 

( )1,..., OBSi S= . The sample data consist of a size OBSS n×

binary matrix d with element d
ij
 = 1 if the ith species occurred 

in the jth plot and zero (0) otherwise. A design-unbiased 

estimator of the sampling variance of OBSS  is not available. 

The distribution of OBSS  has been assumed Poisson with a 

mean and a variance equal to OBSS . Instead  

is proposed as an estimator of the sampling variance on the 

grounds that  is the average number of plots 

per unique species in the sample.

To arrive at Petersen’s capture–recapture ratio estimator of 

richness, we first consider the n  sample plots as composed 

of two independent half-samples. Let (1)
OBSS  be the number of 

species found in the first half and (2)
OBSS  the number of species 

in the second half. We have (1) (2)
OBS OBS OBSS S S= + . Some species 

are seen in both half-samples; let this number be denoted by 
(1) (2)

OBSS
∩

. Petersen’s capture–recapture estimator (Thompson 

1992) of S  is then

(2)

(1) (2)

(1)ˆ OBS

OBS

PET OBS

S
S S

S
h

∩
= × ×

	
(1)

where h is a multiplier that scales the estimate from 

the half sample to the complete sample of size n. Here 

( )(1) (2) (1)/OBS OBS OBSS S Sh = + . In case (1) (2) 0OBSS ∩ = , a modification 

suggested by Chapman (Seber 1982) would be used. To 

avoid estimating SPET from a single arbitrary data split, 

we computed ˆ
PETS as the average of  

where ˆ i

PET
S is an estimate based on the ith random split of 

the n sample records. The variance of ˆ
PET

S was estimated as 

( )ˆ i
PETVar S .

Smith and van Belle (1984) first suggested a bootstrap estima-

tion of S. A bootstrap sample of size n is drawn with replace-

ment from the n observed sample records. Let r
BOOTS  be the 

number of unique species in the rth such bootstrap sample. The 

difference, , is a bootstrap estimate of 

bias (Efron and Tibshirani 1993); thus

( )
1

(1 )
OBSS

r n
r BOOT OBS BOOT i

i

E S S S p
=

− = Δ = −∑ 	 (2)

with expectation taken across all possible size n bootstrap 

samples.  is an estimate of the number of species 

“missed” in the sample (bias). From equation (1) we obtain the 

bootstrap estimator of S:

	 (3)

A variance estimator for ˆ
BOOTS  conditional on OBSS  is

	 (4)

where 
i

q is the proportion of sample plots that do not contain 

the ith species and ijq is the proportion that contains neither the 

ith nor the jth species.

The two richness estimators either explicitly or implicitly 

assume an infinite population size. To take the finite population 

size into consideration (Valliant et al. 2000), we corrected the 

estimates in equations (1) and (3) by

ˆ ˆ(1 )( )M OBS pc M OBSS S f S S′ = + − − 	 (5)
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where 1
pc sf A A−= ×  with { , }M PET BOOT= . This correction 

ensures that 1pcf →  means ˆ
M OBSS S′ →  as required. A corre-

sponding correction was applied to estimators of sampling variance.

The performance of  and 
PET BOOT

S S will be assessed by their 

average error (estimate of bias), precision (actual and average 

of estimated sampling errors), accuracy as estimated by the 

mean absolute difference (Mad) between an estimate and the 

true value, the proportion of estimates within 10 percent of the 

true value (d10), and finally the coverage rate of estimated 95 

percent confidence intervals ( )95pCI .

Results

Observed richness had, as expected, the largest negative 

average error (estimate of bias), as detailed in table 1. Even 

with 10 percent of the area sampled, the bias was –56 percent. 

The average relative error of the observed richness declined at 

a decreasing rate as sample size increased. PETS  was clearly 

a better estimator than BOOTS in terms of its average relative 

errors (bias), which were roughly half of those associated with 

BOOTS . The rate of decline in the average relative error was 

similar for the three estimators.

Relative standard errors of the richness estimates were about 4 

to 5 percent for n = 10 and 3 to 4 percent for n = 30 (table 1). 

Hence, the decline in the standard error for an increase in n was 

much slower than –2–1n–1.5, as expected for conventional forest 

inventory estimates of population totals, namely averages. 

Average estimates of precision for PET were quite conservative: 

about three times larger than the empirically estimated errors 

(table 1). In contrast, those for BOOT were somewhat liberal 

(too small) at n = 10, but at larger sample sizes (n ≥ 20) 

they matched the empirical estimates to within 0.5 percent. 

The proposed variance estimator for OBS appears attractive 

inasmuch as the observed and the average of the estimated 

errors were within 0.5 percent of each other.

Mean absolute differences (table 2) were dominated by the bias 

component; as such, the results largely mirror those detailed 

above for the average error. The fraction of estimates within 10 

percent of the actual value of 93 was low for PET (≤ 8 percent) 

for all sample sizes. It was 0 for both OBS and BOOT. Estimat-

ed 95 percent confidence intervals of BOOT and OBS estimates 

of richness failed to include the actual value (table 2). Results 

were not much better for PET, with coverage rates increasing 

from just 15 percent at n = 10 to 34 percent at n = 30.

Table 1.—Mean error (estimate of bias) of richness estimates. 
Actual (s.e.) and average of estimated sampling errors ( s.e.) 
are in parentheses (s.e./ s.e. ). Errors are in percent of true 
richness S = 93. Means are across 2,000 replicate samples.

Estimator		 Sample size (As/A×100)

   10    15    20    25    30

(3.2) (4.8) (6.4) (8.0) (9.6)

– 75 – 69 – 64 – 60 – 56

 (4/4) (4/4) (4/4) (4/4) (4/4)

– 46 – 38 – 34 – 29 – 25

(4/11) (4/11) (4/10) (3/0) (3/9)

– 69 – 62 – 57 – 57 – 48

(5/3) (4/3) (4/3) (3/3) (3/3)

Table 2.—Mean absolute error (Mad) of richness estimates. 
Mad is in percent of true richness (93). Percent of estimates 
within 10 percent of true value (d10  )and coverage rates 
of estimated 95 percent confidence intervals (pCI95 )are in 
parentheses (d10  / pCI95 ).

Estimator		 Sample size (As/A×100)

10 15 20 25 30

(3.2) (4.8) (6.4) (8.0) (9.6)

75 69 64 60 56

 (0/0) (0/0) (0/0) (0/0) (0/0)

46 38 34 29 25

(2/15) (3/21) (3/21) (5/28) (8/34)

69 62 57 57 48

(0/0) (0/0) (0/0) (0/0) (0/0)
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Discussion

Low-intensity forest inventories do not provide estimates of 

tree species richness on a routine basis. Given the importance 

that is attached to notions of species richness and biodiversity, 

however, it would seem reasonable to expect that forest 

inventories would provide such an estimate. While it is 

generally recognized that the observed number of species 

will be downwardly biased, it is probably less appreciated 

that almost any estimator of species richness will be an 

improvement over the observed richness. It is generally 

accepted that there is no universally best estimator of S. The 

choice must be based on documented performance (Chao 

and Bunge 2002). Because an overestimation of richness can 

have a negative impact on credibility, an estimator unlikely 

to produce an inflated estimate is warranted. At low-intensity 

sampling both Petersen’s and the bootstrap estimator are 

unlikely to produce an inflated estimate. Palmer (1990, 1991) 

and Hellmann and Fowler (1999) have already confirmed 

this property of BOOTS . The uniform superiority of Petersen’s 

estimator vis-á-vis the bootstrap estimator holds promise, but it 

needs to be corroborated by additional studies before one can 

draw any general conclusion.

Because the study site had many rare and just a few common 

species we cannot a priori expect to obtain very good estimates 

of richness from low-intensity forest inventory sampling. 

Condit et al. (1996) suggest that a sample of at least 1,000 

individually sampled trees, or about 10 percent of a population, 

is needed in wet, tropical species‑rich forests before a sample-

based estimate of species richness is within 15 percent of the 

actual value.

Our study reiterated the importance of choosing a suitable 

estimator of richness. It is well known that the performance 

of an estimator depends not only on the statistical sampling 

designs but also on the population structure and spatial 

distribution of species (Brose et al. 2003, Colwell et al. 2004, 

Keating et al. 1998). Only an extensive assessment of a larger 

suite of estimators in diverse environments and across a series 

of conventional low-intensity forest inventory designs will 

allow a resolution to the question of whether we can hope 

to obtain estimates of tree species richness that are both 

reasonably accurate and reasonably precise from low-intensity 

forest inventories. The test designs would have to include 

sampling with plots of different size, as the effect of plot size 

is expected to depend strongly on both the estimator and the 

spatial distribution of species in the population of interest 

(Condit et al. 1996, Gimaret-Carpentier et al. 1998b).
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Estimating Tree Species Richness From 
Forest Inventory Plot Data

Ronald E. McRoberts1 and Dacia M. Meneguzzo2

Abstract.—Montréal Process Criterion 1, 

Conservation of Biological Diversity, expresses 

species diversity in terms of number of forest 

dependent species. Species richness, defined as the 

total number of species present, is a common metric 

for analyzing species diversity. A crucial difficulty 

in estimating species richness from sample data 

obtained from sources such as inventory plots is 

that no assurance exists that all species occurring 

in a geographic area of interest are observed in the 

sample. Several model-based and nonparametric 

techniques have been developed to estimate tree 

species richness from sample data. Three such 

approaches were compared using data obtained from 

forest inventory plots in Minnesota, United States 

of America. The results indicate that an exponential 

model method and a nonparametric jackknife method 

were superior to the nonparametric bootstrap method. 

Introduction

Of the international forest sustainability initiatives, the Mon-

tréal Process (1998) is geographically the largest, involving 

12 countries on 5 continents and accounting for 90 percent of 

the world’s temperate and boreal forests. The Montréal Process 

prescribes a scientifically rigorous set of criteria and indicators 

that have been accepted for estimating the status and trends of 

the condition of forested ecosystems. A criterion is a category 

of conditions or processes and is characterized by a set of mea-

surable quantitative or qualitative variables called indicators 

that, when observed over time, demonstrate trends. The Mon-

tréal Process includes seven criteria (McRoberts et al. 2004) of 

which Criterion 1, Conservation of Biological Diversity, focuses 

on the maintenance of ecosystem, species, and genetic diversity. 

Of the indicators associated with Criterion 1, one of the most 

intuitive is Indicator 6, Number of Forest Dependent Species. 

When the emphasis is on the number of tree species, this indi-

cator is characterized as tree species richness. 

Because species richness relates only to the presence or absence 

of species, regardless of distribution or abundance, estimation 

of species richness is difficult apart from a complete census. 

Complete tree censuses, however, are not practical for the natu-

rally regenerated, mixed species, uneven aged forests that occur 

in much of the world. As a result, estimation of tree species 

richness must depend on sample data. Unfortunately, although 

tree species richness is an intuitive measure, it is difficult to 

estimate using sample data because no assurance exists that all 

species in a geographic area of interest have been observed in 

the sample, particularly rare or highly clustered species. 

The objective of the study was to compare one model-based 

and two nonparametric approaches for estimating tree species 

richness from forest inventory plot data.

Data

Forest inventory data are widely recognized as an excellent 

source of information for estimating the status and trends 

of forests in the context of the Montréal Process or the 

Ministerial Conference for the Protection of the Forests of 

Europe (McRoberts et al. 2004). The national forest inventory 

of the United States of America is conducted by the Forest 

Inventory and Analysis (FIA) program of the U.S. Department 

of Agriculture Forest Service. The program collects and 

analyzes inventory data and reports on the status and trends of 

1 Mathematical Statistician, U.S. Department of Agriculture (USDA), Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. 
E-mail: rmcroberts@fs.fed.us.
2 Forester, USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. E-mail: dmeneguzzo@fs.fed.us.
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the Nation’s forests. The national FIA sampling design is based 

on an array of 2,400-ha (6,000-ac) hexagons that tessellate 

the Nation. This array features at least one permanent plot 

randomly located in each hexagon and is considered to produce 

an equal probability sample (Bechtold and Patterson 2005, 

McRoberts et al. 2005). The sample was systematically divided 

into five interpenetrating, nonoverlapping panels. Panels are 

selected for measurement on approximate 5-, 7-, or 10-year 

rotating bases, depending on the region of the country, and 

measurement of all accessible plots in one panel is completed 

before measurement of plots in a subsequent panel is initiated. 

The national FIA plot consists of four 7.32-m (24-ft) radius 

circular subplots that are configured as a central subplot and 

three peripheral subplots with centers located at 36.58 m 

(120 ft) and azimuths of 0o, 120o, and 240o from the center of 

the central subplot. All trees on these plots with diameters at 

breast height of at least 12.5 cm (5.0 in) were measured and the 

species identifications were recorded. 

The study area was in Minnesota, United States of America, 

and consisted of the geographic intersection of Bailey’s 

ecoprovince 212 (Bailey 1995) and Mapping Zone 41 of the 

Multiresolution Land Characterization Consortium (Loveland 

and Shaw 1996) (fig. 1). Forests in the study area are generally 

naturally regenerated, uneven aged, and mixtures of conifer 

and deciduous species. Data for 3,300 plots with centers in the 

study area and observed between 1999 and 2003 were available.

Methods

Several model-based and nonparametric approaches have been 

proposed for estimating tree species richness from sample 

data. All these approaches extrapolate information from the 

distribution of the species observed in the sample, S
o
, to 

estimate the total number of species, S
t
 . 

Exponential Model

Model-based approaches are generally based on empirical 

species accumulation curves (Soberón and Llorente 1993) 

depicting the relationship between the total number of species 

observed and the cumulative area of the sample. Nonlinear 

statistical models with horizontal asymptotes are fit to the 

empirical curves, and the estimates of the asymptotes are 

considered estimates of S
t
. The exponential model

	 (1)

where E(.) is statistical expectation, S
o
 is the number of species 

observed, A is the cumulative area of the sample, and the βs are 

parameters, is a flexible curve, although admittedly it has no 

biological basis for describing a species accumulation curve. 

With this model, β
1
 corresponds to the asymptote, and its 

estimate provides an estimate of S
t
. The covariance matrix of 

the model parameter estimates is estimated as

( ) 12ˆ ˆV Z Zεσ −′= 	 (2)

where 
2ˆ
εσ  is the residual variance estimated by the mean 

squared error, the elements of the Z matrix are , 

and f is the statistical expectation function of the model. 

Bootstrap

For a sample of size n, Smith and van Belle (1984) describe the 

bootstrap procedure (Efron 1979) using five steps:

1.	 Construct the empirical cumulative probability function 

with density n-1 at each of the n plot observations.

