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Preface

The Sixth Annual Forest Inventory and Analysis Symposium was

held September 21–24, 2004, in Denver, CO. The symposium

was integrated with the Monitoring Science and Technology

Symposium sponsored in part by the U.S. Department of

Agriculture Forest Service Rocky Mountain Research Station.

As with recent symposia in the series, we continue to experience

a broadening of the range of presentation topics and welcome

contributors from outside the formal Forest Inventory and

Analysis program. The symposium organizers thank all partici-

pants and presenters and convey special thanks to those who

submitted their papers for these proceedings.

Ronald E. McRoberts

Gregory A. Reams

Paul C. Van Deusen

William H. McWilliams
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Vision for the Future of FIA: Paean to
Progress, Possibilities, and Partners

Richard W. Guldin,1 Susan L. King, and Charles T. Scott2

Abstract. — The Forest Inventory and Analysis (FIA)

program of the U.S. Department of Agriculture Forest

Service has made significant progress implementing

the annualized inventory in 46 States in 2004. Major

increases in program performance included the avail-

ability of plot data and the plots’ corresponding

approximate coordinates. A mill site study and biomass

models were used to compare actual versus approximate

coordinates. The protocols used to protect the privacy

of private forest landowners did not meaningfully

alter the results. A new strategic plan for FIA will be

developed for 2007–12. Through meetings with partners

and customers, FIA will evaluate opportunities to broaden

the information collected and analyses of this data.

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service has nearly

completed the transition to an annualized inventory approach

that incorporates forest health detection monitoring and uses

state-of-the-art geospatial technologies. Web delivery of results

is increasing. The principles of continuous improvement are

being applied to the FIA program, focusing on those aspects

identified by users as most important. The program is poised to

begin a second round of strategic planning for 2007–12. Partners

will play key roles in the strategic planning process to evaluate

and prioritize the future possibilities and help the program

achieve its goals.

Progress

In fiscal year (FY) 2003, the annualized FIA program had field

operations in 46 States. Measurements were taken across the

landscape, covering 71 percent of the forest land in the United

States,
3

an increase of 9 percent over the area covered in FY

2002. A total of 43,034 Phase 2 (P2) plots, the traditional ground

sample, and 3,740 Phase 3 (P3) plots were remeasured. P3 plots

measure additional variables that indicate forest health.

Users’ needs were met in a variety of ways. FIA program analysts

engaged in 1,450 significant consultations with users, an increase

of 41 percent from the previous year. Users made nearly 15,000

downloads of data from the FIA Web site, a 20-percent increase

over the previous year. Web tracking software identified the

data most frequently downloaded, and this information was

used to focus continuous improvement activities. 

During the past 2 years, technical specialists have revised the

FIA Field Guide for Phase 2 Measurements (http://www.fia.fs.

fed.us/library/field-guides-methods-proc/). A substantial number

of changes in field procedures had been proposed to simplify

fieldwork and make it more efficient. A major revision of the

guide, version 2.0, was released in January 2004. Data recorder

and compilation software were upgraded in response to the new

field guide so that its protocols could be implemented during

the 2004 field season.

Privacy Policy

The privacy policy adopted a year ago in response to the new

legislative language in the FY 2000 Interior Appropriations Bill

continues to attract the attention of external users and analysts.
4

1 Director, Science Policy, Planning, Inventory and Information, U.S. Department of Agriculture (USDA), Forest Service, P.O. Box 96090, Washington, DC
20090–6090.
2 Operations Research Analyst and Program Manager, respectively, USDA Forest Service, Northeastern Research Station, Forest Inventory and Analysis, 11 Campus
Blvd., Suite 200, Newtown Square, PA 19073.
3 This percentage includes the acreage of forest land in interior Alaska. In prior years, the percent coverage excluded interior Alaska. With plans now in place to
begin work in interior Alaska in FY 2005, reports of area covered in FY 2003 and beyond will include interior Alaska.
4 Section 348 of H.R. 3423, Department of the Interior and Related Agencies Appropriations Act of 2000. (Nov. 17, 1999). H.R. 3423 was incorporated by cross-reference
in the conference report into H.R. 3194 [Division B]. H.R. 3194, the FY 2000 Consolidated Appropriations Bill, became Public Law 106-113 on Nov. 29, 1999.
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The goal of the policy is to protect the privacy of private forest

landowners who allow FIA field crews to collect data on their

property. The policy ensures that data for any plot cannot be

linked with certainty to the participating private landowner. 

Two-thirds of the forest land in the United States is privately

owned. Permission to collect data on private lands is vital to the

continued credibility of the FIA program. In recognition of the

importance of private landowner participation in the FIA program,

FIA was placed under the same privacy protection provisions as

other critical agricultural inventory, monitoring, and census

programs operated by the National Agricultural Statistical

Service (NASS). A new privacy law was not created for FIA.

Rather, Congress gave private forest landowners participating in

the FIA program the same legal protections already enjoyed by

farmers participating in the other USDA programs. 

The pre-1998 FIA privacy policy was updated to comply with

the law. NASS and the USDA Office of the General Counsel

(OGC) were consulted to ensure that the legislative intent was

faithfully implemented in the new policy. USDA’s long experience

with the same legislative language in other USDA programs

provided a sound foundation for developing the new FIA policy. 

Based on experience with the other USDA agricultural crop

inventory programs operated by NASS, OGC did not believe

that “fuzzing” (providing an approximate location) alone was

sufficient to meet the terms of the legislation. FIA national

program staff and members of the FIA Statistics Band consulted

with experts from the American Statistical Association and the

U.S. Census Bureau to learn what techniques they advocated

for ensuring the privacy of individuals participating in surveys.

The experts believed that a small amount of “swapping” (switching

the locations of two similar plots) would be much more effective

than coarse “fuzzing.” Indeed, with a small amount of “swapping,”

the statistical experts believed that “fuzzing” could be radically

reduced, and the combination of “swapping” with reduced

“fuzzing” would improve the quality and usefulness of the publicly

available data while providing the minimal amount of privacy

protection required. OGC concurred.

To understand what impact the new policy might have on analyses

performed with data from FIA’s public database, the two techniques

must first be understood. “Fuzzing” consists of randomly

adjusting the latitude and longitude locations of the plot. Under

the old, pre-1998 FIA privacy policy, a combination of latitude

and longitude were rounded to the nearest 100 seconds. This

meant that users could be certain that the actual plot location fell

within the 2,010 acres surrounding the plot location contained

in the FIA public database. Under the new FIA privacy policy,

latitude and longitude are randomly located within one-half

mile. This means that the actual plot location is masked within

only a 500-acre area. Users commenting on the draft privacy

policy applauded the fourfold reduction in fuzz compared to the

old policy. 

“Swapping” consists of exchanging the plot coordinates for a

small number of similar plots within close proximity and in the

same county. Swapping only occurs on private forested plots

and depends on the region of the country. Between 0 and 10

percent of the forested plots are randomly selected for swapping

with plots from the remaining data for a total swapping of

between 0 and 20 percent. The primary criterion for swapping

is based on a measure of ecological similarity. Plots with the

smallest ecological difference are swapped. The variables for

swapping—e.g., x and y coordinates, forest type group, and

stand size—vary by region. This induces enough uncertainty as

to the actual property owner to satisfy the legal requirements

without introducing an unacceptable amount of error in the

population estimates computed for analyses. 

What are the impacts of fuzzing and swapping on analyses? In

general, any analysis that requires computation of population

estimates using entire counties will be completely unaffected.

By definition, swapping is limited to plots in the same county.

Therefore, when all FIA plots in one or multiple counties are

used to compute population estimates, all the data are used.

Because population estimates at subcounty scale already have a

relatively high mean square error due to the small number of

plots, the error contribution of swapping is likely to be small in
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comparison to the error due to the small sample size.5 No other

data for the plot are swapped other than the plot coordinates.

Therefore, all the other relationships within and among the

variables for the plot are retained. 

Data that have been fuzzed and swapped are not suitable for

geospatial analyses in which FIA data are used to validate pixel

classifications derived from satellite imagery. For this type of

validation work, actual plot coordinates are required to properly

register the ground data with the imagery. To serve such needs,

the FIA program has created National FIA Spatial Data Services

at the Northeastern Research Station and regional centers at the

other four FIA units. The centers will populate data layers or

prepare derived products using actual coordinates for FIA clients.

Routine requests are fulfilled in several days or up to several

weeks. More complex requests take longer. For especially

complex and intensive data modeling, mapping, or analyses

beyond the scope of Spatial Data Services, two additional

options exist. Clients can visit a Spatial Data Services center to

work directly with the data under the supervision of FIA staff,

or FIA partners (those furthering FIA’s mission) can negotiate a

confidentiality agreement with the FIA program to use data for

a specific purpose and time. 

Some questions continue to persist about the use of the data in

the FIA public database after fuzzing and swapping according

to the new policy. Allegations and assertions have been made

that the public database is useless, and that analyses, such as

mill studies, cannot be reliably made from the public database.

For this article, two special studies were conducted to test the

hypothesis that the public database will produce results that are

substantially different than if the actual plot locations were used.

Mill Site Case Study

A common data request to FIA from private industry is to calculate

woodshed information within a specified geographic distance

of a proposed mill. A prospective mill site was selected in the

Shenandoah Valley of Virginia, (fig. 1). Woodsheds of five

different radii—50, 75, 100, 125, and 150 miles—were evaluated

to determine the acreages of forest and timberland, the numbers

of live trees 1 inch and greater in diameter at breast height

(d.b.h.), the number of growing-stock (GS) trees 5 inches and

greater in d.b.h., and the cubic foot and board foot volumes

(gross and per acre) of timber in the prospective woodsheds.

Table 1 shows the results. 

5 If a volume estimate is wanted for a 30,000-acre tract, for example, using data from the FIA database is likely to only yield four or five plots within that polygon.
Computing population estimates for the tract based on so few plots will probably yield estimates with large mean square errors; if one of those plots happens to be
swapped, the impact may be noticeable. Rather than bemoaning the potential impact of having a swapped plot in the population, however, the more important
question is why one would be willing to impute total volume on the tract on the basis of such a limited sample of plots in the first place. Polygons for analysis
should be large enough to yield 30 to 40 forested plots—200,000 to 250,000 forested acres—before population estimates and mean square errors are used to
impute population totals.

Figure 1.—The five concentric circles surrounding the proposed
mill location correspond to radii of 50, 75, 100, 125, and 150
miles, respectively. The circles cross State boundaries and different
FIA regions, which may have used different variables for swap-
ping. Each circle includes both complete and partial counties.
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The results show that the differences between using actual versus

fuzzed and swapped plot locations are trivial for this mill site

study. The differences are due to fuzzed and swapped plots in

partial counties within the radii. Because the results are consistent

across potential woodsheds of five different radii and for all the

major variables that are normally a part of a mill site feasibility

study, the trivial nature of the differences between the two sets

of data do not appear to be an aberration. 

Biomass Map Case Study

A spatial analysis was conducted to test the usefulness of the

fuzzed and swapped data for producing models of mapped

attributes. Using satellite imagery to model and map attributes

of forests has become very popular. The spatial resolution of

orbiting sensors varies significantly from less than 10 m

(IKONOS, QuickBird) to 1,000 m (Advanced Very High

Resolution Radiometer [AVHRR]). Several mid-resolution

sensors, such as Landsat (30 m) and Moderate Resolution

Imaging Spectroradiometer (MODIS) (250–500 m), offer

especially useful resolution for studying forest attributes over

wide areas. The twin challenges to using digital data from satellite

sensors are (1) developing models to classify the images by

individual pixels or groups of pixels, and (2) using ground-based

data to validate the classification models. The former challenge

is relatively easy. The latter challenge is more difficult. FIA

plot data are among the best ground-based sets of data that can

be used to validate classification models. For example, the

interagency team developing the Multi-Resource Land Cover

classification models relies on FIA plot data for validation of

forest cover type models. FIA data also were key to developing

the forest cover type map contained in the National Atlas

(www.nationalatlas.gov/mld/foresti.html) and is based on a

1991 map using AVHRR imagery.

The hypothesis tested by this case study is that the publicly

available plot data in the FIA database will yield model validation

results no different from actual plot data. This hypothesis was

tested by building a forest biomass map for Connecticut. The

map was created by modeling above-ground forest biomass

using road densities, satellite data, and the x and y coordinates

of FIA plot data. The road density from the plot center within

varying pixel radii was computed using 1:100,000 Tiger/Line

road data from the U.S. Census Bureau. Two independent vari-

ables derived from satellite imagery were included in the

Retrieval type Area (1,000s of acres) Trees (1,000s) Volume (millions) Volume/acre
Total Forest Timber-land Live (≥ 1”) GSa (≥ 5”) ft3 Bd. Ft. ft3 Bd. Ft.

50-mi radius
Actual 2,763 2,532 1,273,234 301,828 4,315 14,594 1,704 5,764
Fuzz/swap 5,027 2,777 2,542 1,277,453 301,729 4,322 14,632 1,700 5,756

75-mi radius
Actual 6,659 6,181 3,459,449 807,015 11,163 36,155 1,806 5,849
Fuzz/swap

11,310
6,639 6,161 3,424,786 802,263 11,085 35,907 1,799 5,828

100-mi radius
Actual 11,848 11,224 6,576,872 1,502,825 20,477 65,605 1,824 5,845
Fuzz/swap

20,106
11,850 11,223 6,570,391 1,501,532 20,496 65,773 1,826 5,861

125-mi radius
Actual 18,228 17,487 10,569,005 2,355,062 32,069 102,361 1,834 5,854
Fuzz/swap

31,416
18,223 17,487 10,536,468 2,350,409 32,011 102,194 1,831 5,844

150-mi radius
Actual 25,538 24,682 15,158,820 3,359,473 44,773 141,290 1,814 5,724
Fuzz/swap

45,239
25,568 24,722 15,176,113 3,361,850 44,780 141,288 1,811 5,715

Table 1.—Comparison of actual versus fuzzed and swapped summaries for several radii (50, 75, 100, and 150 miles).

a GS = growing stock.
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model. The first satellite variable was created from a reclassified

forest/nonforest map acquired from a National Land Cover

Data set. The second satellite variable was calculated from six

of the seven Landsat Thematic Mapper bands using the tasseled

cap transformation for greenness. 

The R2 for both the actual and the publicly available coordinates

was 0.43. The intercepts accounted for the largest difference in

the coefficients of the two models. The standard errors of the

coefficients for two models were equivalent. Figures 2a and 2b

reveal the similarity of the maps resulting from the model with

exact coordinates and the model with the publicly available

coordinates. 

What Can Be Inferred From the Two Case Studies?

In developing the approach to satisfy privacy concerns, FIA

statisticians consulted with counterparts in several other agencies

and organizations that are responsible for programs that rely on

sampling. During those consultations, two points were consistently

made by the other agencies and organizations: (1) swapping did

not induce significant deterioration in the quality of their pro-

gram’s data to the detriment of their clients; and (2) nothing

indicated that nontrivial differences would emerge from the

algorithms adopted by FIA. The peer review that was conducted

before issuing the new privacy also uncovered no problems

with the approach proposed by FIA. These results bear out the

wisdom of the advice FIA received and the quality of the internal

testing performed before issuing the new privacy policy. 

The results of the mill site case study dispel recent allegations

that the approach taken by FIA to protect the privacy of partners

seriously damaged the usefulness of the publicly available FIA

data. The database can be used with confidence for projects

such as mill site studies and woodshed analyses. 

The results of the biomass map case study suggest that using

the new publicly available data does not compromise the ability

to model attributes, at least when using imagery of 30 m or

larger resolution. The fourfold reduction in fuzz in the new

public database appears to have improved the utility of the data

for geospatial analyses. The “noise” in the model data set due

to Global Positioning System errors and the georeferencing of

Landsat pixels is probably similar to the noise induced by the

fuzzing and swapping algorithms. 

The FIA program is willing to conduct additional case studies,

both in other regions and for different types of studies, to

demonstrate the utility of the publicly available FIA data.

Perhaps different results will be obtained for mill site studies in

regions that are substantially different from the conditions

existing in this study area (e.g., 50- to 60-percent forest cover;

90 to 95 percent of forest land being timberland; growing stock

between 20 and 25 percent of total stocking; and per acre volumes

of 5,500 to 6,000 board feet).6 One reason this case study

region was selected is that its conditions are very similar to

6 Individuals wanting to partner with the FIA program in conducting additional tests of the publicly available FIA data for projects such as mill site studies should
contact the author directly. The only caveat the author requests is that the results of the tests be published in a future FIA Science Symposium or equivalent outlet.

Figure 2.—Biomass maps for Connecticut using (a) actual plot
coordinates and (b) publicly available plot coordinates.
Although the two maps appear identical, the predicted values do
not always fall in the same cubic-foot volume class.

(a)

(b)
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many other areas across the United States. Consequently, the

results reported herein are believed to be broadly applicable. An

unusual suite of conditions may lead to different results, however,

and the FIA program is interested in exploring the utility of the

publicly available data set in such conditions. 

The biomass map case study sheds little light on the usefulness

of the public FIA database for modeling with imagery of higher

resolution (10 m or less).We believe, however, that locational

errors likely will be of similar magnitude. It may be that actual

plot coordinates are needed to work with high-resolution images

over large areas, assuming that very accurate rectification of

images occurs. The FIA program is very interested in conducting

tests with partners using high-resolution imagery.

As more experience is gained with the publicly available data-

base, which kinds of analyses and which spatial scales may

require the use of actual coordinates will become clearer.

National FIA Spatial Data Services at the Northeastern Research

Station is available to assist with special needs. Over the past

year, the center has consistently enabled clients to meet their

deadlines, even when clients had only 3 or 4 months to complete

their analytical work. Clients with short deadlines are encouraged

to make those known in their initial contact with Spatial Data

Services at www.fs.fed.us/ne/fia/spatial/index.html. 

FIA Program Plans

Looking Ahead to 2005 and 2006

The FIA program has adopted two slogans for FY 2005 and FY

2006: “Lose No Ground” and “No State Left Behind.” As additional

States have been added to the annualized inventory program,

FIA Program Managers have focused on postponing annualized

inventory work if reasonable assurances do not exist that the

annualized work can be continued in subsequent years—“Lose

No Ground.” Adding new States has been neither simple nor easy.

Hiring, training, and retaining field crew members have been

difficult at some stations and in some States. Consequently, full

panels of data collection have not always been collected in a

single field season. Further, during bad fire seasons when some

State and Federal crew members are pulled away from FIA

duties to fight wildfires, all the fieldwork anticipated has not

been performed. When some fieldwork has been carried over to

the next field season, known as “panel creep,” Program Managers

working with State forestry agency partners have worked hard

to gain efficiencies and eliminate the fieldwork backlog. Recent

experience shows that panel creep can be reduced and eliminated.

Completing a full panel of fieldwork each season and maintaining

annualized inventories in States in which operations have begun

are essential components of “Lose No Ground.” 

In the early years of transition to annualized FIA, States were

added to the program based on their willingness and ability to

partner as test cases with stations. One reason that funding for

the program has increased annually over the past 5 years is

because Congress has seen increases in cost sharing and in-kind

contributions from partners. As the program has grown and

more States have been added, concerns have grown among the

decreasing pool of States not yet annualized that they will be

left behind with only an occasional periodic inventory. This

concern has grown as the overall Federal budget has tightened

to fund war and homeland-security-related needs. The long-term

success of the FIA program is contingent on having all States

included in the annualized program. The USDA Forest Service is

committed to seeking the funds needed to implement annualized

inventories in all States—“No State Left Behind.” 

The FIA program is on a trajectory to achieve the funding level

and coverage of all 50 States outlined in the 1998 FIA Strategic

Plan. The plan has been very helpful for keeping program leaders,

others inside the USDA Forest Service, and all FIA partners

and clients focused on the shared goals and objectives for FIA.

But now that achievement of the 1998 plan’s goals and objectives

is imminent, the time to begin preparing a new FIA Strategic

Plan is now. 

Looking Ahead to 2007–12

A new FIA Strategic Plan should aim at two broad goals. The

first and primary goal is to consolidate the programmatic gains

achieved in 1998–2006. This means keeping the annualized

inventory program working smoothly in all 50 States and terri-

tories, meeting all deadlines for releasing compilations of annual

data, and producing integrated analytical reports at 5-year intervals.
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The second goal is to create additional value for clients by aug-

menting the existing program with new features or levels of

intensity. Some features may involve expanding coverage to fill

critical information gaps and increasing spatial or temporal plot

intensity. Others may involve creating new analyses and innovative

uses of existing FIA data. In short, these twin goals emphasize

better serving our core clientele by tuning up the existing program

to make it better, faster, and cheaper, and adding a few carefully

chosen new features to meet the most pressing emerging needs.

Taken together, these actions will increase the value of the FIA

program to a broader clientele. 

To achieve the first goal, current business practices may need

to change. For example, during the transition from periodic to

annualized inventories, the task of writing data compilation

software was undertaken both communally and individually.

Station experts worked together to build common routines for

collecting and compiling annualized field data. To compare the

current situation with the most recent previous inventory (which

consisted of periodic inventories of different types and ages,

even within a single State and station), however, each station

worked individually to build the routines to compare the past

data with the present. When implementing annualized FIA in

Kentucky, for example, the Southern Research Station had to

work with data from the previous inventory created by the

Northeastern Research Station using a different sampling

scheme. Now that this transition is largely complete and a more

consistent and common set of routines for compiling annualized

FIA data exists, gaining additional efficiencies by further cen-

tralizing some of the data processing and compilation business

processes may be possible. Additional advances from improving

or reengineering other business practices may also be possible

and should be explored. The improved internal discipline arising

from having cross-station consistency as a core value for the

new FIA program will make this change management task easier.

Savings will be reinvested in improving the FIA program.

To achieve the second goal, an extended dialog is needed. Core

clients remain an important source of support. A large number

of potential clients need to be listened to, also. The following

ideas have been presented in the past 2 years:

• Reduce the inventory cycles to 5 years everywhere.

• Move into urban areas to inventory all land.

• Broaden coverage of health issues, in particular to better

characterize the impact of invasive species.

• Expand analyses to provide more information on issues for

which forest vegetation structure and function are important

influences, such as wildlife habitat quality.

• Intensify the grid on public and private land so that inventory

data are more useful to resource managers at the forest

management unit level.

• Expand the inventory to include rangeland and help char-

acterize range condition, health, and trends.

• Broaden coverage of linear features, such as riparian

zones, and link that data to the FIA grid.

Other concepts, including the following, have been expressed

in less concrete terms:

• Take greater advantage of advanced satellite imagery, perhaps

shifting some attributes from field plot collection as

imagery provides more and more usable data.

• Develop faster, more accurate, more sophisticated change

detection algorithms resulting in more timely and accurate

assessments of land use/land cover dynamics.

• Develop more and better Web-based tools, such as adding

more geospatial tools, so that users can customize their

own analyses and make it easier for clients to build and

populate their own unique data layers. 

• Create better linkages between FIA data and pressing natural

resource policy issues, such as fire and fuels analyses,

fragmentation, sustainability reporting, certification, and

other global issues.

• Build closer ties to the university community to take

advantage of expertise for analyses and prototyping

innovative techniques.

• Expand the use of FIA data in other parts of the USDA

Forest Service for additional research and development and

more State and Private Forestry programs and to improve

the management of national forests and national grasslands.

All these suggestions have merit and would produce useful

information for clients. All these suggestions also would
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increase program costs. None can be launched solely on cost

savings wrung out of improved efficiencies in the ongoing

program. All would require changes—sometimes radical

changes—in the existing program to be accommodated. But

after the past 6 years, the FIA program has come to embrace

change as invigorating and as the only route to future success. 

Over the next 18 months, the FIA National Program Leader and

station FIA Program Managers will convene and facilitate a

series of discussions with current and potential clients and

USDA Forest Service leadership over the future foci of the FIA

program for 2007–12. Regional and national user group meetings

this year and next will be used to launch the dialog, and additional

meetings will probably be needed to ensure that all points of

view are heard and to build consensus on strategies. Moving the

FIA program forward will be impossible without strong support

among the entire FIA community of interest.

Summary

The FIA program would not be in its current position without the

strong, dedicated leadership of USDA Forest Service Research

and Development employees and our partners. Together, we have

accomplished great things in the past 5 years. Now is not the

time to rest on our laurels or foreswear further change. Rather,

FIA’s continued science mission is to help clients—all Americans—

see their forests in new and different ways; to wisely protect,

manage, and use them; and to leave them in better condition

for our children and grandchildren. We cannot accomplish this

mission alone, but we can accomplish it together.
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Land-Base Changes in the United States:
Long-Term Assessments of Forest Land
Condition

Ralph J. Alig1

Abstract.—Forest land conditions affect the potential

of U.S. forests to sustain a wide array of forest goods

and environmental services (e.g., biodiversity) that

society demands. Forest survey data collected by U.S.

Department of Agriculture Forest Service Forest

Inventory and Analysis (FIA) units are being used in

long-term assessments of U.S. forest land conditions

at large scales. Resources Planning Act assessments,

which employ a system of models, and FIA data

enable a proactive examination of forest resources by

projecting long-term changes in forest area and other

forest ecosystem attributes in regional and national

studies of forest sustainability. Forest land values provide

informational signals on what amounts and types of

forest land are likely and prospects for the provision

of mixes of land-based goods and services. A key part

of those land use changes, development of rural land,

is related to population growth and affects forest land

values, forest fragmentation, forest parcelization, and

ownership changes. The FIA survey planning and

related assessments would be enhanced by a unified

framework, constructed at a scale that adequately serves

all assessment areas, to analyze future land conditions.

Introduction

Forests cover about one-third of the United States. These

diverse land-based ecosystems provide a variety of habitats for

wildlife; help to cleanse the air and water; supply timber, fuel

wood, and other harvested products; serve as places for recreation;

and provide other goods and environmental services. Long-term

assessment of their condition and relations to changes in demo-

graphics and other socioeconomic factors is key in defining

policy questions and actions needed to sustain those services.

Use of long-term databases, such as those compiled by the U.S.

Department of Agriculture (USDA) Forest Service Forest Inventory

and Analysis (FIA) program pertaining to changes in forest

cover, will be integral in monitoring efforts and in supporting

long-term projections of changes in forest land condition. 

With changes in society, such as growth in population and

increases in consumption, human-related pressures on the land

base and forest land conditions are likely to increase. Across

the United States, forest land conditions are altered by timber

harvesting, fire management practices, conversion to other land

uses, forest type transitions (including forest succession),

recreation, and climate change. For example, wood use has

increased by 40 percent since 1960 and is expected to rise by

about 30 percent in the next four decades, which has implications

for domestic timber harvest levels (Haynes 2003). 

Projections of changes in forest land condition support long-

range regional and national projections of future supply and

demand for agricultural crops, animal products, forest products,

recreation land, wildlife habitat, water use, and other landscape

and environmental measures (see, e.g., USDA Forest Service

1988, 2001). An abundance of land is seen by some as a hallmark

of the United States, and projections of developed area can aid

decisionmaking as a forward-looking process in addressing

questions such as whether adequate rural land will be available

to support valued environmental goods and services in the future. 

Periodic U.S. natural resource assessments mandated by the

national (Forest and Rangeland Renewable) Resources Planning

Act (RPA) of 1974 support USDA Forest Service strategic

planning and policy analyses (USDA Forest Service 2001). RPA

requires that decadal national assessments, with mid-decade

updates, include an analysis of present and anticipated uses;

demand for and supply of the renewable resources of forest,
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range, and other associated lands; and an emphasis on pertinent

supply, demand, and price relationship trends. The 2000 RPA

assessment provides a broad array of information about the

Nation’s forests and rangelands, including the current situation

and prospective area changes over the next 50 years (Alig et al.

2003, Alig and Butler 2004). Related data illustrate the dynamics

of our Nation’s land base and how adjustments are likely to

continue in the future. Projections of land use and forest cover

changes provide inputs into a larger system of models that project

timber resource conditions and harvests, wildlife habitat, and

other natural resource conditions (USDA Forest Service 2001).

These RPA assessments interface with international assessments

(e.g., United Nations Conference on Environment and

Development in 1992, Montreal Process set of sustainability

criteria and indicators) and regional assessments, such as the

study of the South’s Fourth Forest (USDA Forest Service 1988)

and an update by the Southern Forest Resources Assessment

(Wear and Greis 2002). Information from the periodic RPA

assessments can shed light on whether we can sustain increasing

consumption of forest products and forest resource conditions. 

This article has three parts. The first part discusses changes in

macro forest land conditions, as evidenced by trends in land

use, ownership, cover types, forest age, and proximity to con-

centrations of developed area. The second component focuses on

large-scale modeling systems that use FIA data for investigating

prospects for afforestation, reforestation, and deforestation (e.g.,

conversion to developed uses). The final section summarizes

associated information and research needs, with an emphasis on

environmental services and the link to human modifications of

the environment. 

Land Use and Land Cover Changes—1953 to
2002

Examining historical trends provides guidance for identifying

key factors that are likely to influence forest land conditions

and associated natural resources in the future. The discussion of

historical trends across time and space lays a foundation for

subsequent discussion of projected changes in those same forest

attributes. A major data source is the FIA survey program of

the USDA Forest Service. Regional FIA units have a long history

of inventorying and monitoring the Nation’s forests. This program

originated with the McSweeny-McNary Forest Research Act of

1928 and has been in continuous operation in portions of the

country ever since. During the 1970s, a national forest survey

effort, having completed at least one inventory in most States,

expanded its mission considerably by adding multiple resource

inventories to the historical timber surveys. The FIA reports on

status and trends in (1) forest area and location; (2) the species,

size, and health of trees; (3) total tree growth, mortality, and

removals by harvest; (4) wood production and utilization rates

by various products; and (5) forest land ownership. The national

FIA program Web site is http://www.fia.fs.fed.us/.

Total Forest Area and Ownership

Key forest-related indicators at a national level are total forest

area and trends by ownership. Between 1953 and 2002, the net

change in U.S. forest area was a reduction of about 7 million

acres, or 1 percent. Timberland area was reduced by a similar

amount. Overall, forest area per person has declined notably

since 1953 (fig. 1). 

The largest forest ownership aggregate in the country, non-

industrial private forest (NIPF) owners, experienced a 14-million-

acre, or 5-percent, reduction in its timberland area. The largest

concentration of NIPF owners is in the South, and their timber-

land area was reduced 6 percent. Most forest land development

Figure 1.—Amount of forest area per resident, for selected U.S.
regions, 1952–1997). Source: Smith et al. 2004.
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occurs on land owned by NIPF owners. NIPF owners control the

most U.S. timberland—58 percent (118 million ha) of the total.

Even where public ownership predominates, NIPF ownership

often accounts for land that provides critical habitat such as

lowlands or riparian areas—e.g., NIPF ownership of Pacific

Northwest land that is critical to threatened and endangered

species (Bettinger and Alig 1996). 

NIPF-owned timberland areas in the Pacific Northwest and

Pacific Southwest, two other regions experiencing above-average

growth rates in population and increases in developed area, are

also decreasing. In the Pacific Northwest, NIPF timberland

area dropped by 4.4 million acres, or 34 percent, between 1953

and 2002, while the corresponding reduction of NIPF timberland

area in California (Pacific Southwest) has been 1.5 million

acres, or 25 percent over the same period. 

Land ownership can be an important determinant of how forest

land is managed and the levels of investments in different prac-

tices (e.g., Alig et al. 1999). The relative proportions of private

and public timberland have remained fairly stable since 1953,

with about 29 percent of U.S. timberland in public ownership. In

the private timberland group, the proportion of NIPF ownership

dropped slightly, from 84 to 82 percent of total private ownership,

between 1953 and 2002. Family forests are a large component

of the NIPF ownership class; the number of family forest owners

increased from 9.3 million in 1993 to 10.3 million in 2003, and

these owners now control 42 percent of the Nation’s forest land

(Butler and Leatherberry 2004). The NIPF ownership class is

the one most subject to land use changes, as evidenced by the

14-million-acre reduction in NIPF timberland area since 1953;

in contrast, forest industry ownership increased by 7 million acres.

The long-term area increase in U.S. forest industry timberland

peaked in 1987 at 70 million acres. Since then, U.S. forest

industry timberland area has declined by 5 million acres, with

some area reclassified as NIPF timberland because of a transition

to institutional and other financial investors without timber-

processing facilities. About half of that net reduction was in the

Southeast, with a transition of land ownership from consolidated

forest products companies to stand-alone financial ownership.

Institutional investors currently hold about 8 percent of the

investable U.S. timberland (Wilent 2004). By the end of 2003,

a Timber-Mart South newsletter reported that the top 10 timber-

land investment organizations (TIMOs) managed about 9 million

acres of U.S. timberland, and some analysts predicted that TIMOs

and other investor groups will purchase another 10 to 15 million

acres in the next decade (Wilent 2004). 

