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Abstract.—The ability to assess the influence of 

site-scale forest structure on avian habitat suitability 

at an ecoregional scale remains a major methodologi-

cal constraint to effective biological planning for 

forest land birds in North America. We evaluated 

the feasibility of using forest inventory and analysis 

(FIA) data to define vegetation structure within forest 

patches, which were delineated from independent 

geospatial data sets of ecological subsection, forest 

type, and landform class. We used Swainson’s 

warbler (Limnothlypis swainsonii, Audubon) as a 

model to demonstrate how to integrate FIA data with 

geospatial data sets to estimate and monitor habitat 

suitability for a priority bird species in the West Gulf 

Coastal Plain/Ouachita Mountains Bird Conservation 

Region.

Introduction

The goal of the North American Landbird Conservation Plan is 

to create landscapes capable of sustaining bird populations at 

prescribed levels (Rich et al. 2004). To achieve this goal, the 

plan identified a three-step process: 

1.	 Develop rangewide population objectives for each bird 

species.

2.	 Allocate these objectives to specific regions (e.g., Bird 

Conservation Regions (BCRs).

3.	 Translate these population objectives to habitat objectives 

within each region. 

The first two steps of this process have been completed for 

most of the land birds breeding in the United States and Canada 

(Panjabi et al. 2005) and it is at the third step where conserva-

tion planning efforts stand today for most species. 

Translating population targets to habitat objectives requires 

the development of models that explicitly state the relationship 

between bird numbers and habitat conditions. Given the number 

of land bird species covered by the North American Landbird 

Conservation Plan (448 species), the diversity of habitats they 

occupy, and the range in quantity and quality of available infor-

mation for these species, it is not surprising that many modeling 

approaches are being explored to establish these relationships. 

Statistical models (e.g., hierarchical models, neural networks, 

regression procedures) provide an objective assessment of pat-

terns in data, but are generally most suitable when large repre-

sentative data sets are available to parameterize them. Statistical 

models are data hungry because they require relatively complex 

functions to compensate for the biases inherent in counting 

wild bird populations (Morrison 1998). When sufficient data 

do not exist (e.g., rare, nocturnal, or hard-to-sample species), a 

Habitat Suitability Index (HSI) framework provides one of the 

few practical alternatives for modeling species-habitat relation-

ships. HSI models use a priori information to identify variables 

that affect the quality of a habitat for a given species, and this 

information is also used to create functions that relate habitat 

suitability to these key habitat requirements (Schamberger et al. 

1982). HSI models have the desirable properties of scalability 

(landscape-scale parameters such as percent forest in the land-

scape can be easily incorporated into these models), intuitiveness, 
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and portability across sites, which make them useful in many 

circumstances (Larson et al. 2003). 

Whether using a statistical or an HSI approach, current 

ecoregional-scale land bird planning relies mainly on 

landscape-scale spatial data (e.g., Dettmers et al. 2002). This 

is more a matter of necessity than preference, because spatially 

explicit site-level information (e.g., basal area) does not exist 

at the scale of an entire BCR (tens of millions of hectares), 

whereas landscape-scale data are much more readily available 

(e.g., landscape metrics derived from satellite image-based land 

cover classification); therefore, planning is limited to species 

that respond most strongly to landscape-scale factors (e.g., 

forest patch size preferences of the wood thrush [Hylocichla 

mustelina, Gmelin]; Driscoll et al. 2005). Because most species 

select habitat at multiple scales, our limited ability to assess 

habitat conditions at finer scales inhibits analyses of the suit-

ability of an ecoregion for multiscale sensitive species.

Forest inventory and analysis (FIA) offers a potential data 

source to address these limitations. FIA data are collected to 

estimate the volume, growth, and condition of forest resources 

within large geographic extents (e.g., counties, states, ecologi-

cal units, watersheds, or BCRs). FIA data could also provide 

information on habitat-specific forest structure attributes across 

large areas, which can be used to assess the suitability of an 

area for various bird species. Our objectives were to assess the 

utility of FIA data (1) to characterize avifaunal habitat structure 

in a spatially explicit manner at an ecoregional scale, and (2) to 

use this information to assess the sustainability of priority bird 

species in these landscapes. 

