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Post-Modeling Histogram Matching of Maps
Produced Using Regression Trees
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Abstract.—Spatial predictive models often use statistical

techniques that in some way rely on averaging of values.

Estimates from linear modeling are known to be suscep-

tible to truncation of variance when the independent

(predictor) variables are measured with error. A

straightforward post-processing technique (histogram

matching) for attempting to mitigate this effect is pre-

sented, and a comparison with untransformed model

estimates is made. Histogram matching enhanced the

contrast visible in the final map and produced estimates

that mimicked the range of estimates in the original

data set but performed worse overall with respect to

absolute error of prediction. Examples of cases where

histogram matching might be an effective post-pro-

cessing method are given.

Introduction

Advances in computer software and hardware have increased

the prevalence of spatial predictive modeling of ecological data.

Modeling methods range from simple spatial interpolation to

sophisticated linear and nonlinear multivariate techniques. Most

of the techniques that are commonly applied rely on averaging

procedures. For example, simple linear interpolation generally

involves defining a search radius around areas to be estimated

and applying the average value of the attribute of known data

within that radius to the area. Similarly, linear modeling

approaches such as regression rely on averaging of deviations

from a “best fit” line to arrive at parameter estimates. In nearly

all cases, either the estimate itself is an average or part of the

parameter estimation process is based on averaging. This trait

of linear modeling can lead to a compression of the variance of

the set of estimates if the independent (predictor) variables are

measured with error (Curran and Hay 1986).

In the linear regression context, the predictor variables are

assumed to be measured without error (Montgomery and Peck

1982). Curran and Hay (1986), however, provide a concise

review of reasons why this assumption is not true in remote

sensing studies. The effects of errors in the predictor variables

in multiple regression have been well documented (Curran and

Hay 1986, Whitemore and Keller 1988, Elston et al. 1997).

Generally, the parameter estimates are underestimated, leading

to an underestimation of large values and an overestimation of

small values (Curran and Hay 1986, Cohen et al. 2003), resulting

in a compression of the variance of the set of estimates relative

to that of the training data.

In this article, satellite and other geospatial data are used to

predict biomass (megagrams aboveground dry biomass [not

including foliage] per hectare) in Maine, using U.S. Department

of Agriculture (USDA) Forest Service Forest Inventory and

Analysis (FIA) plot information as training data. FIA has a

network of inventory plots across the country and collects and

reports information on the status of and trends in the Nation’s

forest resources (Gillespie 1999). Due to the nature of the data

sets (very small plot area to pixel area ratios, smoothed predictor

data, lack of strong functional relationships between the dependent

and predictor data), the predictions obtained by a regression tree

approach (Quinlan 1993) had truncated variance. This article

describes a post-processing technique—histogram matching—

that attempts to deal with this systematic overprediction in the

lower tail and underprediction in the upper tail of the distribution

of training data. 
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Methods

Data from 2,210 FIA plots collected in Maine between 1999

and 2003 were used in the study.3 The distribution of plots in

the study area is based on a hexagonal tessellation with one FIA

plot randomly located in each 2,428.2-ha hexagon. Each FIA plot

consists of four circular 14.6-m (48-ft)-diameter subplots, with

one subplot located in the center and three equidistant subplots

distributed symmetrically around and located 31.6 m (120 ft)

from the center subplot. The subplots occupy 0.07 ha (0.17 ac),

and the subplot array can be subtended by a circle of 0.4 ha

(1.0 ac) in area. The value of the total aboveground dry biomass

was calculated from live tree data collected on each plot using

equations found in Wharton et al. (1997). 

The predictor data used were contained in a multilayered ERDAS

IMAGINE image and consisted of 271 250-m resolution layers,

including multidate and monthly composites and derived indexes

of imagery from the Moderate Resolution Imaging Spectro-

radiometer (MODIS)-satellite-borne sensor (Justice and

Townsend 2002), several rasterized summaries of the State Soil

Geographic soils database compiled by the USDA Natural

Resources Conservation Service (1994), summaries of the land

cover classes found in the National Land Cover Data (NLCD)

database (Vogelmann et al. 2001), mean monthly and annual

temperature and precipitation from the PRISM climate database

(Daly et al. 2004), rasterized Bailey’s Ecoregions (Bailey 1996)

and U.S. Geological Survey NLCD 2001 mapping zone (which

is similar to an ecoregion map) (Homer and Gallant 2001), a

rasterized grid representing distance to streams (U.S. Geological

Survey 1999), and various derivatives of the National Elevation

Dataset (Gesch et al. 2002).4

Leica Geosystems’ ERDAS IMAGINE image processing software

was used to extract values for each of the predictor layers at the

locations where the 2,210 FIA plots used in the analysis were

located. Cubist regression tree software was used to derive

regression tree models of forest biomass. These models then

were applied to the stack of predictor layers in ERDAS IMAG-

INE to create a set of spatially referenced model predictions. To

create a validation data set, 220 plots were randomly withheld

from the Cubist modeling. 