Forest Cover Types

Forest cover is another important variable that affects wildlife

habitat, timber supply, global climate change, water, recreation,

and other forest ecosystem goods and services. Land cover is

the observed biophysical cover on the Earth’s surface, e.g.,

oak-hickory forest and grassland. Cover types are related to land

use changes, with land use being the human-defined purpose of

that land. For instance, lands can be defined as protected areas,

forestry for timber products, plantations, row-crop agriculture,

pastures, or human settlements. By examining historical trends

of forest land area by forest cover type, we can better understand

forest dynamics and their possible implications for sustainability.

The three largest historical cases of area changes for forest

cover changes since 1953 have been in the eastern United

States (Alig and Butler 2004). A key area change with timber

supply implications is the more-than-tenfold increase in the

planted pine area in the South since 1953, mostly on private

lands. This growth illustrates that the largest recent impact on

forest cover dynamics in the United States has been due to

human influences, especially from changes in land management

objectives. In the last half of the 20th century, application of

intensive forestry, as with establishment of some pine plantations,

has in some cases influenced the composition, structure, and

ecological processes of forests. For instance, plantations and

clearcutting have replaced natural regeneration and selective

harvesting on some sites in the United States. An example is

the conversion of naturally regenerated longleaf and slash pine

stands with pine plantations, resulting in a 50-percent reduction

in the area of the longleaf and slash pine type since 1953

(Smith et al. 2004). Intensive forestry on private timberland has

generally reduced rotation lengths, which leads to more frequent

regeneration opportunities and increases the probabilities of

more forest cover changes. 
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Along with the human-caused changes are the successional

forces that led to a doubling of the area for maple-beech-birch

type between 1953 and 2002 in the East. Two other hardwood

types, oak-hickory and oak-pine, also increased more than 20

percent in area, gaining some of this area after timber harvests

of other types. Although planted pine has increased in portions

of the East, the hardwood types continue to dominate the area

in this region. 

Although softwood types dominate forest cover in the West, the

largest area increase since 1953 has been the more than doubling

of western hardwoods (Smith et al. 2004). In the softwood types,

Douglas fir area has increased, sometimes at the expense of the

western hemlock-Sitka spruce type. At higher elevations, the

spruce fir cover type has almost doubled its area since 1953

due to successional forces. At a national scale, long-term data

on forest cover changes are generally more available for private

forests because FIA concentrated on private and State lands until

recent decades when regional units assembled joint databases to

include national forests and other lands. 

Stand Age

The FIA program classifies timberland by 10-year age class for

even-aged stands, e.g., 0 to 9 years of age. The FIA surveys

classified less than 5 percent of timberland as being uneven-aged

(Smith et al. 2004). Timberland in the West tends to have older

stands on average, with 4 percent of stands in the East being

100 years or older in comparison to 35 percent of western stands.

The West also has close to 10 million timberland acres with

stands that are 200 years old or older, or 7 percent of the total,

in contrast to only about 50,000 acres in the East. Conversely,

22 percent of stands in the East are classified as being less than

20 years of age in contrast to 12 percent in the West. 

Changes in age-class structure have various implications for

timber inventory volumes and growth, with key differences on

public versus private timberlands. For much of the country, we

are seeing an aging of the forests and an accumulation of acres

in the older seral stages as active timber production shifts to

fewer acres. These changes are especially true in the North and

West and particularly on public timberlands in the Pacific

Northwest. In the South, by contrast, a shift from older hardwood

stands to younger softwood stands has occurred because of forest

management decisions (Haynes 2003). 

The combination of forest resource changes described above

has been accompanied by an increase of almost a quarter trillion

cubic feet (39 percent) in U.S. growing stock since 1953. The

increases have been largely in the East, spread almost evenly

between the North and South (Smith et al. 2004). Hardwoods

experienced most of the increase. Since 1953, volumes have

increased in all timber diameter classes below 25 inches (Smith

et al. 2004); however, softwood volumes have decreased for

classes above 25 inches whereas hardwood volumes have

increased. The decline in large-diameter softwoods is due to

harvesting of larger trees and the increased set-aside of timber-

land as reserved forest land (which reclassifies trees in these

areas as nongrowing stock).

Forests in the Rural-Urban Continuum 

Forest land development increases the number of people who

are living closer to remaining forest lands, in view of growing

cities and other urban areas. A measure added in recent periodic

FIA surveys has been the identification of forest lands by rural-

urban continuum class. Based on nationwide rural-urban con-

tinuum classes (Smith et al. 2004), 13 percent of U.S. forest

land now are located in major metropolitan counties, and 17

percent are in intermediate and small metropolitan counties and

large towns, for a total of 30 percent of all U.S. forest land

(Smith et al. 2004). Between 1997 and 2002, the forest area in

major metropolitan areas increased by more than 5 million

acres, or 5 percent, as developed areas in the Unites States

expanded considerably. 

The aforementioned descriptions of changes in the forest

resource since 1953 provide a brief look at some of the natural

resources and societal changes that are considered when projecting

area changes for forest land and timberland by U.S. region. A

method used increasingly in RPA assessments that uses FIA

data is econometric modeling based on statistical methods used

to quantify relationships between land uses and hypothesized

determinants such as landowners’ profit from land management

(e.g., Kline and Alig 1999). 
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Systems Modeling: Projecting Forest Land
Conditions 

FIA data are used in the system of models employed for the

periodic RPA assessments and related studies. For example, for

the 2000 (fifth) RPA Timber Assessment (Haynes 2003), forest

inventory data collected by the USDA Forest Service’s FIA units

were used to characterize current forest conditions and project

forest inventories. A key model is the Timber Assessment

Market Model (TAMM) for the solid wood products sector,

which provides the linkage between product markets (solid wood

and pulpwood) and the timber inventory (Adams and Haynes

1996). The North American Pulp and Paper Model (NAPAP) is

a model of the paper and board sector, with detailed treatment

of fiber supply (recycled, roundwood, and short-rotation woody

crops) (Ince 1999). The Aggregate Timberland Assessment

System (ATLAS) is a structure for projecting timber inventory

over time based on FIA periodic data (Mills and Kincaid 1992).

The AREACHANGE model explains the shifting of land between

forest and nonforest uses and among forest types (Alig et al.

2003, Alig and Butler 2004). The RPA system of models is an

example of a bioeconomic model because it combines repre-

sentations of biological and economic processes. 

In the RPA family of models, projecting land use changes

requires FIA data pertaining to ownership, forest cover, site

productivity, stand age, and removals. By using these and other

data, the AREACHANGE model projects land use for the

entire land base, including conversion of forest lands to urban

and other built-up uses and land exchanges between forestry

and agriculture. The information generated from the RPA family

of models, in turn, is used for input into other models, such as

the Forest and Agricultural Sector Optimization Model

(FASOM). In FASOM, the forest sector is patterned in large

part after the basic structures of the TAMM, NAPAP, ATLAS,

and AREACHANGE models (Adams et al. 1996; Alig et al.

1998, 2002). The FASOM model endogenously allocates land

between forest and agricultural use, such as in the case of

afforestation. For example, in the two southern RPA regions,

FASOM results indicated that the South Central region has

relatively more potential for afforestation on agricultural land.

Population growth in the Southeast has led to more deforestation

for developed uses in that region, based on projections by Alig

et al. (2003, 2004), and the next section of this article indicates

that forests are the largest source of developed land. 

Highlights of the projections to 2050 by the 2000 RPA assessment

include (1) U.S. consumption of forest products will continue

to increase over the next 50 years, but the rate of increase will

be slower than over the past 50 years; (2) most of the increase

in the Nation’s timber harvest will be in the East, especially on

NIPF timberlands in the South; (3) softwood plantations will play

an important role in future domestic timber harvest expansion,

but such plantations will occupy less than 10 percent of U.S.

timberland; (4) timber inventory volumes will increase—soft-

woods by 53 percent and hardwoods by 27 percent; (5) tree

species composition will shift toward softwoods in the South

and hardwoods in the North and remain largely unchanged in

other regions; (6) the age-class structure of timberland managed

on an even-age basis will be similar to current conditions on

private lands but will shift toward older age classes on public

lands; and (7) diversity indices that combine age class and forest

type exhibit limited change over the projection period for the

United States as a whole (Haynes 2003). In summary, based on

broad-scale measures of forest resource conditions, the RPA

assessment does not project dramatic changes in U.S. forest

conditions over the next 50 years, even as timber harvest levels

rise. Deforestation trends are examined more closely in the

next section because this issue increasingly draws attention to

current policy (e.g., open space concerns) and whether changes

would be desirable. 

Deforestation Projections 

In recent years, most U.S. deforestation has been due to conversion

of forest land to developed uses, e.g., residential areas. The

United States had a 34-percent increase in the amount of land

devoted to urban and built-up uses between 1982 and 1997,

according to the National Resources Inventory by the USDA

(USDA NRCS 2001). The annual rate of conversion during the

past 5 years of this period was more than 50 percent higher

than during the previous 5 years. Forests in particular have

been the largest source of land converted to developed uses in

recent decades, with resulting impacts on forest cover and other

ecological attributes. The largest increases in U.S. developed
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area between 1982 and 1997 were in the South, a key timber

supply region. Between 1982 and 1997, 7 of the 10 States with

the largest average annual additions of developed area were in

the South. Expansion of developed area and urban sprawl in the

South has been described as a major issue for future natural

resource management, especially for the region’s forests (Seelye

2001, Wear and Greis 2002). A recent FIA survey for North

Carolina turned up a larger reduction in timberland area than in

previous surveys. Wear and Greis (2002) project more than a

10-million-acre increase in developed area in the South over the

next 25 years. 

Development of rural land does not just result in direct conversion

of forest land but can also involve forest fragmentation (Alig

2000, Butler et al. 2004), forest parcelization, and ownership

changes. Development pressures can also add to uncertainty

about how forest land will be managed if owners anticipate

higher financial returns in an alternative use. Because forest

land prices capture information regarding current as well as

anticipated uses of land, land prices anticipate future development

of forest land near urbanizing areas, casting a speculative shadow

over timberland values (Wear and Newman 2004). With antici-

pated population and income growth, such dynamics could hold

important implications for conditions of forest land and envi-

ronmental benefits.

Projections suggest continued urban and other developed area

expansion over the next 25 years, with the magnitude of increase

differing by region (Alig et al. 2004).  For nonfederal land in

the contiguous 48 states, the U.S. developed area is projected to

increase by 79 percent, raising the proportion of the total developed

land base from 5.2 to 9.2 percent. Because much of the growth

is expected in areas relatively stressed with respect to human-

environment interactions, such as some coastal counties,

implications for landscape and urban planning include potential

impacts on sensitive watersheds, riparian areas, wildlife habitat,

and water supplies. The projected developed and built-up area

of about 175 million acres in 2025 represents an area equal to

38 percent of the current U.S. cropland base, or 23 percent of

the current U.S. forest land base. 

When examining land use dynamics, the many pathways by

which land use can change warrant examining both net and

gross area changes for major land uses. The total or gross area

shifts involving U.S. forests are relatively large compared to net

estimates. Gross area changes involving U.S. forests totaled

about 50 million acres between 1982 and 1997, an order of

magnitude greater than the net change of 4 million acres.

Movement of land between forestry and agriculture in the last

two decades resulted in net gains to forestry that have offset

forest conversion to urban and developed uses in area terms.

The conditions of forested acres entering and exiting the forest

land base, however, can be quite different; entering acres may

have young trees, such as for old-field natural succession cases,

whereas exiting acres often contain large trees before conversion

to developed uses. Concern about the attributes of exiting or

entering forested acres was heightened in the 1990s when the

rate of development increased, with about 1 million acres of

forests converted to developed uses per year (USDA NRCS 2001). 

The deforestation projections do not include remaining forest

land that over time has added more people per square mile but

not enough to be reclassified as nonforest land. Within current

FIA definitions, the major effective use of forest land could

conceivably shift to a nontimber use as housing density per acre

increases, but the shift may not be enough to reclassify the land

as nonforest. This point is also relevant later in this article in

the discussion of forest parcelization. Empirical studies using

FIA data are investigating thresholds at which the actual use

effectively shifts (e.g., Kline et al. 2004b). 

Implications for Forest Land Values

Implications of the projected increases in developed area for

forestry extend to effects on forest land values. Land prices

embody information on relative valuations by different sectors

of the economy. For example, valuation of land currently in

forest uses in some areas is strongly influenced by trends in

developed areas (e.g., Wear and Newman 2004). Land values

for developed uses typically exceed those for rural uses by a

substantial amount (Alig and Plantinga 2004). Agricultural

values are usually second to developed uses in potential value,

and they are often influenced by development potential. With

rural land uses subject to increasing conversion pressure, open
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space concerns have heightened. The earliest significant U.S.

efforts to preserve open space involved preserving and restoring

publicly owned forests and parks at national and State levels.

These efforts were inspired by public concern for rapid loss of

forests to agriculture and logging in the late 19th century and

the desire to protect timber and water resources and lands of

extraordinary beauty and uniqueness. Since then, public concern

for land use change has evolved to recognize the contribution

of open space to our day-to-day quality of life—its recreation,

aesthetic, ecological, and resource protection benefits. 

Forest land values can differ in a variety of geographic, biological,

regulatory, economic, and social situations and are important

in determining how much land is allocated to forest use. Given

that complex of factors, forest use valuation is increasingly

becoming more complicated, as is our economy, by overlays of

land use zoning, environmental laws, forest practices regulation,

site-specific environmental considerations, and recognition of

forest resource values other than timber. For example, the State

of Oregon is currently dealing with land value issues as part of

its response to Ballot Measure 37. This ballot measure may have

substantial impacts on the State’s land use planning, which

includes protecting forest and agricultural lands in certain zones.

The measure was promoted as a land valuation supplement to

earlier land use planning that focused on biophysical measures.

Approved by Oregon voters on November 2, 2004, Measure 37

allows a landowner to apply for relief from land use rules created

since the landowner’s family acquired a property. If the landowner

shows that the property value has been harmed, the government

responsible for the rule must waive it or pay for the loss of

value. Other States in the West are monitoring the Oregon case

because the West has experienced larger than average population

growth, and a recent FIA survey in western Washington estimated

that conversion of forest land to developed uses had increased

compared with the previous survey period. 

The Oregon case illustrates that people differ in the values that

they place on environmental, economic, and social aspects of

forests. This affects the social valuation and is in contrast to the

private cost of providing goods and services that others may

value from private forest land. An example is that many forest

lands and open spaces include social values—ecological, scenic,

recreation, and resource protection values that are typically not

reflected in market prices for land when some forest land is

developed (Kline et al. 2004a). For open space policy, one needs

to understand social values in the context of forest land market

values and the economic rationale and impetus for public and

private efforts to protect forest land as open space. Kline and

Alig (1999) used FIA data to investigate the effectiveness of

Oregon’s land use law, and current research is examining

whether forest land values can reveal what it may cost to pursue

different sustainability options if land easements, purchases, or

rentals are desired. The land values reveal what people are

actually willing to pay for a bundle of rights necessary to gain

access to land that can provide goods and services for a certain

period. Changing perceptions about forest land mirror those in

farmland preservation. National interest in preserving farmland

arose in the 1970s from concerns about rapid loss of farmland

to development and the supposed threat to food security and

agricultural viability. These concerns led to the gradual and

nearly nationwide implementation of local, State, and Federal

farmland preservation programs (Kline et al. 2004a). More

recently, recognition has grown for the environmental amenities

and the social values of farmland and the role they play in

motivating public support for preserving farmland. Incorporating

land-based values into farmland protection policies and programs

helps to ensure that the public is getting what it desires from

preserved farmland. Similar efforts may now be needed for

forest lands to ensure that public and private open space protection

efforts are tailored to provide the social values desired from

forest lands. 

Land-base changes can affect many goods and services, including

those for historically nontraditional forest-based goods and

environmental services such as biodiversity, which is increasingly

used as an ecosystem indicator. Human-environment impacts

that affect biodiversity can vary across space and time, such as

physical fragmentation of forest cover from land use changes,

which can affect natural resources in a variety of ways. For

example, development of rural land may cause fragmentation

of wildlife habitat. A landscape that is optimal for a private

owner can depart from a socially optimal landscape that reflects

society’s preferences for public goods associated with interior

forest parcels. Future policy-related research can examine land
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use shifts for parcels to identify optimal ways for reducing forest

fragmentation. Spatial configurations make this complex, how-

ever, in that benefits of converting (or retaining) a parcel will

depend on the land uses of the neighboring parcels as well as

on other parcels affected by the policy. 

Future Directions

Forests are increasingly subjected to human-caused modifications

and stresses. For the FIA program, one challenge is to increasingly

link forest resource data to socioeconomic data, such as charac-

teristics of forest land owners. This challenge reflects the large

diversity of data needed to address policy questions (e.g., well-

being of natural-resource-dependent communities) that arise given

increased attention to sustainability and activities associated

with the environment, economy, and societal institutions. Much

discussion in forest policy circles today is about forest sustain-

ability (Alig and Haynes 2001), which seems to be part of a

larger societal concern about quality of life and the long-term

capability of land to provide goods and services that we as a

society demand. Issues for land use and land cover monitoring

and assessment include consistent coverage across the entire land

base. Analogous to the snapshot of land use information by

USDA’s National Resources Inventory, land cover modeling

would benefit from periodic nationwide estimates of changes

in forest cover, e.g., National Land Cover Data mapping project.

Field-based observations are also needed to provide complementary

data such as land ownership and site quality. 

Monitoring changes in ownership of forests would also be useful

because sales and acquisitions of forest lands reflect active market

forces, globalization, and consolidation effects on the forest

sector. The forest industry is increasingly viewing its forests as

strategic financial assets (Wilent 2004). Fragmentation of private

lands and expected resulting changes from conversion of forest

to developed uses are being assessed in an ongoing “Forests on

the Edge” national project (Stein 2004). Breaking up of owner-

ships into several smaller ownerships—parcelization—can also

have profound impacts on the economics of farming or forestry,

even when land is not physically altered in any major way. 

Trends in population density warrant further study for different

classes of rural and urban land (Alig 2000). The United States

had about 80 people per square mile of land in 1999 (U.S.

Department of Commerce, Census Bureau 2001). This population

density compares to about 5 people per square mile in 1790 and

a world average of more than 100 people per square mile in

1999 (United Nations 2002). More people on the landscape

include those in rural areas with attractive recreational land and

aesthetic amenities, often involving forests. People migration

because of amenity attractions is related to concerns about

changes in quality of life. Such demographic changes increase

the size of the wildland-urban interface, exacerbating wildfire

threats to structures and people.

Human demands for forests will escalate as populations grow

and personal incomes increase, challenging land managers to

provide for a diverse array of societal needs, including ecological

(e.g., biodiversity), economic, and social needs. In addition to

substantial demand for environmental services such as biodiversity,

water quality improvement, and carbon sequestration, there is

growing interest in spiritual values associated with forests and

in forests’ sustainable use and restoration after certain distur-

bances. Related research is needed to help dovetail design of

incentives and assistance for private landowners to promote

conservation objectives and other social values while meeting

their personal objectives. NIPF owners will increasingly experi-

ence pressures to produce multiple goods and services from

their forest lands, often in the face of mounting pressure from

development. Insights might be gained by reviewing forest survey

methods and analyses in other countries with large NIPF com-

ponents, such as Finland. Spatial and temporal scales of inquiry

are important, too, in that specific issues can emerge at particular

scales. A growing population will affect choices in the United

States, which has a rich legacy of forests managed by a variety

of individuals, corporations, governments, and others for many

goods and services (Beuter and Alig 2004). 

Advances in land use analyses will likely rest in part on the

continued improvement of spatial databases, including spatial

socioeconomic data, and improvements in spatial econometric

methods to support empirical data analyses. Tradeoffs must be
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considered when assessing the costs and benefits associated

with providing more spatial detail, as well as tradeoffs and costs

in the FIA transition from periodic to annual surveys. Related

issues are privacy and disclosure considerations for private owners

of forest lands in light of increasing availability of spatial data.

Along with improved databases, monitoring of developed area

trends, associated investment in infrastructure (e.g., transportation

networks and nodes), and related socioeconomic factors will be

important in facilitating updated projections of U.S. developed

area. Monitoring such changes will be important, as will be

defining key policy-relevant questions that can lead to effective

land use and land cover monitoring and assessments and land

management. 

Given the expected growth in U.S. population and changes in

economic activity, a key question is how society can make

positive progress toward “sustainability” in the face of needing

more developed land to serve more people in the future.

Agreement among stakeholders of the forests when it comes to

sustainable use is likely to be a contentious issue because of the

inherent tensions and conflicts. Location-specific balancing of

interests may be possible, but overall progress toward such goals

may rest on a more integrated approach for describing the

complex interplay between human activity and the environment.

To help evaluate progress, we need a useful definition of sus-

tainability along with measurable indicators that fundamentally

reflect the long-term ecological, economic, and social well-being

as they relate to alternative uses of land. Data collection by

FIA units could play an important role, e.g., by monitoring

impacts of global climate change on future forest conditions

such as forest type and biodiversity changes. 

A major complication in past FIA survey planning, RPA

assessments, and global climate change assessments has been

the lack of a unified view of future land conditions at a scale

that serves all these assessment areas adequately. Attaining the

ideal unification is a substantial undertaking, and this unification

could be assisted up front by an assessment of common infor-

mation needs. A modeling system that can project land base

conditions for forest ecosystems could provide a thorough and

unified description of anticipated change in the extent, structure,

and condition of the Nation’s forests at useful regional and sub-

regional scales. At the same time, such a system could augment

economic measures, which would be useful when investigating

changes in land markets and analyzing trends in land values. 
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Estimation of U.S. Timber Harvest Using
Roundwood Equivalents

James Howard1

Abstract.—This report details the procedure used to

estimate the roundwood products portion of U.S.

annual timber harvest levels by using roundwood

equivalents. National-level U.S. forest products data

published by trade associations and State and Federal

Government organizations were used to estimate the

roundwood equivalent of national roundwood products

production. The procedure for estimating roundwood

equivalent of roundwood products is to calculate the

“roundwood equivalent” of solid wood products using

recovery factors estimated from mill studies over the

years. The procedure for estimating roundwood equivalent

of products provides a simple technique for estimating

the major portion of national timber harvest levels

that is less expensive than conducting surveys and can

be done on an annual basis. This technique provides a

benchmark that can be used in conjunction with the

Forest Inventory and Analysis survey approach, which

helps ensure the accuracy of both methods. These

national harvest levels were estimated by working

backwards from U.S. national timber products pro-

duction data using lumber recovery factors to derive

the roundwood equivalent of harvest.

Introduction

Federal law requires that the U.S. Department of Agriculture

(USDA) maintain a current analysis of the demand and supply

of resources from forest land and rangelands. Specifically, the

Renewable Resources Planning Act (RPA) of 1976 and the

Forest and Rangeland Renewable Resources Research Act of

1978 require development of periodic programs and assessments.

The Research Act directs the Secretary of Agriculture to make

and keep a comprehensive survey and analysis of present and

prospective conditions of and requirements for renewable

resources of forest and range lands of the United States. The

compilation of roundwood equivalents of harvest, defined as an

estimate of the solid volume (i.e., total wood content) of a

processed log in cubic units derived by multiplying the final

products by product recovery factors, are computed in a

spreadsheet. In the roundwood equivalent spreadsheet, the four

major groupings of industrial roundwood uses (under headings

“Industrial roundwood used for”) are (1) lumber, (2) plywood

and veneer products, (3) pulpwood-based products, and (4)

other. Each group contains more specific subcategories of

products, which encompass all primary industrial wood and

wood fiber products. The subcategories for lumber are softwood

(SW) lumber, hardwood (HW) lumber, and pallets (produced at

sawmills); plywood and veneer products are SW plywood, HW

plywood, and laminated veneer lumber (LVL); pulpwood-based

products are oriented strandboard (OSB), particleboard, hard-

board, medium-density fiberboard (MDF) and insulation board,

and pulp, paper and paperboard. In the pulpwood-based products

category, the spreadsheet accounts only for estimated roundwood

inputs, not wood residue inputs. Wood residue inputs are included

as part of roundwood initially sent to sawmills or other mills

that produce residue. The “other” category is composed of posts,

poles, piling, and miscellaneous products. Apart from these

categories, log and chip trade and fuel wood are also accounted

for. The intent of the roundwood equivalent estimation is to

calculate roundwood harvest on an annual basis or the roundwood

equivalent of logs that actually get on the logging truck. This

estimate of timber use differs from total harvest and removals

from growing stock because the roundwood equivalent estimation

does not include logging residues, which are left in the woods,

or other removals, such as land clearing for development that

may exclude timber output. 

The procedure for estimating the roundwood equivalent of harvest

is to back out the roundwood equivalent of products using

recovery factors estimated from mill studies over the years.

1 Economist, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726–2398. 
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The timber harvest or roundwood equivalents associated with

production, trade, and consumption of all wood-based products

were computed for the entire United States from 1965 to 2002

(Howard 2003) based on product output data and average

roundwood input coefficients by product category. Since 1991—

the peak roundwood production year in the United States—when

the production of roundwood was 18.8 billion ft3, roundwood

harvest has declined steadily to 16.5 billion ft3 in 2002 (table 1). 

The Timber Demand and Technology Assessment Research Work

Unit at the Forest Products Laboratory (FPL) has as part of its

mission the development of historical U.S. timber production

statistics. Historical statistics are developed to support USDA

Forest Service RPA objectives, which are in part to produce U.S.

timber harvest trends. The Timber Assessment Market Model

(TAMM) (Adams and Haynes 1996) was developed and is used

to produce national assessments of supply and demand trends

for timber in support of RPA objectives. FPL’s historical timber

production statistics are used by TAMM to create a plausible

baseline projection of future changes in the Nation’s demand

for timber products and in the domestic resource that supplies a

substantial part of our timber requirements. Annual roundwood

equivalent of harvest estimations is used to substantiate the

accuracy of timber product output (TPO) for years in which TPO

harvest data are published. Also, the 1998 Farm Bill charged

the national FIA program with developing an annualized forest

inventory so that users would have current data for their planning

and decisionmaking processes. The FPL procedure for estimating

annual harvest helps accomplish the FIA program goal established

in the Farm Bill by providing a complementary method for

making reasonable annual national harvest estimates 

Methods

Each of the four major product categories has a subset of several

primary product categories for a total of 15 product categories

that enter into the computation for roundwood equivalent of

harvest (table 2). The production data for each of the 15 product

categories were collected from industry trade associations and

government agencies. The USDA Forest Service has developed

and kept up to date appropriate statistical series on timber, wood,

and fiber products production since its inception (Johnson 2001).

These statistics extend and complement data found in other RPA

assessment reports (Haynes 2003). The 15 product categories

are the basis for estimating the roundwood equivalent of harvest,

which contributes to satisfying the RPA requirement by providing

the historical data needed for long-term RPA projections.

Table 3 shows an example of roundwood equivalent calculation

for lumber (2002 data) that illustrates the procedure for using

product recovery factors and the computation of the roundwood

1965 1970 1976 1986 1988 1991 1996 2002

All products 12,276 14,702 13,580 18,328 18,736 18,823 17,268 16
Industrial roundwood use

Total 11,230 13,287 12,102 14,644 15,618 15,187 15,344 14,963
Lumber 6,233 6,511 6,026 7,105 7,667 7,039 6,975 7,347
Plywood and veneer 1,070 1,197 1,466 1,598 1,598 1,267 1,281 1,067
Pulpwood-based products 3,176 4,488 3,715 4,881 5,075 5,397 5,908 5,699
Other industrial productsb 560 652 375 475 510 551 342 317
Log exportsd 191 438 520 585 767 602 422 388
Pulpwood chip exportsc 7 150 245 151 218 332 416 189
Fuel wood 1,038 1,265 1,232 3,533 2,901 3,636 1,924 1,520

Table 1.—Production of timber products, by major product, various years, 1965–2002 (million cubic feet, roundwood equivalent).a

a Howard (2003), 21.
b Includes cooperage logs, poles and piling, fence posts, hewn ties, round mine timbers, box bolts, excelsior bolts, chemical wood, shingle bolts, and miscellaneous 

items.
c Before 1989, pulpwood chips were not included in total production.
d Before 2000, pulpwood logs were not included in logs.
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equivalent of lumber. Note that this procedure changes slightly

depending on the product that roundwood equivalents are being

estimated for. Typically the difference is whether to multiply or

divide the entity in the product column by the recovery factor. 

The FPL roundwood equivalent estimates of harvest for all

solid wood products (e.g., lumber, plywood, OSB) are based on

product recovery factors (table 4). Product recovery factors are

cubic feet volume measurements of roundwood produced per

unit of solid wood product input (see table 2 for units). Some

solid wood products in the FPL system have both SW and HW

components, such as HW plywood. HW plywood is sometimes

constructed with SW material as a core. In such cases, a round-

wood proportion is used to estimate the roundwood equivalent

of HW plywood in conjunction with the product recovery factor.

The product recovery factors change over time to reflect changes

in timber characteristics such as size, taper, and defect. Policy

restrictions governing harvests, especially from public lands,

have contributed to a difference in the average characteristics

of harvested timber and timber making up the merchantable

growing stock inventory. Changes in product recovery factors

over time also reflect mill technology changes and market

impacts (Spelter 2002). Fuel wood estimates for all but the most

recent years are from TPO estimates. Preliminary estimates are

made for recent years where TPO data are not available based

on the U.S. Department of Energy (DOE) restricted energy

consumption survey.

Findings

U. S. harvest (or roundwood equivalent of production) decreased

to 16.5 billion ft3 in 2002, down slightly from 16.6 billion ft3 a

year earlier. The roundwood harvest peaked in 1991, when

industrial roundwood production was 18.8 billion ft3 (table 1).

Lumber and pulpwood-based products by far make up the

largest share (80 percent) of roundwood use (fig. 1). The 2002

level for timber harvest was estimated by converting the 15 solid

wood products to cubic feet of roundwood using product recovery

factors. Since 1986, the largest decline by far was in fuel wood

production (– 2 billion ft3), followed by plywood (– 0.5 billion ft3);

the largest gains were in pulpwood production (+ 0.8 billion ft3). 

Fuel wood is the only product for which product recovery factors

are not used to estimate roundwood equivalents. An indexing

procedure is used to estimate and update the fuel wood component

of estimated timber harvest. Historical TPO estimates are indexed

to the DOE residential fuel wood use estimates starting in the

base year, 1990. Linear interpolation between DOE residential

fuel wood survey years is done to provide TPO household fuel

wood use estimates. Timber harvest, or the roundwood equivalents

associated with production and trade, is therefore the summation

of all wood-based products for the entire United States.

Roundwood equivalents plus the estimate for fuel wood are added

and then compared with USDA Forest Service TPO estimates

of annual U.S. timber harvest made at six points in time since

1952, and roundwood equivalents are evaluated as a proxy for

annual timber harvest data in years when actual data are not

available. 

The lumber and engineered wood products sectors are the main

contributors to the current harvest level. An estimated 48.0 billion

board feet of SW lumber plus HWs were produced in the United

States in 2002 (table 2). Lumber production climbed upward

from 1965 to a peak in 1988 but then declined. The production

of saw logs used in the domestic manufacture of lumber rose

slightly in 2002 to 7.3 billion ft3 (table 1), representing about

44 percent of total industrial roundwood production. Of the total

timber harvested, 32 percent were processed to produce SW

lumber, and 12 percent were processed to produce HW lumber.

Figure 1.—Industrial roundwood use, 2002 (Howard 2003).
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SW plywood production in 2002 was estimated at 15.2 billion

ft2 (3/8-in basis) based on data published by APA—The

Engineered Wood Association (table 2). This figure represented

about 9 percent of SW industrial roundwood production in

2002 (table 1). HW plywood production had fallen annually for

three straight years to an estimated 2.0 billion ft2 in 2002 (3/8-

in basis). This 2002 level of production accounted for 2 percent

of total HW industrial roundwood use.

Included in the pulpwood-based products category, total wood

pulp, paper, and board production in U.S. mills in 2002 was

estimated at 89.7 million tons based on data published by the

American Forest and Paper Association (table 2). This excludes

dissolving pulp and pulp produced for hardboard, MDF, and

related products. In addition, OSB production was 13.4 million

ft2 (3/8-in basis), which represented 5.7 billion ft3 of roundwood,

or 35 percent of total industrial roundwood use (table 1).

According to estimates of the National Particleboard Association

(table 2), production of particleboard in 2002 totaled 4.4 billion

ft2 (3/4-in basis). Production of MDF in 2002 was 1.6 billion ft2

(3/4-in basis). Hardboard production in 2002 was estimated to

be 2.9 billion ft2 (1/8-in basis). Production of insulation board

in 2002 was 2.3 billion ft2 (1/2-in basis), or 857,000 tons. These

subcategories are components of the pulpwood-based products

category

Engineered wood products such as glulam, I-joists, and LVL are

relatively new to the market, and production levels for these

products are forecast to increase steadily. During 2002, glulam

production was 321 million board feet, LVL production was 56

million ft3, and I-joist production was 756 million linear feet.