2.	 Draw a sample of size n with replacement from the 

empirical cumulative probability function.

Figure 1.—Study area.

Nonforest
Forest
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3.	 Define 

	 if the jth species is not observed in the ith 	

	 sample drawn in Step 2

	 if the jth species is observed in the ith sample	

	 drawn in Step 2

	

	 and calculate the ith estimate of S
o
 as .

The statistical expectation of       is 

( ) ( )
1 1 1

ˆ 1 1 1
o o oj ji

j

S S S
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j j j

n n
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n n= = =
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             

where Y
j
 is the number of plots in the bootstrap sample 

from Step 2 for which the jth species is present. The bias 

in       is 

( )
1

ˆ 1
oS

jBi
o o

j

nY
E S S

n=

 
− = − − 

 
∑ ,

so that the bootstrap estimate of S
t
 is 

			            
.

4.	 Repeat Steps 2-3 N times.

5.	 Calculate the bootstrap estimate of S
t
 as

1

1ˆ ˆ
N

B Bi
t t

i

S S
N =

= ∑
	 (3)

The variance of  is given by Smith and van Belle (1984) as
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(4)

where, for the original sample, Y
j
 is the number of plots for 

which the jth species is observed and Z
jk
 is the number of plots 

for which the jth and kth species are jointly absent.

	

Jackknife

For a sample of size n, Smith and van Belle (1984) describe 

how the Jackknife estimate of S
t
 may be obtained in five steps:

1.	 Remove the observations corresponding to the ith plot, and 

let r
i
 be the number of species that were observed only on 

the ith plot.

2.	 Using only observations from the remaining plots, 

calculate the ith jackknife estimate of S
o
 as ˆ Ji

o o iS S r= − .

3.	 Calculate the pseudovalue 

( )ˆ( 1) 1
Ji

i o o o inS n S S n rq = − − = + − .

4.	 Repeat Steps 1-3 for each of the n plots.

5.	 Calculate the jackknife estimate of S
t
 as

1 1

1 1 1ˆ
n nJ

t i o i o
i i

n n
S S r S R

n n n
q

= =

− −
∑ ∑= = + = +

	
(5)

where 
1

n

i
i

R r
=

= ∑ .

The variance of ˆ J
tS  is

	 (6)

The above jackknife estimates are characterized as first order, 

because the observations from only a single plot are removed. 

Second-order jackknife estimates based on removing two plots 

simultaneously may also be calculated, but for this application 

preliminary analyses indicated they were not substantially better 

than first-order estimates.

Analyses

All three approaches were evaluated to determine sample sizes 

necessary to produce defensible estimates of S
t
. The issue is 

whether ˆ
tS continues to increase as the sample size increases. 
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If so, the sample size is inadequate. If the sample size is ad-

equate, the graph of ˆ
tS versus the cumulative sample area 

should reach and maintain an approximately constant value. For 

all three methods, samples sizes (i.e., number of plots) from 

165 to 3,300 in steps of 165 were considered, and 250 samples 

of each size were randomly drawn. For the exponential model, 

the order in which plots of a particular sample are considered 

affects the species accumulation curve and, as a result, ˆ
tS

and Var( ˆ
tS ). To compensate, the plots in each sample were 

randomly reordered 1,000 times, the mean species accumula-

tion curve was determined, and the exponential model was fit to 

the mean curve. For the nonparametric bootstrap and jackknife 

methods, the order of the plots in the sample is not an issue. For 

all three methods, the means of ˆ
tS and ( )ˆ

tVar S  over the 250 

samples were calculated for each sample size. 

Results and Discussion

For all three methods, 250 samples were sufficient to stabilize 

the means of the estimates of ˆ
tS and ( )ˆ

tVar S . In addition, 

on the basis of comparisons of residual error estimates, 1,000 

random reorderings of the samples were sufficient to eliminate 

individual sample deviations in the mean species accumulation 

curves. Graphs of ˆ
tS versus the cumulative sample area for 

the three methods indicate that the sample size of 3,300 plots, 

representing 221.92 ha of sample area, is adequate for the 

jackknife and exponential model methods but possibly not             

for the bootstrap method (fig. 2). For the total sample size of 

3,300 plots, ( )ˆ ˆˆ
t tS Var S± was 65.46 ± 0.10 for the exponential 

model, 57.30 ± 1.68 for the bootstrap approach, and 59.00 ± 

1.68 for the jackknife approach. All three methods produced 

estimates of S
t
 that were greater than S

o 
= 55, as should be 

expected. 

In general, for a given sample size, the precision of the 

exponential model estimate of S
t
 was greater than the bootstrap 

and jackknife estimates which were comparable. For all three 

methods, the precision increased with greater sample sizes. 

The exponential model and jackknife methods appear 

preferable to the bootstrap method because estimates using 

the former two methods stabilize with increasing sample size, 

while estimates using the latter method appear to be continuing 

to increase. Because the true number of species in the study 

area is unknown, it is uncertain as to which, if any, of these 

three methods produces superior estimates. This preliminary 

study suggests that additional model forms should be 

considered, that additional samples may be required to obtain 

a more definitive comparison of the methods, and that the 

comparisons should be made for other geographical areas.
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Defining Stem Profile Model for Wood 
Valuation of Red Pine in Ontario and 
Michigan With Consideration of Stand 
Density Influence on Tree Taper

W.T. Zakrzewski1, M. Penner2, and D.W. MacFarlane3

Abstract.—As part of the Canada-United States 

Great Lakes Stem Profile Modelling Project, 

established to support the local timber production 

process and to enable cross-border comparisons of 

timber volumes, here we present results of fitting 

Zakrzewski’s (1999) stem profile model for red pine 

(Pinus resinosa Ait.) growing in Michigan, United 

States, and Ontario, Canada. The model was fitted as 

a system of simultaneous equations using a three-

stage least squares regression method. Influence of 

stand density on red pine tree taper was explored 

using data from a spacing trial in Ontario.

Introduction

Twenty years ago, Reed and Green (1984: 977) wrote: “In the 

past, when merchantability standards were relatively stable, 

separate individual tree volume equations were developed 

for each set of merchantability limits. With rapidly changing 

standards, this approach becomes infeasible.” This conclusion 

is still valid. A properly developed timber product estimation 

system should allow for the development of compatible and 

mathematically tractable models that are fitted with sound 

statistical procedures and are responsive to ever-changing 

utilization standards. The latter need is more and more 

important in an increasingly global timber trade network. 

Questions about the comparability of lumber prices and timber 

harvest structures (chiefly proportions of saw logs and pulp 

logs in harvested wood) between U.S. and Canadian timber 

markets highlight the rising importance of developing valid 

cross-border comparisons. 

Stem profile models can provide a robust and systematic 

way for linking the raw commodity (wood) to wood products 

and thus should be useful for understanding differences in 

wood pricing systems and assessing potential growing timber 

stock value differences among markets. For example, the 

commercial software BUCK (�http://www.forestyield.com) 

allows for consistent calculation of various product mixes 

(e.g., dimensional lumber and pulp wood volume) from raw 

wood volume, using an array of data inputs transformed via 

stem profile modelling����������������������������������    . Consistent and tractable volume 

estimation can be accomplished in ����������������������������    two steps: (1) develop stem 

profile models that can define the cross-sectional area and 

volume of tree stems or logs and (2) use analytic geometry 

and user-specific input variables describing wood product 

dimensions and sawing variables, such as saw blade width, 

to develop precise and consistent estimates of sawn volume 

(fig. 1) (for example, see information on the system Optitek 

[���������������������������������������������������������        Forintek Canada Corp. 1994])�����������������������������     . Step 2 can be accomplished 

with little error once Step 1 is accomplished. If board foot/

cubic meter conversion factors were based on a common 

taper model, for example, conversions within a region of 

interest would be consistent. Further, once a common stem 

profile model is accepted to model raw volume, changes in 

utilization standards can be rapidly accommodated, allowing 

for computation of precise board (or other wood product) units, 

unlike typical board foot rules (Freese 1973) that confound 

assumptions regarding stem taper with peculiarities in sawing 

technology and assumptions about the size of trees that will be 

merchandized. Hence, a critical step in developing compatible 

estimates within a region of interest is developing a regionally 

valid stem profile model on which scaling conversions can 

be based.�������������������������������������������������        ������������������������������������������������      Losses in recoverable timber products caused by 

presence of cull or stem deformities could be accounted for 

during forest inventory procedures.

1 Research Scientist, MNR, Ontario Forest Research Institute, Sault Ste. Marie, Ontario P6A 2E5. E-mail: Voyteck.zakrzewski@mnr.gov.on.ca. 
2 Consultant, Forest Analysis Ltd., Huntsville, Ontario P1H 2J6. E-mail: mpenner@vianet.ca. 
3 Professor, Michigan State University, Forestry Department, 126 Natural Resources, East Lansing, MI 48824.
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The Great Lakes Stem Profile Modelling Project (GLSPMP) 

was established by the Ontario Ministry of Natural Resources, 

Ontario Forest Research Institute, in partnership with Michigan, 

Minnesota, and Wisconsin Departments of Natural Resources, 

the U.S. Department of Agriculture (USDA) Forest Service, 

and the support of Michigan State University, to improve local 

timber product estimates and to enable cross‑border compari-

sons of productivity potential of forest sites within the region of 

interest. The objective of the project is to create a regional �����Stem 

Analysis Database Management System����������������������     and to provide valid 

stem profile models for major commercial tree species for the 

Great Lakes Region. During the current softwood lumber dis-

pute, Zakrzewski’s (1999) taper model was verified by the U.S. 

Department of Commerce and extensively used to process tim-

ber measurement data from Ontario in support of cross‑border 

comparisons of harvest structures. Here, we present results of 

fitting that stem profile model for red pine (Pinus resinosa Ait.) 

from Ontario and Michigan, using data and models developed 

as part of the GLSPMP�����������������������������������     . Volume tables most commonly used 

for red pine are those by Fowler (1997) in Michigan and Honer 

et al. (1983) in Ontario; however, the models used to produce 

the tables do not describe tree stem taper. �����������������   We wanted to dem-

onstrate the feasibility of developing ��������������������������  statistically and legally 

defensible estimates of timber product volume ���������������� across regional 

political borders. Our specific objective was to suggest one 

model for the both regions and examine the conditions under 

which one model is applicable. 

The second objective of the presented study is to explore in-

fluence of a stand density on red pine taper using data from a 

spacing trial in Ontario referred to here as the Stiell trial. This 

influence has already been suggested in the literature, and ac-

counted for either explicitly through including stand density 

measures into taper model (e.g., Sharma and Zhang 2004), or 

implicitly by accepting density-related tree slimness measures 

into the model (e.g., Zakrzewski 1999). Red pine was used to 

examine spacing effects on taper due to the availability of data 

and because red pine is genetically very uniform ����������(Mosseler et al. 

1992). Sharma and Zhang (2004) examined black spruce, jack 

pine, and balsam fir. Only black spruce required a density term.

Methods and Data

Stem Profile Models Specification

In the presented study Zakrzewski’s (1999) stem profile model 

was defined. In taper-density relation study, Kozak’s (2004) 

model was also used to examine consistency of the results.

Zakrzewski’s (1999) stem profile model is based on geometric 

foundations and describes either outside bark or inside bark 

cross-sectional areas (ca
z
) along relative stem height locations z:

2 3 4

z
 +  + z z z = K ca

z - s

β γ
	 (1)

where z is defined by height location h of a cross-sectional area 

relative to total tree height H (z = 1 – h / H) and K is a tree-

specific constant value calculated as:

Figure 1.—Stem profile models allow for the cross-sectional 
area (ca) of a tree stem or log to be assessed at any points 
along the stem length (h or H the total height of the tree), 
allowing precise estimates of stem volume. Once the cubic 
foot volume of a section of tree is defined by a stem profile 
model (dashed cylinder), the quantity of wood products of any 
dimension (shaded board) can be derived using analytical 
geometry and input variables describing the technique for 
wood processing (e.g., saw blade kerf). 
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where C is a cross-sectional area, either outside or inside bark, 

respectively. For describing outside bark or inside bark cross-

sectional areas along tree stem, determined by input diameter 

d
0
 of height location h

0 
(thus, C = π d

0
2/40,000), commonly 

d.b.h.; i.e., outside bark diameter D at breast height (BH). 

Therefore, z
0
 = 1 - h

0
 / H; β, γ and s are model constants. The 

equation may feature one, two, or no points of inflection, ana-

lytically calculable, without segmentation. In equation (1), s = 

2 can be used as a predefined constant (Zakrzewski and Mac-

Farlane 2006). A simple transformation of equation (1) provides 

an equation that describes diameters d
z
 along the tree stem: 

d
z 
= (40,000 ca

z
 / π)0.5.

The presented model is mathematically tractable, meaning that 

after integrating ca
z
 (eq. 1) over h, the exact volume of a total 

stem (VOL), or any section of a stem, can be obtained. Total 

stem volume is calculated as:

[ ln ln

ln

ln ln ln ]

2 3 3 2

4 2

4 2 3

1 1

2 4

1 1

2 3

1 1

3 2

VOL = KH  +  +  (s - 1) +  +  (s - 1) + s s s s

 +  (s - 1) +   + s +  ss s

 +   +  s  -  (s) -  (s) -  (s)s s s

γ γ β β

γ γ γ

β β γ β

	(4)

The model (eq. 1) can be analytically solved to locate any 

reasonable merchantability (diameter) limit on a particular 

stem (Zakrzewski 1999).

Kozak’ s model 02 (eq. [4] in Kozak 2004) model was used for 

comparison.

4 0.1
1 2 3 4 5 6

1 2

11/

0
ˆ

D QiH
i i ib z b e b X b b H b XDa a

i id a D H X
   + + + + +    = 	 (5)

Where:	

id̂ = predicted inside bark diameter at height h
i
 from ground (cm)

	
(6)

Kozak’s model is one of the most flexible functions describing 

tree stem profiles (9 coefficients) and has low multicolinearity. 

The limitations of the above function come chiefly from a lack 

of full mathematical tractability of the model.

Data

Two data sets were used in the presented studies: one was used 

for defining a general stem profile model acceptable for Ontario 

and Michigan, another one was Ontario-specific and used for 

exploring influence of density on red pine’s taper. 

