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Thematic and Positional Accuracy Assess-
ment of Digital Remotely Sensed Data

Russell G. Congalton1

Abstract.—Accuracy assessment or validation has 

become a standard component of any land cover 

or vegetation map derived from remotely sensed 

data. Knowing the accuracy of the map is vital to 

any decisionmaking performed using that map. 

The process of assessing the map accuracy is time 

consuming and expensive. It is very important that 

the procedure be well thought out and carefully 

planned to be as efficient as possible. This paper 

presents a brief review of the current methods used 

in thematic map accuracy assessment. A discussion 

of positional error is included as it is impossible 

to assess thematic accuracy without carefully 

considering positional accuracy. 

Introduction

Assessing the accuracy of thematic maps generated from 

remotely sensed data has become a required component of 

most mapping projects. Researchers assess their maps because 

they wish to determine if a newly developed technique or 

algorithm produces better results than an established method. 

Government agencies often require a measure of accuracy to 

meet the standards set up in the contract for the work. Many 

will use the map as part of a decisionmaking process, while 

others use map accuracy as a guide throughout the mapping 

project to evaluate the accuracy of each stage of the mapping 

process and to improve the map.

Errors come from many sources when generating a thematic 

map from remotely sensed data. Congalton and Green (1993) 

provide a good discussion of the errors that can result if the 

classification scheme is not well understood or if the reference 

data are poorly collected. Lunetta et al. (1991) present a very 

effective diagram and discussion of the various sources of 

error that can accumulate from the beginning of a mapping 

project through to the end. These sources include sensor issues, 

geometric registration, errors introduced by the classification 

process, assumptions made in the accuracy assessment, and 

limitations in the map output, to name just a few. Careful 

consideration of the entire mapping project before it is begun 

can go a long way toward reducing these errors.

Accuracy

Assessing the accuracy of maps generated from remotely sensed 

data requires evaluating both positional accuracy and thematic 

accuracy. While these two accuracies can be assessed separately, 

they are very much interrelated and failure to consider both of 

them is a serious mistake.

Positional Accuracy

Positional accuracy, a measure of how closely the imagery fits 

the ground, is the most common measure of map accuracy. In 

other words, positional accuracy is the accuracy of the location 

of a point in the imagery with reference to its physical location 

on the ground. It is imperative for any accuracy comparison 

that the same exact location can be determined both on 

the image and on the ground. The major factor influencing 

positional accuracy is topography, while sensor characteristics 

and viewing angles can also have some affect. It is commonly 

accepted that a positional accuracy of half a pixel is sufficient 

for sensors such as Landsat Thematic Mapper and SPOT. 

As sensors increase in spatial resolution, such as the 4-m 

multispectral IKONOS data, positional accuracy increases in 

importance and new standards need to be established. These 

standards need to be based on current ability to locate the 

chosen location (sample site) on both the image and the ground.
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Positional accuracy is an integral part of thematic accuracy. If 

an image is registered to the ground to within half a pixel and 

a Global Positioning System (GPS) unit is used to locate the 

place on the ground to within about 15 meters, then it is impos-

sible to use a single pixel as the sampling unit for assessing the 

thematic accuracy of the map. If positional accuracy is not up 

to the standard or a GPS is not used to precisely locate the point 

on the ground, then these factors increase in importance and 

can significantly affect the thematic accuracy assessment.

Figure 1 shows an example of positional accuracy. In this 

figure, the digital image is not exactly registered to the Geo-

graphic Information System (GIS) road layer. Therefore, the 

road layer does not line up exactly on top of the roads in the 

imagery. Positional accuracy has historically been based on Na-

tional Map Accuracy Standards and measured in terms of root 

mean square error (RMSE). Most often, the RMSE is computed 

as the sum of the square of the differences between the position 

of the point on one data layer as compared to the position of 

the same point on another data layer (often the ground) using 

the same data that were used to register the layers together. This 

measure is, therefore, not an independent measure of positional 

accuracy. Instead, it would be more useful and more indicative 

of the true accuracy to collect an independent sample of points 

from which to compute the RMSE.