Glulam and I-joists roundwood usage currently are not accounted

for in terms of roundwood use, whereas LVL production is

accounted for in the plywood and veneer category. 

Total SW log exports decreased 10.1 percent during 2002. SW

log exports from the Western United States continued a downward

trend as Douglas fir log exports declined 3.8 percent in 2002.

Log exports make up 2 percent of industrial roundwood use

(fig. 1).

Production of miscellaneous or other industrial roundwood

products, which includes cooperage logs, poles and piling,

fence posts, mine timbers, and an assortment of other products

such as hewn ties and box bolts, is estimated at 317 million ft3 in

2002. This category represented 2 percent of industrial round-

wood use, less than half the amount used in 1986. Production

of round fuel wood in 2002 is estimated at 1.5 billion ft3.

Conclusions

This effort to produce a complementary method for estimating

annual harvest helps accomplish the goal set forward in the

1998 Farm Bill. The national FIA program was charged with

developing an annualized forest inventory so that users would

have current data for their planning and decisionmaking

processes. The production of TPO estimates helps accomplish

RPA national timber assessment objectives. The two concepts

of timber harvest associated with roundwood products and

roundwood equivalents of industrial timber removals are com-

parable. They are compared by the use of product recovery

rates, which differ for each of the 15 solid wood product classes.

The product recovery rates also change over time to reflect

changes in the timber resource characteristics, technology, and

markets. Shifting patterns of timber harvests have contributed to

a change in the average characteristics of harvested timber and

timber that make up the merchantable growing-stock inventory.

Fuel wood is the only commodity for which product recovery

rates are not used. Instead, an indexing procedure, which uses

DOE estimates, is used to calculate household fuel wood use.

Lumber is the largest product category for roundwood use, fol-

lowed closely by pulpwood-based products. Precise breakdowns

by species or ownership are not possible using the roundwood

equivalent approach, even at the national level. This approach

was specifically designed to perform aggregate national estimates.
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Broad-Scale Assessment of Fuel Treatment
Opportunities

Patrick D. Miles,1 Kenneth E. Skog,2 Wayne D. Shepperd,3

Elizabeth D. Reinhardt,4 and Roger D. Fight5

Abstract.—The Forest Inventory and Analysis (FIA)

program has produced estimates of the extent and

composition of the Nation’s forests for several decades.

FIA data have been used with a flexible silvicultural

thinning option, a fire hazard model for preharvest

and postharvest fire hazard assessment, a harvest

economics model, and geospatial data to produce a

Web-based tool to assess fuel treatment opportunities

at a strategic level. This tool, the Fuel Treatment

Evaluator, was used in this study to show how to

identify potential fuel treatment hotspots in the

Western United States. 

Introduction

Decades of fire prevention and suppression efforts in the Western

United States have led to an accumulation of fuels that are

increasing the risk of catastrophic fire. In the past, fire-adapted

forests had relatively open canopies and small amounts of ladder

fuels due to frequent low-intensity fires. Today, due to fire pre-

vention and suppression efforts, canopies and vertical structure

are more closed. Although most fires continue to be low-intensity

ground fires, an increase in the incidence of high-intensity

crown fires has occurred. Crown fires are much more difficult

and expensive to control, cause greater ecological disturbance,

and impose a higher risk to life and property than ground fires.

Concern over increased fire hazard has led to research at local

and regional levels. The Pacific Northwest Research Station

developed an analytical tool called BioSum that uses forest

inventory data to determine areas at risk and subsequent fuel

treatment opportunities (Fried et al. 2003). BioSum intensively

examines a multicounty project area. With the development of

a nationwide forest inventory database in 2002 (Miles et al.

2004), it became possible to take a more strategic, albeit less

intensive, multiState approach to fire hazard assessment. 

In April 2003, a white paper entitled “A Strategic Assessment

of Forest Biomass and Fuel Reduction Treatments in Western

States” (USDA Forest Service 2005) was released. This “west-

wide biomass assessment” combined forest inventory data with

a coarse-scale current fire condition class map (Schmidt et al.

2002) to identify areas at risk and the amount of biomass on

those areas. Potential removal volumes were identified based

on selective removal prescriptions using the stand density index

(SDI) criterion (Reineke 1933).

As a result of the westwide biomass assessment, it was estimated

that in the 15 western States at least 28 million acres of forest

could benefit from some type of mechanical treatment to reduce

hazardous fuel loading.

This article describes enhancements to the methods used in the

westwide biomass assessment. Both the silvicultural thinning

prescriptions and the fire hazard assessment were enhanced.

Additional information is developed on harvest costs and the

area and amount of thinning that occurs in the wildland-urban

interface (WUI) (Radeloff et al. 2005).

Methodology

This analysis used a Web-based tool called the Fuel Treatment

Evaluator (FTE), available at www.ncrs2.fs.fed.us/4801/fiadb/

fueltreatment/fueltreatmentwc.asp. The FTE combines forest

inventory data with other information to aid in the development

1 Research Forester, U.S. Department of Agriculture (USDA) Forest Service, North Central Research Station, St. Paul, MN.
2 Project Leader, USDA Forest Service, Forest Products Laboratory, Madison, WI.
3 Research Forester, USDA Forest Service, Rocky Mountain Research Station, Denver, CO.
4 Research Forester, USDA Forest Service, Rocky Mountain Fire Lab, Missoula, MT.
5 Research Economist, USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
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of fuel reduction alternatives to reduce fire hazard. Other sources

of information include a silvicultural prescription for thinning

based on SDI, a method for estimating fire hazard (before and

after treatment) based on stand and tree characteristics, a method

for calculating harvest costs/benefits based on stand and tree

characteristics, and geospatial information such as current fire

condition class and WUI. 

Forest Inventory Data

The FTE program currently uses data from the 2002 Resources

Planning Act (RPA) database. (For a complete listing of data

sources for the 2002 RPA database, see Smith et al. 2004). 

The FTE can be used to generate files in Forest Vegetation

Simulator (FVS) format for preharvest and postharvest conditions

(Dixon 2004). These data could then be run through the Fuels

and Fire Extension component of FVS to project future fire

hazard (Reinhardt and Crookston 2003). Projecting future fire

hazard is beyond the scope of this analysis.

Flexible SDI Thinning Prescription

SDI is a long-established, science-based, forest stocking guide

that can be adapted to uneven-aged forests (Long and Daniel

1990) using data from broad-scale inventories. SDI measures

can be used to identify areas or stands that would benefit from

biomass reduction. 

In the westwide biomass assessment, a stand was thinned until

it was minimally fully stocked (30 percent of the maximum SDI

for that forest type and ecoregion). To accomplish this, the target

SDI was evenly divided among diameter classes in an inventory

plot. The excess number of trees in each diameter class is the

harvest yield for the treatment. This method identifies trees in

each diameter class that may be available for fuel-reduction

removals while ensuring sufficient “leave” trees to maintain site

occupancy (Vissage and Miles 2003). 

One problem associated with the apportionment of desired SDI

values across diameter classes in multi- or uneven-aged forests

was the inability to systematically adjust the slope of the desired

stocking curve. Basically, adjusting the desired percentage of

maximum SDI desired after thinning raised or lowered the

stocking curve but did not change its shape. This adjustment

resulted in large numbers of small trees being retained regardless

of the percent of maximum SDI prescribed, which has been a

major criticism of using SDI-based stocking control for fuels

treatment biomass estimates.

As a result of this criticism, a flex factor option was added to

the FTE to proportionally reduce the amount of SDI assigned to

successively smaller diameter at breast height (d.b.h.) classes.

Changing the flex factor changes the shape of the desired

stocking curve. For this study, however, the default values used

in the westwide biomass assessment were used.

Crowning and Torching Indexes

Torching index is the wind speed, in miles per hour (mph), at

which a surface fire would climb into the crowns of individual

trees, and crowning index is the wind speed at which a crown

fire would spread from crown to crown. Larger values for both

indexes indicate lower fire hazard. In this study, plots with

crowning or torching index values below 20 mph were considered

suitable candidates for thinning to reduce fire hazard.

The NEXUS 2.0 (Scott and Reinhardt 2001) crown fire hazard

analysis software was incorporated into the FTE and used to

estimate crowning and torching indexes for all Forest Inventory

and Analysis (FIA) plots before and after simulated thinning. The

NEXUS program links separate models of surface and crown

fire behavior to compute indexes of relative crown fire potential.

Unfortunately, the 2002 RPA data set does not contain information

on standing dead and down woody material. This information is

necessary to more accurately assess fire hazard. Not having this

information results in the underestimation of fire hazard.

Standing dead and down woody material data are currently

being collected and will be available in future versions of the

FIA database.

Harvest Economics

The harvest economics module was based on the STHARVEST

program (Fight et al. 2003). The STHARVEST model and soft-

ware program is a general model that is intended to be used for

broad planning applications. It develops estimates of harvesting
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cost for six harvesting systems for an average tree size ranging

from 1 to 80 or 150 cubic feet, depending on the system selected.

Cost estimates are in U.S. dollars per 100 cubic feet or per

green ton.

Geospatial Layers

Attributes from two geospatial layers were added to each 2002

RPA plot record: (1) current fire condition classes and (2) WUI

class.

“Condition classes are a function of the degree of departure from

historical fire regimes resulting in alterations of key ecosystem

components such as species composition, structural stage, stand

age, and canopy closure” (Schmidt et al. 2002). In the westwide

biomass assessment, fire condition class was used exclusively

as a measure of fire hazard. In the FTE, torching and crowning

indexes derived from FIA data fulfill this role. The ability to

report by fire condition class has been retained for comparison

purposes.

The wildland-urban interface (WUI) is defined as the

area where structures and other human development

meet or intermingle with undeveloped wildland. The

expansion of the WUI in recent decades has significant

implications for wildfire management and impact.

The WUI creates an environment in which fire can

move readily between structural and vegetation fuels.

Its expansion has increased the likelihood that wild-

fires will threaten structures and people (Radeloff et

al. 2005). 

The FTE gives the analyst the ability to restrict the analysis

area to certain WUI classes. The FTE also enables the analyst

to view treatment results by WUI class. 

Results

The results come from a single run of the FTE that illustrates a

potential thinning alternative for 15 Western States. Only stands

with both crowning and torching indexes of less than 20 mph

were included (high fire hazard). A silvicultural prescription of

thinning until the SDI was reduced to 30 percent of the maximum

was selected, and no flex factor was applied. An additional

requirement that the thinning prescription result in a minimum

harvest of 300 cubic feet per acre was imposed.

The FTE program generates 7 bar charts and 31 tables of output

for each run. A subset of this output is presented for this alter-

native. In addition to these charts and tables, dynamic maps can

be generated depicting biomass, numbers of trees, or growing-

stock volume. The mapping units can be set to either counties

or Ecological Mapping and Assessment Program hexagons

(hexagons approximately 160,000 acres in size). The maps can

depict pretreatment condition, post-treatment condition, or the

amount of material to be removed by the treatment. Figure 1 is

a map of pretreatment growing-stock volume, in cubic feet, per

acre of all land. 

The thinning prescription would remove a large number of

trees. Most trees would come from the smaller diameter classes

(fig. 2). Most of the biomass, however, would come from the

larger diameter classes (fig. 3). 

This silvicultural prescription was not completely effective in

increasing the crowning and torching indexes above 20 mph.

Only plots that had a crowning and/or torching index of less

than 20 mph were considered for treatment in this study. After

Figure 1.—Pretreatment growing-stock volume, in ft3, per acre
of all land, 2002.
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treatment, 53 percent of the area represented by these plots still

had a crowning index of less than 20 mph (fig. 4), and 51 per-

cent had a torching index of less than 20 mph. Adjustment of

the thinning prescription to remove additional biomass is need-

ed, especially in the lower diameter classes.

The FTE generates 31 tables of output. This information can be

grouped into two broad categories: information to help calibrate

the alternatives and information that can be used in a broad

assessment. Table 1 contains output from the FTE that could be

used in an assessment. It provides information on the impacts

of the alternative by State. Montana had the largest area of

treatable timberland in this study with more than 2.6 million

acres. California had the largest potential yield with almost 100

million dry tons.

Identifying forest areas that have high concentrations of people

and property is essential for prioritizing areas to be treated for

fuel reduction. Incorporation of the WUI layer into the FTE

program enables planners, policymakers, and land managers to

identify areas that have a high fire risk and pose a significant

threat to life and property. Table 2 provides information on the

impacts of alternatives by WUI class. Resources should be

directed to those States with large areas of treatable acres in the

interface and intermix WUI classes.

Figure 2.—Live trees per acre by diameter class. Figure 3.—Live tree dry biomass tons per acre.

Figure 4.—Treatable timberland area by crowning index class
(acres).

State Total Potential yield
treatable acres (dry tons)

Montana 2,648,318 70,929,635
Colorado 2,549,387 65,551,237
California 2,132,695 97,676,889
Idaho 1,892,542 60,361,378
Washington 1,621,094 68,053,090
Oregon 1,371,935 63,667,586
Utah 870,716 23,073,807
Wyoming 847,337 23,797,380
Kansas 751,545 17,186,238
New Mexico 638,171 16,646,198
Nebraska 470,594 10,750,054
North Dakota 193,428 4,528,753
Arizona 181,743 6,922,558
South Dakota 145,438 2,698,311
Nevada 40,904 883,991
Total 16,355,846 532,727,105

Table 1.—Treatable acres and potential yield by State for alter-
native thinning treatment.
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Conclusions

The inputs to the FTE in this study were similar to those used

in the westwide biomass assessment. The two major differences

were the substitution of plot crowning and torching indexes for

current fire condition class and the constraint that at least 300

cubic feet of growing-stock volume should be removed under

the prescription. These two changes resulted in the treatment

area being reduced from 28 million acres to 16 million acres.

Additional refinement of alternatives should focus on identifying

areas in close proximity to populated places.

The 2002 RPA database did not have information on standing

dead or down woody material. These inputs, which are important

to the crowning and torching indexes, will be available in the

future and need to be incorporated in the FTE.

The FTE is a relatively simple model that links FIA data with a

silvicultural treatment model, a fire hazard model, a harvest

cost model, and geosocial data to provide information for broad

strategic assessments. More sophisticated models, such as

BioSum or FVS, may be needed for regional or local planning. 
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Linking Fuel Inventories With Atmospheric
Data for Assessment of Fire Danger

Christopher W. Woodall1, Joseph Charney2, Greg Liknes3,

and Brian Potter4

Abstract.—Combining forest fuel maps and real-time

atmospheric data may enable creation of more dynamic

and comprehensive fire danger assessments. The goal

of this study was to combine fuel maps, based on data

from the Forest Inventory and Analysis (FIA) program

of the U.S. Department of Agriculture Forest Service,

with real-time atmospheric data to create a more

dynamic index of fire danger. Fuel loadings were

estimated for points on a meteorological modeling grid

network (4 x 4 km) based on FIA’s strategic-scale fuel

inventory. In addition, fuel moisture at each grid point

was predicted based on atmospheric observations over

an 11-day period. A Burnable Fuels Index (BFI),

combining both fuel loadings and moisture predictions,

was investigated for changes in fire danger over the

modeled period of time. The BFI was temporally and

spatially variable due to heterogeneous forest fuel

conditions and dynamic weather events. Overall,

combining fuel-loading estimates with atmospheric

data enables the current assessment and 1 to 2-day

prediction of fire danger and greater understanding

of fire danger across forest ecosystems with varying

fuel loadings and weather conditions.

Fire Danger Assessment

Fire danger is defined in terms of factors affecting fire inception,

spread, resistance to control, and subsequent damage (NWCG

1996). Fire danger is usually expressed as an index based on

component variables and quantified using fire danger rating or

prediction systems such as the U.S. National Fire Danger

Rating System (NFDRS) (Deeming et al. 1977) and the

Canadian Forest Fire Danger Rating System (Stocks et al. 1989).

Fire behavior models employ fuel loading and fuel moisture

information to predict fire behavior, which, in turn, contributes

to the development of fire danger rating systems (Andrews 1986,

Finney 1998). Fuel loadings are often static for time scales of

hours and days, while fuel moisture is variable across time

scales of an hour or less. Fuel loadings and fuel moisture are

both spatially variable at small scales (e.g., stand level), but

fuel moisture is difficult to measure accurately because of high

variability over short time scales. As a result, spatially averaged

fuel moisture observations are generally used in fire danger

assessments over large areas. To better mesh the collection and

integration of fuel loadings and moisture in fire behavior pre-

diction models, NFDRS classifies fuel loadings by fuel-hour

classes (Deeming et al. 1977). For example, a 1-hr fuel is

downed woody material with moisture fluctuations at the time

scale of hours and is characterized by diameters of less than

0.25 inches. Fuel hour classes with moisture fluctuations at

greater time scales are larger in size. For the fire danger of any

forest area to be determined, estimates of its fuel loadings and

moisture need to be assessed in real time and incorporated into

a fire danger index. Despite extensive work over the past decades

to quantify fire behavior and subsequent fire danger, inadequate

data and technology has impeded real-time assessments of fire

dangers. Modern fuel inventories and recent meteorological

advances may provide opportunities to determine and provide

1- to 2-day predictions of fire danger. 

Large-Scale Fuel Inventories

The Forest Inventory and Analysis program (FIA) of the U.S.

Department of Agriculture (USDA) Forest Service conducts a

three-phase inventory of forest attributes of the United States

1 Corresponding author, U.S. Department of Agriculture (USDA) Forest Service, Forest Inventory and Analysis (FIA), North Central Research Station, St. Paul,
MN 55108. Phone: 651–649–5141; e-mail: cwoodall@fs.fed.us. 
2 Research Meteorologist, USDA Forest Service, North Central Research Station, Atmosphere-Ecosystem Interactions Program Unit, East Lansing, MI.
3 Research Physical Scientist, USDA Forest Service, FIA, North Central Research Station, St. Paul, MN 55108.
4 Research Meteorologist, USDA Forest Service, FIA, North Central Research Station, Atmosphere-Ecosystem Interactions Program Unit, East Lansing, MI.
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(Bechtold and Patterson 2005). The FIA sampling design is

based on a tessellation of the United States into approximate

6,000-acre hexagons with at least one permanent plot established

in each hexagon. In phase 1, the population of interest is stratified,

and plots are assigned to strata for purposes of increasing the

precision of estimates. In phase 2, tree and site attributes are

measured for plots established in the 6,000-acre hexagons. In

phase 3, a 1/16th subset of phase 2 plots is measured for forest

health indicators such as down woody materials. Down woody

components observed by the FIA program are coarse woody,

fine woody, litter, herb/shrubs, slash, duff, and fuelbed depth.

As defined by the FIA program, fine woody debris (FWD) are

downed woody materials with transect diameters less than 3.00

inches. FWD are sampled on each FIA subplot along one transect.

One- and 10-hr FWD (transect diameters between 0–0.25 and

0.26–1.0 inches, respectively) are sampled along a 6-ft transect,

while 100-hr fine woody fuels (1.0–3.0 inches) are sampled

along a 10-ft transect. For additional sampling design information,

see Woodall and Williams (in press). 

The FWD sampled by the FIA program match the fuel classifi-

cation system (1-, 10-, and 100-hr) of the NFDRS, enabling

creation of strategic-scale fuel maps that may be used to assess

fire danger (Woodall et al. 2004). Because of the relatively

sparse sample intensity of the FIA fuels inventory, inverse distance

weighting interpolation techniques are often used to predict fuel

loadings between sample plots. After fuel interpolation, non-

forested areas are masked out of the fuel maps using classified

imagery, such as the National Land Cover Data (Vogelmann et

al. 2001), as used in this study (fig. 1). Numerous techniques

are available for creating large-scale fuel maps ranging from

relatively simple interpolation techniques of FIA fuels data, as

used in this study, to more sophisticated efforts demonstrated

by Rollins et al. (2004) and the USDA Forest Service’s LAND-

FIRE program (www.landfire.gov). 

Fuel Moisture and Mesoscale Models

Estimates of surface fuels and real-time weather data are necessary

to estimate fuel moisture conditions and fire danger. Numerical

weather prediction models can produce daily simulations of

atmospheric conditions such as temperature, winds, relative

humidity, and rainfall for regions ranging in size from continents

to counties. One such model, the Penn State University/National

Center for Atmospheric Research Mesoscale Model called MM5,

simulates the weather conditions for areas of about one-third the

size of a continent down to State and county levels (Grell et al.

1994). The MM5 can be run daily, using observations collected

and processed at the beginning of each day, to produce a sequence

of 24-hr simulations of weather conditions across a region. 

The Eastern Area Modeling Consortium (EAMC) is a multiagency

coalition of researchers, fire managers, air quality managers, and

natural resource managers conducting research and developing

new products to improve fire-weather and smoke transport

predictions in the north-central and Northeastern United States.

The EAMC runs the MM5 daily for the north-central and

Northeastern United States in support of fire-weather research

and applications. One application of this atmospheric data uses

the Canadian Fire Weather Index System (CFWI) (Van Wagner

1987) to calculate fuel moisture variations across the model

geographic domains based on simulated temperature, relative

humidity, and rainfall information. These calculations use the

Fine Fuel Moisture Code in the CFWI to generate daily values

for fuel moisture that roughly correspond to the expected

Figure 1.—Regional map of fine wood fuels based on inverse
distance weighting interpolation of 500 FIA fuel inventory plots
and nonforest mask (classified NLCD 1992 imagery) in the
upper Great Lakes region.
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variations in 1- and 10-hr fuels, as defined by the NFDRS.

Fine-fuel moisture estimates from the EAMC’s mesoscale mod-

els may be produced for any forest ecosystems on any given

day (fig. 2). 

Merging Fuels and Moisture Estimates

To create a more dynamic regional view of fire danger, we

sought to combine maps of regional fuel loadings (interpolated

FIA fuel map, fig. 1) and fuel moisture (EAMC mesoscale

models, (fig. 2) for the upper Great Lakes. First, fuel loadings

(1- and 10-hr FWD) were obtained from FIA’s interpolated fuel

maps for a 4 x 4-km grid (13,136 forested grid points) across

the upper Great Lakes used by the EAMC’s mesoscale model.

Second, to address the effects of fuel loading and fuel moisture,

the two estimates were combined into a single meaningful

quantity that is applicable to operational fire activities. As a

rule of thumb, fire danger can be considered to increase when

fuel moistures fall below 30 percent, which is the fiber saturation

point in dead fuels (Zhou et al. 2003). To accentuate the effects

of this threshold, we developed the Burnable Fuels Index (BFI),

formulated as follows:

BFI = (0.3 – m) FL (1)

where m is the simulated fuel moisture between 0 and 1 (0 and

100 percent), and FL is the fuel loading in tons/acre. BFI is

negative when fuel moistures exceed 30 percent. Conversely,

BFI will increase as fuel moistures decrease below 30 percent

and as fuel loadings increase. This quantity offers no insight

into the probability of ignition and does not account for long-

term precipitation effects on the heavier fuels. BFI is most useful,

however, when used in conjunction with observations of moisture

variations in the heavier fuels and local knowledge of fuel and

forest conditions and at strategic scales may aid comprehension

of how fire danger varies by day and user-defined areas.

Initial Results and Future Possibilities

In the upper Great Lakes region of the United States, fire danger

may vary daily over a “fire season.” Results from this study

indicated dangers from 1- and 10-hr fuels varied from almost

no danger (August 27 and September 7, 2004) to moderate

danger (September 4, 2004) over a span of a few days (fig. 3).

Areas with positive BFI (hazardous FWD) were typically

constrained to areas that had “dried out” following the precipi-

tation of recent weather fronts and before the arrival of a new

weather front (fig. 3). Linking real-time estimates of fuel

moisture with static fuel maps may allow refinement of fire

behavior predictions and subsequent wildland firefighting efforts.

Because this study served as an initial examination of the tech-

niques and outputs of merging strategic-scale fuel maps with

real-time weather data, numerous refinements are needed to

enable widespread application. First, BFI needs to better reflect

fuel and fuel moisture relationships that are likely not multi-

plicative. Second, although inverse distance weighted interpolation

of FIA phase 3 plots is an efficient and simple methodology

for creating regional fuel maps, other techniques and data

sources exist to complement and further improve regional fuel

data layers. Lastly, data dissemination techniques that facilitate

real-time Web updates of BFI maps are necessary to incorporate

them into fire season activities. Overall, the results of this study

indicate opportunities exist to refine understanding of the

dynamic nature of forest fire dangers.

Figure 2.—Fine woody (1- and 10-hr) fuel moisture map for
study area, upper Great Lakes, September 4, 2004.
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Urban Forest Health Monitoring in the
United States

David J. Nowak, Daniel Twardus, Robert Hoehn, Manfred

Mielke, Bill Smith, Jeffrey T. Walton, Daniel E. Crane, Anne

Cumming, and Jack C. Stevens1

Abstract.—To better understand the urban forest

resource and its numerous values, the U.S. Department

of Agriculture Forest Service has initiated a pilot pro-

gram to sample the urban tree population in Indiana,

Wisconsin, and New Jersey and statewide urban street

tree populations in Maryland, Wisconsin, and

Massachusetts. Results from the pilot study in Indiana

revealed that about 92.7 million urban trees exist with

a structural value of $55.7 billion. These trees removed

about 6,600 metric tons of air pollution in 2000 ($35.4

million value) and store about 8.4 million metric tons

of carbon ($170.2 million value). 

People are having an ever-increasing impact on local, regional,

and global environments, particularly in and around urban

areas (cities, towns, villages). Urban forests (trees in urban

areas) can mitigate certain detrimental human impacts and

improve environmental quality and human health. Urban

forests help provide clean air and water, reduce building energy

use, store carbon, protect against ultraviolet radiation, and cool

air temperatures. They also provide forest-based products,

recreation opportunities, habitat for wildlife, aesthetic enjoyment,

and enhance the social and psychological well-being of millions

of Americans. This valuable national resource will continue to

increase in extent and importance in the years ahead, yet faces

numerous pressures such as insects, diseases, storms, and

pollution that affect forest health and related benefits. 

In 1997, a National Research Council report, “Forest Lands in

Perspective,” recognized that urban and community non-Federal

forests are the fastest growing forests in the United States. It

recommended strengthening Federal monitoring of the health

of these forests. In 1998, USDA Forest Service Chief Michael

Dombeck developed a Natural Resource Agenda that emphasized

sustainable development of communities, and Deputy Chief

Phil Janik released an action strategy for State and Private

Forestry that would increase forest health monitoring in urban

areas. In 1999, USDA Secretary Dan Glickman noted, “We still

have plenty of work to do to make Americans take notice of the

dwindling natural resource base in their cities.”

In a survey of forestry professionals regarding the health needs

of urban forests, less than 25 percent of the respondents ranked

the overall health of the urban forests in their State as good to

excellent; 99 percent indicated that preserving the health of

community forests should be an integral part of urban and

community forest programs; and more than 90 percent identified

long-term tree care and maintenance programs as critical to

preserving the health and sustainability of urban forests in the

Northeast (Pokorny 1998).

Although urban forests affect the vast majority of Americans,

little is known about them, how they are changing, or the factors

that might lead to changes in the structure and health of this

valuable resource. Knowing how the urban forest is changing

can aid in developing more effective policies for protecting,

sustaining, and otherwise enhancing the health of and benefits

derived from this resource for future generations. To learn more

about urban forests and aid in their management and planning,

pilot studies were conducted to evaluate the implementation of

1 David J. Nowak, Robert Hoehn, Jeffrey T. Walton, Daniel E. Crane, and Jack C. Stevens are Project Leader, Biological Science Technician, Research Forester,
Information Technology Specialist, and Forester, respectively, U.S. Department of Agriculture (USDA) Forest Service, Northeastern Research Station, 5 Moon
Library, Syracuse, NY 13210. Daniel Twardus and Anne Cumming are Forest Health Specialist and Urban Forester, respectively, USDA Forest Service,
Northeastern Area, State and Private Forestry, 180 Canfield Street, Morgantown, WV 26505. Manfred Mielke is a Forest Health Monitoring Specialist, USDA
Forest Service, Northeastern Area, State and Private Forestry, 1992 Folwell Ave., St. Paul, MN 55108. Bill Smith is a Research Quantitative Ecologist, USDA
Forest Service, Southern Research Station, Forest Sciences Laboratory, 3041 Cornwallis Road, P.O. Box 12254, Research Triangle Park, NC 27709. E-mail:
dnowak@fs.fed.us.
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a national Urban Forest Health Monitoring (UFHM) program.

The purpose of this program is to acquire information about the

urban forest while concurrently establishing a nationwide system

of pest detection and health monitoring in urban forests (Nowak

et al. 2001). The UFHM program is a cooperative effort among

the USDA Forest Service’s Forest Health Monitoring program,

Urban and Community Forestry, Forest Inventory and Analysis

(FIA), Northeastern Research Station, and State agencies.

As part of this program, two field sampling protocols were

developed. The first is designed to assess the entire urban forest

resource (Urban Forest Inventory); the second focuses on the

street tree resource (Statewide Urban Street Tree Monitoring).

This article reviews the status of the UFHM program and

reports results from the first Urban Forest Inventory pilot study

in Indiana and the Statewide Urban Street Tree Monitoring pilot

studies in Maryland and Massachusetts.

Urban Forest Inventory

Urban Forest Inventory uses the FIA sampling grid that was

designed to collect information about forests nationwide. FIA is

responsible for periodic assessments of the Nation’s forest

resources as well as statewide inventories. Currently data are

collected only on “forested” plots, defined as areas at least 1

acre in size and at least 120 feet wide, at least 10-percent

stocked, and not intended for uses other than forest. Thus, field

data are not collected on “nonforest” plots, such as urban areas,

even though such plots might contain many trees. As most

urban areas are classified as nonforest, data on urban vegetation

are often not collected as part of the national FIA program. The

urban forest inventory phase of the UFHM program is designed

to collect data on FIA plots in urban areas to fill this critical

“data gap.”

The FIA grid was used to sample plots in urban areas (1 plot

for every 6,000 acres). Boundaries of urban areas are based on

data from the U.S. Census Bureau and overlaid on the FIA grid.

Plots within the urban boundaries classified as nonforest are

included in the UFHM inventory. Urban nonforest plots are

sampled during the growing season to provide an extended suite

of ecological data that includes a full vegetation inventory and

evaluation of tree damage and crown conditions, and information

on variables needed for analyses using the Urban Forest Effects

model (e.g., percent crown missing, distance from building)

(Nowak and Crane 2000). For a complete urban analysis, data

from existing FIA forest plots in urban areas were combined with

the new nonforest UFHM plots. Riemann (2003) found that the

cost of measuring urban nonforest plots is about one-third of

that for a forested FIA plot.

Pilot implementation of the inventory in Indiana, conducted in

2001 and 2002 by the Indiana Department of Natural Resources,

was designed to extend the ongoing FIA statewide inventory

into urban areas. This extension resulted in 32 sample locations

within urban boundaries (six locations met the FIA definition

of forested and were excluded as data already existed at these

locations as part of the national FIA program). Because the

Indiana inventory was designed to be completed (all plots) over

a 5-year period, only one-fifth of the total number of urban

sample locations were collected during the first year.

A second pilot study in Wisconsin in 2002 was conducted in

cooperation with the Wisconsin Department of Natural

Resources. In all, 119 urban nonforest plots were sampled (plus

28 previously measured FIA forest plots in urban areas). All

urban nonforest plots in Wisconsin (1 plot every 6,000 acres)

were established and measured in the first year. After the first

year of complete data collection, the inventory was designed to

monitor one-fifth of the plots each year so that all plots are

updated in 5 years. A third inventory pilot was initiated in New

Jersey in 2003.

Urban forest inventory plots consist of four 24-foot, fixed-radius

subplots spaced 120 feet apart. This particular plot layout, although

useful in forested situations, has proven more difficult in urban

settings. The distance between subplots often results in numerous

contacts with property owners to establish a plot. In Wisconsin,

an average of five owner contacts was made per plot, and 12

owner contacts were recorded for a single plot. Training of field

crews included extensive manual review and field demonstrations

of plot layout and tree measurements. Plot remeasurements and

checks were conducted to maintain data quality.
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The FIA National Core Field Guide was modified for urban

nonforest data collection to include urban land-use codes;

plantable space; and subplot tree, shrub, and ground cover

information. An extended tree species code list has been incor-

porated, and all trees 1 inch and larger in diameter on urban

nonforest plots are measured. An urban FIA field guide can be

accessed at http://www.fs.fed.us/ne/syracuse/Tools/tools.htm.