The data used for fitting general red pine stem profile models in 

this study consisted of measurements on 210 sample trees from 

Ontario and 128 sample trees from Michigan, for a total of 338 

stems with 3,215 inside and outside bark diameters measured 

along the stems. The data were collected in Ontario by Honer 

(MacLeod 1978) and in Michigan by Van Dyck (2005). In both 

cases, d.b.h. was measured at 1.37 m. D.b.h.s in Ontario’s data 

ranged from 6.5 to 65.5 cm, and in Michigan’s data from 12.9 

to 41.7 cm; heights ranged from 7.7 to 34.5 m, and from 8.5 to 

26.1 m, respectively. The data were from red pine plantations, 

but information about planting densities was not available.

The Stiell trial data come from the Petawawa Research Forest 

from a spacing trial initiated by Will Stiell and described in 

Penner et al. (2001). Briefly, i���������������������������������      n 1953, a red pine spacing trial 

was established on abandoned fields near Chalk River, Ontario 

(46°00’N, 77°26’W) to examine the effects of initial planting 

density on the growth and yield of red pine. The experiment 

consists of two plantations (blocks 109 and 110) a few hundred 

metres apart. Block 109 is approximately 3.2 ha and block 110 

is approximately 14.3 ha. The soil in one block is a deep fine 

to medium aeolian sand whereas the other block has medium 

water-laid sand with an aeolian sand cap. The soil moisture on 

both is similar and, as a result, both areas are considered to be 

in the same productivity class (Berry 1964). The study site was 

of high productivity for red pine with a site index of 24.4 m at 

50 years (Stiell and Berry 1973).

Bareroot seedlings were machine planted in the spring of 1953 

at square spacings of 1.2, 1.5, 1.8, 2.1, 2.4, 3.0, and 4.3 m. The 

average size of an area planted at a particular spacing was 1.6 ha.
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In the fall of 2002, 50 growing seasons from establishment, ���73 

trees were selected from the buffers for destructive sampling, 

representing the range of d.b.h.s in the PSP (table 1) from the 

buffers���������������������������������������������������        . The diameter outside bark and bark thickness was 

measured at 0.3, 0.8, 1.0, 1.3, and every subsequent 2 m along 

the bole to the base of the live crown and then every 1 m in the 

live crown for an average of 16 measurements along the stem. 

Model Fitting and Validation Methods

There are a few optional approaches to defining equation 

(1). One can use a traditional regression fitting technique, 

either nonlinear or linear fit to benefit from the intrinsic 

linearity of equation (1). Use of the regression procedures 

and their respective weaknesses (Gregoire et al. 2000) can be, 

however, avoided. If an individual tree total height, diameter 

at known tree height, and a tree stem volume or volume of 

a height location specific section of the stem are known, the 

coefficient β of equation (1) can be calculated analytically 

(Zakrzewski 2004) for that tree (in such case it is required that 

s = 2 or substituted with H, and coefficient γ set to 1). This 

approach was applied to “translate” Gevorkiantz and Olsen 

(1955) volume tables into stem profile models for Michigan 

State inventories. In fact, there is no need to transform the 

one-equation taper model fitted for one endogeneous variable 

(e.g., diameter) to predict response of a different variable 

(e.g., volume). A system of simultaneous equations may be 

fit, duly recognizing that many variables in the system may be 

interdependent, and thus, the classical least squares rules could 

be biased (Judge et al. 1988). We chose this method to define 

the general stem profile model for Ontario and Michigan, so 

equation (1) has been transformed to predict four individual 

tree measures: 

(1)	 Outside bark cross-sectional areas along tree stem ca
ob

. 

(2)	 Cross-sectional areas of bark along tree stem ca
bark

. 

(3)	 Height location of randomly selected inside bark diameter 

h
diam

 (the equation defining this height is not shown here, 

but is presented in Zakrzewski [1999]). 

(4)	 Inside bark volume of a stem section vol
log

 of variable 

length (0.45 to 31 m, 9 m average) including possibility 

for total tree volume. 

Outside and inside bark cross-sectional areas were based 

on 5 to 11 sectional diameter measurements per stem; most 

often 8 to 10. Inside bark cross-sectional area ca
ib
 was not an 

endogeneous variable in the system; however, a bark cross-

sectional area model (right-hand side of the equation) was 

formulated as the difference between outside bark cross-

sectional area and a form of equation (1) describing inside 

bark cross-sectional areas. Accepting one set of coefficients 

of equation (1) to define bark thickness along a stem was a 

deliberate simplification. 

From a range of relative height locations between 2 m and 80 

percent of the total tree height, inside bark diameters were 

randomly selected. Height location of these diameters h
diam 

was 

the endogeneous variable in the system of equations. 

To define inside bark volume of variable length logs (vol
log

, 

endogeneous variable in the system), height location of the 

base of the log and the location of the top cross-sectional area 

of the log were selected randomly for each stem. For about 

10 percent of tree stems, log volume was defined as total tree 

volume (with no stump). Volumes were calculated as a sum of 

sectional volumes estimated using Smalian’s formula (Avery 

and Burkhart 1994). The ultimate objective of fitting the model 

was to ensure acceptable predictions of tree stem parameters of 

interest to users of the model; i.e., a combination of low bias 

and high precision of predictions. Three-stage least squares 

(3SLS) was applied to account for both a simultaneity bias and 

Table 1.—Stiell trial spacing data are summarized by initial spacing.

Initial spacing (m) Number of trees Quadratic mean d.b.h. (cm) Top height (m) Volume (m3)

1.5 x 1.5 8 18.6 20.9 0.31

1.8 x 1.8 17 19.2 21.1 0.32

2.1 x 2.1 18 22.5 24.5 0.48

2.4 x 2.4 15 25.6 24.5 0.62

3.0 x 3.0 15 29.0 24.9 0.78

d.b.h. = diameter at breast height.
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contemporaneous correlation (LeMay 1990, Van Deusen 1988). 

SAS Institute’s PROC MODEL was used to fit the system of 

equations with 3SLS algorithms. 

In the presented study, autocorrelation of errors was not 

accounted for during the model fitting procedure. 

Similar to the task of model fitting, the model performance 

test requires examining both the method and the data. The 

fitted equation (1); i.e., a general model for Ontario and 

Michigan, was applied to obtain prediction errors for the 338 

trees described above (following Kozak and Kozak 2003). 

An equivalence test (Wellek 2003) was applied to examine 

optional regions of indifference for estimates of stem volumes. 

Traditionally, a null difference hypothesis would assume that 

the respective mean errors produced by model predictions 

are equal to 0, and the respective tests indicate whether 

sufficiently strong evidence exists to question this equality. 

The hypothesis we examined was different: namely, we insisted 

that the mean tree volume prediction error is not equal to 0. 

Such a hypothesis can be rejected if existing differences fall 

in the user-specified region of indifference. This subjectivity 

allows a practical evaluation of the modelling tool and helps 

decide if the expected errors are negligible for the model’s 

user (Robinson and Froese 2004). The region of indifference 

was defined as ε, a measure relative to standard deviation 

of prediction errors. Using this measure, a noncentrality 

parameter of F-distribution was calculated as ψ2 = n ε2, and 

then a cut-off statistic C was generated for comparison with the 

t-value. The value of cut-off is the square root of the α-quantile 

of the noncentral F distribution with degrees of freedom ν
1
 = 

1 and ν
2
 = n – 1. The cut-off value C can be easily obtained 

using the SAS software (function FINV): C = sqrt(FINV(α, 

ν
1 , 

ν
2 , 

ψ2)). If the t-value is smaller than the cut-off value, the 

hypothesis of dissimilarity can be rejected (we used α = 0.05). 

To look at spacing effects, equation (1) was fit using ordinary 

least squares nonlinear regression (PROC NLIN), predicting 

inside bark cross-sectional from d.b.h. (outside bark) and total 

height. A combined model was fit to trees from all spacings and 

then separate models were fit by spacing. Kozak’s model (Eq. [5]) 

was modified to predict cross-sectional area and then fit to the 

same data for comparisons with equation (1). 

Results

Results of Fitting the General Model

The 3SLS coefficients for the proposed regional stem profile 

model and associated statistics are presented in table 2. The 

constant s = 2 was used in the model, thus only two regression 

coefficients were estimated. Coefficient γ for red pine was 

significantly different from unity; however, setting this 

coefficient to 1 would be conceivable without affecting the 

predictive power of the model. Points of inflection for red pine 

were determined to occur on the average at 29 and 70 percent 

of the trees’ relative length. The system weighted statistics 

for R2 were 96 percent for outside bark cross-sectional areas 

(root mean squared error [RMSE] = 0.0109 m2), 93 percent for 

height location of given diameter (RMSE = 1.28 m), 98 percent 

for log volume (RMSE = 7.2 percent), and 25 percent for bark 

cross-sectional area (RMSE = 0.00006 m2). Reported goodness 

of fit measures were calculated using McElroy’s (1977) multi-

equation analog of Buse’s (1973) result (Judge et al. 1985).

Using the coefficients of the model, inside bark diameter 

prediction errors were calculated using the same data set used 

for the model fitting (table 3). Lack of fit statistics indicated a 

negative bias (mean error of prediction in table 3) in diameter 

predictions in the bottom 30 percent of relative height ranging 

from -0.6 to -0.1 cm, and in the top 30 percent, ranging from 

-0.7 to -0.3 cm. In the middle of the stems, bias was positive, 

ranging from 0.05 to 0.6 cm. Standard deviation of errors 

ranged from 0.8 to 2.9 cm in the top of stems. When the data 

were split into Michigan and Ontario subsets, the average 

standard deviation of diameter prediction errors for Ontario 

(2 cm) was twice that for Michigan (1 cm). Residuals of the 

Table 2.—Stem profile model 3SLS coefficients.

Coefficient Coefficient estimate Coefficient standard error

β – 1.8412 0.010
γ  0.9516 0.009

3SLS = three-stage least squares.
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equations were strongly correlated in case of cross-sectional 

area outside bark and cross-sectional area of bark (93 percent). 

Due to the model formulation, predicted diameter outside bark 

(d
ob

) is always larger than diameter inside bark. In terms of bark 

thickness, the standard deviation of prediction errors was, on 

average, about 0.35 cm. Not unexpectedly, bark thickness was 

significantly underestimated at the bottom part of stems. 

While tree sizes along tree stems are a major focus in stem 

profile modelling, predictions of wood volumes are ultimately 

of most interest to forest practitioners. Using the obtained 

coefficients, total tree (without stump) volume (Vol
tot

, table 3) 

predictions were examined (input variables were the same as 

those used for model fitting). For the whole data set, relative 

error was, on average, 0.14 percent, with standard deviation 

of 9.43 percent relating to individual tree predictions. For 

Michigan, respective values were 1.94 percent and 6.22 percent, 

and for Ontario 0.95 percent and 10.81 percent. Average 

relative error in log volume (Vol
log

, table 3) was 0.69 percent, 

with standard deviation 13.28 percent. For Michigan, respective 

values were 0.61 percent and 7.71 percent, and for Ontario 1.48 

percent and 15.71 percent. Bias was negligible. 

Results of Fitting the Stand-Density-Specific Model

Both models fit the data well (table 4, fig. 2) with the Kozak 

model having lower bias. The combined model (all spacings 

in a common model) was compared to separate models (fig. 

2b) by spacing by comparing the error sums of squares for the 

combined model to the pooled error sums of squares from the 

separate models. 

( ) ( )combined spacing combined spacing
spacing spacing

combined combined

SSE SSE dfe dfe

F
SSE dfe

∑ ∑− −

=

For both the Zakrzewski and the Kozak model, the hypothesis 

of a common taper model across all spacings was rejected (p 

< 0.0001 for both models). When the narrowest and widest 

spacings were removed, a common model fit the data as well as 

separate spacing models indicating a single model is adequate 

for spacings of 1.8 to 2.4 m. Spacings of 1.5 and 3.0 m are 

better predicted using separate models. As seen in figure 2b, 

the narrower spacings have larger cross-sectional areas above 

breast height for the same d.b.h. and total tree height, leading 

to higher volume. This is similar to the results of Sharma and 

Zhang (2004) for black spruce. 

Table 3.—Model performance statistics (absolute and relative (%) errors) for the proposed regional red pine stem profile model.

Region Variable N Mean error
Standard error 

of mean
Standard deviation 

of error
MIN error MAX error

Combined dobz  [cm]
3,215

– 0.16 0.03 2.09 – 11.34 9.61

dibz  [cm] – 0.13 0.03 1.79 – 11.05 8.42

hdiam [m]

338

0.17 0.02 1.28 – 3.55 5.16

Vollog [%] – 0.69 0.72 13.28 – 71.25 34.57

Voltot [%] 0.14 0.51 9.43 – 61.04 21.63

Ontario dobz  [cm]
2,218

– 0.27 0.05 2.34 – 11.34 9.66

dibz  [cm] – 0.28 0.04 2.02 – 11.05 8.42

hdiam [m]

210

0.13 0.03 1.41 – 3.55 5.16

Vollog [%] – 1.48 1.08 15.71 – 71.25 34.57

Voltot [%] – 0.95 0.74 10.81 – 61.04 21.63

Michigan dobz  [sq. m]
997

0.08 0.04 1.36 – 7.09 6.73

dibz  [cm] 0.18 0.03 1.06 – 6.19 5.42

hdiam [m]

128

– 0.26 0.03 0.93 – 2.69 4.01

Vollog [%]  0.61 0.68 7.71 – 33.69 26.43

Voltot [%]  1.94 0.54 6.22 – 21.81 12.72
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Although the taper model was fit to cross-sectional area, 

stem volume is key variable of interest. The Zakrzewki taper 

model was used to predict total stem volume and compared to 

the actual volume (fig. 3). The actual volume was calculated 

using Smalian’s formula using the taper data.  The taper model 

consistently underestimated total volume regardless of whether 

separate models were calibrated by spacing or whether the 

combined model was used. The taper model errors vary along 

the stem (fig. 2c) but the influence of cross-sectional area 

errors on volume are much greater near the base of the stem. 

This illustrates one of the benefits of a tractable model. Volume 

errors can be minimized directly by fitting the volume form of 

the taper model or volume and cross-sectional area errors can 

be minimized simultaneously. 

Table 4.—The error sums of squares and degrees of freedom are given by spacing for the Zakrzewski model and the Kozak model.

