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Estimating Uncertainty in Map Intersections

Ronald E. McRoberts1, Mark A. Hatfield2, and Susan J. 

Crocker3

Abstract.—Traditionally, natural resource managers 

have asked the question “How much?” and have 

received sample-based estimates of resource totals 

or means. Increasingly, however, the same managers 

are now asking the additional question “Where?” and 

are expecting spatially explicit answers in the form 

of maps. Recent development of natural resource 

databases, access to satellite imagery, development 

of image classification techniques, and availability 

of geographic information systems has facilitated 

construction and analysis of the required maps. 

Unfortunately, methods for estimating the uncertainty 

associated with map-based analyses are generally 

not known, particularly when the analyses require 

maps to be combined. Motivated by the threat of 

the emerald ash borer in southeastern Michigan, 

the number of ash trees at risk was estimated by 

intersecting a forest/non-forest map and an ash tree 

distribution map. The primary objectives of the study 

were to quantify the uncertainty of the estimate and 

to partition the uncertainty by source. An important 

conclusion of the study is that spatial correlation—an 

often ignored component of uncertainty analyses—

made the greatest contribution to the uncertainty in 

the estimate of the total number of ash trees.

Introduction

The emerald ash borer (Agrilus planipennis Fairmaire, 

Coleoptera: Buprestidae) (EAB) is a wood-boring beetle native 

to Asia that was initially discovered in the United States in 

June 2002. It most likely entered the country in solid-wood 

packing material such as crates and pallets and was transported 

to Detroit, Michigan, at least 10 years before it was discovered 

there in 2002 (Cappaert et al. 2005, Herms et al. 2004). Ash 

trees are the only known host, and damage is the result of larval 

activity. Once eggs hatch, larvae bore into the cambium and 

begin to feed on and produce galleries in the phloem and outer 

sapwood. Larval feeding disrupts the translocation of water and 

nutrients and eventually girdles the tree. Tree mortality occurs 

within 1 to 3 years, depending on the severity of the infestation 

(McCullough and Katovich 2004, Haack et al. 2002). All of 

Michigan’s native ash species (Fraxinus spp.) and planted 

cultivars are susceptible (Cappaert et al. 2005). Since 2002, 

southeastern Michigan has lost an estimated 15 million ash 

trees due to the EAB (Cappaert et al. 2005). The natural rate 

of EAB dispersal is estimated to be less than 1 km per year in 

low-density sites. Natural dispersal has been enhanced by hu-

man transportation of infested firewood, ash logs, and nursery 

stock. This artificial spread of EAB has initiated the majority 

of outlier infestations (Cappaert et al. 2005). Continued spread 

outside of the core zone increases the threat to ash trees across 

the United States. 

The objective of the study was twofold: (1) to estimate the 

uncertainty in forest/nonforest maps, ash tree distribution maps, 

and intersections of the two maps, and (2) to partition the total 

uncertainty in areal estimates of the total number of ash trees by 

source. 

Methods

The motivating problem for the study was to calculate an 

estimate, A
total

, of the total number of ash trees in a region of 

southeastern Michigan (fig. 1) that is susceptible to infestation 
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by the EAB. The estimation approach entails intersecting two 

30-m x 30-m resolution maps, one depicting the spatial distri-

bution of forest land and the other depicting the spatial distribu-

tion of ash trees. The technical objective was to estimate the 

uncertainty of A
total

 for a selected region. The map depicting the 

distribution of forest land was derived from a forest probability 

layer constructed using forest inventory plot observations, 

Landsat Thematic Mapper (TM) satellite imagery, and a 

logistic regression model. The ash tree distribution layer was 

constructed using the same forest inventory plot observations 

and inverse distance weighted spatial interpolation. Uncertainty 

in A
total

 was estimated using an analytical technique for estimat-

ing the covariances of the logistic regression model parameters, 

a sample-based technique for estimating the uncertainty in 

interpolated ash tree counts per hectare, and Monte Carlo tech-

niques for generating forest/nonforest maps and for combining 

the components of uncertainty.