Indiana Urban Forest Inventory

Within the urban areas of Indiana are an estimated 92.7 million

trees (standard error [SE] = 32.8 million). Of these trees, about

49.1 million (SE = 26.8 million) are in forests in urban areas;

the remaining 43.6 million (SE = 19.1 million) are in other urban

uses (e.g., residential, vacant, and commercial/industrial). The

most common tree species were sassafras (15.1 percent), silver

maple (14.6 percent), and eastern cottonwood (10.9 percent). In

forest areas, sassafras (28.6 percent), northern red oak (15.8

percent), and white oak (11.0 percent) dominated; on other

urban lands, silver maple (24.5 percent), eastern cottonwood

(18.2 percent), and Siberian elm (9.5 percent) were the most

common. Most trees in the total urban forest are small (less

than 3 inches in diameter) (fig. 1). 

Silver maple is the dominant species in basal area, which is

related to tree size and functional value. Trees that are relatively

small (percent basal area much less than percent total population)

include sassafras, eastern cottonwood, American basswood, and

boxelder (fig. 2). Species that are not native to Indiana make up

7 to 14 percent of the urban forest stands and 18 to 20 percent

of the remaining nonforest urban lands.

Trees cover about 20 percent of Indiana’s urban area versus

about 8 percent for shrubs. Other cover types include herbaceous

cover (e.g., grass and gardens) (46 percent); impervious surfaces

including buildings (28 percent); duff, mulch, and bare soil (24

percent); and water (2 percent). Ground cover in forested

stands is dominated by duff/mulch, while other urban lands are

dominated by herbaceous ground cover. 

Urban forests have a structural value based on the tree resource

itself (e.g., the cost of replacing the tree with a similar one), and

annually produce positive or negative functional values based on

functions performed by the tree. The structural or compensatory

value (Nowak et al. 2002) of Indiana’s urban forest is nearly

$56 billion.

Urban trees in Indiana remove an estimated 6,600 metric tons

of pollution per year, with an associated value of about $35.4

million (based on estimated national median external costs

associated with air pollution). Pollution removal was greatest

for ozone, followed by particulate matter less than 10 microns,

sulfur dioxide, nitrogen dioxide, and carbon monoxide (fig. 3).

Figure 1.—Diameter distribution of trees in Indiana’s urban
forest.

Figure 2.—Percentage of population and percentage of basal
area for the 12 most common tree species in Indiana’s urban
forest.
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Urban trees in Indiana store an estimated 8.4 million metric tons

of carbon ($170.2 million value). Of the species sampled, silver

maple stores the most carbon (about 32 percent of all carbon

stored). Urban trees sequester an estimated 280,000 metric tons

of carbon annually ($5.7 million).

Urban trees in Indiana save homeowners an estimated $14.7

million annually by reducing electricity energy consumption.

However, tree shade from branches increases costs by $20.8

million annually due to increased fuel usage to heat buildings in

the winter. The net effect of the current structure is an annual

cost of $6.1 million. Although costs go up, Indiana’s urban forest

reduces carbon emissions from power plants by nearly 23,600

metric tons. This disparity is due to the difference between cost

and carbon production involving energy use in winter and summer.

Because tree location around buildings and tree size are key

determinants of energy effects, the small sample size combined

with relatively few trees in energy effect positions means the

results of this analysis are highly uncertain.

Exotic pests also can have a significant influence on Indiana’s

urban forest. The Asian longhorned beetle (ALB) bores into

and kills a wide range of hardwood species (USDA Forest

Service 2004a). The risk from ALB to Indiana’s urban forest is

a loss of $30.3 billion in structural value (57.8 percent of the

population). The gypsy moth feeds on a variety of tree species

and can cause widespread defoliation and mortality if outbreak

conditions last for several years (USDA Forest Service 2004b).

The risk from this pest in Indiana is a loss of $9.0 billion in

structural value (22.7 percent of population). The risk from the

emerald ash borer, which has killed thousands of ash trees in

Michigan, Ohio and Indiana (USDA Forest Service 2004c), is

$2.9 billion in structural value (1.9 percent of population). 

The overall pilot test was based on 32 plots, which is a relatively

small sample. Increased sample size with future measurements

will increase confidence in the results.

Statewide Urban Street Tree Monitoring

Statewide Urban Street Tree Monitoring assesses street trees

using plots established randomly in the public right-of-way in

urban areas. Although they account for a small portion of the

urban forest (approximately 5 to 10 percent), street trees are the

resource that municipal foresters are responsible for and often

are the most visible component of the urban forest. A monitoring

system provides data on the nature and condition of the street

tree population and can be used to detect new or exotic insects

or pathogens. Like urban forest inventory plots, street tree plots

are updated continually to provide data on changes in tree pop-

ulations.

The statewide sample consists of 300 street tree plots. In the

first year, all 300 plots are installed; this becomes the baseline

sample. In subsequent years, a subsample of plots is revisited to

allow for assessments of change. A State may choose to intensify

the baseline sample. This intensification was done in Wisconsin

in 2002 when 900 plots were installed by the Wisconsin

Department of Natural Resources. The Massachusetts Division

of Forests and Parks (2002) and Maryland Department of

Agriculture (2001) each installed 300 baseline plots. In 2002, in

Maryland, plots were revisited using a rotating panel design to

obtain an estimate of year-to-year change in condition. A panel

consists of one-fifth of the 300 baseline plots along with a

remeasurement of one-third of the previous year’s plots (20

overlap plots) for a total of 80 plots per year.

Figure 3.—Estimated pollution removal (2000) by Indiana’s
urban forest. Removal value estimated using median externality
values in the United States for each pollutant: nitrogen dioxide
(NO2) = $6,750 t– 1, particulate matter < 10 microns (PM10) =
$4,500 t– 1, sulfur dioxide (SO2) = $1,650 t– 1, carbon dioxide
(CO) = $950 t– 1 (Murray et al. 1994). Externality values for O3

were set to equal those for NO2. 



2004 Proceedings of the Sixth Annual Forest Inventory and Analysis Symposium 45

Each plot consists of four subplots, two on each side of the

roadway. Plots were installed within the public right-of-way, so

property owner contacts were not an issue. Each subplot is

181.5 feet long and 10 feet wide (area equals the area of an

urban forest inventory subplot). Instructions were provided for

cul-de-sacs, dead-end roadways, and roads with median strips.

Although not set permanently with monument markers, plot

locations are identified by distance and azimuth to landmarks.

Divided highways, private communities, interstate access ramps,

and military installations were excluded as sample locations.

Plot locations were provided to State personnel along with

replacement locations if the original plots could not be accessed

(e.g., plots with dangerous access or located in private or gated

communities).

A street tree manual includes information on plot establishment

procedures and data collection. All trees 1 inch and larger in

diameter are tallied. Data are collected on tree diameter and

height, crown condition, and damage. Ground-cover types on

the plot are estimated, and information on sidewalk and utility

conflicts is recorded. Training was conducted for all field crews

and included a review of the field manual and procedures for

in-field plot establishment.

Street Tree Monitoring in Maryland and Massachusetts

An estimated 643,958 trees exist along Maryland’s 14,139 miles

of urban roadway (about 46 trees per mile). The 20,384 miles

of urban roads in Massachusetts are lined with an estimated

1,184,776 trees (58 trees per mile). In Maryland, the street tree

population comprises 67 different species, none making up

more than 13 percent of the total population (table 1). Species

diversity at the genus level shows 32 different genera, with more

than 70 percent of the trees among only five genera (Acer, Pyrus,

Quercus, Prunus, and Platanus). In Massachusetts, Norway

maple clearly dominates, accounting for nearly 35 percent of

the 66 species encountered (table 2). Massachusetts street trees

are represented by 29 different genera, with more than half of

all trees either Acer or Quercus.

The street population in both States is dominated by maples;

nearly half of the trees in Massachusetts and 40 percent of the

trees in Maryland are Norway, sugar, red, silver, or other maples.

This distribution has implications for insect or disease infestations

that could cause significant losses in street trees. An example is

the recently introduced ALB, which attacks and kills at least six

species of maple. Other potentially significant pests or diseases

are the gypsy moth, which could have a significant impact on

oaks, the emerald ash borer, and sudden oak death. 

Available planting space was determined by factoring an accepted

planting space (50 feet) between trees, knowing the proportion

of roadways that lack street trees, and considering trees whose

crowns overlap the public right-of-way and essentially function

as street trees. In Maryland, an estimated 23 plantable spaces

exist per mile of urban roadway, and 20 such spaces exist per

mile in Massachusetts. Planting potential spaces would nearly

double the number of street trees in Maryland but increase

Mean diameter 
Species Percent of total at breast height

(d.b.h.) (inches)

Callery pear 13 9
Red maple 11 13
Maple spp. 10 10
Norway maple 6 11
Silver maple 5 13
Cherry/Plum 3 6
Oak spp. 3 16
Crabapple 3 10
Honeylocust 3 12
Sweetgum 2 8

Table 1.—Ten most frequent species found on Maryland’s urban
roadways.

Species Percent of total Mean d.b.h. (inches)

Norway maple 34 15
Red maple 9 12
Northern red oak 8 16
Callery pear 4 6
Pitch pine 4 8
White ash 3 19
Black oak 3 9
White oak 3 15
Sugar maple 3 18
Silver maple 3 25

Table 2.—Ten most frequent species found on Massachusetts’
urban roadways.
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street trees only about 30 percent in Massachusetts. However,

this estimate of potential planting space includes hardscape

such as driveways, sidewalks, and other impervious surfaces

that could limit tree planting.

Distribution of tree size as reflected by diameter class indicates

that street tree populations in Maryland are relatively well dis-

tributed; the largest proportion of trees is in the 5- to 15-inch

diameter classes. In Massachusetts, larger trees (15 inches and

larger in diameter) account for about half of the total, indicating

a somewhat older or maturing street tree population. Large street

trees are often aesthetically pleasing, but frequently require

additional management (e.g., pruning due to interference with

sidewalks or overhead wires, or for public safety). Compared to

street trees in Maryland, those in Massachusetts had a higher

incidence of conflicts involving sidewalks (28 versus 18 percent)

and overhead wires (25 versus 18 percent). In Maryland, 64

percent of the trees did not meet the minimum threshold for

recording damage compared to 71 percent in Massachusetts. In

Maryland, the most common damage recorded was open wounds

(16 percent of damage recorded); conks and signs of advanced

decay were the most common in Massachusetts (17 percent).

Street tree monitoring, particularly in the long term, can provide

useful information for sustaining populations, maximizing

benefits, and minimizing liability.

Conclusion

National monitoring of urban forests can provide critical infor-

mation for improving urban forest health, management, and

benefits derived from this valuable resource. Although the

information obtained from UFHM plots can be used immediately

in management and planning, increased value will be derived

after the plots have been remeasured. Long-term tree and forest

monitoring in urban areas provides essential information on

rates of change as well as a means for detecting and monitoring

the spread and range of numerous tree health-related factors

(e.g., spread and damage associated with the introduction of

exotic pests). Knowing how the urban forest is changing can aid

in developing more effective policies for protecting, sustaining,

and otherwise enhancing our urban forests for future generations.
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Regional Monitoring of Nonnative Plant
Invasions With the Forest Inventory and
Analysis Program

Victor A. Rudis, Andrew Gray, William McWilliams, Renee

O’Brien, Cassandra Olson, Sonja Oswalt, and Beth Schulz1

Abstract.—Monitoring nonnative plant invasions by

the Forest Inventory and Analysis Program includes

(1) assembly of regional lists of nonnative invasive plant

species in forest land, (2) observations at systematic

intervals equivalent to a 5-km grid with traditional

forest resource measurements, and (3) growing-season

observations of all vascular introduced and native plant

species at 1/16th of those locations (a 22-km grid) with

additional forest health measurements. Strengths and

limitations of this collective effort are discussed. This

report provides lists of species to be monitored, pre-

liminary results that rank infestation probability and

severity in southern United States forest land, and high-

lights from studies of earlier surveys in selected States. 

Introduction

To be effective, management of nonnative plant invasions in

forest land requires a strategy that includes regional monitoring

to determine the presence and extent of such invasions and the

effects of local management activities on pest populations. Such

monitoring will make it possible to prioritize management

efforts at appropriate spatial scales. Many view plant invasions

mainly as a problem affecting agricultural and urban land, but

such invasions significantly affect forest land. Invasive plants

considered problems are the ones that damage forest resources

and transform ecological processes. For example, kudzu

(Pueraria montana) suppresses tree regeneration and the wood

volume growth of established trees by reducing the amount of

light into the forest. Other impacts include modification of

habitat for native wildlife, replacement of native forest species,

alteration of soil properties, reduction in species diversity, and

rapid biomass accumulation that increases the risk of wildfire. 

The U.S. Department of Agriculture (USDA) Forest Service’s

Forest Inventory and Analysis (FIA) program conducts a national

forest resource survey that provides a means of studying the

problem of plant invasions in forest land. FIA conducts a sys-

tematic, sample-based inventory over a large area to provide

baseline estimates of representative conditions with a stated range

of confidence. These estimates constitute strategic information

to guide decisions about the efficient regional allocation of con-

servation, management, procurement, and production activities. 

We report on progress in using FIA surveys for the conterminous

United States, share highlights of preliminary findings in

addressing the problem of plant invasions, and discuss weaknesses

and opportunities for the future. Examples show that FIA survey

data can (1) supplement existing knowledge of distributions of

nonnative and potentially invasive plant species, (2) provide a

sound basis for allocation of increased prevention efforts, (3) be

used to identify and map large invasions, or regional hot spots,

on forest land, (4) explore plausible correlated relationships

among associated attributes, and (5) facilitate calibration of

satellite imagery and obtain finer-scaled, mapped estimates of

canopy-dominant invasive species. 

Background

Several terms used in this discussion must be defined. Forest

land is land at least 37 m wide; 0.4-ha in size; covered, or formerly

1 USDA Forest Service, Forest Inventory and Analysis (FIA): Rudis, Research Forester/Landscape Ecologist, Southern Research Station, 4700 Old Kingston Pike,
Knoxville, TN 37919; Gray, Research Ecologist, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331; McWilliams, Supervisory
Research Forester, Northeastern Research Station, 11 Campus Blvd., Suite 200, Newtown Square, PA 19073; O’Brien, Lead Ecologist/Analysis Team Leader,
Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401; Olson, Ecologist, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN
55108; Oswalt, Forester, Southern Research Station, Knoxville, TN; Schulz, Research Forester/National Vegetation Indicator Advisor, Pacific Northwest Research
Station, 3301 C Street, Suite 200, Anchorage, AK 99503.
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covered, by trees; capable of tree-growth; and not developed for

nonforest uses. Timberland is forest land excluding areas

restricted from timber production, such as wilderness, and forest

land too wet or too dry to support commercial wood production.

A nonnative plant species is one that is alien or exotic to the

ecosystem under consideration. 

In this report, an invasive species is a nonnative plant species

whose introduction causes or is likely to cause economic or

environmental harm. Infested land is land represented by a

sampled area in which an invasive plant species is present. Each

sampled location represents a portion of the study region. If

infested, that portion is the area of infestation. The severity of

the infestation is the portion of the sample covered by the species,

and calculated as total cover (area of infestation multiplied by

the proportion of severity). 

The USDA Forest Service has a national strategy for addressing

invasive species management (Ries et al. 2004), but adaptation

of the FIA forest land monitoring effort in the conterminous

United States has, thus far, been driven primarily by interested

parties in FIA’s five research work unit regions (fig. 1). 

Methods

Collectively, the efforts of FIA work unit regions to monitor

plant invasions may be viewed as a three-tiered task. The first

tier is the assembly of a target list of plant species deemed

potential problems in one or more FIA regions or States. The

second is a survey by Federal and state forest resource survey

crews with added training to identify the listed species or taxa

from samples of plots on a 5-km grid (a P2 grid) and located on

forest land (USDA Forest Service 2001). A third is documentation

of the occurrence of introduced species, estimation of their cover,

and approximation of the ratio of introduced plant species to all

vascular plant species. This third task involves growing-season

observations by botanists on a subset of P2 plots, typically

1/16th of P2 sample plots and located at 22-km intervals (on a

P3 grid), along with other attribute observations (Burkman 2005).

The P3 observations include a census of all vascular plant

species on three, 1-square-meter areas within each subplot, and

cover estimates by species for the subplot (Schulz 2003).

FIA forest resource surveys today operate on a random, system-

atic sampling grid, with each panel representing a subset of

samples from all portions of the grid. Field crews complete a

panel without major revisions to a sample protocol, and generally

complete a panel in a single year. Thus, the sample design and

operational logistics permit observations and analyses with the

completion of a panel in a given state. Samples are located at

random in a grid cell, which permits calculation of confidence

intervals for area estimates by the random sampling formula

(O’Brien et al. 2003). At each forest land sample location,

inventory crews estimate cover by target species on four equidistant

7.3-m radius subplots in a 0.6-ha plot sample area (Burkman

2005). The area of the four subplots, 0.067 ha, is fixed, and

crews record observations only on forest land. Forest land may

be characterized for a single sample location as those associated

with the forest interior—none of the subplots are positioned on

nonforest land and those associated with forest edge—a portion

of the subplots is positioned on nonforest land.

Figure 1.—FIA survey regions of the conterminous United
States: Interior West (Arizona, Colorado, Idaho, Montana,
Nevada, New Mexico, Utah, Wyoming), Northeastern
(Connecticut, Delaware, Maine, Massachusetts, Maryland,
New Hampshire, New Jersey, New York, Ohio, Pennsylvania,
Rhode Island, Vermont, West Virginia), North Central (Iowa,
Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, South Dakota, Wisconsin), Pacific
Northwest (California, Oregon, Washington), and Southern
(south central States—Alabama, Arkansas, Kentucky, Louisiana,
Mississippi, Oklahoma, Tennessee, Texas—and southeastern
States—Florida, Georgia, North Carolina, South Carolina,
and Virginia). 
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Target Lists and Measurement Protocols

Each FIA region confers with State agencies and staff from the

USDA Forest Service and assembles a target list of potential

problem species to be inventoried on forest land. Published lists

of problem species are consulted; these may include those on

the Federal Noxious Weed List (Federal Register 2004), State

noxious weed lists, and national forest district or region lists of

species of concern, species discouraged for restoration, or pro-

hibited from introduction (Southeast Exotic Pest Plant Council

2001; USDA Forest Service, Pacific Northwest Region 2004;

USDA Forest Service, Pacific Southwest Region 2001). The

USDA Natural Resources Conservation Service (NRCS)

PLANTS Database (USDA NRCS 2004) also is referenced to

confirm that the species selected are documented as occurring

in the region.

A regional consensus on what nonnative species are potential

problems sufficient to warrant monitoring is not always possible.

Some State and other Federal agencies collect FIA field obser-

vations themselves and have an influence on the selection of

species. In the Eastern United States, each FIA region’s staffs

typically shorten the list to those that are easily identifiable and

known to occur in forest land. FIA regions in the West place

formally designated noxious species on their target lists on

request by interested groups, such as State forestry agencies

and national forest districts. 

Attribute
Western regions Eastern regions

Interior West Pacific Northwest North Central Northeastern Southern

States All All All Pennsylvania All currently 
implemented only surveyed

Noxious species  All listed National forests Regionwide and By State and Regionwide and 
selected for by State and likely on likely on likely on for Florida,
inventory forest land forest land forest land likely on 

forest land

Cover category Presence (noxious), > 1% (noxious), < 1, 1–5, 6–10, 10% classes < 1, 1–10, 11–50,
estimates 1% above 5% 1% above 3% 11–25, 26–50, 51–90, 91–100

(invasive) (invasive) 51–75, 76–100%

Measurement 1–5, 6–10, 11–20, 1–5, 6–10, 11–20, No error No error No error
tolerance 21–40, 41–60, 61–80, 21–40, 41–60, 80% of time 85–90% 90% of time

81–100% 61–80, 81–100% of time

Table 1.—Protocol for inventories of invasive plant species by FIA region.

FIA assigns a unique national code to each nonnative and

potentially invasive tree species. By consensus, FIA regions

designate several of these as “core-required” (USDA Forest

Service 2004). Crews that encounter core-required tree species

must uniquely identify the species in the national FIA Database

and record its stem attributes for volume, growth, and mortality

estimation. Mimosa (Albizia julibrissin), a nonnative and report-

edly invasive tree species, is an example of a recent addition.

If no consensus exists among FIA regions, the tree species is

“core-optional.” Each FIA region may identify these uniquely,

record other attributes, or ignore the species altogether. Examples

include saltcedar (Tamarix spp.), which may be of variable form

under Western United States moisture regimes, and camphortree

(Cinnamomum camphora), which typically is a tree only in

subtropical and tropical climates. FIA records the cover of

saltcedar without stem attributes primarily in the Interior West.

FIA records camphortree and its stem attributes in Florida, but

ignores this species in other States.

For species designated as nontree species, crews record obser-

vations by subplot, but the species (see the appendix) and

procedures vary by FIA region (table 1). Identification of

nontree species is established by consensus primarily in, rather

than among, FIA regions. Procedures for estimating cover are

often more compatible with existing or historical protocols for
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collection of vegetation data. As demand for national information

grows, collaborative standardization for nontree species likely

will follow. 

Status of P2 Efforts

The narrative below summarizes the status of FIA’s P2 efforts

as of September 2004:

• The Northeastern FIA Region conducts a year-round survey.

Crews inventory invasive nontree invasive species only

during the growing season and only in Pennsylvania. About

300 randomly selected P2 samples are surveyed as part of

a special study of tree regeneration. Crews estimate per-

cent cover for 10 taxa and estimate presence or absence for

a total of 33 taxa. 

• The North Central FIA Region conducts a year-round sur-

vey. Crews estimate percent cover for 25 invasive nontree

taxa. A 2003 pilot study conducted in Wisconsin during

both the growing and dormant seasons indicated that crews

could readily identify these species in leaf-off condition.

For field identification, crews are using local guides as well

as an invasive plant species manual designed to distinguish

between similar species (Huebner et al. 2004). Informal

testing suggested that species identification was consistent

across seasons. Assignment of species to categories of

growing-season cover is assumed to be consistent from

season to season, but this assumption has not been tested. 

• The Interior West FIA Region sometimes conducts surveys

year-round, but never when snow is on the ground. The

understory vegetation survey estimates cover by four life

forms and up to four of the most abundant species, including

some invasive taxa, with 5 percent or more cover per forested

subplot. Crews also record presence of State-listed noxious

species, with lists varying in species composition and number

between 18 (Idaho) and 71 (Colorado). The ecosystems are

diverse, consensus is limited, and observations insufficient at

this time to establish a more consistent   noxious species

list. Identification and assignment of species to categories

of growing-season cover are assumed to be consistent from

season to season, but this assumption has not been tested. 

• The conterminous Pacific Northwest FIA Region conducts

surveys primarily during months with no snowfall. Crews

record cover for abundant (> 3 percent cover), easily iden-

tifiable taxa. These include about 20 invasive nontree taxa.

For national forests in California, crews document presence

to 1 percent for each of 11 species deemed noxious.

Identification and assignment of species to categories of

growing-season cover are assumed to be consistent from

season to season, but this assumption has not been tested. 

• The Southern FIA Region conducts a year-round survey.

Invasive nontree surveys have not yet been initiated in

Mississippi, Oklahoma, or west Texas. Crews use a four-

season invasive species manual (Miller 2003) for field

identification and tally up to four of the most abundant

species per forested subplot. Crews estimate percent cover

in classes for 33 taxa, plus some 20 species unique to

Florida (USDA Forest Service 2001, 2003). Identification

and assignment of species to categories of growing-season

cover are assumed to be consistent from season to season,

but this assumption has not been tested. 

Example Results

The following are examples of early findings and preliminary

analyses based on various FIA surveys that have documented

the presence of invasive plants. Some of this information is

taken from upcoming reports of P2 and P3 nonnative vegetation

surveys for selected areas of the United States. We also include

selected information from FIA survey data archives dating from

the 1990s and earlier.

Distributions of Invasive Species

Managers and scientists derive their knowledge of distributions

of invasive plant species from observations for a range of earth

cover types. At present, inferences about species distributions

typically rely on information stored at state and national herbaria,

which contain physical records for an array of earth cover types.

These records, unlike FIA records, rarely reference periodic,

systematic observations or comprehensive environmental, spatial,

or temporal details for broad areas. Inferences from FIA obser-
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four southern States (Georgia, North Carolina, South Carolina,

and Virginia) that are infested with Japanese honeysuckle.

(Note that the FIA data represented in the example is for only

about 1/5 of the sample plots.) Figure 2b shows corresponding

county-level data from the PLANTS Database of herbarium

records (USDA NRCS 2004). By combining the two sources,

one obtains a more comprehensive account of the range and

counties occupied (fig. 2c).

P2 Infestation and Severity Estimates

The summary of invasive plant occurrences on P2 forest land

plots includes information about infestations by one or more

selected species for the States represented (table 2). Without

accounting for sample size and observer variability by State,

species, and infestation severity, regional differences in the

frequency of plots with invasive plants appear large. For example,

72 percent of forest land is infested in Kentucky, while 23 percent

of forest land is infested in Arkansas. The preliminary conclusion

is that varying climate and forest disturbance regimes favor one

or more species in the target species list. To suggest that forest

land in Arkansas is less susceptible to plant invasions, and

Kentucky is more susceptible, is tempting, but not valid without

an assessment of all vascular species. 

In the areas surveyed for invasive plant species on the South’s

target list, Japanese honeysuckle infests the most forest land,

with Chinese and European privet (Ligustrum sinense, L. vulgare)

ranked a distant second (table 3). Kudzu is ranked 14th in over-

all frequency, but kudzu outranks the other 13 taxa in the

Figure 2.—Japanese honeysuckle distribution by county in
Georgia, North Carolina, South Carolina, and Virginia: (a) FIA
phase 2 field observations, 2001–04, (b) PLANTS Database 2002,
largely from herbarium specimens, and (c) both combined:
information from (b), with additions from (a).

(b)

(a)

(c)

Attribute All
States

Number of 
forest land 10,368 639 2,202 484 955 711 597 638 1,552 1,681 909
plots

Percent 
infested with 
one or more 

49 23 40 41 42 47 50 51 53 63 72

of 33 taxa

Table 2.—Sampled locations with forest land and percent infested by State, 2001–04, as of September 2004.a

a Data are from completed panels in the South (as of September 2004) and represent a portion of the final 5-km sample grid intensity. States, panel numbers, and
approximate proportions are: Arkansas, 3, 0.20; East Texas, 1 through 5, 1.00; South Carolina, 4, 0.20; Louisiana, 4 and 5, 0.40; North Carolina, 5, 0.20; Georgia,
3, 0.14; Virginia, 4, 0.20; Tennessee, 3, 4, and 5, 0.60; Alabama, 3 and 4, 0.40; and Kentucky, 3 and 4, 0.33.
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vations of invasive species, however, are generally limited to

forest land. FIA’s sampling design and measurement protocols

have been adapted to nonforest areas (O’Brien et al. 2003,

Riemann 2003), but cost and the logistical difficulties in collabo-

rating with agencies responsible for nonforest land assessments

are impediments to wider adoption of these methods.

Combining FIA data with data from other sources can increase

our knowledge of invasive plant species distributions. Figure 2a

illustrates P2 FIA data from county surveys of forest land from
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severity of its infestations (fig. 3). Thirty-one percent of kudzu-

infested subplots have greater than 50 percent coverage, which

means that kudzu is the dominant species in these subplots. 

The strength of FIA’s probability-based sampling design is that

one is able to make inferences about the extent of infestations

and their severity on forest land. An east Texas example shows

that Japanese honeysuckle infests 2,774,900 acres, which make

up 23 percent of the region’s 12 million forest land area in

2003. Statistically, one may be 95 percent confident that the

area is between 2,838,600 and 2,711,200 acres, or 2,774,900 +

63,700. Confidence in estimates is strong for the common

species and weak for rarely occurring species such as kudzu

(table 4). In general, estimates of total cover represent less than

10 percent of the infected area of forest land. Japanese honey-

suckle infests a million more acres than Chinese tallowtree

(Triadica sebifera), a canopy-dominant tree species, but the two

species are statistically similar in terms of total cover. 

Attribute All
States

Relative frequency

Japanese 50 77 41 62 25 58 62 50 54 66 31
honeysuckle

Chinese and 11 1 11 10 13 14 25 6 5 19 0
European privet

Chinese tallowtree 7 0 31 2 26 0 1 0 0 1 0

Tall fescue 6 0 0 3 0 0 0 15 5 0 25

Nonnative roses 6 2 1 0 0 9 0 8 7 0 20

Japanese/glossy 5 14 5 8 8 6 2 3 8 6 0
privet

Japanese 3 0 5 0 23 0 1 0 0 2 0
climbing fern

Bush honeysuckles 3 0 0 0 0 2 0 3 2 0 11

Tree-of-heaven 2 0 0 1 0 1 0 7 4 0 3

Chinese lespedeza 2 3 0 5 0 3 6 2 2 0 2

Nepalese browntop 1 0 0 0 0 1 0 0 6 0 1

Mimosa 1 2 2 0 1 1 1 0 1 2 0

Chinaberry 1 0 2 1 1 0 2 0 0 1 0

Kudzu 1 1 0 1 0 0 1 0 0 2 0

15 other taxa 4 0 1 6 2 6 1 5 6 2 6

All taxa  100 100 100 100 100 100 100 100 100 100 100

Number of 17,362 343 2,473 598 1,329 1,049 1,014 1,195 2,909 3,726 2,726
infested 
subplots 
∑(#subplots)taxa

Table 3.—Relative frequency of infested forest land subplots by taxa and State, 2001–04, for panels completed as of September 2004.a
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a Data are from completed panels in the South (as of September 2004) and represent a portion of the final 5-km sample grid intensity. States, panel numbers, and
approximate proportions are: Arkansas, 3, 0.20; East Texas, 1 through 5, 1.00; South Carolina, 4, 0.20; Louisiana, 4 and 5, 0.40; North Carolina, 5, 0.20; Georgia,
3, 0.14; Virginia, 4, 0.20; Tennessee, 3, 4, and 5, 0.60; Alabama, 3 and 4, 0.40; and Kentucky, 3 and 4, 0.33. 
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P3 Sampling

The census of all vascular species from P3 forest land observa-

tions provides information that is being used to develop indicators

of forest health. Part of this development includes documenting

their legitimacy, e.g., assurance in species identification (Gray

and Azuma 2005). At present, funding for full implementation

of all vascular vegetation on P3 plots is uncertain. The 1,300 plot

observations of all vascular vegetation on forest land between

2001 and 2003 have been made only in selected States and

survey years (table 5).

Figure 3.—Proportion of infested subplots by species and
severity class (< 1, 1–10, 11–50, and > 50 percent cover) for
panels completed as of September 2004, southern United States.

Infested forest land Severity (total cover)

Species % of total Acres 95% confidence Acres 95% confidence
forest land (1,000s) interval (1,000s) interval

Japanese honeysuckle 22.9 2,774.9 +63.7 154.7 +15.0
Chinese tallowtree 14.1 1,715.3 +50.1 160.0 +15.3
Chinese/European privet 5.8 701.3 +32.0 39.1 +7.6
Japanese/glossy privet 3.4 413.4 +24.6 17.7 +5.1
Japanese climbing fern 3.0 369.1 +23.2 12.6 +4.3
Chinaberry 2.3 281.6 +20.3 8.5 +3.5
Mimosa 1.5 182.9 +16.4 1.7 +1.6
Chinese lespedeza 0.5 54.6 +8.9 0.1 NA
Nonnative roses 0.4 52.6 +8.8 1.9 +1.7
Bush honeysuckles 0.3 40.5 +7.7 1.7 +1.6
Nandina 0.3 39.2 +7.6 0.5 NA
Kudzu 0.3 33.4 +7.0 0.4 NA

Table 4.—Top 12 invasive species infesting forest land and their severity, east Texas, 2001–03 surveys.

NA = Confidence interval includes zero.

FIA region and State 2001 2002 2003
Number

Interior West
Utah 40 45 50

Northeastern
Delawarea 19 19 21
Ohio 16 21 26
Pennsylvaniaa 136 99 33
New Jerseya 9 6 0
New Yorka 21 10 0

North Central
Illinois 14 8 17
Indiana 12 6 7
Iowa 7 9 5
Kansas 8 6 6
Michigan 41 43 43
Minnesotaa 70 70 42
Missouri 36 32 35
Nebraska 4 5 2
North Dakota 3 0 1
South Dakota 4 3 4
Wisconsin 34 32 29

Pacific Northwest
Oregon 62 0 0

Southern
South Carolina 0 31 0

Total 536 445 321

Table 5.—Number of sampled plots on forest land in the con-
terminous United States for 2001–03 in which an all-vascular
species inventory was conducted, by FIA region, State, and
year. Unless otherwise noted, sampling was at the P3 (22-km)
grid density.

a Included samples at the P2 (5-km) grid density for special study areas, such as
the Allegheny National Forest.
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ecoregion (Olson et al. 2003). Large blocks of forest land—

predominantly evergreen forest types—are associated with lower

nonnative proportions. One interpretation is that the proportion

varies directly with landscape-scale disturbances, such as forest

fragmentation, and regional soil fertility. Another is that regions

predominantly in deciduous forest land may be more susceptible

to invasion by semi-evergreen species with longer growing

cycles than regions predominantly in evergreen forests.