Thematic Accuracy

Thematic accuracy refers to the accuracy of a mapped land 

cover category at a particular time compared to what was 

actually on the ground at that time. Clearly, to perform a 

meaningful assessment of accuracy, land cover classifications 

must be assessed using data that are believed to be correct. 

Thus, it is vital to have at least some knowledge of the accuracy 

of the reference data before using it for comparison against the 

remotely sensed map. Congalton (1991: 42) points out that, 

“Although no reference data set may be completely accurate, it 

is important that the reference data have high accuracy or else it 

is not a fair assessment. Therefore, it is critical that the ground 

or reference data collection be carefully considered in any 

accuracy assessment.”

Accuracy assessment begins with the generation of an error 

matrix (fig. 2), a square array of numbers or cells set out in 

rows and columns, which expresses the number of sample units 

assigned to each land cover type as compared to the reference 

data. The columns in the matrix represent the reference data 

(actual land cover) and the rows represent assigned (mapped) 

land cover types. The major diagonal of the matrix indicates 

agreement between the reference data and the interpreted land 

cover types. 

Figure 1.—Example of positional accuracy. Figure 2.—Example error matrix showing overall, producer’s, 
and user’s accuracies.
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The error matrix is useful for both visualizing image 

classification results and for statistically measuring the results. 

The error matrix is the only way to effectively compare two 

maps quantitatively. A measure of overall accuracy can be 

calculated by dividing the sum of all the entries in the major 

diagonal of the matrix by the total number of sample units in 

the matrix (Story and Congalton 1986). In the ideal situation, 

all the nonmajor diagonal elements of the error matrix would 

be zero, indicating that no area had been misclassified and 

that the map was 100 percent correct (Congalton et al. 1983). 

The error matrix also provides accuracies for each land cover 

category as well as both errors of exclusion (omission errors) 

and errors of inclusion (commission errors) present in the 

classification (Card 1982, Congalton 1991, Congalton and 

Green 1999).

Omission errors can be calculated by dividing the total 

number of correctly classified sample units in a category by 

the total number of sample units in that category from the 

reference data (the column total) (Congalton 1991, Story and 

Congalton 1986). This measure is often called the “producer’s 

accuracy,” because from this measurement the producer of the 

classification will know how well a certain area was classified 

(Congalton 1991). For example, the producer may be interested 

in knowing how many times vegetation was in fact classified 

as vegetation (and not, say, urban). To determine this, the 43 

correctly classified vegetation samples (fig. 2) would be divided 

by the total 48 units of vegetation from the reference data, for 

a producer’s accuracy of 90 percent. In other words, vegetation 

was correctly identified as vegetation 90 percent of the time.

Commission errors, on the other hand, are calculated by divid-

ing the number of correctly classified sample units for a cat-

egory by the total number of sample units that were classified 

in that category (Congalton 1991, Congalton and Green 1999, 

Story and Congalton 1986). This measure is also called “user’s 

accuracy,” indicating for the user of the map the probability 

that a sample unit classified on the map actually represents that 

category on the ground (Congalton and Green 1999, Story and 

Congalton 1986). In figure 2, while the producer’s accuracy 

for the vegetation category is 90 percent, the user’s accuracy is 

only 73 percent. That is, only 73 percent of the areas mapped 

as vegetation are actually vegetation on the ground. However, 

because each omission from the correct category is a commis-

sion to the wrong category, it is critical that both producer’s and 

user’s accuracies are considered, since reporting only one value 

can be misleading. 

It is vital that the error matrix generated for the accuracy 

assessment be valid. An improperly generated error matrix may 

not be truly representative of the thematic map and, therefore, 

meaningless. The following factors must be considered to 

generate a valid error matrix (Congalton 1991):

1.	 Reference data collection.

2.	 Classification scheme.

3.	 Sampling scheme (Congalton 1988b, Hay 1979, Stehman 

1992, van Genderen and Lock 1977).