Methodology

Avian Models

We developed HSI models for 40 priority bird species in the 

Central Hardwoods and the West Gulf Coastal Plain/Ouachita 

Mountains BCRs (fig. 1). We identified priority birds as 

species that utilize forested habitats with a total Partners in 

Flight regional combined score ≥ 20 (see Rich et al. 2004) or 

species designated as a Bird of Conservation Concern by the 

U.S. Fish and Wildlife Service in either BCR. To develop HSI 

models, we first performed a thorough literature review to 

identify site- and landscape-scale habitat factors that affected 

the occupancy, density, and/or productivity of each species. 

Empirical data derived from these sources formed the basis for 

individual suitability functions. We combined these suitability 

functions in biologically meaningful ways to produce overall 

habitat suitability estimates for density and productivity. Once 

initial models were developed, we solicited reviews from two 

to five experts for each species and revised models based on 

reviewer comments.

Geographic Information System Data

We constrained potential model variables to those available 

via nationally consistent geodata sets to maintain a uniform 

classification system across state boundaries within BCRs and 

to ensure our methodology was easily transferable to other 

forested biomes. We selected four nationally available geodata 

sets to define site and landscape conditions: ecological subsec-

Figure 1.—Location of Central Hardwoods and West Gulf Coastal 
Plain/Ouachita Mountains Bird Conservation Regions, 2006.
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tions, the National Land Cover Dataset (NLCD), the National 

Elevation Dataset (NED), and the National Hydrography 

Dataset (NHD).

Our map of ecological subsections was based on the National 

Ecological Unit Hierarchy (Keys et al. 1995), which depicts 

relatively homogenous regions of topography, geology, climate, 

and potential natural communities. We therefore assumed 

subsection boundaries would capture a large amount of the 

variation in the broad-scale abiotic features that affect the com-

position and structure of the avian community within a BCR.

We used the NLCD 1992 to define the spatial location of 

forests and categorize forestlands into broad classes. NLCD 

1992 delineates 21 land cover classes at 30-m resolution; 7 of 

these classes represent wooded land cover types that we used 

to define specific avian cover types: transitional, deciduous, 

evergreen, mixed, shrubland, orchard/vineyard, and woody 

wetlands (Vogelmann et al. 2001). Additionally, we included 

low-density residential as a forested land cover to capture the 

suburban shade tree habitats that are used by some priority 

species (e.g., orchard oriole [Icterus spurious, Linnaeus]).

Landforms (e.g., ridges, valleys) are local topographic features 

that can have a profound effect on both the flora and fauna of a 

forest community. Because no nationally consistent data set ex-

ists for this feature, we created our own classification from the 

nationally available NED, which maps elevation in meters at 

30-m resolution (Gesch et al. 2002). We generated a landform 

geodata set from five NED-derived variables: relief, slope, 

aspect, local topographic position index (TPI), and landscape 

TPI. We separated areas of high and low relief by examining 

the standard deviation (SD) of elevation values within a 500-m 

radius moving window. We considered areas with an SD < 

2 to be low relief and areas with an SD ≥ 2 to be high relief. 

We used a 5-percent threshold to separate high slope and 

low slope locations. We defined high-exposure (drier) slopes 

as those with aspects between 157.5 and 292.5 degrees (i.e., 

south by southeast to west by northwest) and all other aspects 

as low-exposure (moister) slopes. We placed areas lacking an 

aspect into a third category (flat). Derivation of TPI was based 

on a protocol developed by Jenness Enterprises (Jenness 2006), 

where the elevation at a pixel is compared to the mean eleva-

tion within a user-defined neighborhood. We calculated two 

separate TPI functions to highlight both local (500-m radius) 

and landscape (1500-m radius) effects and categorized the 

resulting spatial products into three classes: > 1 SD above the 

mean, > 1 SD below the mean, and within 1 SD of the mean. 

We defined 6 landform classes (floodplains, valleys, mesic 

slopes, terraces, xeric slopes, and ridges) based on the 108 

unique combinations of values from the previously mentioned 

5 variables.