Elsewhere, preliminary data appear to corroborate these patterns

(Olson et al. 2003; Oswalt, in press; Schulz and Gray 2004).

Opportunities for Further Analysis

On forest land, future analysis of P2 and P3 observations will

increase when monitoring of invasive plant species is fully

implemented and standardized across FIA regions. Such analyses

will permit a broader national understanding of pest species

populations and their potential threat across all regions. 

Robust risk assessments require national coordination, augmented

interagency cooperation, and transdisciplinary collaboration

with other monitoring efforts. These include national programs

responsible for areas outside forest land, e.g., the USDA NRCS

National Resources Inventory, State and local monitoring for

management operations (Carpenter et al. 2002), and invasive

species observations by volunteers (e.g., Brown et al. 2001). 

In Alaska, one coordinated approach includes the establishment

of an interagency memorandum of understanding, a strategy for

cooperative inventories (Shephard et al. 2002), and an associated

Web site (Alaska Committee for Noxious and Invasive Plants

Management 2004). Another is the report from The H. John

Heinz III Center for Science, Economics and the Environment

(2002) and a newly launched Web site that focuses on invasive

species (National Institute of Invasive Species Science, n.d.).

The institute is in the process of gathering knowledge about

invasive plant species from various agencies and land cover

types, and analysts may one day be able to use the Web site’s

assembled data to supplement FIA forest land observations when

developing risk prediction models with wider applicability.

Figure 4.—Percent nonnative species on forest land by ecoregion,
Michigan, Minnesota, and Wisconsin (Source: Olson et al. 2004).

P3 sampling serves to corroborate species ranking from P2 plot

observations, includes vouchered specimens deposited at regional

herbaria for future study, and fills in information gaps associated

with narrower target lists. In South Carolina, a pilot study of P3

data collection notes nonnative species occurred in an average

of 5 percent of 31 forest land plots (Oswalt, in press). As with

P2 observations, Japanese honeysuckle is the overall dominant

invasive species by frequency, and kudzu is relatively rare.

Included among recorded invasive species are the less easily

identifiable life forms such as grasses, e.g., Bermudagrass

(Cynodon dactylon), and species such as alligatorweed

(Alternanthera philoxeroides), which are problems only in

uncommon, specialized habitats, such as forested wetlands with

limited tree cover.

Analysis of P3 indicators include the proportions of species

richness and cover in introduced species, and these estimates

serve as measures of relative impact (Stapanian et al. 1998).

For example, Gray and Azuma (2005) note that the proportions

of nonnative to native-and-introduced vascular plant species

richness and cover differed significantly by ecoregion in forest

land of western Oregon. 

An illustration comes from a preliminary examination of P3

observations for the North Central FIA region (fig. 4) which

suggests that the proportion of nonnative plant species varies by
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Analyses With Older Survey Data

Before establishment of the P3 national sampling protocol for

vascular plants and regional P2 sampling protocols for invasive

plant species, a few FIA regions surveys estimated vegetation

structure on timberland by easily distinguished plant taxa.

These surveys happened to include a few invasive plant species

in their tally. We highlight ongoing and recently completed

analyses of these older data as example information products

that could be developed from data currently being collected.

The FIA program could generate similar information for all

forest land if national P2 standard protocols for species selection

and field measurement were established, and if the national form

of P3 sampling were implemented across the United States.

One example analysis provides estimates of Himalayan (Rubus

discolor) and cutleaf blackberry (R. lacinatus) based on the 1998

western Oregon forest survey of non-federal land. Gray (2005)

used stepwise logistic regression of these species’ distributions

to construct a model with correlated variables and thereby

obtain an understanding of likely causal variables. Although

model predictability was generally less than 50 percent, analyses

and associated maps supported hypotheses that invasions were

more likely at low elevations and in timberland with limited

overstory cover (tree basal area, crown cover). 

Another analysis yields maps of infestation probabilities for a

few well-known species and is based largely on interior forest

surveys of understory species in Southeastern United States

timberland during the 1990s. Findings noted infestation proba-

bilities are greater for Japanese honeysuckle in the Southern

Mixed Forest than Coastal Plain provinces (fig. 5). For more

details about the interpolation, see Jacobs and Rudis (2005). 

Data came from interpolations of presence-absence observations

recorded in a 1989 –95 survey of 26,882 timberland sample

locations2. About 20 percent of the forest sample locations were

infested with Japanese honeysuckle, 3.5 percent with privet

(Ligustrum spp.), 0.9 percent with multiflora rose (Rosa multiflora),

and 0.2 percent with kudzu. The odds of infestation probability

were greatest with the absence of prescribed fire. Trends based

on matched locations (timberland for both the 1980s and 1990s

surveys) indicated a statistically significant decline in infestation

probability over the decade for Japanese honeysuckle, no change

in kudzu, and an increase in privet.

A third example characterizes forest fragmentation and the odds

of infestation relative to the forest edge by employing the fixed

configuration of the current plot design. Of 6,761 sampled forest

locations in the 1997 survey of Georgia’s timberland, 9 percent

contained forest-nonforest edges2. The odds of an infestation by

Japanese honeysuckle were two times greater, for privet three

times greater, and for kudzu seven times greater at the forest

edge than in forest interior locations. Forest land in nonforest-

dominated neighborhoods may be particularly vulnerable to

invasion due to the close proximity to anthropogenic activities

and likely larger invasive plant populations on nonforest land

(Franklin et al. 2003).

2 Data on file with: USDA Forest Service, FIA Program, 4700 Old Kingston Pike, Knoxville, TN 37919.

Figure 5.—Infestation probability of Japanese honeysuckle on
timberland, southeastern United States.
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Fine-scaled, spatially referenced estimates of invasive species

often are the data of most interest to county and other local

land managers. This fourth example describes a protocol for

obtaining fine-scale, spatially-registered estimates for Chinese

tallowtree, a species noted in surveys conducted in the south

central United States beginning with 1990s surveys. Figure 6

illustrates portions of the protocol. Initial efforts require geo-

graphic registration of satellite imagery to FIA plot locations

containing a single condition, and all four subplots are completely

forested or completely nonforested. The next step develops a

model that predicts forest land and nonforest land based on

sampled values; secondary data from other sources also are

employed as predictors. Figure 6b illustrates results using

Moderate Resolution Imaging Spectroradiometer (MODIS)

imagery to predict forest land at 250-m resolution. The third

step develops a predictive model of invasive species presence

and biomass volume for standing trees. In addition to FIA plot

and forest condition information, the model may include other

geographically registered data, such as generalized ecoregion

boundaries, specific climate attributes from the National

Weather Service, slope and elevation estimates from the U.S.

Geological Survey, and soil properties from the NRCS Natural

Resources Inventory. The final model yields a map of satellite

image spectral values that estimate the species’ biomass volume

at 250-m resolution. For Chinese tallowtree, biomass values

may appear something like those displayed in figure 6d.

Figure 6.—Steps in the process of fine-scaled estimation of Chinese tallowtree biomass: (a) MODIS satellite imagery at 250-m
resolution for east Texas and west Louisiana; (b) spectral value classification of forest and nonforest land; (c) Chinese tallowtree-
infested FIA forest land sample locations in east Texas by presence and infestation severity (percent total cover); and (d) depiction
of Chinese tallowtree biomass at 250-m resolution.

(b)

(a)
(c)

(d)
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Analysts can test the underlying predictions against other FIA

observations withheld from initial model development. The

final map product, together with associated reliability statistics,

provides sufficient spatial resolution for more detailed planning

by county-level managers.
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Appendix

This list contains the inventoried invasive species on Forest

Inventory and Analysis (FIA) forest plots in the conterminous

United States. 

Trees

National (Core-required)

• Tree-of-heaven†b Ailanthus altissima

• Tung-oil tree Aleurites fordii

• Mimosa, silktree† Albizia julibrissin

• European alder Alnus glutinosa

• Eucalyptus Eucalyptus spp.

• Melaleuca‡ Melaleuca quinquenervia

• Chinaberry* Melia azedarach

• Royal paulownia Paulownia tomentosa

• Mesquite‡ Prosopis (selected species, not P. glandulosa, P.

pubescens, P. velutina)

• European mountain ash Sorbus aucuparia

• Chinese tallowtree† Triadica sebifera (Sapium sebiferum)

• Siberian elm Ulmus pumila

National (Core-optional)

• Norway maple Acer platanoides

• Camphortree† Cinnamomum camphora

• Russian olive*b Elaeagnus angustifolia

• Saltcedara, b Tamarix spp.

Shrubs

North Central

• Japanese barberry† Berberis thunbergii

• Glossy buckthorn Frangula alnus

• Common buckthorn Rhamnus cathartica

* Species introduction on national forest land discouraged (Southeast Exotic Pest Plant Council 2001).
† Species introduction on national forest land prohibited (Southeast Exotic Pest Plant Council 2001).
‡ Species on the Federal Noxious Weed List (Federal Register 2004).
a Surveyed as a tree only in the Interior West.
b Species present and representing a potential threat to the Sierra Nevada National Forest (USDA Forest Service, Pacific Southwest Region 2001).
c Species introduction on national forest land prohibited (USDA Forest Service, Pacific Northwest Region 2004).

North Central, Southern 

• Autumn olive† Elaeagnus umbellata

• European privet†c Ligustrum vulgare

• Bush honeysuckles† Lonicera spp.

• Multiflora rose† Rosa multiflora

Pacific Northwest

• English hollyc Ilex aquifolium

• Himalayan blackberryb, c Rubus discolor

• Cutleaf blackberryc Rubus lacinatus

• Scotch broomb, c Cytisus scoparius

• Gorseb, c Ulex europaeus

Southern

• Silverthorn* Elaeagnus pungens

• Winged euonymus, burning bush, Euonymus alata

• Chinese privet† Ligustrum sinense, Japanese privet† L.

japonicum, glossy privet† L. lucidum

• Nandina, sacred bamboo* Nandina domestica

• Nonnative roses Rosa spp.

Ferns—Southern

• Japanese climbing fern† Lygodium japonicum

Forbs/Herbs/Other Herbaceous

Interior West

• Russian knapweedb, c Acroptilon repens

• Hoarycressb, c Cardaria draba

• Diffuse knapweedb, c Centauria diffusa

Interior West, North Central

• Leafy spurgeb, c Euphorbia esula
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Interior West, North Central, Pacific Northwest

• Thistle*b, c Circium spp.

North Central

• Common burdock Arctium minus

• Japanese knotweed†c Polygonum cuspidatum

• Mile-a-minute weed* P.perfoliatum

North Central, most of Interior West

• Spotted knapweedc Centauria bierbersteinii

North Central, Southern

• Garlic mustard† Alliaria petiolata

Pacific Northwest 

• NFS California:

• Musk thistle*b, c Carduus nutans

• Knapweedb, c Centauria diffusa,

C. solstitialis, C. maculosa*

• Rush skeleton weed Chonrilla juncea

• Spurgeb, c Euphorbia esula, E. oblongata

• French broomb, c Genista monspessulana

• Medusa headb, c Taeniatherum caputmedusa

• Foxglovec Digitalis purpurea

• Wall lettuce Mycelis muralis

Pacific Northwest Unites States and Colorado, Montana,

Nevada, and Wyoming

• St. Johnswortb, c Hypericum perforatum

Southern 

• Shrubby lespedeza Lespedeza bicolor

Southern United States and Arizona

• Chinese lespedeza† Lespedeza cuneata

• Tropical soda apple‡ Solanum viarum

Grasses

North Central

• Reed canary grassc Phalaris arundinacea

• Common reed Phragmites australis

North Central, Southern

• Nepalese browntop† Microstegium vimineum

Southern

• Giant reed Arundo donax

• Tall fescue† Lolium arundinaceum

• Cogongrass‡ Imperata cylindrica

• Chinese silvergrass* Miscanthus sinensis

• Nonnative bamboos Phyllostachys spp., Bambusa spp

Vines

Pacific Northwest, Southern

• English ivy*c Hedera helix

North Central

• Porcelainberry* Ampelopsis brevipedunculata

• Black swallowwort Cynanchum louiseae

North Central, Southern

• Oriential or Asian bittersweet† Celastrus orbiculatus

• Nonnative climbing yams –air yam/Chinese yam/water

yam† Dioscorea bulbifera/D. oppositifolia/D. alata

• Wintercreeper† Euonymus fortunei

• Japanese honeysuckle† Lonicera japonica

• Kudzu† Pueraria montana

Southern

• Periwinklesc Vinca minor, V.major

• Chinese/Japanese wisteria* Wisteria sinensis/W. floribunda

* Species introduction on national forest land discouraged (Southeast Exotic Pest Plant Council 2001).
† Species introduction on national forest land prohibited (Southeast Exotic Pest Plant Council 2001).
‡ Species on the Federal Noxious Weed List (Federal Register 2004).
b Species present and representing a potential threat to the Sierra Nevada National Forest (USDA Forest Service, Pacific Southwest Region 2001).
c Species introduction on national forest land prohibited (USDA Forest Service, Pacific Northwest Region 2004).
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Florida Supplement

Florida Trees

• Australian-pines Casuarina spp.

• Carrotwood Cupaniopsis anacardioides

• Schefflera Schefflera actinophylla

• Java plum Syzygium cumini

Florida Subshrubs

• Coral ardisia† Ardisia crenata

• Lantana Lantana camara

Florida Shrubs

• Surinam cherry Eugenia uniflora

• Guava spp. Psidium spp.

• Downy rose myrtle† Rhodomyrtus tomentosa

• Brazilian pepper† Schinus terebinthifolius

• Wetland nightshade‡ Solanum tampicense

Florida Vines

• Rosary pea Abrus precatorius

• Cat’s-claw vine* Macfadyena ungis-cati

• Skunk vines† Paederia spp.

Florida Grasses

• Napier grass Pennisetum purpureum

Florida Ferns

• Smallleaf climbing fern† Lygodium microphyllum

• Sword fern Nephrolepis cordifolia

Florida Forbs/Herbs/Other Herbaceous

• Hairy indigo Indigofera hirsuta

Not included are lists used in special studies supported in part

by cooperating agencies. For example, the Northeastern FIA

uses an extended list of nonnative tree species in special surveys

of urban and other nonforest land (Riemann 2003), and conducts

an ongoing, growing-season survey to assess cover for 12 invasive

species, and occurrence for 38 others in Pennsylvania. In the

West, special surveys in selected western national forest districts

and regions include noxious species surveys on nonforest land,

e.g., Bridger-Teton National Forests (O’Brien et al. 2003).

* Species introduction on national forest land discouraged (Southeast Exotic Pest Plant Council 2001).
† Species introduction on national forest land prohibited (Southeast Exotic Pest Plant Council 2001).
‡ Species on the Federal Noxious Weed List (Federal Register 2004).
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inventories became increasingly outdated. In response to user

demand for more timely information, the FIA program began

to test and implement an annual inventory system in 1996

(Gillespie 1999).

The annual inventory system uses essentially the same systematic

sample grid that was used for periodic inventories, with 1/10th

of the plots in a State sampled in any given year. Plots are

distributed throughout the State in each annual panel—i.e., the

entire grid is used each year, and the plots are shifted on the

grid from year-to-year. As a result, annual panels are theoretically

free from geographic bias. Under this system, data are available

every year, and reporting is intended to occur after 50 percent

of the plots (five annual panels) in a State have been sampled. 

The Interior West FIA (IWFIA) program—which is responsible

for Arizona, Colorado, Idaho, Montana, Nevada, New Mexico,

Utah, and Wyoming—implemented the annual inventory system

in 2000 in Utah and has added most other States since then

(table 1). About the same time that annual inventory was started

in the Interior West, forest managers and researchers began to

notice an increase in the incidence of insects and disease in

some forest types. Some of these effects were attributed to the

drought that spread across the Southwest beginning in the late

1990s. 

1 Analyst, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401.
Phone: 801–625–5673; e-mail: jdshaw@fs.fed.us.

State Last periodic First annual State Last periodic First annual

Arizona 1999 2001 New Mexico 2000 tbdb

Colorado 1983 2002 Montana 1989 2003
Idaho 1991 2004 Utah 1994 2000
Nevada 1989 2004a Wyoming 1983 tbd

Table 1.—Year of last periodic inventory and implementation of annual inventory for IWFIA States.

a Research pilot inventory approximating an annual panel. 
b tbd = year of first annual inventory to be determined.

Drought-Related Mortality in Pinyon-Juniper
Woodlands: A Test Case for the FIA Annual
Inventory System

John D. Shaw1

Abstract.—Several years of drought in the Southwest

United States are associated with widespread mortality

in the pinyon-juniper forest type. A complex of drought,

insects, and disease is responsible for pinyon mortality

rates approaching 100 percent in some areas, while

other areas have experienced little or no mortality.

Implementation of the Forest Inventory and Analysis

annual inventory approximately coincided with the

beginning of the mortality event, providing an oppor-

tunity to use the event as a test case for the annual

inventory system. Preliminary analysis suggests that

annual inventory data can quantify status and trends.

Some findings will be verified using aerial imagery

and independent ground inventory data.

In the mid-1990s, the U.S. Department of Agriculture (USDA)

Forest Service Forest Inventory and Analysis (FIA) program

began a shift from a periodic to an annual inventory system

(Gillespie 1999). Under the periodic system, plots were measured

over the entire sample grid in a given State over a period of 1

to several years. The planned revisitation cycle in the Western

United States was 10 years, but actual cycle lengths sometimes

approached 20 years. FIA data and reports produced by periodic
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At the writing of this article, the drought is ongoing, and signif-

icant drought-related mortality has been observed in several

forest types across the Southwest. Among the most seriously

affected are the ponderosa pine and pinyon-juniper types.

Widespread and locally severe mortality in these types has led

to several efforts to quantify the effects of drought, insects, and

disease over the past 5 years. Most of these efforts have been ad hoc

or local in nature and lack the geographic and temporal ranges

covered by the FIA program. Therefore, the current mortality

event can be considered an opportunistic test of the utility of

the FIA annual inventory system for quantifying rapid change

over a large geographic area. Analysis of the event may also test

some assumptions that have been made or concerns that have

been expressed about the FIA annual inventory system. 

This article describes the geographic distribution of FIA data

obtained before and during the mortality event, preliminary

analysis of the results, and how the design of the annual inventory

system may affect the final analysis.

Drought and Effects on Forests

Onset of the drought currently experienced across the Southwest

occurred about 1998 (McPhee et al. 2004), but the exact time

of onset varies by location and interpretation of climatic data.

In the spring of 2003 a “Drought Summit” was held in Flagstaff,

AZ, bringing together a wide variety of experts from across the

Southwest. At that time, some suggestions were made that the

drought could become a 1-in 500-year, or even an unprecedented,

event. But it now appears that the current drought is comparable

in magnitude to the early 1900s drought, the 1950s drought,

and many other dry periods that have been documented by tree-

ring-based reconstructions of the past 800 years (Cole et al.

2004, McPhee et al. 2004). As of December 2004, it appears

that some areas affected by drought since the late 1990s are

experiencing some relief (Society of American Foresters 2004). 

Anecdotal reports of drought-related effects on Southwest

forests began in 2000, but a dramatic increase in tree mortality

occurred in 2002 (Anhold and McMillin 2003). Local reports

noted up to 100 percent mortality in ponderosa pine and piny-

on-juniper forest types, such as in the Horsethief Basin and San

Francisco Peaks areas of Arizona. A rapid increase in the extent

of high-mortality areas was recorded by aerial surveys between

the fall of 2002 and the fall of 2003 (Anhold and McMillin 2003).

Estimates of 90-percent or greater mortality over large areas

continue to be reported (e.g., Society of American Foresters

2004), but the exact extent of high-mortality areas has not yet

been completely documented. 

The primary agents responsible for tree mortality in the Southwest

were the western pine beetle (Dendroctonus brevicomis LeConte)

in ponderosa pine, and the pinyon ips beetle (Ips confusus

LeConte) in pinyon pine. A variety of other insects and diseases

also affected these and other tree species, and a comprehensive

list of possible agents has yet to be completed. Hereafter in this

article, mortality will refer to that caused by a complex of

drought, insects, and disease, excluding fire and other causes.

In early 2003, the USDA Forest Service Interior West Forest

Health Monitoring (FHM) Regional Program Manager requested

a preliminary analysis of FIA annual inventory data as a supple-

ment to ongoing FHM assessments. The preliminary assessment

focused on Arizona and Utah, for which 2 and 3 years of annual

inventory data were available, respectively. The data suggested a

modest increase in mortality of pinyon and juniper species in

2002, but the percentage of total basal area affected was still

relatively small. At that point, in part due to the fact that esti-

mated mortality (based on annual data only) was near zero in

2000 and 2001, whether the apparent increase was signal or

noise was not clear. The prospect of using data from annual FIA

panels as time series data raised several important questions,

some of which had been discussed in detail when the move

from a periodic to annual inventory system was considered, and

some of which are still subjects of active research. The nature

of the mortality event—widespread, patchy, and increasing over

time—and the questions raised by attempts to quantify it using

annual FIA data suggested that the event could be used as an

ideal test of the FIA annual inventory system.



2004 Proceedings of the Sixth Annual Forest Inventory and Analysis Symposium 67

Questions About FIA Inventory Design and
Reporting

The first set of questions relates to FIA inventory design, in terms

of the number and design of plots. First and most fundamentally,

are there enough plots in one annual panel to detect the progression

of the mortality event? FIA periodic inventories are sampled on

a grid, with one potential field plot for approximately every 6,000

acres (known as phase 2). Under annual inventory, approxi-

mately 9,500 phase 2 plots are in Utah, about 3,700 of which

are expected to occur in forest conditions. This means that

approximately 370 plots (1/10th of the forested phase 2 plots)

across the State are scheduled to be visited in any given year.

Pinyon-juniper is the most common forest type in most of the

States in which it occurs. Of the 370 plots to be visited annually

in Utah, 160 to 180 are expected to sample the pinyon-juniper

type. The proportions given for Utah are comparable to other

States with significant acreage of the pinyon-juniper type

(Arizona, Colorado, New Mexico, and Nevada).

Stand densities commonly found in the pinyon-juniper type

span the low end of stocking that meets the definition of forest

for the purpose of FIA inventory. The most recent periodic

inventories and all annual inventories use the new mapped-plot

design, which consists of a cluster of four 1/24-acre subplots

(Scott and Bechtold 1995). Given the sparse nature of the piny-

on-juniper type, asking whether enough trees are tallied on plots

in very sparse stands to adequately represent the site is a reasonable

question. In addition, mortality may be quite patchy within stands,

raising the possibility that only green trees may be sampled in

a landscape that is clearly experiencing significant mortality.

Potential users of FIA data who are interested in the causes of

mortality often raise questions about identification of causal

agents. Although FIA maintains an extensive quality control

program, the nature of the mortality event is such that primary

causes may be obscured. Drought-related mortality has been

characterized as a complex of drought, insects, and disease,

and two or more agents are likely to be present on the plot

(although drought is assumed to be ubiquitous at present, ground

crews do not measured it). In addition, the mortality trees are

defined as those judged to have died in the 5 years before the

current inventory. The possible lag between time of death and

measurement allows for the loss of evidence of the primary

agents or invasion of secondary agents factors. This may lead

to the recording of “unknown” as the cause of death by the

field crew because the cause is not discernible or several likely

causal agents exist.

Questions related to analysis and reporting are also of concern.

FIA statisticians are currently researching the implications of

several methods of compiling annual data, such as methods of

combining panels to reduce variance (Patterson and Reams,

2005). Under normal circumstances, the combination of multiple

annual panels may not be a significant issue. In the event of

catastrophic change—fire and hurricanes being commonly cited

examples—the catastrophe has relatively identifiable boundaries,

and affected plots can be stratified to reduce variance. By all

accounts, however, drought-related mortality in the pinyon-

juniper type is a population-scale phenomenon. Although locally

concentrated in some cases, mortality appears to occur patchily

across the landscape. These two characteristics may make strat-

ification of affected and unaffected plots difficult or impossible. 

In addition to the variance issue, a concern exists over lag and

smoothing effects created by combining panels. Patterson and

Reams (2005) describe two methods of combining panels that

may be used in FIA analyses—moving averages and temporally

indifferent combination. Both methods can produce a time lag

bias when the variable of interest exhibits unidirectional change

over time. The magnitude of the bias depends on the length of

time over which panels are combined and the rate of change

over time. For some variables, lag and smoothing effects may

be minor and offset by the reduction in variance produced by

combining panels. Patterson and Reams (2005), however, note

that “in the presence of a widespread catastrophic event, lag

bias cannot be ignored.”

Analysis of annual inventory data may have some limitations

due to the reduction in sample size caused by dividing the phase

2 grid by the number of annual panels. The combination of

plots over space, as well as combining panels over time, will

tend to reduce variance. In this case, the tradeoff is between

geographic extent and variance as opposed to temporal currency
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and variance. This tradeoff raises questions regarding the appro-

priate scale at which estimates can be made with reasonable

confidence. Because of the limitations in the data, these scales

may or may not be satisfactory from some users’ perspectives. 

Addressing the Questions

As a naturally occurring experiment, the drought-related mortality

event provides an opportunity for addressing some of the questions

that surround the FIA annual inventory system. The widespread

nature of the event has drawn interest from a broad group of

managers and researchers, some of whom have experience with

the FIA program. In response to increasing mortality across the

Southwest, non-FIA entities inside and outside the USDA Forest

Service implemented short-term inventory and monitoring projects.

Two organizations in the Forest Service—the Forest Health

Technology Enterprise Team (FHTET) and Region 4 Forest Health

Protection (FHP)—approached the IWFIA program requesting

data on pinyon-juniper forests for use in designing their own

studies. Based on the planned design of the studies, closer coor-

dination could benefit all organizations involved. From the FIA

perspective, the primary benefit would be to produce data that

could be used to address some of the questions stated above,

thereby testing the annual inventory system. As a result, coop-

erative agreements were established, and both studies were

implemented as adjunct inventories using FIA phase 2 plot locations.

The FHTET study involved acquisition of high-resolution, digital

color infrared imagery over plots in the pinyon-juniper type in

late 2003. Plot locations were selected using a random sample

of plots from the 2003 annual panel that were classified as

pinyon-juniper. For each selected plot, the nearest neighbors

that were measured in 2002, or planned for field visits in 2004,

2005, and 2006, were selected to form five-plot clusters. The

study was designed such that at least 30 five-plot clusters were

available for sampling in each of the Four Corner States. The

aerial image database will provide data in three ways: (1) each

image taken over plots in the 2003 panel will provide a synoptic

view (approximately 92 acres) of the vicinity of the FIA plot,

enabling comparison of plot data with virtual plots of varying

size (including whole image); (2) plots from other panels can

be used as an ad hoc sample intensification of some geographic

areas for 2003, enabling comparison of estimates based on dif-

ferent sampling intensities (table 2); and (3) time series up to 4

years in length, with one end of the series established by imagery

and the other established by ground-based measurement, will be

available for analysis on completion of the 2006 panel (table 2).

The utility of data obtained in the third case will depend on the

degree of agreement, in terms of variables such as stand density

and mortality, that can be obtained between images and plots

taken in the same year. 

The FHP study, limited to Utah and Nevada, is focused on detailed

identification and documentation of agents and the progression

of mortality over time. Plot locations were stratified by ecoregion

section (Cleland et al. 2004) in the two-State area, with at least

10 plots available for sampling in each of nine ecoregion sections.

Under the FHP study plan, the selected plots will be visited

every year for at least 5 years. Damaging agents and their effects

are recorded in more detail than is currently being done during

FIA plot visits; FIA currently records up to three damaging

Year assigned to plot for FIA annual inventorya

Year
measuredb 2002 2003 2004 2005 2006

2002 FIA
2003 FHTET FIA, FHTET FHTET FHTET FHTET
2004 FHP FHP FIA, FHP FHP FHP
2005 FHP FHP FHP FIA, FHP FHP
2006 FHP FHP FHP FHP FIA, FHP

Table 2.—Matrix of annual and adjunct inventory schedules.

FIA = IWFIA annual inventory; FHTET = FHTET aerial image acquisition; FHP = Region 4 FHP ground-based survey.
a Columns represent plots measured repeatedly over time. 
b Rows represent intensification of the sample in a given measurement year—i.e., measurement of plots not scheduled for FIA annual inventory in that year.
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agents and their severity, whereas the FHP study attempts to list

all damaging agents present on the plot. Only FIA tree variables

related to damage and mortality are recorded; variables such as

height and diameter are not remeasured, in part because of low

growth rates and to minimize impacts to the plot. The FHP study

will also sample seedlings over a larger area than is measured

in the FIA plot design, and seedling status will be followed

over time. The FHP study will produce data in the following

ways: (1) “expert” evaluation and a comprehensive listing of

agents provides a database of damaging agents that can be

compared to agents recorded by FIA crews; (2) a series of

annual visits will allow comparison of agents present before,

during, and after mortality occurs; and (3) as with the FHTET

study, a local sample intensification and the creation of time

series that can be used to supplement annual FIA panel data

will occur (table 2). 

What the Data Show

Preliminary analysis of the FHTET and FHP studies is beyond

the scope of this article, but data from FIA periodic and annual

inventories offer some interesting insight into the progression of

drought-related mortality across the Southwest and how annual

panel data might be analyzed to improve the quality of mortality

estimates. Annual data from Arizona, Colorado, and Utah are

available for preliminary analysis. In addition, recent periodic

inventories from Arizona, New Mexico, and Utah quantified

predrought conditions of pinyon-juniper forests. For the sake of

simplicity, the figures and trends presented here represent only

the pinyon component of the pinyon-juniper type. Although

junipers and other species have suffered mortality in some areas,

they are, to date, largely unaffected in the pinyon-juniper type. 

The IWFIA program defines a mortality tree as one judged to

have died within 5 years of the measurement date. For reporting

purposes, measured mortality is converted to an annual figure.

Periodic inventory data suggest that background mortality is

relatively low for species that occur in the pinyon-juniper type

(table 3). One possible explanation for low annual mortality may

be the low growth rates that are typical of the type and stand

dynamics that are somewhat different from other forest types.

Following disturbance, pinyon and juniper species are more likely

to gradually accumulate on the site as opposed to regenerating

in large numbers and self-thinning over time. This process is

most evident where the forest is encroaching on grasslands or

sagebrush. This means that background mortality due to com-

petition is less common in the pinyon-juniper type than, e.g.,

in ponderosa pine, which is listed in table 3 for comparison. 

Annual inventory data show that drought-related mortality has

occurred widely across the Southwest, although large numbers

of plots remain unaffected (fig. 1). In the early stages of drought

(2000–01), nearly all the mortality occurring at the county scale

was located in one or two plots (fig. 1a). As the event progressed,

mortality was recorded on many more plots, but considerable

variation still existed within counties (fig. 1b). In the case of

counties in which 10 or more plots were measured annually,

however, mortality trends appear to be consistent with trends in

adjacent counties also containing moderate numbers of plots. 

Table 3.—Annual mortality for selected species based on most recent periodic inventory, by State.

a Includes all causes of mortality, including fire. Mortality data are based on O’Brien (2002) for Arizona, O’Brien (2003) for New Mexico, and O’Brien (1999) for
Utah. 

Mortality as a percent of volumea

Species Arizona (1999) (%) New Mexico (2000) (%) Utah (1995) (%)

Common pinyon 0.163 0.079 0.231
Singleleaf pinyon — — 0.145
Ponderosa pine 0.212 0.365 0.479
Alligator juniper 0.205 0.061 —
Oneseed juniper 0.011 0.009 —
Rocky Mountain juniper 0.003 0.082 0.047
Utah juniper 0.009 0.072 0.016
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When all plots are combined at State or regional scales, it is

evident that the annual inventory has captured the rapid increase

in drought-related mortality across the Southwest (fig. 2). Two

aspects of figure 2 are worth noting. First, the trends shown by

each statewide curve are similar, even though the record lengths

are different. This lends to confidence in the results, even before

confidence intervals have been computed. They also agree with

anecdotal accounts of the progression of the event to date. Second,

the point estimates created by combining all available panels

give some indication as to the degree of lag bias that can occur

in the event of rapid onset, accelerating changes. For example,

the combined estimate for Utah is less than half that estimated

by the 2003 data alone. In addition, estimates for different States

cannot be combined using all available panels because of the

differing record lengths. Note that the combined estimate for

Arizona, which has just over 9 percent mortality according to

the 2003 panel alone, is about equal to the combined estimate

for Colorado, in which just over 6 percent of the basal area has

died. This result is due to the fact that regional mortality was

low in 2001, the extra year in the Arizona record. This illustrates

that regional combinations are limited to the lowest common

denominator in terms of the number of concurrent panels in the

area of interest. 

What Can Annual Inventory Tell Us?

Based on early results, the potential usefulness of annual panels

as independent samples and time series data appears promising.