Model Spacing N d.b.h. (cm)
Total height 

(m)

Diameter 
inside bark 
(d.i.b.) (cm)

Combined Separate

Predicted 
d.i.b. (cm)

Mean d.i.b. 
error (cm)

Predicted 
d.i.b. (cm)

Mean d.i.b. 
error (cm)

Zakrzewski 1.5 108 18.74 21.15 12.43 12.38 0.52 12.77 0.13

1.8 236 19.39 21.10 12.88 12.62 0.26 12.68 0.20

2.1 296 22.60 24.50 14.83 14.57 0.26 14.65 0.19

2.4 214 25.61 24.62 16.87 16.49 0.41 16.69 0.21

3 202 28.95 24.79 19.41 19.23 – 0.02 18.94 0.28

Kozak 1.5 108 18.74 21.15 12.43 12.74 0.17 12.92 – 0.01

1.8 236 19.39 21.10 12.88 12.95 – 0.07 12.93 – 0.05

2.1 296 22.60 24.50 14.83 15.13 – 0.30 14.91 – 0.08

2.4 214 25.61 24.62 16.87 16.88 0.02 16.98 – 0.08

3 202 28.95 24.79 19.41 19.38 – 0.16 19.33 – 0.11

Figure 2.—The Kozak and Zakrzewski models for all spacings 
combined are compared for a tree with a total height of 20 m and 
a d.b.h. of 20 cm (a). The predictions are very close with the 
Kozak model having increased flexibility due to the inclusion 
of additional parameters. The combined model is compared to 
separate models by spacings for the Zakrzewski model (b). The 
errors along the stem are given by spacing for the Zakrzewski 
model (c).

(a)

(b)

(c)

Figure 3.—The volume predictions are given by spacing for 
the combined model and separate models by spacing. Note, on 
average, the prediction models underestimate volume.

d.b.h. = diameter at breast height; d.i.b. = diameter inside bark.
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Validation of the Performance of the Models

From the results presented in table 3, it is evident that the 

stem profile model yields acceptably low errors in log and 

tree volume prediction. For the purpose of cross-border 

comparisons, however, we must ask if we can use the same set 

of coefficients (the same stem profile model) to estimate wood 

volume in Michigan and Ontario. The answer is conditional 

based on user-specified criteria of equivalence. 

Equivalence tests, introduced to forestry by Robinson and 

Froese (2004), provide foresters with a sound and practical 

foundation to address the issue of model suitability for a 

desired purpose. Hypothesized dissimilarity between the 

observations and the model predictions is rejected if the 

existing differences fall in the region of indifference specified 

by model users from Michigan and Ontario. If the hypothesis is 

rejected, further efforts to improve the precision of the model’s 

predictive power could be considered as a purely academic 

exercise, or worth pursuing only for tasks demanding higher 

accuracy and precision.

To test the scenario of inside bark total tree stem volume 

prediction (Vol
tot

) being more practical for model application, 

an estimate of inside bark diameter at the BH level was used 

as the model’s input. To reduce d.b.h. (outside bark diameter) 

to the inside bark diameter at the BH level, the double bark 

thickness was predicted from the sample tree based regression 

model. The resulting volume errors were similar to those 

obtained using variable location input diameters. Tree volume 

errors were plotted against d.b.h. values and did not show any 

consistent pattern (fig. 4). 

To evaluate the presented results, a paired t-test of equivalence 

was performed. Normal probability plots indicated normal-

ity of distribution of errors for the joint data sets and for the 

individual regions. The criteria (suggested acceptable errors 

of 0.03 or 0.06 m3) were used to test the base for the rejection 

of dissimilarity hypothesis. Those were translated to different 

values of ε depending on the estimate of standard deviation of 

the volume prediction errors (ε values are obtained by dividing 

a criterion value by the respective standard deviation). Results 

indicate that the fitted model is acceptable if the model users in 

Michigan and Ontario can tolerate expected errors of total stem 

volume estimates not greater than around 50 percent of expect-

ed standard deviation of errors, i.e., 0.06 m3
 
(table 5). In practi-

cal terms, this can be expressed as around 4.7 percent volume 

error for a larger number of stems (a half of relative standard 

deviation reported in table 3 for the combined regions).

Figure 4.—Inside-bark tree volume prediction errors estimated 
for red pine data from Michigan and Ontario using proposed 
regional stem profile model.

Table 5.—Statistical summary of equivalence test (at α = 0.05) for red pine total tree volume prediction errors. 

Region Criterion (m3) N Mean error
Standard 
deviation ε t-value Cut-off value C

Hypothesis of 
dissimilarity

Combined
0.06

338 0.027 0.120
0.495

4.10
7.41 Rejected

0.03 0.247 2.90 Not rejected

Ontario
0.06

210 0.033 0.150
0.399

3.28
4.12 Rejected

0.03 0.199 1.25 Not rejected

Michigan
0.06

128 0.015 0.039
1.501

4.40
14.76 Rejected

0.03 0.750 6.72 Rejected

d.b.h. = diameter at breast height.
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Conclusions

As part of the Great Lakes Stem Profile Modelling Project, the 

general stem profile model developed by Zakrzewski (1999) 

was fitted for red pine in Michigan, United States, and Ontario, 

Canada, and its predictive performance examined. Results 

indicate much greater variability in red pine stem profiles in 

Ontario than in Michigan, which relates to differences in the 

data sets (perhaps stand density) defined by ���������������characteristic 

differences in stem form among species, across ecosystems, 

and under different growing conditions. While local variation 

in tree stem form can be accounted for by fitting (localizing) 

models (e.g., MacFarlane [2004] used ecological classification 

systems to define ecologically referenced height-diameter 

models), suitable regional models may be adequate for defining 

equivalent comparisons across larger regions (e.g., species 

neutral, composite volume equations developed by Gevorkiantz 

and Olsen [1955]). 

Our results suggest that cross-border comparisons of timber 

inventories can be directly addressed using regional stem 

profile models. �����������������������������������������       The fact that in this study stem profile 

model error was generally insensitive to the use of variable 

location input diameters demonstrates how the taper model 

can accommodate measurements taken from any reasonable 

portion of a stem or log, an important consideration in a model 

developed to combine data from different forest.

The Zakrzewski model and Kozak’s taper model led to similar 

conclusions about the effect of tree density (stems/ha) on taper. 

Based on the data used here, for moderate initial spacings 

(1.8 to 2.4 m), a single taper model is adequate. For narrower 

(1.5 m) and wider (3.0 m) spacings, separate taper models 

should be calibrated or the taper model modified to explicitly 

incorporate the density effect. Fitting only the cross-sectional 

area formulation of the taper model led to underprediction 

of volume, on average. A mathematically tractable taper 

model allows fitting of volume directly either on its own or 

simultaneously with cross-sectional area.
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Abstract.—Estimating species likelihood of occur-

rence across extensive landscapes is a powerful man-

agement tool. Unfortunately, available occurrence 

data for landscape-scale modeling is often lacking 

and usually only in the form of observed presences. 

Ecologically based pseudo-absence points were gen-

erated from within habitat envelopes to accompany 

presence-only data in habitat classification models 

(HCM) for the northern goshawk (Accipiter gentilis 

atricapillus). We built models at two resolutions, 

using predictor variables derived from 250-m Forest 

Inventory and Analysis map products, 30-m U.S. De-

partment of Agriculture Landfire map products, and 

digital elevation models. Cross-validation provided 

an assessment of models’ predictive capabilities. 

Use of ecologically based pseudo-absence points to 

accompany extant presence points in HCM can be a 

powerful asset for species conservation.

Introduction

Species habitat classification models (HCMs) and their 

associated habitat suitability maps are valuable assets to 

species monitoring, conservation, and land-use planning, 

particularly across broad landscapes where intensive surveying 

and monitoring is difficult. Species metapopulations are 

often spread across broad landscapes, justifying management 

across spatial extents which approximate their population 

ranges. Recent advances in statistical modeling, Geographic 

Information System (GIS), and remote sensing have enabled 

researchers to more accurately model species-habitat 

relationships in a spatial context (Levin et al. 1997, McNoleg 

1996, Scott et al. 2002). In addition, the creation of broad-scale 

continuous map products that portray land-cover variables 

have become valuable resources for species habitat modeling, 

particularly across large spatial extents. 

The U.S. Department of Agriculture (USDA) Forest Service 

Forest Inventory and Analysis (FIA) program recently cre-

ated map products of forest attributes across the central Utah 

highlands at 250-m resolution (table 1) (Blackard et al. 2004). 

Similar map products of forest attributes have been created by 

the USDA Landfire program as well, although at a finer resolu-

tion of 30-m (table 2) (Keane et al. 2002, Landfire 2005). When 

spatially intersected with species occurrence data (i.e., spatially 

explicit presence/absence points), spatial map products produce 

predictor variables useful in species HCMs. The statistical mod-

el underlying HCMs can then distinguish (i.e., classify) suitable 

habitat from nonsuitable habitat. Generalized linear models 

(GLMs), generalized additive models, and classification trees 

(Breiman et al. 1984) are among the most frequently used tech-

niques. GLMs are a popular choice because they have proven 

to be robust and stable (Brotons et al. 2004; Engler et al. 2004; 

Guisan et al. 1999, 2002; Manel et al. 1999; Pearce and Ferrier 

2000; Thuiller et al. 2003). 

Landscape-scale studies often lack absence data due to the 

amount of resources needed to collect absence data points 
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² Assistant Unit Leader and Professor, Utah Cooperative Fish and Wildlife Research Unit, College of Natural Resources, Utah State University, Logan, UT 
84322–5230. E-mail: t.edwards@gis.usu.edu.

³ Research Forester, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Ogden, UT 84401. E-mail: gmoisen@fs.fed.us.
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across an extensive study area. In addition, occurrence data-

bases containing recent and historical data (e.g., from censuses, 

field studies, museum and herbaria records) usually contain 

only presences. This lack of absence data precludes the use of 

many statistical techniques in HCMs. Two basic methods exist 

for handling the problem of presence-biased datasets: (1) using 

profile-type models, which incorporate the presence-only bias 

into the model and control its effects on the resulting predic-

tions (e.g., Hirzel et al. 2002, Stockwell and Peterson 2002b, 

Zaniewski et al. 2002), and (2) generating pseudo-absence 

points to be used in place of unknown absence data (e.g., 

Engler et al. 2004, Guisan and Thuiller 2005, Stockwell and 

Peterson 2002b, Zaniewski et al. 2002). 

Profile-type models contrast attributes of presence-only data 

with background levels of environmental variables across the 

study area. Factor analysis (Hirzel et al. 2002), fuzzy set theory 

(Busby 1991, Chicoine et al. 1985, Robertson et al. 2004), 

artificial intelligence methods (Stockwell and Noble 1991), 

and statistical mechanics (Phillips et al. 2006) are modeling 

techniques used in profile-type models. Unfortunately, several 

drawbacks exist for profile-type models, including overpredic-

tion (e.g., Ecological Niche Factor Analysis [ENFA]—Brotons 

et al. 2004, Engler et al. 2004), and assumptions that all predic-

tor variables are equally important in determining species’ dis-

tribution (e.g., Fuzzy Envelope Model—Robertson et al. 2004), 

that the presence data is unbiased (e.g., ENFA—Hirzel et al. 

2002), that the presence-only data originates only from source 

habitat (e.g., Maxent—Phillips et al. 2006), and difficulty 

in interpretation and statistical assessment. An alternative to 

profile-type models is to generate so-called pseudo-absences to 

pair with known presences (Ferrier and Watson 1997, Stockwell 

and Peters 1999, Stockwell and Peterson 2002b, Zaniewski et 

al. 2002). Traditional techniques of generating pseudo-absence 

points involve randomly selecting pseudo-absences from 

broadly defined species ranges, such as an entire study, and 

excluding locations where presence points exist. To constrain 

pseudo-absence point selection, Stockwell and Peters (1999) 

suggested creating a pseudo-survey region that confines the 

extent from which the pseudo-absence points can be generated. 

This study improves on existing pseudo-absence point genera-

tion techniques by incorporating biological knowledge con-

cerning the species-habitat relationship to constrain the region 

from which pseudo-absence points are selected. The northern 

goshawk (Accipiter gentilis atricapillus), considered a manage-

ment indicator species in many national forests of the Inter-

mountain West, was chosen as a study species because of its 

well-documented habitat associations (Brotons et al. 2004), and 

sufficient recent and extant presence points in Utah, but lack of 

absence points. The objectives of this study were (1) to develop 

methods to incorporate species’ ecology into the generation of 

pseudo-absence points, (2) to apply these methods to produce 

HCMs and output likelihood of occurrence maps for northern 

goshawk nest sites and nest areas across Utah’s central high-

lands, and (3) to test the utility of FIA and Landfire vegetation 

map products for wildlife habitat applications. 

To incorporate biological knowledge, and constrain the region 

from which pseudo-absence points are randomly selected, spa-

tial habitat envelopes based on known goshawk habitat associa-

tions were created. We define a habitat envelope as an ecologi-

cal representation of a species, or species feature’s (e.g., nest), 

observed distribution (i.e., realized niche) based on a single 

attribute, or the spatial intersection of multiple attributes. No 

existing computer programs (e.g., GARP) were employed to as-

sure complete control over the generation of habitat envelopes 

and the selection of ecologically based pseudo-absence points. 

Known ecological associations of northern goshawk nest 

location to habitat variables were translated into increasingly 

complex habitat envelopes. Pseudo-absence points were then 

paired with extant presence points and used in logistic regres-

sion to model the likelihood of occurrence of northern goshawk 

nest site (at 30-m resolution) and nest area (at 250-m resolu-

tion) as a function of habitat predictor variables. Models were 

evaluated with accuracy metrics via 10-fold cross-validation. 

Top models were translated into likelihood of occurrence maps 

across the study area, creating habitat suitability maps for each 

resolution. These envelope-based models were then compared 

to traditional models based on current practices for generating 

pseudo-absences, which involve selection of absences from 

broadly defined species ranges. 
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Methods

Study Region

The study occurred in forested regions of Zone 16, comprising 

the Wasatch and Uinta mountain ranges in Utah, southeast 

Idaho, and southern Wyoming (fig. 1). The zone is approxi-

mately 55 percent forested. Elevation ranges from 386 m to 

3,978 m (1,266 to 13,051 ft). Zone 16 was selected because 

FIA and Landfire map products are complete for this region, 

thereby providing a large set of digital predictor layers for 

modeling purposes.

post-fledging area (~170 ha), and the foraging area (~2,200 ha) 

(Reynolds et al. 1992). Multiple nest areas exist within a home 

range (Reynolds et al. 1994), and multiple (satellite) nests occur 

within each nest area (Reynolds et al. 2005, Squires and Reyn-

olds 1997). In general, large trees (> 40.6 cm diameter at breast 

height) (Beier and Drennan 1997) arranged in a clump (Graham 

et al. 1999) with dense canopy cover (Beier and Drennan 1997, 

Bright-Smith and Mannan 1994, Graham et al. 1999, Reynolds 

et al. 1992, Stephens 2001) are preferred for nesting. 