4.	 Spatial autocorrelation (Campbell 1981, Congalton 1988a).

5.	 Sample size and sample unit (Congalton 1988b, Congalton 

and Green 1999, Hay 1979, van Genderen and Lock 1977).

Failure to consider even one of these factors could lead to 

significant shortcomings in the accuracy assessment process.

Reference Data Collection

Reference data collection is the first step in any assessment 

procedure, and may be the single most important factor in 

accuracy assessment, since an assessment will be meaningless 

if the reference data cannot be trusted. Reference data can be 

collected in many ways, including photo interpretation, aerial 

reconnaissance with a helicopter or airplane, video, drive-

by surveys, and visiting the area of interest on the ground 

(Congalton and Biging 1992). Not all of these approaches are 

valid in every situation and great care needs to be taken to make 

sure that the reference data are accurate.

A key factor in reference data collection is the separation of 

training data from accuracy assessment data. In the not-too-

distant past, many assessments of remotely sensed maps were 

conducted using the same data set used to train the classifier 

(Congalton 1991). This training and testing on the same data 

set resulted in an improperly generated error matrix that clearly 

overestimated classification accuracy. For accuracy assessment 

procedures to be valid and truly representative of the thematic 
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map, data used to train the image processing system should 

not be used for accuracy assessment. These data sets must be 

independent.

Finally, the information used to assess the accuracy of remotely 

sensed maps should be of the same general vintage as those 

originally used in map classification. The greater the time 

period between the imagery used in map classification and the 

data used in assessing map accuracy, the greater the likelihood 

that differences are due to change in vegetation (from 

harvesting, land use changes, etc.) rather than misclassification. 

Therefore, ground data collection should occur as close as 

possible to the date of the remotely sensed data.

Classification Scheme

A classification scheme categorizes remotely sensed map 

information into a meaningful and useful format. The rules 

used to label the map must be rigorous and well defined. An 

effective means of ensuring these requirements are met is to 

define a classification system that is totally exhaustive, mutually 

exclusive, and hierarchical (Congalton and Green 1999). 

A totally exhaustive classification scheme guarantees that 

everything in the image falls into a category; i.e., nothing is left 

unclassified. A mutually exclusive classification scheme means 

that everything in the image fits into one and only one category; 

i.e., an object in an image can be labeled only one category. 

Total exhaustion and mutual exclusivity rely on two critical 

components: (1) a set of labels (e.g., white pine forest, oak 

forest, nonforest, etc.), and (2) a set of rules (e.g., white pine 

forest must comprise at least 70 percent of the stand). Without 

these components, the image classification would be arbitrary 

and inconsistent. Finally, hierarchical classification schemes—

those that can be collapsed from specific categories into more 

general categories—can be advantageous. For example, if it is 

discovered that white pine, red pine, and hemlock forest cannot 

be reliably mapped, these three categories could be collapsed 

into one general category called coniferous forest.

Sampling Scheme

An accuracy assessment very rarely involves a complete census 

or total enumeration of the classified image, since this data 

set is too large to be practical (Hay 1979, Stehman 1996, van 

Genderen and Lock 1977). Creating an error matrix to evaluate 

the accuracy of a remotely sensed map therefore requires 

sampling to determine if the mapped categories agree with the 

reference data (Rosenfield et al. 1982).

To select an appropriate sampling scheme for accuracy 

assessment, some knowledge of the distribution of the 

vegetation/land cover classes should be known. Stratified 

random sampling has historically prevailed for assessing the 

accuracy of remotely sensed maps. Stratified sampling has been 

shown to be useful for adequately sampling important minor 

categories, whereas simple random sampling or systematic 

sampling tended to oversample categories of high frequency 

and undersample categories of low frequency (Card 1982, van 

Genderen et al. 1978). 