Data

The study area is wholly contained in Landsat scene path 20, 

row 30 (fig. 1), for which three dates of Landsat TM/ETM+ 

imagery were obtained: May 2002, July 2003, and October 

2000. Preliminary analyses indicated that Normalized Differ-

ence Vegetation Index (NDVI) and the tassel cap (TC) trans-

formations (brightness, greenness, and wetness) (Kauth and 

Thomas 1976, Crist and Cicone 1984) were superior to both 

the spectral band data and principal component transformations 

with respect to predicting forest attributes. Thus, the predictor 

variables were the 12 satellite image-based variables consisting 

of NDVI and the three TC transformations for each of the three 

image dates. Mapping units for all analyses consisted of the 

30-m x 30-m TM pixels.

The Forest Inventory and Analysis (FIA) program of the Forest 

Service, U.S. Department of Agriculture has established field 

plot centers in permanent locations using a sampling design 

that is assumed to produce a random, equal probability sample 

(Bechtold and Patterson 2005, McRoberts et al. 2005). The 

plot array has been divided into five nonoverlapping, inter-

penetrating panels, and measurement of all plots in one panel 

is completed before measurement of plots in the next panel 

is initiated. Panels in the study area are selected on a 5-year 

rotating basis. Over a complete measurement cycle, the Federal 

base sampling intensity is approximately one plot per 2,400 

ha. The State of Michigan provided additional funding to triple 

the sampling intensity to approximately one plot per 800 ha. In 

general, locations of forested or previously forested plots were 

determined using global positioning system receivers, while 

locations of nonforested plots were determined using aerial 

imagery and digitization methods. Each plot consists of four 

7.31-m radius circular subplots. The subplots are configured 

as a central subplot and three peripheral subplots with centers 

located at a distance of 36.58 m and azimuths of 0, 120, and 

240 degrees from the center of the central subplot. Data for 

2,995 FIA plots or 11,980 subplots with centers in the selected 

TM scene that were measured between 2000 and 2004 were 

available for the study. For each subplot, the proportion of the 

subplot area that qualified as forest land was determined from 

field crew observations. The FIA program requirements for for-

est land are at least 0.4 ha in size, at least 10 percent stocking, 

at least 36.58 crown-to-crown width, and forest land use. For 

each subplot, the number of observed ash trees with diameter at 

breast height of at least 12.5 cm was scaled to a count/hectare 

basis. The ash tree count/hectare for the ith subplot is denoted
o
iA , where the superscript denotes a subplot observation and 

Figure 1.—State of Michigan, USA with Landsat scene path 20, 
row 30 (large rectangle) and 30-km x 30-km study area (small 
rectangle).
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is distinguished from the ash tree count/hectare for the ith pixel 

which is denoted iA .

The spatial configuration of the FIA subplots with centers 

separated by 36.58 m and the 30-m x 30-m spatial resolution 

of the TM/ETM+ imagery permits individual subplots to be 

associated with individual image pixels. The subplot area of 

167.87 m2 is an approximately 19-percent sample of the 900 m2 

pixel area, and subplot observations are assumed to adequately 

characterize entire pixels. 

Areal Estimation

The estimate, A
total

, for a region was calculated in three steps: 

(1) generate a 30-m x 30-m resolution forest/nonforest map; 

(2) construct a 30-m x 30-m ash tree count/hectare layer, and 

for each pixel, estimate the number of ash trees as the product 

of the ash tree count/hectare and the 0.09 ha pixel area; and 

(3) estimate A
total

 as the sum over forest pixels from step 1 of 

pixel-level estimates of the number of ash trees from step 2. 

Thus, two layers were required: a forest/nonforest layer and 

an ash tree count/hectare layer. Both layers were constructed 

specifically for this study to make known their pixel-level 

uncertainties. Two sets of analyses were conducted. First, 

forest/nonforest, ash tree count/hectare, and the two associated 

uncertainty maps were constructed for a 30-km x 30-km study 

area in the selected TM scene (fig. 1). Second, uncertainty 

analyses for A
total

 were conducted for a smaller 2-km x 2-km 

portion of the larger study area (figs. 2 and 3). The restriction 

of the latter analyses to the smaller area was due to technologi-

cal constraints as is noted in a later section.