For modeling purposes, nest site is defined as the habitat 

immediately surrounding the nest (nest tree to 0.10 ha area 

surrounding the nest tree) (Reynolds et al. 1982, Squires and 

Reynolds 1997). Nest area is defined as habitat around the 

nest, 10 to 12 ha area in size that includes the nest tree, adult 

roosts, and prey plucking sites (Newton 1979, Reynolds et 

al. 1992). Nest site habitat characteristics were derived from 

the spatial intersection of 30-m resolution (0.09-ha) predictor 

variables with nest presence points (for suitable nest sites) and 

nest pseudo-absence points (for unsuitable nest sites) in a GIS 

(Zarnetske 2006). Nest area habitat characteristics were derived 

from the spatial intersection of 250-m resolution (6.25-ha) 

predictor variables with nest presence points (for suitable nest 

areas) and nest pseudo-absence points (for unsuitable nest 

areas) in a GIS (Zarnetske 2006). Hereafter, 30-m resolution 

(representing nest sites) and 250-m resolution (representing nest 

areas) models using habitat envelopes are referred to as “30-m 

habitat envelope models” and “250-m habitat envelope models,” 

respectively. Models using traditional techniques of generating 

pseudo-absence points are referred to as “30-m traditional 

models” and “250-m traditional models.” 

Predictor Variables

The FIA plot-based inventories of forested land across Zone 16 

were combined with 250-m MODIS imagery using regression 

tree modeling techniques to produce a suite of vegetation map 

products (Blackard et al. 2004) (tables 1 and 2). Landfire 30-m 

resolution map products for Zone 16 were created with plot 

inventories (including FIA plot data), biophysical gradients, 

and 30-m Landsat Thematic Mapper imagery using regres-

sion tree modeling as well (Keane et al. 2002, Landfire 2005) 

Figure 1.—Zone 16 study region.

Study Species

The northern goshawk is the largest accipiter in North 

America, is an apex predator, and is holarctic in distribution 

(Squires and Reynolds 1997). Homerange is approximately 

2,400 ha, and consists of three components: nest area (~12 ha), 
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(tables 1, 2). Zone 16 Landfire map products included forested 

and nonforested areas; for modeling and comparison with FIA 

map products, nonforested regions in Landfire map products 

were excluded. Elevation (m), slope (%), and aspect (degrees) 

derived from 30-m and 250-m digital elevation models (DEMs) 

originating from the U. S. National Elevation Dataset. Aspect was 

rescaled to a scale from 0 to 1, where high values were assigned 

to north-northeast facing slopes (Roberts and Cooper 1989):

TASP = [1-cos(aspect-30)] / 2.

FIA map products and the 250-m DEM were restricted to use 

in the 250-m models while Landfire map products and the 30-m 

DEM were restricted to use in the 30-m models.

Northern Goshawk Nest Presence Points

Recent (1993–2005) northern goshawk nest point locations 

were obtained from the Ashley, Dixie, Fishlake, Manti-La Sal, 

Uinta, and Wasatch-Cache National Forests, and the Utah Divi-

sion of Wildlife Natural Heritage database (n = 564). Only the 

most recently active nest per northern goshawk territory was 

selected to reduce spatial autocorrelation (n = 285, 1994–2005) 

(Reynolds 1983, Speiser and Bosakowski 1991, Woodbridge 

Table 1.—Descriptions of continuous spatial map products 
from Landfire and FIA.

Variable Abbreviation Description

Landfire map product

Canopy bulk density CBD kg/m

Canopy base height CBH m to live canopy

Forest canopy cover FCC % canopy cover

Forest height FHT m

Herbaceous canopy cover HCC % canopy cover

Herbaceous height HHT m

Shrub canopy cover SCC % canopy cover

Shrub height SHT m

Elevation ELEV m

Slope SLP % rise

Transformed aspect TASP 0-1

FIA

Stand age AGE age (yrs)

Basal area BA m²/ha

Forest biomass BIO tons/ha

Crown cover CC % crown cover

Forest growth GRW m³/ha

Quadratic mean diameter QMD cm

Stand density index SDI ha

Trees per hectare TPH trees > 2.54 cm 
DBH per ha

Forest volume VOL m³/ha

Weighted height WHT m (weighted by 
larger trees)

Elevation ELEV m

Slope SLP % rise

Transformed aspect TASP 0-1

Table 2.—Descriptions of categorical spatial map products 
from Landfire and FIA. All units were converted to the metric 
system for consistency.

Variable Abbreviation

Landfire map product
   Cover type (dominant cover type)	 COV
      ponderosa pine	 PP
      lodgepole pine	 LPP
      high elevation pinea	 HEP
      Douglas fir	 DF
      white fir	 WF
      spruce/fir	 SF
      pinyon-juniper	 PJ
      juniper	 J
      riparian and other hardwoods	 RH
      aspen/birch	 AB
   Structure (height, forest canopy cover)	 STR
      forest, height <= 10m, canopy <= 40%	 STR1
      forest, height <= 10m, canopy > 40%	 STR2
      forest, height > 10m, canopy <= 40%	 STR3
      forest, height > 10m, canopy > 40%	 STR4
FIA map product
   Forest type (dominant forest type)	 FT
      rocky mountain juniperb	 PJ
      juniper woodlandb	 PJ
      pinyon-juniper woodland	 PJ
      Douglas fir	 DF
      ponderosa pine	 PP
      white fir	 WF
      Engelmann spruce	 ES
      Engelmann spruce/subalpine fir	 ES/SAF
      subalpine firc	 ES/SAF
      blue spruced	 DF
      lodgepole pine	 LPP
      foxtail pine/bristlecone pinec	 ES/SAF
      limber pinec	 ES/SAF
      aspen	 QA
      deciduous oak woodland	 DO
      cerocarpus woodland	 CW
      intermountain maple woodlande	 DO
      misc. western hardwood woodlandse	 DO

a Reassigned to lodgepole pine.
b Reassigned to pinyon-juniper woodland.
c Reassigned to Engelmann spruce/subalpine fir.
d Reassigned to Douglas fir.
e Reassigned to deciduous oak woodland.
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and Detrich 1994). Four nest locations were associated with 

Landfire nonforested pixels and six nest locations were as-

sociated with FIA nonforested pixels. These locations were 

eliminated, reducing the total number of nests to 281 for the 

30-m models and 279 for the 250-m models. 

Ecologically Based Pseudo-Absence Points

Pseudo-absence points for both the 30-m and 250-m habitat 

envelope models were randomly selected from within ecologi-

cally based habitat envelopes. Habitat envelopes represent the 

spatial extent of a species’ gross habitat needs, contain a large 

percentage of extant presence points, and are derived from 

single or the intersection of multiple spatial variables. Viable 

northern goshawk habitat envelopes contained at least 90 

percent of extant presence points (≥ 508 of 564). Habitat enve-

lopes were created in a GIS based on existing habitat associa-

tions reported from 30 northern goshawk studies in the Western 

United States (Zarnetske 2006).

These northern goshawk studies provided 30-m resolution 

nest site and 250-m resolution nest area habitat characteristics 

during the breeding season. Geometric means (geomeans) of 

published minima and maxima values of habitat characteristics 

(i.e., percent canopy closure, tree height) across studies were 

used to set the lower and upper limits of the habitat envelopes. 

If minima and maxima habitat characteristics were not reported, 

the 95 percent confidence interval habitat characteristic values, 

or values of ± 1 standard deviation (SD) were used instead. If 

unavailable, standard deviation was calculated as SD = SE × √(N). 

Single variable habitat envelopes were created by extracting 

the grid cells for a particular habitat variable that fell within 

geomeans of published minima and maxima. The spatial 

intersection of two or more envelopes produced multivariable 

habitat envelopes. Habitat envelopes at each model resolution 

containing less than 90 percent of all presence points (n < 507) 

were discarded. Up to three habitat envelopes from each type 

(1, 2, and 3 variable) which contained the highest percentages 

of presence points, were chosen for pseudo-absence point 

generation (tables 3 and 4). 

Before selection of pseudo-absence points from habitat 

envelopes, northern goshawk nest areas and post-fledging areas 

(a total of 182 ha centered on each nest) for all 564 nests were 

removed from the habitat envelopes so that pseudo-absence 

points would not be selected from areas where known nests and 

defended territories occur (Reynolds et al. 1992). 

Unbalanced ratios of presence to absence points can affect the 

accuracy of classification models (Manel et al. 2001, Stockwell 

Table 3.—Northern goshawk 30-m nest site habitat envelopes from Landfire map products. “∩” refers to the spatial intersection of 
multiple single-variable habitat envelopes. All units converted to the metric system for consistency.

Envelopes Values 
% of all nest points
contained (n = 564)

% cover of zone 
16 forested area

CONASP All conifers and aspena 97.7 95.0

ELEV 1,828–3,048 m 96.0 88.0

FHT 8.97–25.6 m 96.9 79.3

CONASP ∩ FHT All conifers and aspena

FHT: 8.97–25.6 m
94.9 60.1

CONASP ∩ ELEV All conifers and aspena

ELEV: 1,828–3,048 m
93.7 84.6

ELEV ∩ FHT ELEV: 1,828–3,048 m
FHT: 8.97–25.6 m

92.8 65.2

CONASP ∩ ELEV ∩ FHT All conifers and aspena

ELEV: 1,828–3,048 m
FHT: 8.97–25.6 m

90.9 53.1

a All conifers and aspen, including ponderosa pine, lodgepole pine, high elevation pine, Douglas fir, white fir, spruce/fir, pinyon/juniper, juniper, aspen/
birch.
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and Peterson 2002a); consequently, the proportion of pres-

ence to absence points was balanced to ensure that predicted 

distributions are as accurate as possible. One hundred sets 

of pseudo-absence points were randomly selected from each 

habitat envelope (n = 281 for 30-m habitat envelopes; n = 279 

for 250-m habitat envelopes). A one-sample t-test compared the 

distribution of 100 samples against the habitat envelope popula-

tion to test for biased samples (P > 0.05, one-sample t-test). 

Traditional Pseudo-Absence Points

A set of traditional pseudo-absence points was also generated 

for each of the 30-m and 250-m traditional models. Instead 

of generating habitat envelopes, pseudo-absence points were 

randomly selected from the entire study region (in this case, all 

forested area within Zone 16). Existing northern goshawk nest 

areas and post-fledging areas were removed from the study area 

so that pseudo-absence points would not be assigned within 

existing territories. 

Habitat Envelope Model Creation 

One set of pseudo-absence points was randomly selected 

for each habitat envelope (Zarnetske 2006), paired with the 

presence points, and modeled as the response using logistic 

regression in R (R Project 2006). Variables used to create a 

habitat envelope were not included in the logistic regression 

models (i.e., QMD was not included as a predictor variable 

if the pseudo-absence points were generated from the QMD 

habitat envelope). Some cover types in models at 30-m 

resolution and some forest types in models at 250-m resolution 

were so low in occurrences of presences or pseudo-absences 

that logistic regression could not converge. Consequently, 

“high elevation pine” was reassigned as “lodgepole pine” 

within the Landfire cover type. Within FIA forest type, “rocky 

mountain juniper” and “juniper woodland” were reassigned 

“pinyon-juniper woodland,” “sub-alpine fir,” “limber pine,” 

and “bristlecone pine” were reassigned “Engelmann spruce/

sub-alpine fir,” “blue spruce” was reassigned “Douglas fir,” 

and “intermountain maple woodland” and “misc. western 

hardwoods” were reassigned “deciduous oak woodland.” 

Decisions to reassign types were based on associated forest 

Table 4.—Northern goshawk 250-m nest area habitat envelopes from FIA map products. “∩” refers to the spatial intersection of 
multiple single-variable habitat envelopes. 

Envelopes Values 
% of all nest points
contained (n = 564)

% cover of zone 
16 forested area

QMD 11.5–77 cm 100.0 99.6

WHT 5–21 m 99.8 81.3

SDI 337–2,021 (in ha) 97.9 90.3

QMD ∩ WHT QMD: 11.5–77 cm
WHT: 5–21 m

99.8 80.9

QMD ∩ SDI QMD: 11.5–77 cm
SDI: 337–2,021 (in ha)

97.9 89.8

SDI ∩ WHT SDI: 337–2,021 (in ha)
WHT: 5–21 m

97.7 74.9

QMD ∩ SDI ∩ WHT QMD: 11.5–77 cm
SDI: 337–2,021 (in ha)
WHT: 5–21 m

97.7 74.6

ELEV ∩ QMD ∩ WHT ELEV: 1,828–3,048 m
QMD: 11.5–77 cm

95.9 72.4

QMD ∩ CONASP ∩ WHT QMD: 11.5–77 cm
All conifers and aspena

WHT: 5–21 m

95.9 68.5

a All conifers and aspen including pinyon-juniper, Douglas fir, ponderosa pine, white fir, Engelmann spruce, sub-alpine fir, lodgepole pine, and aspen.
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cover following Burns and Honkala (1990). In this manner, 

the presence/pseudo-absence data sets remained balanced and 

logistic regression was able to converge. 

Ten-fold cross-validation was performed to assess model 

predictive capability, and associated model metrics were 

calculated (i.e., sensitivity, specificity, kappa, percent correctly 

classified [PCC], and receiver operating characteristic plot’s 

area under the curve [AUC]). Models produced from the 

same set of absence points and habitat envelope were ranked 

according to Akaike’s information criterion (AIC) (Akaike 

1973), cross-validation error rate, and adjusted deviance (D²
adj

) 

to form a list of top candidate models (4 for each traditional 

model resolution, 18 for 30-m models, and 33 for 250-m 

models) (Zarnetske 2006). Because these pooled top models 

were not nested models containing the same variables, AIC 

was not an appropriate measure of performance for comparison 

among models. To determine the top model of each resolution, 

models were selected first by low cross-validation error rate (all 

models < 1 percent from the lowest cross-validation error rate), 

and then by the highest D²
adj

. If D²
adj

 was equal for two or more 

top models, the more parsimonious model was chosen as the 

top model (tables 5 and 6).

Traditional Model Creation

Traditional models were created following the same methodol-

ogy as described above for the habitat envelope with exceptions 

noted here. One set of pseudo-absence points was randomly se-

lected for each resolution, paired with the presence points, and 

modeled as the response with predictor variables using logistic 

regression in R (Zarnetske 2006). All traditional models per 

resolution were ranked according to AIC. Top candidate models 

were each assessed for fit (D²
adj

) and predictive capability (sen-

sitivity, specificity, kappa, PCC, AUC) on the training data, and 

internally validated by 10-fold cross validation. Models were 

ranked and the top model per resolution was chosen following 

the methodology above (tables 5 and 6).