Spatial Autocorrelation

Because of sensor resolution, landscape variability, and other 

factors, remotely sensed data are often spatially autocorrelated 

(Congalton 1988a). Spatial autocorrelation involves a 

dependency between neighboring pixels such that a certain 

quality or characteristic at one location has an effect on that 

same quality or characteristic at neighboring locations (Cliff 

and Ord 1973, Congalton 1988a). Spatial autocorrelation 

can affect the result of an accuracy assessment if an error in 

a certain location can be found to positively or negatively 

influence errors in surrounding locations. The best way to 

minimize spatial autocorrelation is to impose some minimum 

distance between sample units.

Sample Size and Sample Unit

An appropriate sample size is essential to derive any 

meaningful estimates from the error matrix. In particular, small 

sample sizes can produce misleading results. Sample sizes 

can be calculated using the equation from the multinomial 

distribution, ensuring that a sample of appropriate size is 

obtained (Tortora 1978). Some researchers have suggested 

using the binomial equation to compute sample size. Given the 

need to create an error matrix, however, the binomial equation 

is inappropriate. A general rule of thumb developed from 

many projects shows that sample sizes of 50 to 100 for each 

map category are recommended, so that each category can be 

assessed individually (Congalton and Green 1999).
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In addition to determining appropriate sample size, an 

appropriate sample unit must be chosen. Historically, the 

sample units chosen have been a single pixel, a cluster of 

pixels, a polygon, or a cluster of polygons. A single pixel is a 

poor choice of sample unit (Congalton and Green 1999), since 

it is an arbitrary delineation of the land cover and may have 

little relation to the actual land cover delineation. Further, it is 

nearly impossible to align one pixel in an image to the exact 

same area in the reference data. In many cases involving single 

pixel accuracy assessment, the positional accuracy of the data 

dictates a very low thematic accuracy. A cluster of pixels (e.g., 

a 3 by 3 pixel square) is always a better choice for the sample 

unit, since it minimizes registration problems. A good rule 

of thumb is to choose a sample unit whose area most closely 

matches the minimum mapping unit of the reference data. For 

example, if the reference data have been collected in 2-hectare 

minimum mapping units, then an appropriate sample unit may 

be a 2-hectare polygon. 

Analysis Techniques

Once an error matrix has been properly generated, it can 

be used as a starting point to calculate various measures 

of accuracy in addition to overall, producer’s, and user’s 

accuracies. Two techniques have been found to be extremely 

useful. The first is a discrete multivariate technique called 

Kappa (Bishop et al. 1975), which can be used to statistically 

determine (1) if the remotely sensed classification is better 

than a random classification, and (2) if two or more error 

matrices are significantly different from each other. Kappa 

calculates a KHAT value (Cohen 1960), which is a measure of 

the actual agreement of the cell values minus the chance (i.e., 

random) agreement (Congalton and Mead 1983, Rosenfield 

and Fitzpatrick-Lins 1986) and can be viewed as a measure of 

accuracy. The KHAT value can be used to determine whether 

the results in the error matrix are significantly better than a 

random result (Congalton 1991). The KHAT accuracy value 

inherently includes more information than the overall accuracy 

measure since it indirectly incorporates the error (off-diagonal 

elements) from the error matrix. In addition, confidence limits 

can be calculated for the KHAT statistic, which allows for an 

evaluation of significant differences between KHAT values 

(Congalton and Green 1999). 

Secondly, the analysis of the error matrix can be taken yet 

another step further by normalizing the cell values. An iterative 

proportional fitting technique, called Margfit, can be used to 

perform this normalization. Because the cell values in each 

row and column in the matrix are forced to sum to one, each 

cell value becomes a proportion of one, which can easily 

be multiplied by 100 to obtain percentages. Consequently, 

producer’s and user’s accuracies are not needed because the 

cell values along the major diagonal represent the proportions 

correctly mapped. Congalton et al. (1983) argue that the 

normalized accuracy is a more inclusive measure of accuracy 

than either KHAT or overall accuracy because it directly 

includes the information in the off-diagonal element of the 

error matrix. Because each row and column sums to the same 

value, different cell values (e.g., different forest cover classes) 

within an error matrix and among different error matrices can 

be compared despite differences in sample sizes. The software 

for performing both the Kappa and Margfit analyses is available 

from the author.
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