Histogram matching was applied to the output map generated by

Cubist and ERDAS IMAGINE so that its frequency distribution

of pixel values matched that of the training data. In the histogram-

matching technique, a lookup table that specifies the relationship

between the cumulative distribution function of a source histogram

and a target histogram is generated. Using that lookup table, the

target data are transformed so that their distribution matches

that of the source data. (For a description of histogram matching.

see fig. 1.) 

Histogram matching is typically used to standardize raw satellite

images that were acquired at different times and under different

conditions to facilitate mosaicking of the images or classifications

3 U.S. Department of Agriculture (USDA), Forest Service. 2000. Field data collection procedures for phase 2 plots. In: Forest inventory and analysis national core
field guide, version 1.4. Internal report on file at: USDA Forest Service, Washington Office, FIA, 1601 North Kent Street, Suite 400, Arlington, VA 2220. Vol. 1.
4 Complete details of the steps used to prepare the data and data derivatives are on file at the USDA Forest Service, Northeastern Research Station, 11 Campus
Blvd, Ste. 200, Newtown Square, PA 19073.

Figure 1.—Example of histogram matching applied to the bio-
mass estimates produced from Cubist modeling in Maine. To
generate a lookup table, the cumulative frequency histograms of
the actual data (source) and the predictions (target) were gen-
erated. A lookup table was generated as follows: for a given
biomass value in the actual data (e.g., 125 Mg/ha below), the
cumulative frequency was determined (a) and related to the
corresponding cumulative frequency (b) and value (e.g., 150
Mg/ha below) (c) of the predicted data. The lookup table built
in this manner was used to reclassify the map of predictions so
that its frequency distribution matched that of the original data.
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conducted on the images (e.g., Homer et al. 1997). Cohen et al.

(2001) used histogram matching as a post-processing approach to

facilitate the post-classification juxtaposition of images acquired

under different conditions. In the current study, however, we

resorted to a post-processing approach for pragmatic reasons. FIA

has currently chosen to operationally use a modeling protocol

that relies on the Cubist regression tree approaches, which can

produce outputs with truncated variance (Curran and Hay 1986). 

Graphs of biomass on the 221 test plots versus the predicted

values were produced, and the relationship between the set of

actual and both sets of predicted values (uncorrected and his-

togram-matched) was described using a simple, first-order linear

regression equation and associated coefficient of determination

(R2). In addition, mean absolute error (MAE) was calculated.

To assess the efficacy of histogram matching with respect to

removing the overestimation and underestimation that occurred

in the tails of the distribution of original data, the slope of the

regression, the R2 and the MAE were compared. 

In addition to global comparisons, a multiscale analysis of the

mean absolute difference between the average biomass of the

plots found in sets of grid cells superimposed over the area and

the pixel-based estimates in those cells was calculated for each

of a number of spatial scales (fig. 2). The goal of this analysis

was not only to characterize the spatial agreement between the

pixel-based estimates and the actual values, but also to reveal

the scale at which biomass varied across the landscape.

Results and Discussion

Figure 3 shows a map of the uncorrected and histogram-matched

biomass estimates. The estimates depicted in figure 3a (the

uncorrected data) show less variability than those shown in

figure 3b (the histogram-matched data). The histograms of

estimates support this (fig. 4)—the range of values found in the

uncorrected estimates is much narrower than that of the histogram-

matched estimates and the actual plot data. In many situations,

duplication of the variability found in the actual data is a desirable

trait of a map of modeled estimates because it makes a map of

the estimates more useful.

Table 1 gives a comparison of the simple linear regression

parameters, the MAE and the R2. Figure 5 depicts scatterplots

of the actual versus uncorrected prediction and actual versus

histogram-matched prediction. The parameters (slope and y

intercept) and diagnostic information (MAE) from the simple

linear regression analyses indicate that the histogram-matching

procedure performed better with respect to producing estimates

Figure 2.—Square grid cells of varying sizes (15 x 15, 19 x 19,
22 x 22, 25 x 25, 35 x 35, 50 x 50, 71 x 71, 87 x 87, and 100 x
100 km) were superimposed on the study area. In each grid
cell, the mean value for biomass on the plots and that for the
pixel-based estimates was determined, and differences were
calculated and compared across different window sizes.

Figure 3.—(a) Biomass map produce by Cubist modeling with-
out post-processing. (b) Map produced by histogram matching
of the map in (a) so the frequency distribution of pixel values
matched that of the training data set.

(a) (b)
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that followed a 1:1 observed versus predicted line. The uncorrected

estimates, however, performed better overall (the MAE of the

histogram-matching data was 20 percent higher than that of the

uncorrected data). An analysis of the MAE per decile of the actual

data (table 2) indicates that the histogram-matching procedure

only performed better in the lowest and highest deciles because

the procedure stretched out the distribution of predictions and

thus lowered the variance in the tails of the distribution. This

stretching led to the poorer performance of histogram matching

in deciles near the median, however, because a wide range of

uncorrected values was transformed into output values close to

the median (note the steep slope of the target histogram near the

median [fig. 1]). If maintenance of the full range of variability

of actual data is wanted, histogram matching appears to be a

valid option. The tradeoff, however, is overall lower accuracy

for the resulting set of estimates.