Annual inventory appears able to detect trend and magnitude of

short-term change during a widespread patchy event such as

drought-related mortality. It also appears that relatively low levels

of change can be detected, at least in cases where the variable

of interest (in this case, background mortality) is typically at

low levels and relatively constant over time and space. Status

and trends can probably be estimated with a reasonable degree

of confidence at larger scales. Some reduction in variance may

be possible using strata that are not commonly used in FIA

reporting, such as ecoregional units or discrete population

segments. Drawing some conclusions at medium geographic

scales, such as county or national forest, may be possible, but

this ability is largely dependent on the distribution of the forest

type of interest in the geographic area.

Figure 1.—Plots in the pinyon-juniper type showing plot-level
and county-level mortality of pinyon species.

Figure 2.—Mortality trends in Arizona, Colorado, and Utah.
Lines are based on individual annual panels and symbols are
based on combining all available panels within a State.
Symbols are shown in 2003 for clarity, but each represents the
midpoint of the record for each respective State. 

(a) (b)
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For widespread, rapid onset phenomena such as drought-related

mortality, combining panels may produce an unacceptable degree

of lag bias. To produce results that accurately reflect current

conditions and trends in the field, earlier panels must be brought

forward using methods that account for rapid change, or annual

panels must be used independently. In cases where panels are

combined, the methodology must account for different lengths

of time series that exist in different States. 

The ongoing mortality event presents an opportunity to evaluate

the efficacy of the FIA annual inventory system. The pinyon-

juniper type was featured here; however, drought-related mortality

has occurred to some degree in several other common forest

types. Although the preliminary results look promising, accept-

ance of final results can only occur following the application of

rigorous statistical evaluation. In addition, data obtained from

adjunct studies such as those conducted by FHTET and FHP

should be used to evaluate results based on FIA data alone. 
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National Detection Surveys for Sudden Oak
Death

B.M. Tkacz,1 S.W. Oak,2 and W.D. Smith3

Abstract.—The Forest Health Monitoring program, a

partnership of Federal and State forest management

agencies, has developed and tested protocols for iden-

tifying and surveying forest ecosystems that may be

vulnerable to invasion by Phytophthora ramorum, the

cause of Sudden Oak Death in California and Oregon.

This detection survey is targeting areas outside the

currently known distribution of P. ramorum, including

eastern oak forests. Sampling intensity is based on a

risk map that identifies areas at high, moderate, and

low risks of invasion. Pilot tests of the detection survey

were conducted in seven States in 2003. In early 2004,

regulatory officials discovered that nursery plants from

nurseries infested with P. ramorum were shipped

throughout the United States. This discovery resulted

in a major expansion and refocusing of detection surveys

for P. ramorum during the spring of 2004. Surveys

were conducted in 36 States with emphasis on forests

near nurseries that received P. ramorum-infested plants.

The cumulative number of locations surveyed during

the 2 years now exceeds 1,100, with more than 5,600

samples submitted for laboratory analysis for P. ramorum.

The pathogen was confirmed in only two locations in

San Francisco County, CA. This survey indicates that

P. ramorum is not widely established on native vegetation

in the United States outside the known distribution in

California and Oregon. Detection surveys will continue

in 2005.

1 National Program Manager, U.S. Department of Agriculture (USDA), Forest Service, Forest Health Monitoring, Arlington, VA. 
2 Forest Pathologist, USDA Forest Service, Forest Health Protection, Asheville, NC.
3 Research Scientist, USDA Forest Service, Southern Forest Research Station, Triangle Park, NC.
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Sole: Online Analysis of Southern FIA Data

Michael P. Spinney, Paul C. Van Deusen, and Francis A.

Roesch1

Abstract.—The Southern On Line Estimator (SOLE)

is a flexible modular software program for analyzing

U.S. Department of Agriculture Forest Service Forest

Inventory and Analysis data. SOLE produces statistical

tables, figures, maps, and portable document format

reports based on user selected area and variables.

SOLE’s Java-based graphical user interface is easy to

use, and its R-based analysis engine is fast and stable.

Each of the program’s components (data retrieval,

statistical analysis, and output) can be modified

individually. This adaptability encourages outside

development of analysis algorithms. 

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service has been

collecting forest inventory data since 1930. Database structure

and inventory design have evolved to accommodate available

technology and satisfy user demand. The most recent version of

the FIA Database (FIADB), available at http://www.ncrs2.fs.

fed.us/4801/FIADB/fiadb_documentation/FIADB_DOCU-

MENTATION.htm, includes new ecological variables and older

variables with modified definitions. The size of the FIADB can

be intimidating to some users, and the database structure can

confuse others. Readily accessible, easy-to-use tools are necessary

to ensure proper analysis of FIA data.

FIA data are analyzed periodically by the USDA Forest Service

and published as a standard suite of tables for a State or region.

FIA has recently converted from a periodic to an annual inventory

system and now publishes reports every 5 years. This schedule

may not be satisfactory for users who require more up-to-date

reports or who are interested in information for areas other than

States or regions. Production of customized reports requires

users to download data, replicate the relational database, and

then correctly query and summarize the data. Not all users with

special data needs are willing to invest this amount of effort. 

Web-based FIA analysis tools simplify the production of customized

reports by eliminating the need to understand the underlying

database structure. FIA’s MapMaker (http://www.ncrs2.fs.fed.us/

4801/fiadb/fim17/wcfim17.asp) is the USDA Forest Service’s

official Web-based analysis tool that uses standardized FIA

analysis algorithms. Another online tool, the Southern On Line

Estimator (SOLE; http://ncasi.uml.edu/SOLE) has been developed

cooperatively by the USDA Forest Service and the National

Council for Air and Stream Improvement. SOLE, a Web-based

tool for analyzing annual FIA data, has a Java-based graphical

user interface and an R-based analysis engine that employs

both standardized FIA and alternative algorithms. 

Sole Structure Overview

Flexibility has been the top priority during the development of

SOLE’s structure. Each of the three main components of the

program (data retrieval, statistical analysis, and output) was

developed to be independently modifiable, which facilitates

outside development of analysis algorithms. 

The user completes a query by sequentially selecting tabs at the

top of the user interface. After choosing States in the State

Selection window, the user progresses through the SOLE

Map, Variable Selection, Filters (optional), Analysis, and/or

Mapping tabs. The application progresses automatically as the

user completes requirements associated with each tab. Detailed

instructions can be found in the help files linked to each tab. 

1 Michael P. Spinney is a Quantitative Forestry Analyst, and Paul C. Van Deusen is a Principal Research Scientist, National Council for Air and Stream Improvement,
600 Suffolk Street, Fifth Floor, Lowell, MA 01854. E-mail: mspinney@ncasi.org; Web site: http://ncasi.uml.edu. Francis A. Roesch is a Mathematical Statistician,
U.S. Department of Agriculture, Forest Service, Southern Research Station, P.O. Box 2680, Asheville, NC 28802–2680.
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Using the Program

State Selection

The application begins with the State Selection window. States

for which annual data are available have black backgrounds,

and States for which only periodic data are available are “grayed

out” (i.e., unavailable for analysis). When a State is selected, its

name is listed, and the State is highlighted with green. When done

selecting States, the user clicks the orange bar at the bottom of

the window to proceed to the SOLE Map tab, where individual

counties may be selected (fig. 1). 

SOLE Map

Individual counties can be chosen with the Select by County

button, or all counties in the State can be chosen with the Select

All Counties button. Clicking on the Retrieve Data button

loads the necessary data files into the statistical program, R (R

Development Core Team 2003). After the data files have been

loaded, the next group of tabs, Variable Selection and Filters,

become available (fig. 2). 

Variable Selection

Currently, only FIADB volume variables are available for analysis.

These are grouped in 2 ways: Quantitative (continuous data, i.e.,

any volume or biomass estimate), and Qualitative (categorical

data, such as productivity class). In addition, Quantitative Variables

are grouped based on diameter greater or less than 5 inches.

The diameter breakdown preserves the precision of volume

estimates by ensuring that no data for trees less than 5 inches

diameter at breast height are included in merchantable volume

estimates (fig. 2). All analyses require selection of one

Quantitative and at least one Qualitative Variable. 

Filters

All data for the area of interest are analyzed unless analysis is

restricted by an optional filter. The filters currently offered

include stand size, stand origin, all live stocking, growing-stock

stocking, specific forest type, site productivity class, physio-

graphic class, ownership group, owner, reserved class, and

measurement year. Users can customize their analyses by

specifying particular levels of filters. Filter status is displayed

at the top of each analysis. 

Figure 1.—SOLE map selection tab, for county selection and data retrieval. 
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Analysis

Charts and tabular analyses are launched from the Analysis tab,

as illustrated in fig. 3. The header of each analysis indicates

which filters, analysis, and variables have been selected. 

Tabular Analysis.—SOLE can now calculate the means on

which the population summary statistics are based by either a

moving average (MA) or a mixed estimator (ME) method (Van

Deusen 2001). The MA estimator, the default estimator for FIA

analysis, provides a complete estimate for a specific 5-year

period. MA analysis results in the following seven tables: 

1. MA (Quantitative Variable of interest per acre).

2. Standard error of each element of table 1. 

3. Sampled area (acres) represented by the plots used in the

calculation of table 1 (summarizes the FIADB variable

EXPCURR). 

4. Estimated population total for the Quantitative Variable of

interest (equals MA multiplied by area). 

5. Standard error of the total estimate.

6. Total number of plots used in calculation, by each level of

the Qualitative Variable. 

7. Number of plots by measurement year. 

ME analysis results in the following six tables that have meas-

urement years as columns:

1. ME mean Quantitative Variable of interest by year (per

acre).

2. Standard error per year. 

3. Sampled area (acres) represented by the plots used in the

calculation of table 1.

4. Estimated population total for the Quantitative Variable of

interest. 

5. Standard error for the total estimate.

6. Adjusted sample size by measurement year.

The MA provides a complete estimate for each specific 5-year

period. When the MA is used, change can be determined after a

second MA can be calculated in year 6. In this case, the panel 1

data that are measured in year 1 are dropped from the estimator,

and the panel 1 data measured in year 6 are added. Note that 80

percent of the data are common to the two consecutive MA

estimates. Both the MA and ME can provide full-data change

estimates, but to which specific years the MA difference esti-

mator should be applied is not obvious. Another reason the ME

estimator might be preferred is its ability to model explicit

Figure 2.—SOLE variable selection tab.



trends, which permits the use of all available plots to estimate

rates of change for any point in time covered by the panel series. 

Graphical Analysis.—Graphs are often the most comprehensible

means of presenting data characteristics. SOLE offers bar charts,

box plots, pie charts, and XY plots. Bar and pie charts show a

basic distribution of the Quantitative Variable by each level of

the Qualitative Variable. XY plots offer some insight into the data

distribution and frequency based on the number and distribution

of points with respect to the axes. Box plots convey the most

statistical information about the data because they show the

mean, interquartile range, and outliers for each level of the

Qualitative Variable. 

Map Analysis.—County-level maps can be created from the

Mapping tab. Basic maps of the mean and median are supple-

mented by more complex ratio maps, which display the ratio of

filtered to unfiltered data. For example, the user can filter for a

specific ownership group and then view a map of the proportion

of volume on land owned by that group to the volume on all

land owned by all groups. 

Portable Document Format Report.—At the simplest level,

the portable document format (more commonly known as PDF)

report could be completely contained such that the user selects

an area of interest and then generates a report containing a pre-

determined combination of text and tabular, graphical, or map

analyses describing forest attributes for that area. Potentially,

this feature could be developed to produce an array of standard

FIA report tables at the click of a button, giving the user the

ability to produce current reports at each FIADB update. 

Summary

Web-based FIA analysis tools are essential for proper analysis

of FIA data. SOLE provides a simple interface that allows users

to obtain customized analytical results. SOLE is constructed in

a modular fashion that makes it easy to add new capabilities.

SOLE provides a wide range of options for users who want to

analyze FIA annual inventory data and obtain graphical and

tabular results. Flexibility in each component of SOLE ensures

that SOLE remains highly adaptable to changes in database

structure and user needs. 
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Figure 3.—SOLE analysis selection tab. 
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Practical Considerations When Using
Perturbed Forest Inventory Plot Locations
To Develop Spatial Models: A Case Study

John W. Coulston1, Gregory A. Reams2, Ronald E.

McRoberts3, and William D. Smith4

Abstract.—U.S. Department of Agriculture Forest

Service Forest Inventory and Analysis plot information

is used in many capacities including timber inventories,

forest health assessments, and environmental risk

analyses. With few exceptions, actual plot locations

cannot be revealed to the general public. The public

does, however, have access to perturbed plot coordi-

nates. The influence of perturbed plot coordinates on

the development of spatial models is unknown. We

examined the influence by comparing the accuracies

of two spatial models for predicting forest biomass,

ordinary kriging and residual kriging. We developed

each model using the actual coordinates and 10 inde-

pendent perturbations of the actual coordinates. We

tested for differences in accuracy using analysis of

variance. No statistically significant difference in

accuracy was found. The results represent only a small

portion of the possible outcomes, however. We suggest

a simulation study to examine the spatial range of

influence that plot coordinate perturbation has on

model accuracy. 

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service collects data

on tree and forest attributes using a quasi-systematic sample.

These data are used for many purposes including timber inven-

tories, forest health assessments, and risk assessments. Because

of privacy issues, actual plot locations cannot be revealed to

scientists outside the FIA program or the general public. FIA

has implemented several methods for perturbing plot locations

to protect plot integrity and ensure landowner privacy. Although

the perturbed plot locations are available to the public, the

effects of the perturbations on the accuracy of spatial models

are unknown.

Before 2002, FIA field plot locations perturbed within 1.6 km

of the actual locations were available to the general public.

Although currently no national standard exists for perturbing

plot coordinates, guidelines that may be satisfied at the regional

level using different techniques are available. One method

currently used is to randomly shift plot locations and swap data

among plots. In this article, we use the term “perturbed” to

denote both the random shift in plot location and the swapping

of plot attributes. Plot perturbation influences the spatial char-

acteristics of the data and, therefore, can influence the accuracy

of spatial models.

Spatial models and FIA data are widely used in environmental

assessments. For example, Morin et al. (2003) used FIA field

plot data, perturbed plot locations, and median indicator kriging

to interpolate a surface of percent forest basal area of species

susceptible to Phytophthora ramorum (a fungus-like organism

that causes Sudden Oak Death). This interpolated surface was

then intersected with other spatial data and used to assess the

potential susceptibility of Eastern forests to Phytophthora

ramorum. Coulston et al. (2003) used ordinary kriging to predict

potential ozone injury at FIA phase 3 (formerly forest health

monitoring) plot locations and assess ozone injury risk to

ozone-sensitive Northeastern tree species. This analysis was

conducted using the centers of the sampling hexagons (White

et al. 1992) as plot locations rather than the actual plot locations. 

1 Research Assistant Professor, North Carolina State University, Department of Forestry, Box 8008, Raleigh, NC 27695. E-mail: jcoulston@fs.fed.us.
2 National Program Leader, U.S. Department of Agriculture (USDA), Forest Service, National Headquarters, 1601 North Kent Street, Arlington, VA 22209. E-mail:
greams@fs.fed.us.
3 Mathematical Statistician, USDA Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108. E-mail: rmcroberts@fs.fed.us.
4 Assessment Coordinator, USDA Forest Service, Southern Research Station, 3041 Cornwallis Road, Research Triangle Park, NC 27709. E-mail: bdsmith@fs.fed.us.
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Spatial models generally rely on the relationship among obser-

vations by distance and direction (e.g., kriging). More complicated

spatial models may further rely on ancillary data that are inter-

sected with plot data (e.g., residual kriging). The objective of

this study was to examine the influence of FIA plot coordinate

perturbations on the accuracy of two spatial models for predicting

forest biomass. The first model was ordinary kriging of forest

biomass, and the second model was residual kriging in which

forest biomass was predicted using percent forest and leaf area

index (LAI) derived from Moderate Resolution Imaging

Spectroradiometer (MODIS) data. 

Methods

Plot-level estimates of percent forest land use and forest biomass

were obtained for 3,914 FIA plots in Minnesota. The plot locations

were randomly perturbed 10 different times in accordance with

the procedures used by the FIA program of the North Central

Research Station, USDA Forest Service. Perturbing plot locations

entails randomly shifting the x and y coordinates of the actual

locations for all plots, and swapping plot attributes (e.g., tree

volume m3ha-1) entails exchanging coordinates among a proportion

of plots. These manipulations are usually done within a county,

and plot attributes can be swapped only if the plots are sufficiently

similar (e.g., same forest type). The data set consisting of the

percent forest land use and forest biomass estimates and the

actual plot locations is denoted REAL, while the 10 data sets

consisting of the estimates and the perturbed plot locations are

denoted REPS. Before the spatial models were developed, we

randomly extracted 180 plots (approximately 5 percent) from

the data set. Average plot biomass for these extracted plots was

26.6 tons/acre, and the standard deviation was 19.3 tons/acre.

The biomass models were then developed without these plots,

model predictions were made for the 180 plots, and the accuracy

of the models with and without plot coordinate perturbations

(i.e., for the REAL and REPS data sets) was compared. 

Because ordinary kriging is a central technique in this analysis,

we provide a brief overview. (For more details, see Cressie 1993

or Isaaks and Srivastava 1989.) Ordinary kriging is a standard

interpolation technique with a minimum of three steps required

to estimate values at unmeasured locations. First, the empirical

semivariogram is calculated; second, the empirical semivariogram

is modeled; and third, parameter estimates obtained from the

modeled semivariogram are used to predict values at unmeasured

locations. The semivariance between values for a particular lag

distance h is

where N is the number of pairs (i,j), and vi – vj is the difference

between the values of pair (i,j). A semivariogram is a graph of

semivariance by distance class. Several model types may be

used to model the empirical semivariogram, including the

Gaussian model, wave model, power model, and exponential

model. Most variogram models can be characterized by three

parameters: the nugget, sill, and range. The nugget refers to the

y-intercept of the modeled semivariogram and is a function of

microscale variation or measurement error. The sill refers to the

maximum value of semivariance (i.e., the total variation in the

data), and the range is the distance at which the semivariance

reaches 95 percent of the sill. 

After the semivariogram has been modeled, ordinary kriging

can be used to estimate values at unsampled points. Ordinary

kriging is a weighted average such that

where       is the estimate at unmeasured location 0, wi is the

weight for the ith observation, and Vi is the value of the ith

observation. The weights sum to 1 and are determined by mini-

mizing the overall estimation error. The estimation variance is

where γ(si – s0) is the modeled semivariance for the distance

between si and s0, and λ is the Lagrange multiplier from solving

the linear system of equations for minimum estimation error.

We predicted forest biomass using kriging at each of the

extracted 180 plots using the REAL and REPS data sets. To

accomplish this, we first examined the sample variograms for



2004 Proceedings of the Sixth Annual Forest Inventory and Analysis Symposium 83

each of the 11 data sets. Second, we modeled the sample vari-

ograms with the power model

In this model, a is dimensionless and dictates the shape of the

variogram, and C1 has the same dimension as the variance. The

parameters C1 and a were estimated using weighted nonlinear

regression where the weight was inversely proportional to distance

and semivariance. The logic behind this weighting was that small

semivariance values near distance 0 have the most importance

for kriging. This weighting is similar to the weighting proposed

by Cressie (1985). Third, we used the ordinary kriging equation

to predict biomass values at the 180 locations extracted before

model development using the REAL and REPS data sets.

Delhomme (1978, 1979) first proposed combining regression

and kriging. In our study, we used residual kriging for which a

regression model was developed to predict forest biomass

using percent forest and LAI. The model residuals were then

kriged. The percent forest values were collected in the field for

each plot, and the LAI values were obtained by intersecting a

1-km resolution map of LAI with the REAL and REPS data

sets. The model was developed empirically with general form 

, (1)

where E(Bm) is the statistical expectation of forest biomass

(tons/acre), exp(.) is the exponential function, Pf = percent forest

land use, c = percent forest parameter, LAI = leaf area index

derived from MODIS satellite imagery, and g = parameter for

adjusted LAI. To solve model (1), we first transformed it into

its linear form by taking the natural logarithm of each side.

Next, we used ordinary least-squares to estimate each parameter.

The linear model was then back-transformed, and the semivariance

of the residuals was examined and modeled with the power

variogram model. We then used ordinary kriging to predict the

residual for the prediction for each of the 180 plots extracted

from the analysis. The final predicted value of forest biomass

was the sum of the predicted value from model (1) and the

predicted residual from kriging. This method was applied to the

REAL and REPS data sets. 

We used analysis of variance to examine the influence that plot

coordinate perturbation had on the accuracy of the spatial models.

Specifically, we tested for differences in mean error and mean

squared error among results for the 180 plots extracted from

the data. If we observed an overall difference, we then examined

the reason for the observed difference using Tukey’s studentized

range test. 

Results

We visually inspected the empirical variograms of forest biomass

for differences. Plot coordinate perturbation had the greatest

influence on semivariance values between plots closer than approx-

imately 1,900 m (fig. 1); i.e., the plot coordinate perturbation

changed correlations among observations for plots separated by

relatively short distances. The total variation and range of spatial

autocorrelation were relatively uninfluenced which was expected

because relatively small shifts in plot locations should influence

only local variability. We used a power variogram model to

develop the theoretical variogram. The power model does not

technically have a sill and range, but the plot coordinate pertur-

bation did influence the parameter estimates      and    . 

Figure 1.—Empirical semivariogram for the REAL data set
(solid dark line) and the REPS data sets (solid gray lines).
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No statistically significant difference exists in mean error or

mean square error among kriging estimates based on the REAL

and REPS data sets (table 1). The mean error of estimates based

on the REAL data set was 1.192 tons/acre, which fell between

the high and low limits from the REPS data sets. The estimates

based on the REAL data set had the highest mean square error.

Because no statistically significant difference exists between

estimates based on the REAL and REPS data sets, they all fell

in the same Tukey grouping. 

We developed a regression model to predict forest biomass based

on percent forest and LAI. The linearized model had R2 = 0.88,   

= 2.59, and    = 0.23. Standardized regression coefficients

were used to compare the influence of each predictor variable

when the variables are measured in different units (SAS 1999).

The standardized regression coefficients were    = 0.811 and 

= 0.127, suggesting that the model was most heavily influenced

by Pf. Figure 2 shows the nonlinear form of model (1). The

parameter estimates were slightly different for models developed

from the REPS data sets. The range of estimates for the c

parameter was 2.59–2.73, and the range of estimates for the g

parameter was 0.16–0.23. All the regression models based on the

REPS data sets had R2 0.88 which was similar to that obtained

for the regression model based on the REAL coordinates.

No statistically significant difference exists in mean error or

mean square error among residual kriging estimates based on

the REAL and REPS data sets (table 1). Residual kriging using

the REAL data set had a mean error of 1.201 tons/acre and a

mean squared error of 316.83 (tons/acre)2. The highest mean

error from the REPS data sets was 1.308 tons/acre, and the

highest mean squared error was 321.12 (tons/acre)2. The lowest

mean error and mean squared error were 1.032 tons/acre and

311.36 (tons/acre)2, respectively. Because no statistically signif-

icant difference exists between estimates based on the REAL

and REPS data sets, they all fell in the same Tukey grouping. 

Figure 2.—Predicted biomass based on model (1).

Kriging estimates Residual kriging estimates
Data Mean error Mean squared error Mean error Mean squared erro

tons/acre (tons/acre)2 tons/acre (tons/acre)2

REAL 1.192 343.07 1.201 316.83
REPS01 1.211 339.24 1.032 315.43
REPS02 1.218 339.13 1.247 321.12
REPS03 1.184 338.40 1.212 213.97
REPS04 1.190 340.29 1.221 316.48
REPS05 1.234 339.07 1.308 315.61
REPS06 1.179 341.23 1.083 315.07
REPS07 1.213 338.27 1.174 316.12
REPS08 1.159 338.40 1.123 316.04
REPS09 1.203 341.68 1.189 316.85
REPS10 1.177 338.73 1.281 311.36

Table 1.—Mean prediction error and mean squared prediction error for estimates of biomass based on the REAL and REPS data sets.



2004 Proceedings of the Sixth Annual Forest Inventory and Analysis Symposium 85

Discussion

In this study, the plot coordinate perturbations did not influence

the accuracy of the spatial models. Two characteristics of the

data, however, may have contributed to this outcome. First, the

biomass variable had a weak spatial structure based on the vari-

ogram. Second, the regression model was based on percent forest

estimates from the field and LAI estimates based on MODIS

imagery. Based on the standardized regression coefficients, the

percent forest variable had the highest weight in the model. 

We considered forest biomass to exhibit a weak spatial structure

because the proportion of the semivariance explained by distance

was relatively small. We can examine the strength of the spatial

structure in many ways. With the power variogram model, the

C1 parameter typically has estimates between 0 and 2 (SAS

1996). When C1 approaches 0, the semivariogram approaches a

horizontal line. Our estimate was      = 0.033, which suggests a

weak spatial structure; i.e., biomass has large variance and

exhibits little spatial correlation, even at small distances. When

the empirical semivariogram exhibits a horizontal linear struc-

ture (i.e., slope = 0 or horizontal line), the best linear unbiased

predictor is the average. When the spatial structure is weak, the

kriging equation will produce estimates close to the global

average. We hypothesize that when the variable of interest has a

weak spatial structure, the plot coordinate perturbations have a

minimal effect on the accuracy of kriging estimates because

estimates approach the global average.

The regression model developed for this study was most heavily

influenced by the percent forest variable. This variable was col-

lected in the field so that each plot, regardless of plot coordinate

perturbation, had the actual field estimate for percent forest.

The LAI variable was obtained by intersecting the imagery with

the plot locations. The MODIS data were 1-km in resolution

which matched well with the plot coordinate perturbation,

because 95 percent of the perturbed plot locations were within

0.8 km of the actual plot location. Also, LAI estimates were

adjusted by the percent forest in model (1). We suggest that the

influence of plot coordinate perturbation on the accuracy of

residual kriging depends on the resolution and the spatial auto-

correlation of the intersected information. 

For spatial models developed by intersecting ancillary data

(e.g., regression kriging, residual kriging, mixed models), the

two most important characteristics of the ancillary data are the

resolution and the spatial autocorrelation. The resolution of the

ancillary data is important because the probability that a plot

will be assigned incorrect information during intersection

decreases with decreasing resolution. For example, plots will

more likely be assigned the correct value from intersection

when the resolution of the ancillary data is 5 km as opposed to

30 m. The autocorrelation of the ancillary data is also important

because plots will more likely be assigned a value similar to the

correct value when high autocorrelation exists. For example, if

the resolution of the ancillary data is 30 m, and the spatial

autocorrelation is zero (i.e., a random spatial pattern), the prob-

ability of assigning the correct value to the plot is very low. If

the resolution of the ancillary data is 30 m, and the spatial

autocorrelation is large, however, the probability of assigning

the correct value to the plot is much greater. 

Conclusions

The objective of this study was to examine the influence of plot

coordinate perturbation on the accuracy of kriging estimates

and residual kriging estimates. For the cases we examined, no

statistically significant influence on accuracy exists.

Generalizations should be made with caution due to the potential

influence of the following factors: 

1. Spatial structure in the variable of interest. A weak spatial

structure should produce little effect, while a strong spatial

structure may produce a larger effect. 

2. Spatial resolution of ancillary data. Coarse spatial reso-

lution decreases the probability of assigning incorrect

ancillary data values to a plot, while fine spatial resolution

increases the probability. 

3. Spatial autocorrelation of ancillary data. High spatial

autocorrelation in ancillary data decreases the probability

of large errors in the assignment of ancillary data value to

a plot, while low spatial autocorrelation increases the

probability. 

We suggest that these topics be further investigated using

simulated variables of known spatial structure.
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A Model-Based Approach to Inventory
Stratification

Ronald E. McRoberts1

Abstract.—Forest inventory programs report estimates

of forest variables for areas of interest ranging in size

from municipalities to counties to States and Provinces.

Classified satellite imagery has been shown to be an

effective source of ancillary data that, when used with

stratified estimation techniques, contributes to increased

precision with little corresponding increase in costs.

A new approach to stratification based on using satellite

imagery and a logistic regression model to predict

proportion forest area is proposed. The results suggest

that precision may be substantially increased for estimates

of proportion forest area and volume per unit area.

Introduction

The Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service reports esti-

mates of forest variables for medium to large geographic areas

of interest (AOI) such as counties, national forests, and States

based on data collected from arrays of field plots. Due to budg-

etary constraints and natural variability among plots, sufficient

numbers of plots frequently cannot be measured to satisfy pre-

cision guidelines for the estimates of many variables unless the

estimation process is enhanced using ancillary data. Classified

satellite imagery has been accepted as a source of ancillary data

that can be used with stratified estimation techniques to increase

the precision of estimates with little corresponding increase in

costs (Hansen and Wendt 2000, McRoberts et al. 2002, Hoppus

and Lister 2003). The objective of the study was to evaluate the

utility of satellite image-based stratifications derived from

logistic regression predictions of proportion forest area (P) for

increasing the precision of estimates of volume per unit area

(V) and P.

Data

The FIA program has established field plot locations using a

sampling design that is assumed to produce a random, equal

probability sample (McRoberts and Hansen 1999). The sampling

design is based on a tessellation of the United States into

approximate 2,400-ha hexagons derived using the Ecological

Mapping and Assessment Program methodology (White et al.

1992). At least one permanent plot has been established in each

hexagon. The hexagonal array has been divided into five

nonoverlapping, interpenetrating panels, and measurement of

plots in one panel is completed before measurement of plots

in the next panel is initiated. Panels are targeted for selection

on a 5-, 7-, or 10-year rotating basis, depending on the region

of the country. 

In general, locations of forested or previously forested plots are

determined using Global Positioning System receivers, while

locations of nonforested plots are determined using aerial

imagery and digitization methods. Each field plot consists of

four 7.31-m (24-ft) radius circular subplots. The subplots are

configured as a central subplot and three peripheral subplots

with centers located at 36.58 m (120 ft) and azimuths of 0
o
,

120
o
, and 240

o
from the center of the central subplot. Among

the observations field crews obtain are the proportions of

subplot areas that satisfy specific ground land use conditions.

Subplot estimates of P are obtained by collapsing ground land

use conditions into forest and nonforest classes consistent with

the FIA definition of forest land. Field crews also measure the

diameter at breast height (d.b.h.), 1.37 m (4.5 ft) and the height

of each tree with d.b.h. ≥ 12.5 cm (5 in). Statistical models are

used to predict the volume of each tree from the d.b.h. and height

measurements, and volumes of all trees with d.b.h. ≥ 12.5 cm

on each subplot are added to obtain subplot estimates of V. The

national FIA program uses an infinite sampling framework and

attributes aggregations of data for the four subplots to the point

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, 1992 Folwell Avenue, St. Paul, MN 55108. Phone: 651–649–5174; 
e-mail: rmcroberts@fs.fed.us.
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corresponding to the center of the central subplot. For two study

areas (fig. 1), one in southern Indiana and one in northern

Minnesota, FIA plot data and three dates of Landsat Thematic

Mapper (TM) or Enhanced TM+ imagery were used.

Observations of P and V obtained between 1999 and 2003 were

available for 1,211 FIA plots in the Indiana study area and for

2,114 FIA plots in the Minnesota study area. 

Landsat imagery for one Indiana scene (path 21, row 33) and

one Minnesota scene (path 27, row 27) was obtained from the

Multi-Resolution Land Characterization 2001 land cover mapping

project (Homer et al. 2004) of the U.S. Geological Survey.

Imagery for three dates corresponding to early, peak, and late

vegetation green-up (Yang et al. 2001) were obtained for each

scene: April 2001, July 2000, and October 2001 for the Indiana

scene and March 2000, July 1999, and October 1999 for the

Minnesota scene. Preliminary analyses indicated that Normalized

Difference Vegetation Index (NDVI) (Rouse et al. 1973) and

the tasseled cap (TC) transformations (brightness, greenness,

and wetness) (Kauth and Thomas 1976, Crist and Cicone 1984)

were superior to both the spectral band data and principal com-

ponent transformations in predicting P. Thus, 12 satellite image-

based predictor variables were used: NDVI and the three TC

transformations for each of the three image dates. Because

plots would eventually be assigned to strata derived from pixel

classifications or predictions, the constraint that a plot could

not sample multiple strata had to be accommodated, and the

FIA plot configuration requires a 3 x 3 block of pixels for

geospatial coverage, the mean of each transformation of the

spectral values was calculated for each 3 x 3 block of pixels

and attributed to the center pixel of each block. Similarly, the

FIA plot observations of P and V were attributed to the pixel

containing the plot center.

Methods

Stratified Estimation

Stratified estimation requires accomplishment of two tasks: (1)

calculation of the relative proportion of the land area correspon-

ding to each stratum, and (2) assignment of each plot to a single

stratum. After the classifications or predictions for the satellite

imagery have been obtained and aggregated into useful strata,

the two required tasks are relatively easy to accomplish. The

first task is accomplished by counting the number of pixels in

each stratum and then calculating the relative proportions of

pixels in strata. The second task is accomplished by assigning

plots to strata on the basis of the stratum assignments of their

associated pixels.