Forest/Nonforest Layer

Because satellite image pixels with different ground covers 

often have similar spectral signatures, assignment of classes to 

individual pixels is often probability based. A layer depicting 

the probability of forest was constructed using a logistic regres-

sion model (McRoberts 2006),

,	 (1)

where p
i
 is the probability of forest for the ith pixel, X

i
 is the 

vector of the 12 spectral transformations for the ith pixel with 

x
ij
 being the jth element, the βs are parameters to be estimated, 

exp(.) is the exponential function, and E(.) denotes statistical 

expectation. When estimating the parameters of (1), only data 

for the 7,920 completely forested or completely nonforested 

subplots were used. The covariance matrix for the vector of 

parameter estimates was estimated analytically as,

,	 (2)

where the elements of the matrix Z are defined as,

,

the elements of V
e
 are defined as,

,

and ijρ̂
ij
 is the spatial correlation among the standardized residu-

als estimated using a variogram (McRoberts 2006).

The most probable forest/nonforest classification of the imagery 

is constructed by comparing the probability, p̂ , from (1) for 

each pixel to 0.5: if 5.0p̂ ≥ , the pixel is classified as forest 

and assigned a numerical value of 1; if 5.0p̂ < , the pixel is 

classified as nonforest and assigned a numerical value of 0; 

however, because the assignment of forest or nonforest to pixels 

is based on probabilities, it is uncertain whether this procedure 

correctly assigns forest or nonforest to individual pixels. Forest/

nonforest realizations that reflect the uncertainty in the clas-

sification were obtained using a four-step procedure designated 

Procedure A:

A1.	 Using the procedure of Kennedy and Gentle (1980: 

228-213), generate a vector of random numbers from 

a multivariate Gaussian distribution with mean 0 and 

covariance  from (2); add these random numbers 

to the logistic regression model parameter estimates to 

obtain simulated parameter estimates.

A2.	 Using the simulated parameter estimates from step 1 with 

(1), calculate a probability, p̂ , of forest for each pixel.

A3.	 For each pixel, generate a random number, r, from a 

uniform [0, 1] distribution; if p̂r ≤ , the pixel is designated 
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forest with a numerical value of 1; if p̂r > , the pixel is 

designated nonforest with a numerical value of 0. 

A4.	 Repeat steps A1 through A3 many times and calculate the 

mean and variance of the numerical values assigned to 

each pixel. 

The variance of the forest/nonforest classifications for each 

pixel is a measure of the uncertainty of the pixel’s classifica-

tion.

Ash Tree Distribution Layer

Because the ash tree distribution layer was for forest land, 

only data for the 1,953 FIA forest subplots were used in its 

construction. Using these plot data, an empirical variogram was 

constructed and an exponential variogram model was fit to the 

data. An interpolated surface was constructed for which the ash 

tree count/hectare, A
i
, for the ith pixel was estimated as:

∑=
=

1953

1j

o
j

i

ij
i A

W
w

Â ,	 (3a)

where 

;	 (3b)

v
ij
 is the predicted covariance from the variogram model cor-

responding to the distance, d
ij
, between the ith pixel and the jth 

plot; λ̂  is the estimate of the variogram sill; and 

∑=
=

1953

1j
iji wW .	 (3c)

The variance of iÂ  was estimated as:

,	 (4)

and is a measure of the uncertainty of the estimate, iÂ . Other 

equally valid approaches such as kriging could have been used 

to construct the ash tree county/hectare layer. Realizations of 

the ash tree count/hectare distribution were obtained by select-

ing for each pixel a random number from a normal distribution 

with mean 0 and variance,  from (4), and adding the 

number to iÂ from (3a). 

Uncertainty Estimation

Uncertainty in the areal estimate, A
total

, is due to contributions 

from four sources: (1) uncertainty in the logistic regression 

model parameter estimates; (2) uncertainty in the pixel-level 

forest/nonforest classifications, given a set of parameter 

estimates; (3) uncertainty in the interpolated pixel-level ash 

tree count/hectare estimates, Â ; and (4) spatial correlation in 

forest/nonforest and ash tree observations not accommodated in 

the logistic regression model predictions and the ash tree count/

hectare interpolated estimates. 