Figure 6 shows results of the multiscale analysis of agreement

between plot-based and pixel-based estimates. The figure indi-

cates that a similar pattern of decreasing MAE as the size of the

analytical windows increased from 23,400 to 1,000,000 ha.

Although the uncorrected data set agrees much better with the

FIA plots at each scale, the patterns of decrease are the same,

suggesting that the relative interpretability of the spatial distri-

bution of biomass on both maps at different resolutions is similar.

The variance of the window-based means (calculated across all

windows at each resolution) (fig. 6) shows a decrease in plot

variance as the analytical window increases in size. Because the

MAE follows a very similar pattern, the decline in MAE with

Figure 4.—Frequency histograms of the training (actual) data
set, the original prediction, and the histogram-matched (post-
processed) prediction. The variance of the original predictions
is truncated, whereas that of the histogram-matched data
matches that of the actual data.

Figure 5.—Scatterplots of the original (red circles) and histogram-
matched (green triangles) values versus the validation data
withheld from the Cubist modeling (n = 221). Simple linear
regression lines describing the scatterplots indicate that the set
of histogram-matched predictions more closely follow a 1:1 line
than do the uncorrected estimates.

Uncorrected Histogram-matched

MAE 39.70 47.70
slope 0.17 0.42
intercept 86.50 65.20
R2 0.16 0.15

Table 1.—Overall comparison of MAE of the uncorrected (orig-
inal) and the histogram-matched (post-processed) predictions.

Percentile MAE uncorrected MAE histogram-matched

10 75.2 56.2
20 62.3 61.8
30 38.9 39.3
40 33.3 42.0
50 22.8 43.4
60 17.6 42.5
70 17.3 41.2
80 22.4 40.7
90 33.7 49.9
100 71.8 59.5

Table 2.—Per decile comparison of the simple linear regression
parameters and diagnostics of the uncorrected (original) and
the histogram-matched (post-processed) predictions.
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increasing window size is probably driven by the convergence of

the window-based means on the global mean as the analytical

window size approaches the size of the entire study area. In

other words, as the window size increases, the number of plots

per window increases, the variance of the biomass decreases,

and the mean biomass in the windows approaches the global

mean. Because the maps of predictions reflect the variability

of biomass across the landscape, they follow this same pattern. 

A notable feature of figure 6 is the rate of decrease in MAE

(and plot-based variance) as window size increases. At a certain

spatial scale (approximately 500,000 ha), increasing window size

leads to only a small corresponding dip in MAE or variance,

suggesting that this is similar to the scale of spatial autocorre-

lation of biomass in this area (Isaaks and Srivastava 1989). This

information could be useful when designing sampling protocols

or studying regional scale trends in biomass-related processes.

Ideally, FIA would either adapt its modeling approach or use

input data that are less prone to measurement error. For example,

the resolution mismatch between the plot data and the predictor

data could be addressed. Statistical methods other than regression

trees, which rely in part on linear modeling, also could be used.

Future research could thus involve using more robust techniques

and predictor data with more of a functional relationship with

the plot data. Practically speaking, however, FIA currently cannot

produce regional- and national-scale maps without implementing

the Cubist-ERDAS IMAGINE approach and without using

coarse-scale data. The Cubist- ERDAS IMAGINE approach

offers many benefits, including computational efficiency, ease

of use, and batch processing options. Similarly, the coarse-scale

data are inexpensive, easily acquired, and manageable in terms

of storage space and processing requirements. On the other

hand, FIA’s methods do not leave much room for altering the

modeling protocol, hence the appeal of a straightforward post-

processing attempt to correct systematic errors.

This article illustrates the use of histogram matching as a post-

processing method. The technique did not improve the overall

accuracy of the map but could contribute to other potential map

uses. It allowed for the transformation of biomass predictions

so that their frequency distribution matched that of a target

distribution (herein, that of the FIA data). It created a map that

showed more contrast, revealing the visual spatial pattern in the

data set more effectively than the uncorrected estimates. It per-

formed worse overall in terms of MAE but performed better at

making predictions in the tails of the distribution of training data.

This predicting ability can be a desirable trait for a modeling

data set. For example, if rare events are of interest, the depiction

of predictions that fall into the rare category, such as areas with

biomass greater than 300 Mg/ha, might aid the land manager

seeking to identify areas with old growth forest or unique eco-

logical characteristics. It also helps the map user understand the

overall spatial pattern of biomass across the landscape. The dis-

advantage of the histogram-matching approach is the potential

loss of reliability of the map as a whole. In the case of biomass

maps, the specific interests of the user should thus be taken

into account when selecting a modeling technique and any

post-processing methods.

Figure 6.—MAE (absolute value of average biomass/ha of FIA
plots—average biomass/ha of pixels) computed for the uncorrected
and the histogram-matched estimates at several scales. The
variance of the window-based means of the plots is shown for
each window size is also shown (yellow triangles, secondary y
axis).
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