Stratified estimates for FIA variables are calculated using stan-

dard methods (Cochran 1977):

, (1)

and

, (2)

where

, (3)

, (4)

and where Yhi is the ith observation in the hth stratum of the variable

of interest; h=1,…H denotes strata; wh is the weight for the hth

stratum, calculated as the proportion of pixels in the AOI

assigned to the stratum; nh is the number of plots assigned to

the hth stratum;       is the sample mean for the hth stratum; and  

is the sample estimate for the stratum variance. 

Figure 1.—Study areas.
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The FIA program uses stratified estimation but not

stratified sampling. For estimation purposes, at least

five plots per stratum are considered necessary to

obtain reliable stratified estimates. If fewer than five

plots are assigned to a stratum, the user has four

options: (1) combine similar strata, (2) increase the

size of the AOI so that the stratum includes a sufficient

number of plots, (3) combine strata and increase the

size of the AOI, or (4) do not use stratified estimation. 

The effectiveness of a stratification is often evaluated using rel-

ative efficiency (RE) calculated as follows: 

, (5)

where            is estimated variance,          is the estimate of the

mean obtained under the assumption of simple random sampling

(SRS), and        is the estimate of the mean obtained using

stratified estimation. RE > 1.0 indicates that the strata and

stratified estimation have the desired effect of reducing variance

and increasing precision, while  RE   1.0 indicates the strata are

having little benefit. 

Model Prediction

Predictions of P for individual pixels in each study area were

obtained using a logistic regression model (LOG):

(6)

where E(.) is statistical expectation, exp(.) is the exponential

function, the βs are parameters to be estimated, and the Xs are

the 12 transformations of the satellite image spectral values.

Separate sets of parameter estimates were obtained for each

study area. 

Because the estimates of all parameters of model (6) are obtained

from observations for all plots in the study area, the model

prediction for each image pixel will also be based on the obser-

vations for all plots in the study area. Thus, because the same

plots are assigned to strata as were used to calibrate the model

from whose predictions the strata were derived, concern that

the plots do not constitute random samples of strata may exist.

Breidt and Opsomer (2002) showed that for samples smaller

than those used for model calibration for this study, this concern

may be dismissed. 

Analyses

For each study area, the pixel predictions of P were grouped into

0.01-wide classes beginning with     = 0.01 and ending with        

= 1.00. Plots were assigned to the resulting 101 classes on

the basis of the class assignments of the pixels containing the

plot centers. The optimal grouping of the 101 classes into four

strata was determined, subject to the constraint that no stratum

with fewer than five plots was permitted. Within each study

area, three optimality criteria were considered: REP, REV, and

REP + REV. 

As a basis for comparison, means and standard errors for P and

V were obtained for each study area under the SRS assumption.

In addition, means, standard errors, REP, and REV were obtained

for the approach to stratification used by the regional FIA

program of the North Central Research Station (NC), USDA

Forest Service. With the NC approach, four strata are derived

from the 21 classes of the National Land Cover Data (NLCD)

(Vogelmann et al. 2001, Homer et al. 2004). First, the NLCD

classes are aggregated into forest and nonforest classes, and

second, 2-pixel-wide forest edge and nonforest edge classes are

constructed along the forest/nonforest boundary (Hansen and

Wendt 2000, McRoberts et al. 2002). These four classes—

Forest, Forest Edge, Nonforest Edge, and Nonforest—are then

used as strata. For the Indiana study area, the four strata were

derived from the 1992 version of the NLCD, while for the

Minnesota study area, the four strata were derived from the

2001 version of the NLCD. 

Results

Estimates of mean P and V were nearly indistinguishable for

the different approaches to stratification (table 1). In all cases,

REP > REV, which is consistent with previous findings and can

be attributed to the closer relationship between P and a forest/

nonforest classification than between V and the classification.

For both study areas, the LOG approach was superior to the
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NC approach with respect to increasing the precision of estimate

of mean P and V. The largest REP for the LOG approach was 63

percent greater than REP for the NC approach for the Indiana

study area and 51 percent greater for the Minnesota study area.

The largest REV for the LOG approach was 36 percent greater

than REV for the NC approach for the Indiana study area and 21

percent greater for the Minnesota study area.

As expected, for each study area the largest REP was obtained

for the LOG approach when the strata boundaries were selected

to maximize REP, and the largest REV was obtained when the

strata boundaries were selected to maximize REV. The decrease

in REP when the strata boundaries were selected to maximize

REV was approximately 25 percent for both study areas, although

the decrease in REV when the strata boundaries were selected to

maximize REP was less than 10 percent for both study areas.

Thus, REP is apparently more sensitive to changes in strata

boundaries than is REV. When the strata boundaries were selected

to maximize REP + REV, the relative decreases in both REP and

REV for both study areas were less than 5 percent. Finally, very

little advantage was realized for either study area when selecting

strata boundaries to maximize REP + REV as compared to

selecting them to maximize REP. 

Conclusions

The LOG approach was superior to the NC approach for estimating

both mean P and V for both study areas. Increases in REP were

63 and 52 percent for Indiana and Minnesota, respectively, and

increases in REV were 36 and 21 percent for Indiana and

Minnesota, respectively. Although selection of strata boundaries

to maximize REP + REV rather than to maximize either REP or

REV individually had a slight advantage, selection of boundaries

to maximize REP was nearly as effective.

Greater REs could possibly have been achieved with a few more

strata for these data sets. However, the bimodal distributions of

the plots (figs. 2a and 2b) with respect to    , with most plots

either completely forested or completely non-forested, suggest

that the minimum of five plots per stratum would be difficult to

achieve with larger numbers of strata, particularly for the smaller

geographic areas for which the FIA program reports estimates.

Strata Indiana study area Minnesota study area
Approach optimization Mean SE RE Mean SE RE

criterion

Proportion forest area
SRS 0.3383 0.0127 1.00 0.7279 0.0091 1.00
NC 0.3545 0.0067 3.60 0.7267 0.0073 1.53
LOG REA 0.3373 0.0052 5.87 0.7298 0.0060 2.33
LOG REV 0.3349 0.0060 4.50 0.7241 0.0064 1.74
LOG REA + REV 0.3393 0.0053 5.72 0.7298 0.0060 2.33

Volume per unit area (m3/ha) 
SRS 47.44 2.15 1.00 48.91 1.25 1.00
NC 49.75 1.53 1.99 48.78 1.17 1.13
LOG REA 47.32 1.37 2.47 49.12 1.09 1.32
LOG REV 46.97 1.31 2.71 48.62 1.06 1.37
LOG REA + REV 47.57 1.35 2.54 49.12 1.09 1.32

Table 1.—Comparisons of results of stratifications.
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Comparing Mapped Plot Estimators

Paul C. Van Deusen1

Abstract.—Two alternative derivations of estimators

for mean and variance from mapped plots are compared

by considering the models that support the estimators

and by simulation. It turns out that both models lead

to the same estimator for the mean but lead to very

different variance estimators. The variance estimators

based on the least valid model assumptions are shown

to perform poorly in practice.

Introduction

Mapped plots are an integral part of the U.S. Department of

Agriculture Forest Service Forest Inventory and Analysis (FIA)

annual forest inventory design. The concept of mapping is

intended to reduce the potential bias of having more than one

forest condition on a single plot. The plot is mapped to indicate

what proportion of the plot is covered by a particular condition.

In the past, plots were moved or rotated into a uniform condition

to avoid this problem. Plot rotation leads to a small bias in the

estimates (Birdsey 1995), and mapping was believed to be a

more statistically defensible approach (Hahn et al. 1995). 

More than one estimator has been suggested for obtaining esti-

mates of means and variances from mapped plots. Estimator 1

(EST1) is described in a FIA document (FIA 2004), and estimator

2 (EST2) is described in Van Deusen (2004). These estimators

will be derived using a model-based approach and then compared. 

Review of Theory

The FIA plot design consists of four circular subplots in a fixed

configuration. Small diameter trees are measured only on smaller

concentric plots in the larger subplots. Ignoring the specifics

of the FIA plot design simplifies derivation of the estimators

without loss of generality. Therefore, the estimators are derived

under the assumption that the sample plots consist of a single

fixed-area plot.

The simple forest inventory model used in Van Deusen (2004)

is followed here. Assume two conditions exist, C and B, where

C is a circular condition surrounded by condition B (fig. 1).

Estimates of the mean and variance of type C are of interest,

and the other types that surround it are denoted as B. The shape

of type C could be anything, in practice. Sampling is either

systematic or simple random and uses fixed-area circular plots

with radius d. The edge of type C is shown by a dash line, and

a perimeter band that overlaps the outer edge of area C is

shown by solid lines. The plot contains both conditions when

the plot center falls within the perimeter band. The condition

boundary is mapped when it crosses a plot. 

1 National Council for Air and Stream Improvement, 600 Suffolk Street, 5th floor, Lowell, MA 01854. E-mail: pvandeusen@ncasi.org.

Figure 1.—An area of condition C surrounded by condition B.
Condition C is bounded by the dash line that is contained in a
perimeter band of width equal to the diameter of the fixed-area
circular plots. Plots with centers that fall within the band will
contain some of both conditions. All other plots contain only one
condition. One plot that is fully in condition C is shown along
with a plot that overlaps the boundary. Plots that contain no C
are not of interest.
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The following notation is similar to that used in Van Deusen

(2004):

ai = The proportion of the area of plot i that is within condition C. 

n = The number of plots that contain some condition C.

Where:

= A variable that can be measured on each randomly located

plot that completely or partially overlaps condition C. For plots

that don’t overlap C,       = 0.

yi =      /pi is the original measurement expanded to a per acre

(hectare) or total value.

pi = A value proportional to the selection probability of the plot,

e.g., this would be 1/5 for a fifth-acre circular plot.

= The per unit area mean of variable y for condition C, e.g.,

cubic meter per hectare pine volume.

After a plot is located, the amount of variable     is recorded and

expanded to a per acre value, y. When plot i contains none of

condition C, yi = 0, and ai=0. The n plots that contain a non-zero

amount of condition C are labeled 1,...,n.

Estimator Derivation

A model-based approach is used to derive mapped plot estimators.

The estimators called EST1 and EST2 in the introduction are

both derived in this section.

EST1 is derived first by starting with the following model:

(1)

where e1 is a random error term and                                     .

This model states that the expanded plot value is equal to the

mean per unit area value,    , multiplied by the average proportion

of a plot,    , that is in the condition of interest. The variance of

the expanded plot value is proportional to the squared average

proportion in the condition.

Consider the result of dividing equation (1) by     to get the

following equation:

(2)

where                            . The transformed variable,                

, is the variable that the estimators in the “Stat Band”

document (FIA 2004) are based on. Thus, the following estimators

for mean and variance are based on this equation:

, and (3a)

(3b)

These are standard mean and variance estimators that would apply

to simple random or stratified random sampling without a finite

population correction factor (Cochran 1977, Thompson 2002).

EST2 is derived from a related model that allows for plot values

to vary according to the percentage of the plot falling in the

condition:

(4)

where                                     . Equation (4) states that the

amount, yi, in the condition is related to the proportion, ai, of

the plot that falls in the condition. The variance of yi is also

proportional to ai, which seems intuitively reasonable. Using

standard least-squares formulas, the following are the estimators

for the mean and variance (Van Deusen 2004): 

, and (5a)

, where (5b)
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(5c)

More detailed discussion about the derivation of equations (5b

and 5c) can be found in Van Deusen (2004).

Note that equations (3a) and (5a) are identical because            

. The variance estimators, however, are quite different.

Intuition suggests that v2 should be less than v1 because equation

(4) is more flexible than equation (1). The exception is when

all plots are fully in the condition so that                 , making

equations (3b) and (5b) identical. In general, equation (1) is a

crude model of the relationship between the plot values, yi, and

the proportions, ai.

Simulated Comparison

Simulated data are used to compare variance estimators v1 and

v2. The same simulation scheme used in Van Deusen (2004) is

used here. Y-values are drawn from a normal distribution with

standard deviation 300 and mean 1,000. There are 1,000 repli-

cations with 100 samples per replication. The average proportion

of the plot in the condition area varies from 0.75 to 1.0. More

simulation details are available in Van Deusen (2004).

The simulation results in no noticeable bias in estimates of the

mean (Van Deusen 2004), and the variance estimates are identical

when     = 1.0, as they should be. Variance estimator v1 deterio-

rates, however, as     moves away from 1.0 (fig. 2). The relative

variances (fig. 2) are computed as                       , where      is

the average of the estimated variances based on 100 observations

from each of the 1,000 replications, and v is the simulated

variance computed from the means of the 1,000 replications.

A relative variance of 0 means the formula is unbiased, a value

of 1 shows that the formula is predicting twice the variance

that it should, and a value of 2 indicates that the formula is

overpredicting by a factor of 3.

Discussion

The simulation shows that the model that best describes the

data produces the most accurate variance estimator, which is v2

in equation (5b). The model that led to v1 in equation (3b) is

based on the notion that each plot measurement (yi) has the

same expected value regardless of the plot proportion (ai) in the

condition. Therefore, that this variance estimator performs

poorly when plots have widely differing proportions within the

condition is not surprising.

Other models might represent the data well that have not been

considered here; therefore, no guarantee exists that equation (5b)

is uniformly better than any alternative. For example, consider

equation (4) with different variance assumptions on the error

term, e2i. Suppose the variance of the error was assumed to be

a function of the squared proportion, i.e.

. This would lead to the following

estimate of the mean:

(6a)

which is different from the mean estimator produced by the

other models. A potential problem with this “mean of ratios”

estimator is that plots with small ai values are given large weights.

Intuitively, this seems like a bad idea because these plots contain

less information about the condition than a plot that is fully in

the condition. 

Figure 2.—Simulated comparison of two estimators for variance
of the mean from mapped plots. A relative variance of 0 means
the variance estimator was unbiased, a value of 1 means it
predicted twice the actual variance, and a value of 2 means it
predicted three times the actual variance.
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The variance estimator for the ratio of means model is the

following:

(6b)

where                   . This model was evaluated in the simulation

described above, and it compared favorably (fig. 3) with equation

(5b). The simulation included ai values down to 0.5, so that no

chance of dividing yi by a miniscule ai value was possible.

Because equation (6b) doesn’t perform any better than (5b) in

this controlled situation, this equation is not recommended. 

Variance Estimator Is Unbiased

The purpose of this section is to prove that the variance estimator

for EST2 is unbiased. Reconsider the assumption that the variance

of the error term in equation (4) is proportional to          .

Suppose a circular plot contains the variable of interest, y. If the

coverage of the plot is absolutely homogeneous, the amount of

y, say f(y), on a proportion of the plot, would be f(y)=ay. This

would lead to Var(f(y))=a2Var(y). Recall that                 and

therefore            . In fact, the y variable will not be exactly

homogeneous across the plot; therefore, a2Var(y) would understate

the variance of f(y). A better approximation is likely to be

Var(f(y))=aVar(y). This is the justification for the assumption

used in equation (4).

Intuitively, adjusting the degrees of freedom downward when

using partial plots makes sense, and thus the denominator of

variance estimator (5c) uses            rather than n, the number of

plots. Clearly,                , with equality occurring when all plots

are fully in the condition. Adjusting the degrees of freedom

downward for partial plots results in an unbiased estimate of

the mapped plot variance. Consider the variance estimator for

mapped plots with known population mean,

(7)

The numerator of equation (7) could be written as           and,

by the variance assumptions for equation (4), this has expected

value of                  . Therefore, equation (7) is an unbiased estimator.

Equation (5c) is also justified by this result because it has 1

degree of freedom subtracted from the denominator to account

for the estimated population mean parameter.

In general, the sample size for mapped plots should be adjusted

to account for only using a proportion of the plot, ai. This makes

sense intuitively and theoretically as shown for equation (5c). A

plot that is only 50 percent in the condition should count half as

much as a plot that is fully in the condition. This is the justification

for dividing by           rather than n in equation (5b).

Conclusions

Mapped plots are being installed by FIA as part of the annual

forest inventory system. Two estimators for means and variance

that have been proposed elsewhere were re-derived and compared.

It turned out that both estimators for the mean were identical, but

the variance estimators were quite different. A simulation showed

that the variance estimator from the literature (Van Deusen 2004)

performed significantly better than the alternative estimator. 

A mean of ratios estimator was also discussed. The mean of

ratios variance estimator performed about as well as the estimator

from the literature (Van Deusen 2004). The mean of ratios esti-

mator, however, could perform badly if small slivers of plots are

included in the analysis, and, therefore, is not a recommended

estimator for this particular use.

Figure 3.—Simulated comparison of two variance estimators
defined by equations (5b) and (6b). The relative variance is as
defined for figure 2.
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Modifying Taper-Derived Merchantable
Height Estimates to Account for Tree
Characteristics

James A. Westfall1

Abstract.—The U.S. Department of Agriculture

Forest Service Northeastern Forest Inventory and

Analysis program (NE-FIA) is developing regionwide

tree-taper equations. Unlike most previous work on

modeling tree form, this effort necessarily includes a

wide array of tree species. For some species, branching

patterns can produce undesirable tree form that reduces

the merchantable portion of the stem and merchantable

heights to a fixed top diameter (e.g., 4 inches) are

often unrealized. Thus, height estimates from a taper

model tend to overestimate the actual merchantable

length of the stem. This phenomenon is exacerbated

as tree size increases. The extent of this problem is

illustrated by comparing taper-derived merchantable

height estimates to observed merchantable height

measurements on trees from NE-FIA sample plots.

Models were developed using individual tree attributes

to adjust the taper-based estimates to account for

reductions in merchantable height due to tree form.

Introduction

The volume of the merchantable portion of a tree is one of the

primary characteristics of interest obtained from a forest inventory.

These volumes often are derived from height measurements at

specified top diameter limits (e.g., 4 inches). Sometimes to

improve inventory efficiency, these heights are estimated from

height prediction equations (Ek et al. 1984) or tree taper models

(Max and Burkhart 1976). These methods are satisfactory for

species with growth tendencies toward relatively straight boles

from ground to tip. Bias in merchantable height (and subsequent

volume) predictions, however, occur for many species because

tree form can result in merchantable heights that are lower than

the point where the specified diameter limit occurs.

For instance, taper equations are developed from paired height/

diameter data obtained at various points along the tree bole.

These data are obtained without regard to rules for determining

the portion of the tree that may actually be used at a processing

facility (e.g., minimum log length). Thus, assuming that the bole

contains usable wood from the base to the model-predicted

merchantable top height may be erroneous. For some species,

the merchantable portion of the stem can often end at a point

lower than where the top-diameter limit occurs. This occurrence

is especially true for most hardwood species, where deliquescent

form can produce relatively large decreases in diameter over a

short distance. In these situations, the use of a taper-based system

requires both model development and implementation strategies.

Data

The data used for this research was obtained from U.S.

Department of Agriculture (USDA) Forest Service Northeastern

Forest Inventory and Analysis (NE-FIA) sample plots. Although

NE-FIA collects a wealth of data at sample plots, the important

measurements for this research are individual tree attributes.

These variables include tree species, diameter at breast height

(d.b.h.), total height, and bole height for trees 5.0 inches d.b.h.

and larger. Bole height is defined as the first of (1) the point

beyond which no 4-foot-long section can be produced because

of excessive limbs, forks, or crooks, (2) a 4-inch top diameter,

or (3) the point where the central stem terminates by branching

before reaching 4-inch diameter (U.S. Department of Agriculture

2004). For this study, only data from sugar maple, red pine, and

eastern white pine trees 5.0 inches d.b.h. and larger were used

(table 1).

1 Research Forester, U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis, Northeastern Research Station, 11 Campus Blvd., Suite 200,
Newtown Square, PA 19073. Phone: 610–557–4043; e-mail: jameswestfall@fs.fed.us.
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Additional data were available from an NE-FIA tree taper

research project. In this regionwide study, measurements

include tree diameter at 1, 2, 3, 4.5, and 6 feet of height.

Additional diameter measurements are taken above 6 feet at

approximate 1-inch taper decrements thereafter until a final

measurement is obtained at tree tip (total height). These data

were also subsetted to include only the three species listed in

table 2.

Analysis

One primary purpose of the NE-FIA taper research project is to

eliminate the necessity for field crews to observe merchantable

height attributes on sample trees. This elimination will not only

improve data collection efficiency, but also result in better

consistency over time and greater analytical flexibility.

Merchantable height predictions from taper models, however,

require a diameter limit to be specified. This necessity presents

some difficulty for bole height prediction because the NE-FIA

Species/characteristic N Min. Mean (standard deviation) Max.

Sugar maple
d.b.h. (in) 11,590 5.1 9.4 (3.7) 25
Bole height (ft) 11,590 4 36 (14.9) 99
Total height (ft) 11,590 17 59 (15.0) 125

Eastern white pine
d.b.h. (in) 6,985 5.1 10.1 (4.3) 25
Bole height (ft) 6,985 4 37 (18.0) 99
Total height (ft) 6,985 12 52 (17.6) 125

Red pine
d.b.h. (in) 905 5.1 9.0 (3.0) 22.2
Bole height (ft) 905 7 36 (18.0) 82
Total height (ft) 905 14 49 (17.2) 92

Table 1.—Summary of tree data from NE-FIA sample plots for sugar maple, eastern white pine, and red pine.

Species/characteristic N Min. Mean (standard deviation) Max.

Sugar maple
d.b.h. (in) 66 3.1 10.9 (4.0) 29.9
Total height (ft) 66 25.2 58.7 (17.1) 90.2
No. of measurements 66 8 14 (4.0) 22

Eastern white pine
d.b.h. (in) 63 3.1 12.3 (7.3) 36.3
Total height (ft) 63 18.1 59.1 (20.8) 102.2
No. of measurements 63 8 15 (5.2) 35

Red pine
d.b.h. (in) 20 4.8 11.8 (5.5) 18.7
Total height (ft) 20 18.3 55.9 (16.1) 80.6
No. of measurements 20 9 16 (3.7) 23

Table 2.—Summary of tree data from NE-FIA taper project for sugar maple, eastern white pine, and red pine.
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data collection protocols incorporate limitations other than top

diameter (e.g., minimum log length). Thus, bole height observations

often are taken below the point where the 4-inch top limit occurs.

This phenomenon can be illustrated by comparing observed bole

height data to taper-derived heights at the 4-inch diameter limit.

For the purposes of this article, the model development strategy

is simplified by adopting the segmented polynomial taper

equation presented by Max and Burkhart (1976). The sugar

maple, red pine, and eastern white pine data from the NE-FIA

taper project were used to fit the following model for each

species:

(1)

where:

d = diameter outside bark (in).

d.b.h. = diameter at breast height (in).

h = height (ft) at diameter d.

H = total tree height (ft).

I1 = indicator (= 1 if α1 ≥ h/H; = 0 if α1 < h/H).

I2 = indicator (= 1 if α2 ≥ h/H; = 0 if α2 < h/H).

α1, α 2 = segment join points (estimated from data).

β1–4 = parameters to be estimated from data.

ε = random deviation.

This model was chosen because it has been found to have better

overall performance than many other taper models (Cao et al.

1980, Martin 1981). The model fit each species well, with R2

values of 0.92, 0.93, and 0.97 for sugar maple, eastern white

pine, and red pine, respectively.

These fitted models were used to obtain predicted height to 4-inch

top diameter for each tree in the NE-FIA inventory data. These

three species were chosen to represent different “levels” of tree

form. It was expected that the deliquescent tree form of sugar

maple would result in observed bole height values occurring

much lower than the 4-inch top limit. Conversely, the straight,

single-stem growth tendency of red pine was expected to have

bole height measures that were reasonably close to the point of

4-inches top. Eastern white pine was selected as a tree species

that would have a form intermediate to the other two species.

For each species, the differences between the observed bole heights

and heights predicted from the taper model were summarized

by a 2-inch diameter class (fig. 1). Clearly, the differences

between the observed and predicted heights become larger as

tree d.b.h. increases. As surmised, the differences were greatest

for sugar maple and smallest for red pine. When compared to

observed data, the use of the taper-derived bole heights in con-

junction with NE-FIA volume equations (Scott 1981) produce

an overall increase in total volume of 10.6, 3.5, and 0.1 percent

for sugar maple, eastern white pine, and red pine, respectively.

These increases indicate that the development of taper models

alone may not be sufficient for switching from observed field

data to model-predicted values. Additional work is required to

account for the effects of tree characteristics on predicted bole

heights.

Figure 1.—Mean differences between observed and taper-derived
bole heights by diameter class for sugar maple, eastern white
pine, and red pine.
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One approach was to model the differences between observed

and predicted heights and apply these differences to the predicted

values. Predicting the differences using individual tree attributes

would allow for adjustments on an individual tree basis. Data

were randomly split equally by species for modeling and validation

purposes. To describe the differences for sugar maple trees, the

following nonlinear model was fitted using least-squares

regression techniques:

(2)

where:

D = difference (ft).

HTCR = height to crown (ft).

β5-8 = parameters to be estimated from data.

Other variables as previously defined.

Model (2) did not perform well for prediction of differences in

eastern white pine. A linear model was found to work best for

the white pine data. In this formulation, significant predictor

variables were d.b.h., crown ratio (CR), and height to crown:

(3)

where: 

CR = Crown ratio (%).

β9-12 = parameters to be estimated from data.

Other variables as previously defined.

A linear model approach also worked well for red pine. In this

case, however, different predictor variables were statistically

significant. CR and HTCR were no longer important independent

variables. Total tree height was not a significant variable for

difference prediction for eastern white pine but was useful for

prediction for red pine trees:

(4)

where:

β13–15 = parameters to be estimated from data.

Other variables as previously defined.

For each model (2–4), examination of plots of residuals (observed

minus predicted) versus predicted values and residuals versus

model predictors indicated no systematic problem with model

specification or heteroscedasticity. 

As anticipated, the large variability in the data was reflected in

the fit statistics. R2 values were approximately 0.30 for all three

models. Model standard errors were 6.2, 4.9, and 3.9 for sugar

maple, eastern white pine, and red pine, respectively. The appli-

cation of the models to the validation data significantly affected

the differences between observed and taper-derived bole heights

(fig. 2). Improved agreement between predicted and observed

bole heights was noted for both sugar maple and eastern white

pine. For red pine, better agreement was obtained for the smaller

Figure 2.—Mean differences between observed and model-
adjusted taper-derived bole heights by diameter class for sugar
maple, eastern white pine, and red pine.



2004 Proceedings of the Sixth Annual Forest Inventory and Analysis Symposium 103

diameter classes, but agreement was generally poorer for the

larger diameter classes. An investigation into this behavior

revealed that differences between observed and taper-derived

bole heights for the larger few diameter classes were greater in

the fit data than in the validation data. In addition, relatively

few observations exist in the larger diameter classes. These

“distant” points can have a significant influence on the slope of

the regression line. When applied to the validation data, the

result was overprediction of the difference for larger diameter

classes that produced adjusted bole heights that were too small.

The differences between the volumes computed from observed

data and those from adjusted taper-derived heights were reduced

significantly for sugar maple and white pine. Due to the issue

mentioned above for red pine, the differences increased. The

volume differences were 0.3, – 0.4, and 1.0 percent for sugar

maple, eastern white pine, and red pine, respectively. For sugar

maple, the volume difference between observed data and taper-

derived bole heights was statistically significant (p < 0.0001)

when evaluated using a paired t-test, but the difference using

adjusted heights was not significantly different (p = 0.3758).

Results of the eastern white pine analysis show that the use of

adjusted heights reduced the difference by nearly 90 percent,

although the difference from observed data was still significant

from a statistical standpoint (p = 0.0009). As expected, the bole

characteristics of red pine resulted in nonsignificant volume

differences computed from observed and taper-derived bole

heights (p = 0.7899). The use of adjusted heights had the unde-

sirable effect of producing a volume estimate that was different

from the observed data (p = 0.0117). Table 3 summarizes

results for all three species.

Discussion/Conclusion 

For two of the three species studied, a modeling approach to

adjusting the taper-derived heights was effective in terms of

obtaining close agreement between volume estimates. The model

forms and predictor variables that provided the best predictive

ability, however, were not consistent across the three species

studied. Species-specific models that differ in form and content

are difficult to implement in inventories in which many species

are encountered. Limiting the number of models may be possi-

ble, however, by creating groups of species with similar form

characteristics. This approach requires further investigation.

Another issue raised by the analysis is whether an adjustment

equation is needed for all species. For red pine, only a 0.1-percent

difference between volumes from observed data and volumes

based on heights predicted from the taper model (without

adjustment) existed, although an offsetting trend occurred between

positive and negative values. One could argue that this discrepancy

is not large enough to warrant application of an adjustment

model. In our analysis, the use of the adjustment model did not

have the anticipated effect, and results were poorer. At this point,

how to determine the necessity for application of an adjustment

model to taper-derived merchantable heights is unclear.

Taper-based merchantable height estimates for certain species

should account for tree form characteristics if merchantability

is not defined solely by a top diameter limit. Taper-derived

merchantable height estimates can be modified to account for

individual tree characteristics. In this study, variables assumed to

be well-correlated with tree form characteristics (e.g., branching)

Taper-derived bole height Adjusted taper-derived bole height

Mean 
Standard

Mean 
Standard Species N difference error t p-value difference error t p-value

(ft3) (ft3)

Sugar maple 5,795 682 19.8 34.44 < 0.0001 11 12.3 0.89 0.3758

Eastern white pine 3,491 244 11.4 21.37 < 0.0001 – 29 8.6 – 3.32 0.0009

Red pine 452 – 4 16.6 – 0.27 0.7899 – 52 20.5 – 2.53 0.0117

Table 3.—Evaluation of differences in volume between observed data and taper-derived bole heights, and between observed data
and adjusted taper-derived bole heights for sugar maple, eastern white pine, and red pine.
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were used as predictors to model differences between observed

and taper-derived bole heights. Appropriate model forms and/or

significant predictor variables, however, appeared to be species

specific. In addition, the need to apply an adjustment model

may be questionable for some species. Other approaches to

modifying taper-derived merchantable heights include average

reductions by diameter class (or some other tree characteristic),

indirect manipulation through increases in estimates of cull, and

incorporation of modifiers directly within the taper equation.

More research is needed to determine a modification method

that is both accurate and easy to implement. 
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New Method for Determining the Relative
Stand Density of Forest Inventory Plots

Christopher W. Woodall and Patrick D. Miles1

Abstract.—Determining the relative density of Forest

Inventory and Analysis plots is complicated by the

various species and tree size combinations in the

Nation’s forested ecosystems. Stand density index (SDI),

although developed for use in even-aged monocultures,

has been used for stand density assessment in large-

scale forest inventories. To improve application of

SDI in uneven-aged, mixed species stands present in

large-scale inventories, a model was developed

whereby a stand’s maximum SDI was a function of

the stand’s mean specific gravity (SG) of individual

trees. A strong relationship was found between the

mean SG of all trees in a stand and the 99th percentiles

of the observed distribution of stand SDIs. A model is

proposed whereby the mean SG of individual trees in

a stand serves as a predictor of a stand’s maximum

stocking potential, regardless of the stand’s diameter

distribution and species composition.

Assessing the relative density of hundreds of thousands of forest

inventory plots across the Nation is complicated by the diameter

distributions, species compositions, and site conditions unique

to every forest stand. Most techniques for assessing relative

stand density were developed for application in individual stands

consisting of monocultures or regionally common species mixtures

(Reineke 1933, Krajicek et al. 1961, Gingrich 1967, Drew and

Flewelling 1979). Although a substantial body of literature

addresses the development of small-scale, stand-specific relative

density measures, scant research has been conducted to develop

effective relative density assessment techniques for use at strategic

scales inclusive of all tree species and size combinations. 

Stand density index (SDI) is a method for estimating relative

stand density. SDI was first proposed by Reineke (1933) as a

stand density assessment tool based on size-density relationships

observed in fully stocked monocultures. SDI is defined as the

equivalent trees per hectare at a quadratic mean diameter of 25

cm and is formulated as the following:

SDI = tph (d.b.h.q/25)1.6 (1)

where SDI is stand density index, tph is number of trees per

hectare, and d.b.h.q is quadratic mean diameter (cm) at breast

height (1.4 m) (Long 1985). The only way to appropriately

determined SDI in stands with Gaussian diameter distributions

is to use the summation method (Long and Daniel 1990, Shaw

2000, Ducey and Larson 2003) by which the SDIs for individual

diameter at breast height (d.b.h.) classes are added for the entire

stand. The SDI summation method is formulated as follows: 

SDI = Σ tphi (d.b.h.i/25)1.6 (2)

where d.b.h.i is the midpoint of the tphi diameter class (cm),

and ith is the number of trees per hectare in the ith diameter

class (Long 1995, Shaw 2000). 