Table 5.—Top habitat envelope and traditional models from the list of competing top models.  Only significant cover types and forest 
types are shown. Direction of variable influence is indicated by “+” or “–” preceding the variable.  AIC and ΔAIC are reported but 
these models cannot be compared with AIC because they contain different sets of pseudo-absence points.

Model name Model AIC ΔAIC

30-m resolution

TRAD30-4 +CBH*** –HCC* +FHT*** –SLP*** 583.40 4.68

CONASP ∩ ELEV3 +CBH*** +FHT*** –SLP*** 546.95 2.96

250-m resolution

TRAD250-3 + FT(–PJ*** +DF* +PP*** +WF*** +LPP*) +GRW –SLP*** 584.10 3.28

QMD3 +FT(–PJ*** +DF* +PP*** +WF***) +GRW*** –SLP*** 542.53 3.80

AIC = Akaike information criterion.
* P < 0.05; ** P < 0.01; *** P <  0.001
Forest type codes: PJ = pinyon/juniper, DF = Douglas fir, PP = ponderosa pine, WF = white fir, LPP = lodgepole pine.

Table 6.—Top models’ fit and predictive capability statistics. ( ) = standard error. Error rate represents 10-fold cross-validation 
error rate.

Model name D²adj Sensitivity Specificity Kappa PCC Error rate AUC

30-m resolution

TRAD30-4 0.74 0.81 0.74 0.56 0.78 23.39 0.82 (0.02)

CONASP ∩ ELEV3 0.69 0.84 0.77 0.62 0.81 19.46 0.85 (0.02)

250-m resolution

TRAD250-3 0.72 0.78 0.70 0.48 0.74 27.03 0.82 (0.02)

QMD3 0.67 0.83 0.76 0.59 0.79 22.68 0.84 (0.02)

AUC = area under the curve; PCC = percent correctly classified.
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Habitat Suitability Maps

Top habitat envelope 30-m and 250-m models’ coefficients 

were translated into likelihood of occurrence GIS maps across 

forested regions of Zone 16 using StatMod extension (Garrard 

2002) in ArcView 3.2 (ESRI 2005) (figs. 2 and 3). Maps 

depict likelihood of occurrence of nest site (30-m) or nest area 

(250-m) ranging from 0 to 1, where 0 to 0.25 is very unsuitable 

habitat (light grey), 0.25 to 0.50 is unsuitable habitat (grey), 

0.50 to 0.75 is suitable habitat (dark grey), and 0.75 to 1.0 is 

highly suitable habitat (black). 

Results

Top habitat envelope models always outperformed top traditional 

models in terms of model fit and predictive capability (table 6). 

Slope was always significantly negative in all top candidate 

models (table 5). Top traditional and habitat envelope 30-m 

models all contained forest height variables (i.e., CBH and 

FHT) that were significantly positive. Top traditional and habi-

tat envelope 250-m models all contained FT either within the 

habitat envelope or as a predictor variable. At both resolutions, 

four-variable habitat envelope models always had the lowest 

AIC scores, but similar three-variable models were usually 

within ΔAIC < 2, suggesting that addition of a fourth predictor 

variable did not improve models significantly (Zarnetske 2006). 

The top 30-m traditional model (TRAD30-4) had four param-

eters and included a negative association with HCC, a signifi-

cantly negative association with SLP, and a significantly posi-

tive association with both CBH and FHT (table 5). The top 250-

m traditional model (TRAD250-3) was the most parsimonious 

of top competing models with low cross-validation error rates. 

This model had 12 parameters, including a positive association 

Figure 2.—Likelihood of goshawk nest site occurrence across 
Zone 16 based on top 30-m habitat envelope model. 

Figure 3.—Likelihood of goshawk nest area occurrence across 
Zone 16 based on top 250-m habitat envelope model. 
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with forest types appropriate for northern goshawk nest areas 

(i.e., ponderosa pine, white fir, lodgepole pine), a negative as-

sociation with low suitability forest types (pinyon/juniper), a 

significantly positive association with GRW, and a significantly 

negative association with SLP (Zarnetske 2006). 

The CONASP ∩ ELEV habitat envelope produced the pseudo-

absence points used in the top 30-m habitat envelope model. 

These pseudo-absences were less variable than those used in 

the top 30-m traditional model for most variables. CONASP 

∩ ELEV3 was the most parsimonious of competing models 

with only three parameters (CBH, FHT, SLP). QMD3 was the 

top 250-m habitat envelope, and pseudo-absence points in this 

model were also less variable than those used in TRAD250-3 

for most variables (Zarnetske 2006). 

Discussion

The ecology of the species-habitat relationship was 

successfully incorporated into the generation of ecologically 

based pseudo-absence points by creating habitat envelopes. 

This method can be a powerful asset for extracting information 

from extant species occurrence databases, which are often 

underutilized because traditional modeling techniques require 

both presence and absence points. Rare, threatened, and 

sensitive species such as the northern goshawk can benefit 

from the production of landscape-scale habitat suitability 

maps using ecologically based pseudo-absence points. These 

habitat suitability maps provide information for species range 

shift studies, censuses, reserve designs, species reintroduction, 

habitat restoration, and biodiversity conservation. Ecologically 

based pseudo-absence points can be applied to any species, 

ecosystem, data resolution, and spatial extent, given some a 

priori knowledge concerning the species-habitat relationship. 

In addition, the use of readily available software (e.g., Program 

R and ArcGIS) allows easy application and the flexibility to 

work with user-defined data structures and map products. 

Representation of underlying ecological relationships will 

always improve when observed and measured biological 

relationships are incorporated into modeling and extrapolation 

(Belovsky et al. 2004). The consistent improvement in model 

fit and predictive capability of habitat envelope models is a 

testament to using ecologically-based pseudo-absence points 

over traditional pseudo-absences. In addition, reliance on 

sound statistical modeling with pseudo-absences may be more 

appropriate than obscure profile-type models that are difficult 

to interpret and assess for model fit and predictive capability. In 

cases where field-collected absences are suspected to be false 

(Graham et al. 2004; Hirzel et al. 2001, 2002), ecologically 

based pseudo-absences could provide more robust absences. 

Incorporating ecology into pseudo-absence point generation 

should also decrease the chance of a biologically inappropri-

ate top model because habitat envelopes already constrain the 

regions of pseudo-absence point generation to preferred habitat. 

Pseudo-absences from habitat envelopes will be less variable on 

average than those generated from an entire study area due to 

the reduced region from which they are selected. In this study, 

this allowed the statistical models to improve classification 

of northern goshawk highly suitable and moderately suitable 

habitat, and to create more statistically and ecologically robust 

models. The distinction of highly suitable from moderately 

suitable is essential to species conservation and habitat manage-

ment, particularly for rare, threatened, and sensitive species sus-

ceptible to habitat fragmentation and degradation. Researchers 

interested in well-studied species such as the northern goshawk 

will be able to focus on highly suitable habitat within the range 

of suitable habitat. Lesser-known species will still benefit from 

ecologically based pseudo-absence points because presumably 

some aspect of their habitat association is known (i.e., they pre-

fer forested over nonforested areas).

A successful habitat envelope will maximize the percent of 

presence points contained while at the same time reducing the 

area from which pseudo-absence points are selected. Based on 

the high number of presence points contained, the reduced area 

from which pseudo-absence points are selected, and the high 

model fit and predictive capability statistics, the CONASP ∩ 

ELEV habitat envelope appears to be the best habitat envelope 

at 30-m resolution for the northern goshawk. The top 250-m 

habitat envelope model included the same parameters (FT, 

GRW, SLP) as the top traditional model, and almost the same 
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area as the entire study region (99 percent of the study region). 

The similarity in model parameters and spatial extent caused 

more heterogeneous ecologically based pseudo-absence points 

than expected, but the top 250-m habitat envelope model was 

still an improvement in model fit and predictive capability 

over the top 250-m traditional model. High AUC values from 

these top habitat envelope models indicate that the models 

have useful application across the study area because they are 

insensitive to threshold cut-off values (Fielding and Bell 1997, 

Swets 1988), and have few false positives. Due to the immense 

resources needed to census goshawk metapopulations across an 

area the size of Zone 16, false positives would be detrimental to 

census efforts. The high sensitivity, specificity, kappa, and PCC, 

and low cross-validation error rate for both top habitat envelope 

models suggests that sampling high likelihood of occurrence 

sites may lead to the discovery of new nest sites and nest areas. 

Northern goshawk habitat associations were pooled from 

the entire Western United States, consisting of a variety of 

forested ecosystems. If more northern goshawk habitat studies 

were available for regions similar to Utah’s central highlands 

(i.e., Intermountain West field studies), and only this habitat 

information was considered in creating habitat envelopes, 

more two- and three-variable habitat envelopes could have 

provided robust sets of pseudo-absence points. In addition, the 

entire study area already represents a habitat envelope of sorts 

because it is constrained to forests in Zone 16. If traditional 

models were produced over all of Zone 16 (i.e., 55 percent 

forest and 45 percent nonforest), they would better reflect the 

current methods of generating pseudo-absence points. 

The models contain error from a variety of sources. As models 

themselves, each FIA and Landfire map product contributes 

spatial and classification error. Because FIA and Landfire map 

products of Zone 16 incorporate plot-based inventory data and 

satellite imagery spanning from 1998–2003, certain cells within 

the map products may inaccurately reflect current conditions 

(Blackard et al. 2004, FIA 2005, Landfire 2005). DEMs and 

spatial error associated with nest points are additional sources 

of error. No known methods exist to incorporate the inherent 

error of spatial layers into statistical classification models. 

The assumptions that habitat is saturated (Capen et al. 

1986), and that the species modeled is in equilibrium with 

its environment (Austin 2002), are often ignored in broad-

scale habitat modeling because knowing the locations of all 

individuals or the individuals’ attribute (i.e., a nest) is nearly 

impossible across a broad landscape, particularly at one time 

step. It is probable that not all northern goshawk territories 

in Zone 16 have been identified and that some of the nests 

used in the models are in sink habitats. Some nests used in 

modeling may be in sink habitat due to incomplete nest activity 

information. Most large-scale species occurrence datasets 

include data collected by a variety of survey methods and do 

not have complete data point attribute information. 

The likelihood of occurrence of nest sites and nest areas across 

Zone 16 reflects environmental habitat variables only. Prey 

abundance, nest productivity, and interannual climatic variability 

are important variables driving nest success in addition to 

appropriate habitat type (Doyle and Smith 1994, Keane 1999, 

Reynolds et al. 2006, Salafsky et al. 2005, Wiens et al. 2006). 

These variables were not available for each nest location across 

Zone 16; consequently, northern goshawk nest placement does 

not necessarily correlate directly with nest productivity. It is 

for this reason that the nest site and nest area habitat suitability 

maps should be used as guides to locate new highly suitable 

habitat, and new nests and territories. Intensifying sampling in 

highly suitable areas while decreasing sampling effort in low 

suitability areas should increase sampling efficiency. 

As new nests are located, the model can be adjusted to incor-

porate more recently active nests. Ideally, a northern goshawk 

HCM would use 1 year’s nest activity information across 

Zone 16 so that unoccupied known nests could be treated as 

absences and occupied nests could be treated as presences. On 

a landscape scale such as Zone 16, this could be achieved on 

a per-season basis by identifying successful nests (i.e., those 

that produced fledglings) during existing routine national forest 

nest monitoring, determining competitor presence and prey 

abundance through distance sampling (following Salafsky       

et al. 2005), using spatial habitat data such as FIA and Landfire 

map products, incorporating disturbance extents and severity 
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ratings (such as timber sale, fire, and beetle kill), and recording 

weather extremes and climatic events in proximity to each 

nest. In this manner, data collected on a per-year basis would 

allow for per-breeding season analysis of suitable and successful 

nesting habitat. The likelihood of occurrence of active nests 

could be modeled following Reich et al. (2004), but using 

pseudo-absence points to accompany known presence points. 

If these assessments continue for several years in a row, the 

variability between years will be captured and a more complete 

assessment of across-landscape habitat suitability and nest 

success will be clear. 

Researchers and conservationists will gain insight into the 

level of habitat saturation throughout Zone 16 through yearly 

monitoring of new nests found with the help of this model, 

and monitoring existing nests for activity. Combining this 

knowledge of nest activity with age of adult breeders would 

help determine the stability of the Zone 16 population 

(Kenward et al. 1999, Reynolds et al. 2006, Reynolds and 

Joy 2006). Sympatric species such as the sharp-shinned hawk 

(Accipiter striatus), spotted owl (Strix occidentalis), and barred 

owl (Strix varia), have similar nesting habitat requirements to 

the northern goshawk (Bildstein and Meyer 2000, Gutiérrez 

et al. 1995, Mazur and James 2000) and will likely benefit 

from northern goshawk habitat conservation. If possible, 

northern goshawks should be assessed on a bioregional scale, 

incorporating population demographics across the Western 

United States (Woodbridge and Hargis 2006). HCMs using 

ecologically based pseudo-absence points with FIA and 

Landfire map products to locate new territories and nests 

across the Western United States will assist this bioregional 

assessment. 

Conclusions

FIA and Landfire map products will be useful in habitat assess-

ments to a range of species, particularly rare, threatened, and 

sensitive species. As alteration to U.S. landscapes continue, it is 

becoming increasingly important to insure connectivity among 

ecosystems and available habitat for species’ metapopulations 

across entire ecoregions. The production of these map products 

across the ecoregions of the United States will greatly assist 

species habitat assessments, land-use planning, and ecosystem 

conservation over broad spatial extents. Ecologically-based 

pseudo-absence points in combination with extensive land cover 

map products such as FIA and Landfire have the potential to as-

sist a wide variety of species’ habitat assessments and increase 

the utility of database presence points. 
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Challenges of Working With FIADB17 Data: 
The SOLE Experience

Michael Spinney1 and Paul Van Deusen2

Abstract.—The Southern On Line Estimator (SOLE) 

is an Internet-based Forest Inventory and Analysis 

(FIA) data analysis tool. SOLE is based on data 

downloaded from the publicly available FIA database 

(FIADB) and summarized by plot condition. The 

tasks of downloading, processing, and summarizing 

FIADB data require specialized expertise in inventory 

theory and data manipulation. The FIADB is an 

important FIA product that should be made as easy to 

use and as error free as possible. Some of the errors 

that have been found in the FIADB are outlined 

here along with the incremental steps made toward 

improving it over the past year.