The spatial correlation contribution to uncertainty in A
total

 

results from two phenomena. First, forest areas tend to be 

clustered rather than independently and randomly distributed 

throughout the landscape. Thus, to mimic natural conditions, 

forest/nonforest realizations generated from the logistic regres-

sion model predictions of forest probability should exhibit 

clustering comparable to that observed among the FIA subplot 

observations of forest and nonforest. This feature requires 

that the random numbers used to generate the forest/nonforest 

realization in step A3 be drawn from a correlated uniform [0, 

1] distribution. Second, the errors obtained as the differences 

between oA and Â  were expected to be spatially correlated; 

i.e., if an interpolation, Â , overestimates its true value, other 

interpolations in close spatial proximity would be expected to 

overestimate their true values also. For this investigation, how-

ever, the range of spatial correlation for the interpolation errors 

was only slightly more than the 30 m pixel width, regarded as 

negligible, and ignored.

To generate random numbers from an appropriately correlated 

uniform [0, 1] distribution as required to accommodate spatial 

correlation, an eight-step procedure designated Procedure B 

was used: 

B1.	 Construct an empirical variogram,

()()()

2

dn
ji FF

dn2
2ˆ ∑ −=γ
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where F is the numerical designation for forest or nonfor-

est subplot observations, and n(d) denotes a collection of 

pairs, (F
i
, F

j
),

 
whose Euclidean distances in geographic 

space place are within a given neighborhood of d.

B2.	 Fit an exponential variogram, 

() ()[ ]dˆexp1ˆdˆ 21 α−α=γ ,	 (5)

to the empirical variogram from step B1, where the 

estimate of the range of spatial correlation is

.

B3.	 Construct a spatial correlation matrix by assigning to each 

pixel pair, (i,j), a correlation, r
ij
, calculated as,

,

where d
ij
 is the distance between the ith and jth pixel centers 

and, initially, 2α̂=γ from step B2.

B4.	 Generate a vector of random numbers, one for each pixel, 

from a multivariate Gaussian distribution with the correlation 

structure constructed in step B3 using the technique 

described by Kennedy and Gentle (1980: 228-231).

B5.	 Convert the Gaussian random numbers from step B4 to 

Gaussian cumulative frequencies, resulting in a correlated 

uniform [0, 1] distribution.

B6.	 Generate a forest/nonforest realization using Procedure A 

with the correlated uniform [0, 1] distribution from step B5.

B7.	 Construct an empirical variogram of the forest/nonforest 

realization from step B5; fit an exponential variogram 

model; and estimate the range of spatial correlation as in 

step B2.

B8.	 Repeat steps B3–B7, adjusting the γ parameter in step B3 

each iteration until the range of spatial correlation from 

step B7 is close to that obtained in step B2.

The exponential variogram model was used in step B2 because 

of its simplicity and the adequacy of the fit to the data. Con-

struction of the multiviariate Gaussian distribution in step B4 

requires the Cholesky decomposition of a covariance matrix 

corresponding to the correlation matrix constructed in step B3. 

For a square region, n pixels on a side, the correlation matrix 

will be n2 x n2. Thus, the 30 km x 30 km study area, which 

has 1,000 TM pixels on a side, would require decomposition 

of a 106 x 106 matrix. To accommodate personal computer 

space and processing limitations, analyses involving spatial 

correlations were constrained to a 2-km x 2-km region, which is 

approximately 67 pixels on a side and requires decomposition 

of a smaller 4,489 x 4,489 matrix (figs. 2 and 3). 

Uncertainty in A
total

 for the 2-km x 2-km region was estimated 

using a six-step Monte Carlo simulation procedure designated 

Procedure C:

C1.	 Generate random numbers from a multivariate Gaussian 

distribution with mean 0 and variance matrix,  

from (2); add these random numbers to the logistic regression 

model parameters estimates to obtain simulated parameter 

estimates; calculate the probability, p̂ , of forest for each 

pixel using the simulated parameter estimates with (1).

C2.	 For each pixel, generate a random number, r, from a 

correlated uniform [0, 1] distribution using Procedure B; if 

p̂r ≤ , designate the pixel as forest; if p̂r > , designate 

the pixel as nonforest.

C3.	 Calculate the total forest area, F
total

, as the product of the number 

of forest pixels from step C2 and the 0.09 ha pixel area.

C4.	 For each pixel, generate a random number from a normal 

distribution with mean 0 and variance,  from 

(4); add the random number to the interpolated estimate 

of ash tree count/hectare, Â , to obtain a simulated 

ash tree count/hectare; multiply the simulated ash tree 

count/hectare and the 0.09 hectare pixel area to obtain a 

simulated ash tree count for the pixel. 