Lastly, we used medium-resolution NHD (USGS 1999) to 

define the location of streams and other small water bodies that 

were not adequately captured by the NLCD but were important 

habitat cues for many priority species (e.g., Louisiana water-

thrush [Seiurus motacilla, Vieillot]).

FIA Data

The geodata sets described previously allowed us to character-

ize landscape composition and structure, but we relied on FIA 

data to provide information about site-level forest structure. 

Staff from FIA’s Spatial Data Services (SDS) center in St. Paul, 

MN, queried plot data to obtain unique plot numbers and loca-

tion coordinates for 20,522 plots located within the two BCRs. 

These plots were sampled between 1986 and 1995, the years 

associated with the periodic inventories closest in date to the 

NLCD 1992 data set. Although true plot location coordinates 

were not made available to us, we were able to download pub-

licly available PLOT, COND, and TREE tables for each state 

intersecting the BCRs (http://www.ncrs.fs.fed.us/4801/tools-

data/data/). The three FIA tables for each state were imported 

into an Access (Microsoft, Redmond, WA) relational database, 

then combined and queried to generate tables containing plot-

level summaries of the variables needed for our habitat models. 

FIA does not measure all the key forest attributes for avian 

habitat selection on all phase 2 plots; therefore, we fit a regres-

sion equation to predict small (< 2.54 cm diameter at breast 

height [d.b.h] woody stem density (a derived phase 3 plot vari-

able) from basal area and tree density (phase 2 plot variables). 

Similarly, we estimated overstory canopy cover from tree 

diameter and pole and sawtimber tree density based on an equa-

tion developed by Law et al. (1994). All other forest structure 

attributes were summarized directly from FIA data. We created 
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a summary table containing all forest structure variables and 

joined this table to the forest patch attribute table via the FIA 

plot identification number common to both tables.

The sampling intensity of periodic and annual FIA plots is 

not adequate for spatial interpolation (e.g., kriging) on forest 

structural attributes because the distance between plots is much 

greater than the distance over which these attributes are spa-

tially correlated (Coulston et al. 2004). The spatial limitations 

of FIA’s sampling design, coupled with privacy protections that 

restrict public access to exact plot locations, necessitated the 

development of an ecologically meaningful protocol for popu-

lating each forest patch in our landscape with FIA plot attri-

butes. To accomplish this, we devised a stratification procedure 

that first defined our BCRs as patches of unique combinations 

of variables (i.e., strata), then identified the FIA plots within 

each of these unique combinations, and, finally, assigned each 

patch an FIA plot that had the same strata characteristics. 

We stratified each BCR by ecological subsection, NLCD 

forest class, and landform type because we believed that these 

variables accounted for the greatest amount of variation in for-

est structure at the landscape scale. To avoid creating singular 

strata (i.e., unique combinations of variables associated with 

only one FIA plot) that would prohibit data accessibility, we 

used a reduced number of strata. Thus, we aggregated NLCD 

into six classes: deciduous, mixed, evergreen, woody wetland, 

transitional-shrubland, and nonforest. This stratification 

produced a map that contained 36 unique strata combinations 

(6 NLCD classes × 6 landform classes) in each ecological 

subsection. 

SDS personnel spatially joined actual FIA plot locations to 

these strata and returned an attribute table containing plot 

identification numbers (but not coordinates) and the values for 

each of the three strata. Plot identification numbers allowed us 

to link each plot and its known strata values to our summary 

table of FIA and derived forest structure attributes. Due to 

potential security issues associated with some linkages, strata 

values for a small proportion of plots were not provided to us. 

Nonetheless, our stratification scheme allowed us to associate 

approximately 97 percent of FIA plots on private land and 60 

percent of FIA plots on public land with our geospatial strata. 