Introduction

The Southern On Line Estimator (SOLE) (http://ncasi.uml.edu/

SOLE/) is an Internet-based database analysis tool developed 

cooperatively by the National Council for Air and Stream 

Improvement (NCASI) and the U.S. Department of Agriculture 

Forest Service Southern Research Station. SOLE performs 

tabular, chart, linear model, and map analyses on annual Forest 

Inventory and Analysis (FIA) data made publicly available 

through the FIA database (FIADB). 

SOLE’s data is based on publicly available annual FIA data 

downloaded from the FIADB data download facility and 

summarized by plot condition. This largely automated process 

requires a comprehensive program that must be modified to 

accommodate changes in the FIADB. This paper illustrates 

some of the challenges that NCASI has faced in using the 

FIADB by giving several examples of major events that have 

impacted the utility of the FIADB. 

FIADB Revisions

The FIADB has undergone several revisions. The East/

Westwide databases were consolidated into FIADB Version 1.0 

in 2001 (Miles et al. 2001) to produce a consistent structure and 

repository for FIA data. FIADB1.0 was revised to FIADB1.7 

in 2004 (Alerich et al. 2004), which substantially changed 

the database structure. Each of the nine tables carried over 

from FIADB1.0 doubled in size with new variables describing 

biological conditions/properties (plot location, forest health 

data, regional variables, etc.) and database administration 

(estimation methods, data modification dates, etc.). 

The upgrade to Version 1.7 was disjointed because data were 

released before the supporting documentation. Substantial 

changes in the database caused users to struggle to understand 

new variables and tables. The most notable change was the 

redefinition of condition proportion (CONDPROP, which 

describes the proportion of a plot defined by a particular suite 

of site characteristics) to be adjusted over stratum. All values 

in the CONDPROP field were missing, and close inspection of 

the condition table revealed five new variants of CONDPROP. 

An inquiry to the Northeastern regional FIA office confirmed 

that one of these variants was a close approximation to the old 

definition of CONDPROP. This approximation was incorporated 

into SOLE. Documentation explaining this change in FIADB1.7 

was released later that month. 

In July 2005 FIA upgraded FIADB to Version 2.1 to use 

the National Information Management System to collect, 

compile, summarize, and distribute the data. The 2.1 revision 

was introduced as “development” files (available alongside 

Version 1.7 data) with a draft user manual. Implementing this 

newest FIADB data into SOLE has not shown any substantial 

difference in the database structure or variable definitions. 

Version 2.1 has since moved into production, yet the user 

manual and data file names are still labeled as “draft.” 

1 Quantitative Forestry Analyst, National Council for Air and Stream Improvement, Inc., 600 Suffolk Street, Fifth Floor, Lowell, MA 01854. E-mail: mspinney@
ncasi.org.
2 Principal Research Scientist, National Council for Air and Stream Improvement, Inc., 600 Suffolk Street, Fifth Floor, Lowell, MA 01854.
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The FIADB Data Dump

FIADB data is delivered via the FIADB data dump, which 

is the only public access point to access FIADB data. Users 

navigate to this Web page and select a data file for download. 

Recent revisions to the FIADB data download facilities have 

improved on some, but not all, aspects of data delivery. Because 

the data dump is the singular public gateway to FIA data, 

complete and accurate documentation is critical.

In 2005, data files began receiving a time stamp when they 

are uploaded to the FIADB. The intent of the time stamp is 

for users to determine whether they have the most recent data. 

Unfortunately, this time stamp is not always accurate. For 

example, the AL_04 compressed file has a timestamp of April 

2005. Downloading and decompressing the file reveals that the 

individual files were actually modified in November 2005. FIA 

should ensure that the time stamp is accurate.

Major changes to the FIADB data are not always documented. 

Georgia’s annual data disappeared from the FIADB for several 

months in 2004. The data file reappeared without explanation. 

Concurrently, California and Oregon’s data had internal 

formatting errors that prevented proper file import. The Pacific 

Northwest station confirmed the error, then applied a correction 

over the next few months. The errors were never noted on the 

Web site. In December 2005, all annual data from 1998 to 2002 

for Indiana and Missouri were removed without explanation. 

Errors must be carefully and completely explained to enable 

users to assess the integrity of past analyses. 

The latest incarnation of the FIADB data dump, “FIA Data 

Mart,” improves on the former data download facility. State 

selection has been condensed from multiple pages of text to 

a single drop down list. Multiple data formats can be selected 

for each State and a direct link leads to the user guide for each 

format. Unfortunately, notation of survey type (periodic/annual) 

has been removed. This information is available only by view-

ing the summary statistics link on the MapMaker homepage. 

NCASI’s FIADB Assessment

NCASI created a FIADB Assessment to characterize the 

following properties of annual FIADB data by State: 

1.	 Plot coordinate type.

2.	 Number of plots by measurement year.

3.	 Proportion of plots containing key variables.

Changes in these characteristics are tracked over time. The 

assessment reports are updated on a quarterly basis and posted 

at http://ncasi.uml.edu/SOLE/.

Summary

FIA data is essential to monitor the forests of the United States. 

A tremendous amount of effort goes into collecting, compiling, 

and delivering data to the public through the FIADB. The 

public accesses FIADB data through a single portal, thus it 

is critical that the portal be error free and easy to use. The 

essential information a user needs to perform an analysis 

includes survey type, FIADB manual, an accurate time stamp, 

and explanation of past data errors. All of this information 

should be accessible from one location. 
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Use of FIA Plot Data in the LANDFIRE 
Project

Chris Toney1, Matthew Rollins2, Karen Short3, Tracey 

Frescino4, Ronald Tymcio5, and Birgit Peterson6

Abstract.—LANDFIRE is an interagency project 

that will generate consistent maps and data describ-

ing vegetation, fire, and fuel characteristics across the 

United States within a 5-year timeframe. Modeling 

and mapping in LANDFIRE depend extensively on a 

large database of georeferenced field measurements 

describing vegetation, site characteristics, and fuel. 

The LANDFIRE Reference Database (LFRDB) in-

corporates existing data from numerous sources along 

with new data targeting specific ecosystems. This 

article describes the contribution of Forest Inventory 

and Analysis (FIA) data to the LFRDB. Plot selec-

tion, quality assurance procedures, and geoprocessing 

applied to FIA data in LANDFIRE are discussed. We 

also describe the use of FIA data as inputs to several 

modeling and mapping processes. Several charac-

teristics of the FIA sample design and field methods 

are beneficial to modeling vegetation distributions 

in LANDFIRE. In addition, tree-level attributes af-

forded by FIA data are essential to developing canopy 

fuel layers and are generally unavailable from other 

existing datasets. Ongoing and potential collaboration 

between FIA and LANDFIRE is identified.

Introduction

LANDFIRE (Landscape Fire and Resource Management 

Planning Tools; www.landfire.gov) is a 5-year project begun 

in 2004 to provide consistent geospatial data on vegetation, 

fire, and fuel across the entire United States, regardless of 

ownership. Principal investigators in this multipartner project 

are the U.S. Department of Agriculture (USDA) Forest Service 

Missoula Fire Sciences Laboratory, the U.S. Geological Survey 

(USGS) National Center for Earth Resource Observation 

and Science, and The Nature Conservancy. LANDFIRE is 

sponsored by the Wildland Fire Leadership Council, which 

implements and coordinates the National Fire Plan and the 

Federal Wildland Fire Management Policy. LANDFIRE 

has been identified as a data and modeling system key to 

implementing a national strategy for addressing the Nation’s 

wildland fire problems (U.S. GAO 2005).

Deliverable products from LANDFIRE include more than 20 

spatial data layers and a comprehensive set of field-plot data. 

Spatial layers are raster datasets generated at 30-m2 resolution 

and distributed on The National Map Web site (http://gisdata.

usgs.gov/website/landfire). Final products will be delivered by 

Multi-Resolution Landscape Characterization (MRLC) map 

zone (USGS 2005b), with Western States’ map zones scheduled 

for completion by the end of 2006, Midwestern and Eastern 

States’ by 2008, and those in Alaska and Hawaii by 2009.

A critical element of LANDFIRE is the provision of all spatial 

data required to run FARSITE (Finney 1998). FARSITE is a 

widely used fire-spread simulation model. It requires fuel layers 

in addition to topographic, weather, and wind data. LANDFIRE 

generates two versions of mapped fire behavior fuel models 

(Anderson 1982, Scott and Burgan 2005), forest canopy 

height, canopy cover, canopy bulk density, and canopy base 

height. Elevation, aspect, and slope products (USGS 2005a) 

are distributed with the LANDFIRE fuel layers to provide the 

complete set of FARSITE spatial inputs.
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4 Forester, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT 84401. E-mail: tfrescino@fs.fed.us. 
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6 GIS Specialist, USDA Forest Service; currently at U.S. Geological Survey National Center for Earth Resource Observation and Science, Sioux Falls, SD 57198.
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LANDFIRE also provides layers describing fire regimes and 

vegetation. Fire regime layers include fire regime condition 

class (FRCC) (Hann et al. 2003), FRCC departure, fire regime 

groups, fire return interval, and fire severity. Vegetation layers 

include environmental site potential, biophysical settings, 

existing vegetation type, existing vegetation canopy cover, 

existing vegetation height, and succession classes.

In this article, we briefly describe the process used to generate 

the LANDFIRE spatial products, with an emphasis on how 

Forest Inventory and Analysis (FIA) plot data are used in 

mapping and modeling. 

LANDFIRE Process

LANDFIRE uses an integrative process incorporating satellite 

imagery, ecosystem simulation, vegetation modeling, and 

simulated landscape dynamics (Keane et al. 2002b, Rollins     

et al. 2004). Mapping is based extensively on a large database 

of georeferenced field measurements describing vegetation, 

site characteristics, and fuel. Multiple, independent screening 

procedures are applied to the plot data at various points in the 

process for quality assurance (QA). Plot data are associated 

with numerous additional attributes derived from spatial layers, 

vegetation classifications, and QA results. Figure 1 shows an 

overview of information flow in LANDFIRE.

Source Datasets

Spatial Layers

Three dates of Landsat 7 imagery for each map zone are 

provided by the MRLC Consortium (USGS 2005b). A digital 

elevation model (DEM) and selected DEM derivatives are 

obtained from Elevation Derivatives for National Applications 

(USGS 2005a). Soil depth and texture layers are derived from 

the STATSGO database (USDA NRCS 2005b). Ancillary 

Geographic Information System (GIS) layers include roads 

(BTS 2005) and the 1992 National Land Cover Dataset 

(NLCD) (NLCD 1992, USGS 2005c).

LANDFIRE generates 42 simulated biophysical gradient layers 

(e.g., evapotranspiration, soil temperature, growing degree 

days) that become potential predictor variables in the mapping 

process. Biophysical gradients are generated using WX-BGC, 

an ecosystem simulator derived from BIOME-BGC (Running 

and Hunt 1993) and GMRS-BGC (Keane et al. 2002b). Inputs 

to WX-BGC are DAYMET interpolated weather data (Thornton 

et al. 1997), soil depth, soil texture, and elevation.

Vegetation Map Unit Classification

LANDFIRE vegetation mapping classification begins with 

NatureServe’s ecological systems (Comer et al. 2003), with 

additional development by NatureServe and LANDFIRE 

ecologists. Ecological systems are defined by NatureServe as 

a group of plant community types that tend to co-occur within 

landscapes that have similar ecological processes, substrates, 

and/or biophysical gradients. They represent a mid-scale 

classification, smaller than ecoregions but larger than the 

associations and alliances at lower levels of the U.S. National 

Figure 1.—Overview of the LANDFIRE process used to 
generate spatial data layers describing vegetation, fuel 
characteristics, and fire regimes.
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Vegetation Classification (USNVC) (Federal Geographic Data 

Committee 1997, Maybury 1999). The spatiotemporal scale for 

ecological systems is specified as tens to thousands of hectares, 

persisting for 50 or more years. At this spatial scale, ecological 

systems are mappable using remotely sensed data, while the 

temporal scale allows successional dynamics to be integrated 

into the concept of each unit.

Ecological systems provide the basis for map unit classifica-

tions of LANDFIRE existing vegetation types, environmental 

site potential, and biophysical settings. Existing vegetation type 

represents the vegetation currently present at a given site. Sys-

tematic crosswalks will link LANDFIRE existing vegetation 

type map units with the USNVC, the cover type classifications 

of the Society of American Foresters (Eyre 1980) and Society 

for Range Management (Shiflet 1994), and various agency 

classifications. Environmental site potential represents the veg-

etation that could be supported at a given site based on the bio-

physical environment. As used in LANDFIRE, map unit names 

for environmental site potential represent the natural plant 

communities that would become established at late or climax 

stages of successional development in the absence of distur-

bance. Environmental site potential is an abstract concept and 

represents neither current nor historical vegetation. Biophysical 

setting represents the vegetation that can potentially exist at a 

given site based on both the biophysical environment and an 

approximation of the historical fire regime. The biophysical 

settings map is a refinement of the environmental site potential 

map. As used in LANDFIRE, map unit names for biophysi-

cal setting represent the natural plant communities that would 

become established in later stages of successional development 

given natural ecological processes such as fire.

Field Plot Data

LANDFIRE obtains existing field data describing vegetation 

and/or fuel from numerous sources including the USDA Forest 

Service FIA program and other USDA Forest Service pro-

grams, the USGS Gap Analysis Program, Bureau of Land Man-

agement, Bureau of Indian Affairs, Department of Defense, 

Department of Energy, various State natural resource agencies, 

and university research labs. Vegetation data generally include 

some combination of the following: cover type, percentage 

cover by species or lifeform, heights and diameters of indi-

vidual trees, crown ratios and crown classes of individual trees, 

and tree density. Fuel data generally include some combination 

of the following: counts or biomass estimates of fine and coarse 

woody material, percentage cover of live and dead shrubs and 

herbs, heights of the shrub and herb layers, and canopy base 

height. Plot photos are used if available. The data must include 

a georeference for each sampling point. LANDFIRE also 

samples a limited number of new field plots targeting systems 

underrepresented in the existing data.

Acquisition of FIA data begins with selected fields (table 1) 

from the Condition, Plot, Tree, and Seedling tables in the FIA 

database (Alerich et al. 2004, Miles et al. 2001) for all phase 

2 plots (Reams et al. 2005). Tree canopy cover and understory 

species composition for each plot are also acquired where 

available regionally. Plot data are acquired from both the older 

periodic surveys (McRoberts 2005), as well as the annual in-

ventories conducted since 2000 that use a national standardized 

plot design (Bechtold and Scott 2005). Down woody material 

data from FIA phase 3 plots are provided by the USDA Forest 

Service North Central Research Station (Woodall and Williams 

2005). Data acquisition is coordinated with personnel from 

FIA Spatial Data Services (USDA Forest Service 2005) and 

designated FIA liaisons to the LANDFIRE project.