C5.	 Estimate A
total

 as the sum of the simulated ash tree counts 

from step C4 for forest pixels from step C2;

C6.	 Repeat steps C1 through C5 many times; calculate the 

mean and variance of F
total

 and A
total

 over all repetitions; 

estimate the uncertainties in F
total

 and A
total

 as ()totalFrâV  

and ()totalArâV , respectively.

In Procedure C, the contribution of uncertainty due to the logistic 

regression model parameter estimates may be excluded by not 

adding uncertainty in step C1; the contribution of uncertainty 

in the classification, given the parameter estimates, may be 
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excluded by skipping step C2 and comparing the probabilities 

generated in step C1 to 0.5 using Procedure A; the contribution 

of uncertainty due to spatial correlation may be excluded by 

generating an uncorrelated uniform [0, 1] distribution in step 

C2; and the contribution of uncertainty due to the interpolated 

ash tree counts/hectare may be excluded by not adding uncer-

tainty in step C4. The magnitude of the contributions of indi-

vidual sources of uncertainty may be estimated by considering 

()totalFrâV  and ()totalArâV obtained by including contribu-

tions from all sources individually and in combinations. 

Results

The analysis of Monte Carlo results indicated that all estimates 

stabilized to within less than 1 percent by 25,000 simulations 

(table 1). Therefore, 25,000 simulations were used when ap-

plying Procedure C to estimate the contributions of the various 

sources of uncertainty. 

The forest/nonforest maps constructed using logistic regression 

model predictions produced realistic spatial distributions, 

although no independent accuracy assessment was conducted 

(fig. 2a); however, considerable detail was revealed in the uncer-

tainty map; e.g., the field structure and road networks (fig. 2b). 

Considerably less detail was revealed in the ash tree count/

hectare map, but this result was expected because of the fewer 

FIA plots available and the more continuous nature of the layer 

(fig. 3a). As expected with biological analyses, the greatest 

uncertainty in the latter map occurred in the same locations as 

the greatest estimated values (fig. 3b). 

The estimates obtained using Procedure C dramatically 

revealed that the source of uncertainty making the greatest con-

tribution to uncertainties in the estimates of both F
total

 and A
total

 

was spatial correlation in the realizations of the forest/nonforest 

maps. The magnitude of this effect is highlighted by noting that 

when uncertainty from this source was included, 95-percent 

confidence intervals for both F
total

 and A
total

 included, or were 

close to including, 0. The contribution of the uncertainty in 

the underlying ash tree count/hectare layer to ()totalÂrâV  was 

much less than the contribution due to the uncertainty in the 

forest/nonforest layer.

Conclusions

Three conclusions may be drawn from this study. First, spatial 

correlation is a crucial contributor to uncertainty in map 

analyses that aggregate results over multiple mapping units. 

Ignoring this contribution inevitably leads to underestimates of 

variances and unwarranted statistical confidence in estimates. 

Unfortunately, the importance of this source of uncertainty is 

generally not known to those who conduct map-based analyses, 

and techniques for estimating its effects are generally unfamil-

iar. Second, researchers, authors, and university faculty should 

Table 1.—Monte Carlo simulation estimates from Procedure C.

Source of uncertainty Estimates

Model
parameter 
estimates

Classification
Spatial 

correlation

Ash tree
count/ha 

interpolation

Ftot Atot

Mean SE* Mean SE*

(ha)  (ha) (count) (count)

No uncertainty 113.40 2860.11
X 110.93 25.37 2801.15 643.23

X 104.22 1.87 2637.11 47.61
X X 104.04 55.32 2541.56 1180.34

X X X 105.58 60.89 2633.00 1549.91
X 113.40 2860.55 47.57

X X X 105.53 18.97 2670.79 484.46
X X X X 106.25 61.92 2690.07 1576.47

* SE is standard error and is calculated as the square root of variance.
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give greater attention to uncertainty estimation. Third, estima-

tion of uncertainty is not trivial, either conceptually or from a 

technical perspective. The necessity of decomposing very large 

matrices limits the size of regions that can be analyzed without 

high-speed computing facilities.
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