An inherent artifact of this approach is the wide range of 

FIA data plots associated with each strata; common strata 

combinations contained > 200 plots whereas rare combina-

tions contained ≤ 1. To prevent all patches in a single strata 

combination from being represented by a relatively small 

number of plots, we established a six-plot minimum threshold 

for definition of all strata combinations and developed decision 

rules to guide aggregation of strata to achieve a minimum of 

6 FIA plots. First, we identified all strata combinations within 

an ecological subsection that contained < 6 FIA plots and 

determined the proportion of the subsection represented by 

that unique landform-NLCD combination. If a stratum covered 

< 5 percent of the subsection, we considered it a rare strata 

and combined it with a similar NLCD class within the same 

landform (e.g., plots from floodplain woody wetlands would be 

aggregated with plots from floodplain deciduous). If a stratum 

covered > 5 percent of the subsection, we combined strata 

among similar landforms within the same NLCD classes (e.g., 

plots from floodplain woody wetlands would be aggregated 

with plots from valley woody wetlands). Through iterative 

applications of these rules, we combined strata across similar 

NLCD and landform classes to achieve the six-plot threshold. 

In some small and predominately nonforested subsections, we 

combined strata from different subsections to reach the six-plot 

threshold. In these cases, we combined subsections within the 

same ecological section before combining between different 

ecological sections. Once all strata were assigned at least six 

FIA plots, we assigned an FIA plot to every forested patch in 

our study area. We used a modified random number generator 

to assign an FIA plot identification number to each patch from 

the corresponding pool of plots associated with each unique 

combination of strata. 

Spatial Assignment of FIA and Derived Forest Structure 

Variables

To spatially map FIA variables, we created individual geodata 

sets of each forest structural variable by reclassification on the 

variable of interest. This produced geodata sets wherein every 

pixel in a forest patch received the attribute value (e.g., basal 

area) measured on the plot assigned to that patch. Because all at-

tributes of a plot are assigned together, the covariance structure 

of the FIA data was maintained and improbable combinations 



2006 Proceedings of the Eighth Annual Forest Inventory and Analysis Symposium		  175

of attributes (e.g., high sawtimber tree density and low basal 

area) were avoided. We caution that the final product of this 

procedure is a spatially explicit depiction of forest structure 

attributes; however, it is not spatially exact (i.e., each pixel 

has a value, but it is not necessarily the value that would be 

observed at that location). Despite this, because the final model 

outputs will be summarized by subsection and FIA data are 

representative of forest conditions within subsections, spatial 

exactness of these attributes within a subsection is not required. 

Results/Discussion

To illustrate our methodology, we present an example of a 

habitat suitability assessment for Swainson’s warbler in the 

West Gulf Coastal Plain/Ouachita Mountains BCR. Swainson’s 

warbler is a neotropical migrant that breeds in a variety of 

habitat types including canebrakes and palmetto thickets in 

mature bottomland hardwood stands in the Southeast, rhodo-

dendron thickets in the southern Appalachian Mountains, and 

7- to 10-year-old pine plantations in eastern Texas (Brown and 

Dickson 1994). What these habitats have in common is a high 

density of small stems in the understory. Graves (2002) ob-

served Swainson’s warblers in habitats with a mean of 34,773 

small stems per hectare and routinely found this warbler on 

sites with > 70,000 small stems per hectare. Regardless of loca-

tion, Swainson’s warblers are typically found in predominantly 

forested landscapes, and Eddleman et al. (1980) suggested 

contiguous forest tracts > 350 ha may be needed for the species 

to occur consistently. 

Based on this information, we constructed an HSI model that 

contained six parameters related to bird density: landform, land 

cover, age class, forest patch size, percent forest in the local 

(1 km) landscape, and small stem density. The first suitability 

index (SI1) combined six landform (derived from NED), seven 

land cover (derived from NLCD), and five age (grass-forb, 

shrub-seedling, sapling, pole, and sawtimber; derived from 

FIA) classes into a single matrix that defined unique combina-

tions of these variables. We directly assigned SI values to these 

combinations based on habitat suitability data from Hamel 

(1992). We also included forest patch size (SI2; derived from 

NLCD) in our model because of the presumed preference 

of Swainson’s warblers for interior forest sites. We assumed 

forest patch sizes > 350 ha were adequate for Swainson’s 

warblers and based a logistic function on data from Eddleman 

et al. (1980) describing this relationship. Nonetheless, forest 

patch size requirements are likely influenced by the percentage 

of forest in the local (1-km radius) landscape (SI3; derived 

from NLCD). Warblers in predominantly forested landscapes 

may use smaller forest patch sizes that may not be occupied 

in predominantly nonforested landscapes (Rosenberg et al. 