LANDFIRE Reference Database

Populating the LANDFIRE Reference Database (LFRDB) 

involves two phases: (1) compilation of plot records from 

disparate sources into a common data structure, and (2) associ-

ating the plot records with a large number of derived attributes. 

LFRDB structure and management tools are derived from the 

Fire Effects Monitoring and Inventory System (Systems for 

Environmental Management 2005). The compilation phase 

involves standardizing coordinate information, measurement 

units and species codes, along with initial QA screening. The 

second phase involves classifying plots to LANDFIRE existing 

vegetation type and environmental site potential, and perform-

ing spatial overlays to attribute plot records with topographic, 

gradient, and spectral values.
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Table 1.—FIA variables provided for use in LANDFIRE. Names of tables and national variables are from FIA database.

Variable Description Availability

Plot table

STATECD State code National

CYCLE Cycle number National

SUBCYCLE Subcycle number National

UNITCD Unit code National

COUNTYCD County code National

PLOT Plot number National

MEASDAY Measurement day National

MEASMON Measurement month National

MEASYEAR Measurement year National

DESIGNCD Plot design code National

Condition table

CONDID Condition identifier National

CONDPROP Condition proportion National

LANDCLCD Land class code National

FORTYPCD Forest type code National

CRCOV Tree crown cover Regional

DSTRBCD1, DSTRBCD2, DSTRBCD3 Disturbance codes National

DSTRBYR1, DSTRBYR2, DSTRBYR3 Disturbance years National

TRTCD1, TRTCD2, TRTCD3 Stand treatment codes National

TRTYR1, TRTYR2, TRTYR3 Stand treatment years National

Tree table

SUBP Subplot number National

TREE Tree number National

STATUSCD Tree status code National

SPCD Species code National

DIA Current diameter National

HT Height National

ACTUALHT Actual height National

CR Compacted crown ratio National

CCLCD Crown class code National

TPACURR Trees per acre National

HTTOCR Height to crown Regional

UNCR Uncompacted crown ratio Regional

Seedling table

SUBP Subplot number National

SPCD Species code National

COUNTCD Seedling count code National

Other tables

Various Understory species composition Regional

Source: Alerich et al. 2004, Miles et al. 2001.
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Compilation of FIA Plot Data

The current national design for FIA ground plots uses clusters 

of four 24-ft radius subplots totaling approximately 1/6th ac. 

The minimum circle enclosing all four subplots is approximately 

1.5 ac. A mapped-plot feature of the design specifies protocols 

by which field crews delineate areas within subplots recognized 

as distinct condition classes based on a predetermined set of 

discrete variables classifying land use, forest type, stand size, 

regeneration status, tree density, stand origin, ownership group, 

and disturbance history (Bechtold and Scott 2005). Although 

the motivation for the current plot design relates to avoiding 

statistical bias and domain classification problems, the condi-

tion-class information also allows users to make assumptions 

about the degree of heterogeneity in the plot footprint. It should 

be noted that before implementation of the national core design 

in the late 1990s, FIA units used a variety of plot designs with 

different approaches to positioning plots relative to condition-

class boundaries (Bechtold and Scott 2005).

At present, LANDFIRE incorporates data from single-

condition FIA plots only. Single-condition plots are assumed 

to have reasonably homogenous vegetation over the area 

of the plot footprint, and therefore to be more appropriate 

for associating with specific pixel values in raster datasets, 

compared with multiple-condition plots in general. Only the 

most recent measurement is used for plots sampled more than 

once over time. Initial QA procedures during compilation 

include linking all species nomenclature to PLANTS database 

codes (USDA NRCS 2005a), range validation of canopy cover, 

height values, and dates, and checking coded attributes against 

lookup tables. Source documentation is maintained to an extent 

that would allow FIA personnel to trace a record in the LFRDB 

back to the original internal FIA dataset. 

Derived Attributes

Automated sequence tables are used to assign plots to 

vegetation map units (ecological systems) for existing 

vegetation type and environmental site potential. The sequence 

tables encode rule sets for classifying plots based on life 

form canopy cover values and relative abundance of indicator 

species. Species composition data for FIA plots are derived 

from Tree and Seedling records and understory vegetation 

records where available (e.g., Interior West, Pacific Northwest).

Spatial overlays are performed to associate plot records with 

approximately 100 raster data layers (fig. 2). These derived 

attributes become potential predictor variables in the mapping 

process described below. Coordinates for FIA plots are not 

stored in the LFRDB. Geoprocessing and spatial analysis are 

done by designated FIA liaisons to the LANDFIRE project for 

compliance with FIA confidentiality and security requirements. 

LFRDB Summary to Date

LFRDB compilation was complete for eight map zones as of 

September 15, 2005 (fig. 3). There were 71,664 potentially 

usable plot records for these eight map zones. Two percent of 

these plots (1,446) were withheld from mapping for use in ac-

curacy assessment. Overall, 15 percent of plots were from FIA, 

while 31 percent of plots in woodland and forest cover types 

were from FIA. Table 2 shows summary characteristics for FIA 

plots and non-FIA plots as a group. Non-FIA plots tended to 

be clustered nearer to roads compared with FIA plots that are 

positioned to provide a broad-scale statistical sample based on 

a hexagonal frame with spatial intensity of one plot per 6,000 

acres in the population of interest (Reams et al. 2005).

Figure 2.—Geoprocessing to generate derived spatial 
attributes for field plot records.
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Vegetation Mapping

Vegetation maps, both existing vegetation type and 

environmental site potential, are foundational to LANDFIRE 

fuel and fire regime products. The general approach to mapping 

is based on classification trees (e.g., Huang et al. 2003) using 

See5 software (www.rulequest.com). Thousands of plots per 

map zone from the LFRDB are available as training sites for 

supervised classification. Plots are subjected to two separate 

QA screening procedures before mapping. Approximately 

100 potential predictor variables are associated with plot 

records, describing topography, biophysical gradients, 

and spectral reflectance (satellite imagery is not used for 

mapping environmental site potential or biophysical setting). 

Classification-tree output from See5 is applied spatially using 

custom software to produce the vegetation maps.

QA Screening Procedures

QA screening of plots before mapping environmental site 

potential and biophysical setting attempts to identify plots 

that have been misclassified by the sequence table. Plots could 

be misclassified due to incomplete species composition data, 

recent disturbance that affects species composition on the plot, 

or errors in the sequence table. Initially, a subset of plot records 

is flagged based on unlikely combinations of environmental 

site potential and existing vegetation type. The flagged plots are 

examined further by manually reviewing species composition 

data and plot photos if available. The process also makes use 

of disturbance history information if available, including FIA 

disturbance (DSTRB) and treatment (TRT) codes.

QA screening prior to mapping existing vegetation type 

examines assumptions inherent to integrating satellite imagery 

with the plot data. The procedure attempts to reconcile point-

in-time differences between plot measurement date and image 

acquisition date. Initial flagging of plots is based on distance 

to nearest road, lack of agreement between the plot dominant 

life form and NLCD, and recent disturbance on the plot if 

disturbance history data are available. In addition, a threshold 

value of Normalized Difference Vegetation Index difference 

produced from MRLC 1992 and MRLC 2001 (USGS 2005b), 

indicating areas of likely change, is also used to flag potential 

problem plots. Flagged plots are examined visually, overlaid on 

satellite imagery.

QA screening represents a significant investment in analyst 

time before vegetation mapping due to the requirement for 

manual inspection of plot records in both tabular and spatial 

contexts. QA attributes in the LFRDB denote which plots were 

discarded from mapping, reason codes for the discarded plots, 

and analyst notes. Retention rate is the percentage of plots 

retained for mapping after QA screening. FIA plots tend to 

exhibit high retention rates relative to other data sources in the 

LFRDB (fig. 4).

Table 2.—Summary characteristics of FIA plots and non-FIA 
plots as a group from the first eight map zonesa of the LFRDB.

Characteristic	 FIA plots	 Non-FIA plots

Average distance to nearest roadb	98 5 m	 396 m

Spatial pattern	 Dispersed	 Clustered

Temporal span	19 78–2004	1984 –2004

FIA = Forest Inventory and Analysis; LFRDB = LANDFIRE Reference 
Database.
a Map zones 12, 15, 16, 17, 18, 23, 24 and 28.
b Based on U.S. Bureau of Transportation Statistics (2005) roads layer

Figure 3.—LANDFIRE map zones for the coterminous United 
States. Shading indicates zones for which LFRDB compilation 
was completed as of September 15, 2005.

LFRDB = LANDFIRE Reference Database.
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Vegetation Models and Fire Regimes

Although vegetation modeling and fire regime mapping are 

major components of LANDFIRE, they are described here only 

briefly because they do not use FIA data directly. Vegetation 

models quantify succession and disturbance dynamics for each 

biophysical setting (Pohl et al. 2005). They are aspatial, state-

and-transition models developed through a series of regional 

expert workshops using Vegetation Dynamics Development 

Tool (VDDT) software (ESSA Technologies Ltd. 2005). 

Development of the models involves specifying successional 

states for each biophysical setting, along with temporal 

parameters and probabilities for transition pathways between 

states. Extensive documentation and peer review accompany 

model development.

The VDDT models, along with maps of biophysical setting and 

topography, and parameters for fire and climate, are inputs to a 

spatially explicit Landscape Disturbance and Succession Model 

(LANDSUM) (Keane et al. 2002a). LANDSUM simulates his-

torical vegetation and fire regime characteristics. Output from 

LANDSUM is used to generate the LANDFIRE fire regime 

maps. Combined with maps of existing vegetation succession 

classes, LANDSUM reference condition output is used to gen-

erate maps describing vegetation departure (e.g., FRCC).

Fuel Layers

Fuel Loading Models

LANDFIRE fuel loading models contain information about 

specific live and dead fuel amounts that can be used to predict 

fire effects such as soil heating, vegetation mortality, and 

smoke. They are based on a classification comprising 14 

fire effects groups. Coarse woody debris, duff, and litter are 

important discriminants. Development of fuel loading models 

is informed by FIA phase 3 down woody material (DWM) data 

(Woodall and Williams 2005), and DWM data from FIA phase 

2 plots where available (e.g., Pacific Northwest FIA).

Canopy Fuel Layers

LANDFIRE maps the FARSITE canopy fuel layers, canopy 

bulk density (CBD), and canopy base height (CBH) directly 

from field data using methods similar to those described above 

for vegetation mapping. CBD is the volumetric density of 

available canopy fuel (kg/m3), based on dry weight of material 

greater than 0.25-in diameter. CBH is defined as the lowest 

height above ground with sufficient fuel to propagate fire 

vertically, starting where CBD is greater than or equal to 0.012 

kg m-3. CBD and CBH are estimated from plot data using 

FuelCalc software (Reinhardt et al. 2006). FuelCalc implements 

a set of species-specific biomass equations to estimate CBD and 

CBH along with available canopy fuel and total canopy weight. 

Tree-level inputs to FuelCalc are species, diameter at breast 

height, height, height to base of live crown, crown class, and 

(plot-level) trees per acre.

FIA data generally afford the required inputs to FuelCalc, 

whereas most other data sources in the LFRDB do not provide 

Figure 4.—Percentage plot retention by data source following 
quality assurance screening for existing vegetation type (EVT) 
and biophysical settings (BpS) mapping in LANDFIRE map 
zone 12. Data sources are USGS Nevada and Utah Gap 
Analysis Programs (USGS-GAP), USDA Forest Service FIA 
program (USFS-FIA), various USDA Forest Service vegetation 
mapping and related efforts (misc. USFS), Stanford University 
Center for Conservation Biology (CCB), Bureau of Land 
Management Ely field office (BLM), California Department of 
Fish and Game (CDFG), and USGS monitoring effort within 
the Nevada Test Site (misc USGS).
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this full set of attributes. A caveat is that height to base of live 

crown is derived from the tree crown ratio. The FIA national 

core variable is compacted crown ratio (CR), the percent of 

the tree bole supporting live, healthy foliage, with the crown 

visually compacted to fill in gaps, expressed as a percentage of 

total tree height (Alerich et al. 2004). Compacted crown ratio 

has long been considered an indicator of tree vigor and an im-

portant predictor of periodic growth increment in forest growth 

models (e.g., Wykoff et al. 1982). In fire behavior modeling, 

however, a major interest is on the vertical continuity of fuel 

from the ground to the crown as a predictor of crown fire risk. 

Height to base of live crown derived from uncompacted crown 

ratio is a more appropriate variable for these applications (Mon-

leon et al. 2004). Uncompacted crown ratio is available region-

ally for some FIA plots (e.g., Interior West, Pacific Northwest).

Conclusions

Use of FIA data has clear benefits for LANDFIRE. FIA 

provides a national, consistent dataset that is continually 

updated. Data quality is high, resulting in high retention rate 

for plots subjected to LANDFIRE QA screening procedures. 

The even spatial distribution of FIA plots is beneficial for 

mapping at regional scales. Condition-class information from 

the mapped-plot feature of the national FIA plot design can 

potentially be exploited to improve integration with remotely 

sensed data. Furthermore, FIA data contain a rich set of 

attributes including species composition, stand structure, down 

woody material, and tree-level inputs for FuelCalc estimation 

of canopy fuel. The full set of FuelCalc inputs is not generally 

available from other data sources.

A limitation of FIA data for mapping vegetation and fuel 

characteristics at a national extent is the regional availability of 

certain attributes. These include plot-level tree canopy cover, 

understory species composition, and uncompacted crown ratio. 

While these attributes are available for FIA phase 2 plots in the 

Interior West and Pacific Northwest regions, national mapping 

projects using FIA data may be required to choose between 

altering methodologies across regions or accepting FIA national 

core variables for wall-to-wall coverage. Despite this limitation, 

FIA is more consistent on a national basis compared with other 

existing datasets in terms of attributes available, sampling 

design, and field methods.

The collaborative relationship with LANDFIRE also has 

benefits for the FIA program. LANDFIRE provides a national 

application of FIA data to wildland fire management through 

development of an integrated data and modeling system. FIA 

plots processed by LANDFIRE comprise a value-added data set 

with potential application to other mapping efforts. LANDFIRE 

attributes FIA plots with ecological systems classification, 

quantitative vegetation models, biophysical gradients, predicted 

fire regime characteristics, and a set of QA attributes relevant 

to integrating plot data with satellite imagery, vegetation 

classification, and fuel mapping. Software tools developed for 

geoprocessing and exploratory data analysis in LANDFIRE 

also could have broader utility within FIA.
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