2003). We considered landscapes with < 20 percent forest to 

be poor habitat and landscapes with > 80 percent forest to be 

excellent habitat (Donovan et al. 1997) regardless of forest 

patch size. We used the maximum of SI2 and SI3 where patch 

size and landscape composition influences were competing. 

Lastly, we included small stem density (SI4; derived from FIA) 

as a variable due to the affinity of this species for thick and 

dense understories in all occupied habitats. Site-level factors 

(landform, land cover, age class matrix, and small stem density) 

were weighed evenly in the overall calculation of habitat 

suitability by calculating the geometric mean of the individual 

SI values from the site-level factors. Furthermore, we weighed 

site- and landscape-scale factors evenly in the final suitability 

index score by calculating a geometric mean of site-level fac-

tors multiplied by the occupancy value from the maximum of 

the landscape factors (equation 1).

	 HSI = (((SI1 * SI4)0.500) * Max (SI2 or SI3))0.500

By applying these SI functions to the appropriate data layers, 

we derived estimates of habitat suitability for Swainson’s 

warblers throughout the West Gulf Coastal Plain/Ouachita 

Mountains (fig. 2). By subsequently relating the SI values to 

known abundances from point counts and other surveys, we 

estimated abundance of Swainson’s warblers within individual 

subsections and, in aggregate, the entire BCR. This process has 

permitted a transparent mechanism to assess the comparability 

of “bottom-up” population estimates to the “top-down” target 

population numbers in the North American Landbird Conserva-

tion Plan. Additionally, we have used this same approach to 

assess the suitability of the West Gulf Coastal Plain/Ouachita 

Mountains BCR for productivity. By coupling density and 

productivity SIs, we are able to more accurately estimate the 

sustainability of Swainson’s warbler populations in these habitats.
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These results have important implications for ecoregional land 

bird planning, particularly in predominantly forested landscapes. 

In agricultural landscapes where forest cover is limited, such as 

the Mississippi Alluvial Valley, forest patch size and structure 

have an overriding influence on the suitability of a particular 

site for forest birds (Twedt and Loesch 1999). Conversely, in 

forested landscapes such as the Central Hardwoods or the Gulf 

Coastal Plains, forest blocks are relatively large, and the main 

determinant of habitat suitability for many species is the struc-

ture of the forest within the patch (Conner and Dickson 1997). 

The HSI approach described here was applied by combining 

FIA periodic inventory data with independently available 

geospatial data sets, all of which are benefiting from recent 

enhancements. Horizontal accuracy of FIA plot location coor-

dinates continues to improve with advances in field protocols 

and Global Positioning System technology. The NED data set, 

used for modeling landform, is being edited and enhanced, 

with spatial resolutions of 10 m in some locales. Ecoregion 

and NHD delineations continue to be refined and integrated at 

multiple scales. The imminent completion of an updated NLCD 

(2001) not only will provide temporal benefits, but also will 

deliver per-pixel estimates of percentage of forest canopy and 

percentage of impervious surface. New geospatial data sets 

are on the horizon too, including a nationwide 30-m data set 

of forest stand height derived from digital elevation model and 

Shuttle Radar Topography Mission data. While these revisions 

and new data sets are expected to provide further support 

for wildlife habitat assessments, they still do not provide the 

detailed forest structure attributes required for many HSI 

models. In the absence of wall-to-wall mapping of forest 

structure via remote sensing (e.g., Light Detection and Ranging 

and high spatial resolution optical sensors), integration of FIA 

with geospatial strata offers a viable solution to assessing forest 

structure attributes over large areas. With the advent of annual 

FIA surveys, the HSI approach offers a cost-effective habitat 

monitoring tool for a variety of forest species over broad areas. 
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