The SDI of even-aged monocultures is typically compared to

an empirically observed, species-specific maximum SDI for

determining a stand’s relative density. Maximum SDI (SDImax)

is defined as the maximum possible density for a given mean

tree size in a self-thinning population (Long 1996). SDImax has

typically been determined strictly through empirical means,

finding the heaviest stocked stand on the landscape. Percentages

of species’ SDImax have been related to prominent stages of

stand development (Long 1985), making their determination

valuable for strategic-scale assessments of stocking. A relative

density of 25 percent of SDImax is associated with the onset of

competition, 35 percent of SDImax is associated with the lower

limit of full-site occupancy, and 60 percent SDImax is associated

with the lower limit of self-thinning (Long and Daniel 1990). 

1 Research Foresters, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108. Phone: 651–649–5141; e-mail:
cwoodall@fs.fed.us.
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SDI has rarely been applied in mixed species stands (Binkley

1984, Puettman et al. 1993, Torres-Rojo and Martinez 2000,

Williams 2003) because of a lack of empirical and theoretical

information. In most studies, investigators were able to empirically

determine SDI for specific forest types in local areas but were

unable to state any broader conclusions (Binkley 1984, Puettman

et al. 1993, Williams 2003). As an alternative to empirically

determining SDImax for mixed species stands, past research in

monocultures suggests that SDImax may be predicted using

species’ specific gravities (SGs; Dean and Baldwin 1996). Dean

and Baldwin (1996) suggest that species-specific variation in the

maximum mechanical leverage canopies exert on stems may

help explain species variation in SDImax. They found that

species’ SG was inversely related to SDImax. The SDImax versus

SG relationship has not been further explored or applied in

stand inventory/management activities and may serve as a novel

methodology for estimating SDImax. Therefore, the goal of this

study is to develop and validate a technique for estimating SDImax

for stands containing diverse tree species and size combinations

using the mean specific gravities (SGm) for individual trees.

Methods

Plot data from the national Resources Planning Act (RPA) data-

base were used as observations in this study (Smith et al. 2004).

The RPA database contains plot and tree data collected by the

Forest Inventory and Analysis (FIA) program of the U.S.

Department of Agriculture (USDA) Forest Service. Briefly, the

plot design for FIA inventory plots consists of four 7.2-m,

fixed-radius subplots spaced 36.6 m apart in a triangular

arrangement with one subplot in the center of the triangle. All

trees located on forested subplots with a d.b.h. of at least 12.7 cm

are inventoried. (For further information on the RPA database and

FIA sample design, refer to Smith et al. (2004) and Bechtold and

Patterson [in press].) The study data set consisted of data from

all fully forested plots (n = 119,235) from the RPA database that

had at least one tree of the selected eight species representing

diverse growth conditions and forest ecosystems across the

United States: loblolly pine (Pinus taeda), ponderosa pine

(Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), paper

birch (Betula payrifera), trembling aspen (Populus tremuloides),

white oak (Quercus alba), lodgepole pine (Pinus contorta), and

red maple (Acer rubrum) (n = 119,235). A validation data set

was created using all fully forested inventory plots (n = 29,307)

from the RPA database that did not contain any of the study

tree species. 

For all study plots, the tph and SDI (equation [2]) for 10-cm

d.b.h. classes were determined for study species and other

species in each plot. The SG for all study trees was based on

data available from the USDA Forest Service Forest Products

Lab (U.S. Department of Agriculture, Forest Service 1999). The

relationship between the 99th percentile SDI (SDI99) for classes

of SGm (0.015 SGm class width, 26 classes) for the study data

set was modeled as follows: 

E(SDI99) = bo + b1(SGm) (3)

where E(.) is statistical expectation, SGm is the mean SG for all

trees per plot, and b0 and b1 are parameters to be estimated. SDI99

was used instead of SDImax as the response variable because the

process of modeling SDImax relationships can be highly affected

by outliers. Therefore, for predicting SDImax based on mean stand

SGs, SDI99 serves as a surrogate for SDImax. The ability of the

regression model (equation [3]) to estimate SDImax was evaluated

using the validation data set by predicting SDI99 for SGm classes

(0.025 SGm class width, 13 classes) and computing relative

residuals [(observed – predicted)/observed)].

Results/Discussion

The ability of SGm to predict SDImax was evaluated for the SDI99

within classes of SGm. For predictions of SDI99, SGm explained

92 percent of the variation (    =2057.3,     = – 2098.6) (fig. 1,

table 1). The model’s ability to predict SDI99 was evaluated

using the validation data set. Analysis of the relative residuals

for the 13 classes indicates a slight bias of the estimated linear

relationship so that the SDI99 may be overpredicted (table 2, fig.

2). The mean of the relative residuals was 0.05 (table 2). The

absolute mean of relative residuals for the 13 validation data set

classes of SGm was 0.08 (table 2).
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Figure 1.—99th percentile SDIs by mean stand SG for over
119,000 RPA plots.

Figure 2.—Relative residuals for predictions of SDI99 for vali-
dation data set SGm classes.

Mean SG classes Number of sample plots Maximum observed 99th percentile 
stand SDI observed stand SDI

0.3126–0.3250 855 2,819 1,413
0.3251–0.3375 1,697 1,908 1,529
0.3376–0.3500 3,546 1,814 1,252
0.3501–0.3625 4,894 2,285 1,242
0.3626–0.3750 5,884 1,775 1,275
0.3751–0.3875 11,056 2,640 1,288
0.3876–0.4000 6,084 1,883 1,210
0.4001–0.4125 5,470 1,951 1,145
0.4126–0.4250 5,290 2,162 1,190
0.4251–0.4375 5,149 1,718 1,134
0.4376–0.4500 5,750 2,075 1,062
0.4501–0.4625 4,678 1,811 1,095
0.4626–0.4750 8,478 1,704 1,120
0.4751–0.4875 7,030 1,396 1,087
0.4876–0.5000 6,491 1,309 1,026
0.5001–0.5125 6,150 1,347 1,009
0.5126–0.5250 5,928 1,266 951
0.5251–0.5375 5,592 1,299 921
0.5376–0.5500 4,891 1,507 923
0.5501–0.5625 3,961 1,403 848
0.5626–0.5750 3,133 1,417 876
0.5751–0.5875 2,514 1,439 834
0.5876–0.6000 1,546 1,404 865

Table 1.—Maximum observed and 99th percentile stand SDs for 119,235 RPA plots by classes of mean stand SG.
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Because the majority of past SDI research focused solely on

pure species stands (Reineke 1933, Stage 1968, Long 1985,

Sterba and Monserud 1993, Woodall et al. 2003), self-thinning

relationships underlying SDI has been assumed to be affected

by mixed species compositions. Values of SDImax that guide

SDI application in stand-stocking assessments are always listed

by single species (Long 1985). Unfortunately, vast acreages of

forests of the United States are covered by mixed species stands.

A finding from Dean and Baldwin (1996) forms the basis of our

attempt to develop a method for estimating more stand-specific

SDImax. Dean and Baldwin (1996) found that a species’ SG was

inversely related to its SDImax. The same result was found in

our study. We attempted to take this premise a step farther and

determine the mean SG for all trees in a stand, regardless of

species. Results indicated a relationship between SDI99 and

SGm for classes of SGm. Validation of our model to predict a

stand’s SDI99 based on its SGm indicated a slight bias toward

overpredicting SDI99 (0.08). The nearly 29,000 plots in the

validation data set, however, represent unique combinations of

uncommon tree species across the United States (e.g., Osage-

orange [Maclura pomifera] and Ohio buckeye [Aesculus

glabra]) in which trying to determine a SDImax would be nearly

impossible using other methodologies.

Methods for assessing relative stand density in strategic-scale

assessments may be augmented by the results of this study. By

using the summation method to determine current stand SDI and

SGm to predict SDI99 as a surrogate for SDImax, we may quantify

relative stand density across the Nation regardless of a stand’s

species and tree size combinations. SDI methods presented in

this study warrant future refinement and application in strategic-

scale density assessment situations such as found in national

fire hazard reduction efforts.

Conclusions

The SDImax that may be attained by any individual stand is

affected by the stand’s species composition and size distribution.

Because SDImax may be unique for individual stands, a stand-

specific model is suggested to predict SDImax. The SG of individual

species may be used to define the stem mechanics driving self-

thinning dynamics resulting in a stand-specific SDImax. This

study found a relationship between the SDI99 by classes of mean

stand SG and SGm of all trees in a stand. If SGm may be considered

a predictor of SDI99, as a surrogate for SDImax, relative densities

of individual stands may be estimated across large scales,

regardless of diameter distributions and species compositions.

Weighted mean Number of Observed 99th Predicted 99th Relative
SG classes sample plots percentile SDI percentile SDI residualsa

0.3001–0.3250 1,637 1,310 1,401 0.07
0.3251–0.3500 1,214 1,191 1,349 0.13
0.3501–0.3750 1,987 1,284 1,297 0.01
0.3751–0.4000 1,714 1,144 1,244 0.09
0.4001–0.4250 2,210 1,339 1,192 – 0.11
0.4251–0.4500 1,367 1,019 1,139 0.12
0.4501–0.4750 2,780 1,156 1,087 – 0.06
0.4751–0.5000 2,606 929 1,034 0.11
0.5001–0.5250 2,994 872 982 0.13
0.5251–0.5500 5,445 864 929 0.08
0.5501–0.5750 3,245 817 877 0.07
0.5751–0.6000 1,602 794 824 0.04
0.6001–0.6250 506 807 772 – 0.04

Table 2.—Observed and predicted 99th percentile SDIs for 29,307 RPA validation plots for 13 classes of mean stand SG.

a Relative residuals = (observed – predicted)/observed.
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Post-Modeling Histogram Matching of Maps
Produced Using Regression Trees

Andrew J. Lister1 and Tonya W. Lister2

Abstract.—Spatial predictive models often use statistical

techniques that in some way rely on averaging of values.

Estimates from linear modeling are known to be suscep-

tible to truncation of variance when the independent

(predictor) variables are measured with error. A

straightforward post-processing technique (histogram

matching) for attempting to mitigate this effect is pre-

sented, and a comparison with untransformed model

estimates is made. Histogram matching enhanced the

contrast visible in the final map and produced estimates

that mimicked the range of estimates in the original

data set but performed worse overall with respect to

absolute error of prediction. Examples of cases where

histogram matching might be an effective post-pro-

cessing method are given.

Introduction

Advances in computer software and hardware have increased

the prevalence of spatial predictive modeling of ecological data.

Modeling methods range from simple spatial interpolation to

sophisticated linear and nonlinear multivariate techniques. Most

of the techniques that are commonly applied rely on averaging

procedures. For example, simple linear interpolation generally

involves defining a search radius around areas to be estimated

and applying the average value of the attribute of known data

within that radius to the area. Similarly, linear modeling

approaches such as regression rely on averaging of deviations

from a “best fit” line to arrive at parameter estimates. In nearly

all cases, either the estimate itself is an average or part of the

parameter estimation process is based on averaging. This trait

of linear modeling can lead to a compression of the variance of

the set of estimates if the independent (predictor) variables are

measured with error (Curran and Hay 1986).

In the linear regression context, the predictor variables are

assumed to be measured without error (Montgomery and Peck

1982). Curran and Hay (1986), however, provide a concise

review of reasons why this assumption is not true in remote

sensing studies. The effects of errors in the predictor variables

in multiple regression have been well documented (Curran and

Hay 1986, Whitemore and Keller 1988, Elston et al. 1997).

Generally, the parameter estimates are underestimated, leading

to an underestimation of large values and an overestimation of

small values (Curran and Hay 1986, Cohen et al. 2003), resulting

in a compression of the variance of the set of estimates relative

to that of the training data.

In this article, satellite and other geospatial data are used to

predict biomass (megagrams aboveground dry biomass [not

including foliage] per hectare) in Maine, using U.S. Department

of Agriculture (USDA) Forest Service Forest Inventory and

Analysis (FIA) plot information as training data. FIA has a

network of inventory plots across the country and collects and

reports information on the status of and trends in the Nation’s

forest resources (Gillespie 1999). Due to the nature of the data

sets (very small plot area to pixel area ratios, smoothed predictor

data, lack of strong functional relationships between the dependent

and predictor data), the predictions obtained by a regression tree

approach (Quinlan 1993) had truncated variance. This article

describes a post-processing technique—histogram matching—

that attempts to deal with this systematic overprediction in the

lower tail and underprediction in the upper tail of the distribution

of training data. 

1 Research Forester, U.S. Department of Agriculture (USDA), Forest Service, Northeastern Research Station, Forest Inventory and Analysis, Newtown Square, PA
19073. Phone: 610–557–4038; e-mail: alister@fs.fed.us.
2 Research Forester, USDA Forest Service, Northeastern Research Station, Forest Inventory and Analysis, Newtown Square, PA 19073. Phone: 610–557–4034; e-
mail: tlister01@fs.fed.us.
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Methods

Data from 2,210 FIA plots collected in Maine between 1999

and 2003 were used in the study.3 The distribution of plots in

the study area is based on a hexagonal tessellation with one FIA

plot randomly located in each 2,428.2-ha hexagon. Each FIA plot

consists of four circular 14.6-m (48-ft)-diameter subplots, with

one subplot located in the center and three equidistant subplots

distributed symmetrically around and located 31.6 m (120 ft)

from the center subplot. The subplots occupy 0.07 ha (0.17 ac),

and the subplot array can be subtended by a circle of 0.4 ha

(1.0 ac) in area. The value of the total aboveground dry biomass

was calculated from live tree data collected on each plot using

equations found in Wharton et al. (1997). 

The predictor data used were contained in a multilayered ERDAS

IMAGINE image and consisted of 271 250-m resolution layers,

including multidate and monthly composites and derived indexes

of imagery from the Moderate Resolution Imaging Spectro-

radiometer (MODIS)-satellite-borne sensor (Justice and

Townsend 2002), several rasterized summaries of the State Soil

Geographic soils database compiled by the USDA Natural

Resources Conservation Service (1994), summaries of the land

cover classes found in the National Land Cover Data (NLCD)

database (Vogelmann et al. 2001), mean monthly and annual

temperature and precipitation from the PRISM climate database

(Daly et al. 2004), rasterized Bailey’s Ecoregions (Bailey 1996)

and U.S. Geological Survey NLCD 2001 mapping zone (which

is similar to an ecoregion map) (Homer and Gallant 2001), a

rasterized grid representing distance to streams (U.S. Geological

Survey 1999), and various derivatives of the National Elevation

Dataset (Gesch et al. 2002).4

Leica Geosystems’ ERDAS IMAGINE image processing software

was used to extract values for each of the predictor layers at the

locations where the 2,210 FIA plots used in the analysis were

located. Cubist regression tree software was used to derive

regression tree models of forest biomass. These models then

were applied to the stack of predictor layers in ERDAS IMAG-

INE to create a set of spatially referenced model predictions. To

create a validation data set, 220 plots were randomly withheld

from the Cubist modeling. 

Histogram matching was applied to the output map generated by

Cubist and ERDAS IMAGINE so that its frequency distribution

of pixel values matched that of the training data. In the histogram-

matching technique, a lookup table that specifies the relationship

between the cumulative distribution function of a source histogram

and a target histogram is generated. Using that lookup table, the

target data are transformed so that their distribution matches

that of the source data. (For a description of histogram matching.

see fig. 1.) 

Histogram matching is typically used to standardize raw satellite

images that were acquired at different times and under different

conditions to facilitate mosaicking of the images or classifications

3 U.S. Department of Agriculture (USDA), Forest Service. 2000. Field data collection procedures for phase 2 plots. In: Forest inventory and analysis national core
field guide, version 1.4. Internal report on file at: USDA Forest Service, Washington Office, FIA, 1601 North Kent Street, Suite 400, Arlington, VA 2220. Vol. 1.
4 Complete details of the steps used to prepare the data and data derivatives are on file at the USDA Forest Service, Northeastern Research Station, 11 Campus
Blvd, Ste. 200, Newtown Square, PA 19073.

Figure 1.—Example of histogram matching applied to the bio-
mass estimates produced from Cubist modeling in Maine. To
generate a lookup table, the cumulative frequency histograms of
the actual data (source) and the predictions (target) were gen-
erated. A lookup table was generated as follows: for a given
biomass value in the actual data (e.g., 125 Mg/ha below), the
cumulative frequency was determined (a) and related to the
corresponding cumulative frequency (b) and value (e.g., 150
Mg/ha below) (c) of the predicted data. The lookup table built
in this manner was used to reclassify the map of predictions so
that its frequency distribution matched that of the original data.
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conducted on the images (e.g., Homer et al. 1997). Cohen et al.

(2001) used histogram matching as a post-processing approach to

facilitate the post-classification juxtaposition of images acquired

under different conditions. In the current study, however, we

resorted to a post-processing approach for pragmatic reasons. FIA

has currently chosen to operationally use a modeling protocol

that relies on the Cubist regression tree approaches, which can

produce outputs with truncated variance (Curran and Hay 1986). 

Graphs of biomass on the 221 test plots versus the predicted

values were produced, and the relationship between the set of

actual and both sets of predicted values (uncorrected and his-

togram-matched) was described using a simple, first-order linear

regression equation and associated coefficient of determination

(R2). In addition, mean absolute error (MAE) was calculated.

To assess the efficacy of histogram matching with respect to

removing the overestimation and underestimation that occurred

in the tails of the distribution of original data, the slope of the

regression, the R2 and the MAE were compared. 

In addition to global comparisons, a multiscale analysis of the

mean absolute difference between the average biomass of the

plots found in sets of grid cells superimposed over the area and

the pixel-based estimates in those cells was calculated for each

of a number of spatial scales (fig. 2). The goal of this analysis

was not only to characterize the spatial agreement between the

pixel-based estimates and the actual values, but also to reveal

the scale at which biomass varied across the landscape.

Results and Discussion

Figure 3 shows a map of the uncorrected and histogram-matched

biomass estimates. The estimates depicted in figure 3a (the

uncorrected data) show less variability than those shown in

figure 3b (the histogram-matched data). The histograms of

estimates support this (fig. 4)—the range of values found in the

uncorrected estimates is much narrower than that of the histogram-

matched estimates and the actual plot data. In many situations,

duplication of the variability found in the actual data is a desirable

trait of a map of modeled estimates because it makes a map of

the estimates more useful.

Table 1 gives a comparison of the simple linear regression

parameters, the MAE and the R2. Figure 5 depicts scatterplots

of the actual versus uncorrected prediction and actual versus

histogram-matched prediction. The parameters (slope and y

intercept) and diagnostic information (MAE) from the simple

linear regression analyses indicate that the histogram-matching

procedure performed better with respect to producing estimates

Figure 2.—Square grid cells of varying sizes (15 x 15, 19 x 19,
22 x 22, 25 x 25, 35 x 35, 50 x 50, 71 x 71, 87 x 87, and 100 x
100 km) were superimposed on the study area. In each grid
cell, the mean value for biomass on the plots and that for the
pixel-based estimates was determined, and differences were
calculated and compared across different window sizes.

Figure 3.—(a) Biomass map produce by Cubist modeling with-
out post-processing. (b) Map produced by histogram matching
of the map in (a) so the frequency distribution of pixel values
matched that of the training data set.

(a) (b)
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that followed a 1:1 observed versus predicted line. The uncorrected

estimates, however, performed better overall (the MAE of the

histogram-matching data was 20 percent higher than that of the

uncorrected data). An analysis of the MAE per decile of the actual

data (table 2) indicates that the histogram-matching procedure

only performed better in the lowest and highest deciles because

the procedure stretched out the distribution of predictions and

thus lowered the variance in the tails of the distribution. This

stretching led to the poorer performance of histogram matching

in deciles near the median, however, because a wide range of

uncorrected values was transformed into output values close to

the median (note the steep slope of the target histogram near the

median [fig. 1]). If maintenance of the full range of variability

of actual data is wanted, histogram matching appears to be a

valid option. The tradeoff, however, is overall lower accuracy

for the resulting set of estimates.

Figure 6 shows results of the multiscale analysis of agreement

between plot-based and pixel-based estimates. The figure indi-

cates that a similar pattern of decreasing MAE as the size of the

analytical windows increased from 23,400 to 1,000,000 ha.

Although the uncorrected data set agrees much better with the

FIA plots at each scale, the patterns of decrease are the same,

suggesting that the relative interpretability of the spatial distri-

bution of biomass on both maps at different resolutions is similar.

The variance of the window-based means (calculated across all

windows at each resolution) (fig. 6) shows a decrease in plot

variance as the analytical window increases in size. Because the

MAE follows a very similar pattern, the decline in MAE with

Figure 4.—Frequency histograms of the training (actual) data
set, the original prediction, and the histogram-matched (post-
processed) prediction. The variance of the original predictions
is truncated, whereas that of the histogram-matched data
matches that of the actual data.

Figure 5.—Scatterplots of the original (red circles) and histogram-
matched (green triangles) values versus the validation data
withheld from the Cubist modeling (n = 221). Simple linear
regression lines describing the scatterplots indicate that the set
of histogram-matched predictions more closely follow a 1:1 line
than do the uncorrected estimates.

Uncorrected Histogram-matched

MAE 39.70 47.70
slope 0.17 0.42
intercept 86.50 65.20
R2 0.16 0.15

Table 1.—Overall comparison of MAE of the uncorrected (orig-
inal) and the histogram-matched (post-processed) predictions.

Percentile MAE uncorrected MAE histogram-matched

10 75.2 56.2
20 62.3 61.8
30 38.9 39.3
40 33.3 42.0
50 22.8 43.4
60 17.6 42.5
70 17.3 41.2
80 22.4 40.7
90 33.7 49.9
100 71.8 59.5

Table 2.—Per decile comparison of the simple linear regression
parameters and diagnostics of the uncorrected (original) and
the histogram-matched (post-processed) predictions.
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increasing window size is probably driven by the convergence of

the window-based means on the global mean as the analytical

window size approaches the size of the entire study area. In

other words, as the window size increases, the number of plots

per window increases, the variance of the biomass decreases,

and the mean biomass in the windows approaches the global

mean. Because the maps of predictions reflect the variability

of biomass across the landscape, they follow this same pattern. 

A notable feature of figure 6 is the rate of decrease in MAE

(and plot-based variance) as window size increases. At a certain

spatial scale (approximately 500,000 ha), increasing window size

leads to only a small corresponding dip in MAE or variance,

suggesting that this is similar to the scale of spatial autocorre-

lation of biomass in this area (Isaaks and Srivastava 1989). This

information could be useful when designing sampling protocols

or studying regional scale trends in biomass-related processes.

Ideally, FIA would either adapt its modeling approach or use

input data that are less prone to measurement error. For example,

the resolution mismatch between the plot data and the predictor

data could be addressed. Statistical methods other than regression

trees, which rely in part on linear modeling, also could be used.

Future research could thus involve using more robust techniques

and predictor data with more of a functional relationship with

the plot data. Practically speaking, however, FIA currently cannot

produce regional- and national-scale maps without implementing

the Cubist-ERDAS IMAGINE approach and without using

coarse-scale data. The Cubist- ERDAS IMAGINE approach

offers many benefits, including computational efficiency, ease

of use, and batch processing options. Similarly, the coarse-scale

data are inexpensive, easily acquired, and manageable in terms

of storage space and processing requirements. On the other

hand, FIA’s methods do not leave much room for altering the

modeling protocol, hence the appeal of a straightforward post-

processing attempt to correct systematic errors.

This article illustrates the use of histogram matching as a post-

processing method. The technique did not improve the overall

accuracy of the map but could contribute to other potential map

uses. It allowed for the transformation of biomass predictions

so that their frequency distribution matched that of a target

distribution (herein, that of the FIA data). It created a map that

showed more contrast, revealing the visual spatial pattern in the

data set more effectively than the uncorrected estimates. It per-

formed worse overall in terms of MAE but performed better at

making predictions in the tails of the distribution of training data.

This predicting ability can be a desirable trait for a modeling

data set. For example, if rare events are of interest, the depiction

of predictions that fall into the rare category, such as areas with

biomass greater than 300 Mg/ha, might aid the land manager

seeking to identify areas with old growth forest or unique eco-

logical characteristics. It also helps the map user understand the

overall spatial pattern of biomass across the landscape. The dis-

advantage of the histogram-matching approach is the potential

loss of reliability of the map as a whole. In the case of biomass

maps, the specific interests of the user should thus be taken

into account when selecting a modeling technique and any

post-processing methods.

Figure 6.—MAE (absolute value of average biomass/ha of FIA
plots—average biomass/ha of pixels) computed for the uncorrected
and the histogram-matched estimates at several scales. The
variance of the window-based means of the plots is shown for
each window size is also shown (yellow triangles, secondary y
axis).
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Considerations in Forest Growth Estimation
Between Two Measurements of Mapped
Forest Inventory Plots

Michael T. Thompson1

Abstract.—Several aspects of the enhanced Forest

Inventory and Analysis (FIA) program’s national plot

design complicate change estimation. The design

incorporates up to three separate plot sizes (microplot,

subplot, and macroplot) to sample trees of different

sizes. Because multiple plot sizes are involved, change

estimators designed for polyareal plot sampling, such

as those used for horizontal point sampling, is still

required. The differences between two such estimators

FIA has favored in the past are discussed. The condi-

tion-class mapping feature of the new design further

complicates change estimation. These complications

are discussed, and alternatives to simplify the design

are proposed.

Introduction

The U.S. Department of Agriculture Forest Service Forest

Inventory and Analysis (FIA) program uses a mapped, fixed-plot

design as part of its national core sampling protocols (Hahn et

al. 1995). Each ground plot contains a cluster of four points

spaced 120 feet apart (fig. 1). Each point is surrounded by a

24-foot, fixed-radius subplot where trees 5.0 inches diameter at

breast height (d.b.h.) and larger are measured. All four subplots

total approximately 1/6th of an acre. Each subplot contains a

6.8-foot, fixed-radius microplot where saplings (1.0–4.9 inches

d.b.h.) and seedlings are measured. All four microplots total

approximately 1/75th of an acre. Each subplot is surrounded by

a 58.9-foot, fixed-radius macroplot, which can be useful for

sampling rare occurrences such as large trees (e.g., greater than

40.0 inches d.b.h.). All four macroplots total approximately 1 acre. 

To enable division of the forest into various domains of interest

for analytical purposes, the tree data recorded on these plots

must be properly associated with the area classifications. To

accomplish this, plots are mapped by condition class. Field crews

assign an arbitrary number (usually 1) to the first condition

class encountered on a plot. This number is then defined by a

series of predetermined discrete variables attached to it (i.e.,

land use, forest type, stand size, regeneration status, tree density,

stand origin, ownership group, and disturbance history).

Additional conditions are identified if a distinct change occurs

in any of the condition-class variables on the plot. 

Sometimes a plot straddles two or more distinct condition

classes. Boundaries between condition classes can bisect the

subplots, or they can be located between the subplots. Microplots

and macroplots (if used) are mapped in a similar fashion. Thus,

1 Resource Analyst, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT 84401. Phone: 801–625–5374; e-mail:
mtthompson@fs.fed.us.

Figure 1.—Basic plot design.
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for each ground plot, the microplot, subplot, and macroplot

area in each condition class is known, as are the location and

condition class of every tree tallied. 

One objective of the FIA program is to assess forest growth

(gross growth, net growth, and net change) and forest change

(land clearings, reversions and encroachment, forest condition

changes). The mapped-plot design introduced new challenges in

change assessment. This article examines the situations unique

to the mapped-plot design and discusses considerations that

may affect estimates of forest growth and forest change.

Forest Growth

FIA generally recognizes at least four components of growth;

these are usually expressed in terms of growing-stock or all-live

volume, where t is the initial inventory of a measurement cycle,

and t + 1 is the terminal inventory, and are listed as follows:

S = survivor growth—the change in volume of live trees at

time t that survive until time t + 1.

I = ingrowth—the volume of trees at the time that they

grow across the minimum diameter threshold between

time t and time t + 1. The estimate is derived at the size

of trees at the threshold (1.0 inch d.b.h. for all-live

volume and 5.0 inches for growing-stock volume).

The diameter thresholds are usually measured at breast

height, but for shrub-like trees designated as “wood-

land species” in the Western United States, diameter at

root collar (d.r.c.) is the measure employed. Growth

on ingrowth is the change in volume of ingrowth trees

between the time they reach the threshold diameter

and time t + 1. 

M = mortality—the volume of trees that die due to natural

causes between time t and time t + 1.

C = cut—the volume of trees that were removed due to

harvesting activity between time t and time t + 1.

These components are used to explain the difference in inventory

volumes (Vt and V t + 1) between time t and time t + 1. One

desirable feature in broad-scale inventories is change estimators

that are additive (i.e., the previous inventory plus the net change

sums to the new inventory). To be additive, the estimators for

each component of growth on the right side of the equation

(Meyer 1953),

V t + 1 -Vt = S + I – M – C, 

must sum to the difference of the estimators of the left side values.

This additive feature is referred to as compatibility. Total com-

patibility in broad-scale inventories is never ensured, however,

partly because of intersurvey population differences caused by

additions to or deletions from the forest land base, protocol

changes (e.g., species added or deleted), and previous misclas-

sifications by field crews. 

FIA usually reports estimates of change for growing-stock volume

(live trees 5.0 inches d.b.h. and larger at time t that meet the

definitions of growing stock). For the growing-stock case, only the

subplot is used in the estimation process at time t and time t + 1,

so most estimators reduce to the same result. Some regions,

however, use the optional macroplot. Situations also exist in

which the attribute of interest is all-live volume (where the

diameter threshold is 1.0 inch) and requires data from the

microplot. If both the microplot and subplot are involved, the

plot design is biareal; if the macroplots are also involved, the

plot design is triareal. Any change estimation involving more than

one plot size is polyareal sampling, and the same techniques

required for permanent horizontal point sample apply. 

FIA units have historically used one of two methods for computing

change from horizontal point samples—the methods proposed

by Beers and Miller (1964) and Van Deusen et al. (1986). These

and several other estimators were considered for use in FIA’s

National Information Management System. The Beers-Miller

estimator was ultimately selected as the national default for FIA

because of its intuitive simplicity (Bechtold and Patterson, in press).

The Beers-Miller estimator weights all survivor growth (S) on

the plot size at time t, which is analogous to “fixing the plot
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size” at the time of the initial inventory. This estimator excludes

“nongrowth trees” from the definition of survivor growth.

Nongrowth trees are defined as subplot trees outside the

microplot and at least 5.0 inches in diameter at time t + 1 and

at least 1.0 inch at time t. The Van Deusen estimator weights S

based on the plot size where growth occurs (i.e., at time t and

time t + 1) and includes nongrowth trees. This procedure was

preferred by some FIA units because of the compatibility

attained by incorporating the nongrowth trees excluded by the

Beers-Miller procedure.

Roesch (1988) outlines a procedure that “fixes the plot size” at

the end of the inventory period. The procedure includes nongrowth

trees, and their growth is estimated. For FIA inventory purposes,

the procedure would predict the attributes for computing a non-

growth’s tree volume at time t, such as d.b.h. and bole length.

The procedure is considered unbiased if the estimator of the

time t values of the trees in the nongrowth sample is unbiased. 

Although all three techniques are unbiased, the Beers-Miller

approach has been criticized because of its lack of compatibility.

The previous inventory plus the net change do not sum to the

current inventory because all the weighting is based on initial

tree size to compensate for the exclusion of the nongrowth

component. If compatibility was a major concern for at least some

FIA regions when traditional horizontal point samples were used,

it continues to be an issue for FIA’s current biareal and triareal

plot designs. If one is interested in using the information contained

in the sample of nongrowth to attain compatibility, one should

consider an estimator other than the Beers-Miller approach.

Figure 2 illustrates the relative selection circles for trees that

were less than 5.0 inches d.b.h. at time t and grew to a d.b.h.

of 5.1 inches at time t + 1 for a horizontal point sample and the

FIA’s biareal design (microplot and subplot). The shaded inner

circle represents the initial selection probability of a microplot

(1/300th of an acre) for both plot types. The outer circle represents

the terminal selection probability. For a horizontal point sample

with a basal area factor of 37.5, a 5.1-inch d.b.h. tree would

represent approximately 264 trees per acre, whereas the same

size tree would represent 24 trees per acre on the subplot. The

abrupt drop in the per acre value for a S tree growing from the

microplot on to the subplot would result in a significant nega-

tive survivor growth value for an individual tree if the Van

Deusen approach was used.

The magnitude of the difference between growth estimators

will depend on the number of trees in the nongrowth sample

representing additional information. If the population of trees is

varied, and nongrowth trees are only a small part of the popula-

tion of interest, all three growth procedures should yield about

the same estimate of survivor growth. Suppose instead that the

population of trees is even-aged, and the basal areas of the trees

are heavily clustered about the threshold between the microplot

and the subplot. In this latter case, the nongrowth sample

becomes significant. This situation is fairly common in regions

where intensive forest management produces young, rapidly

growing, planted pine stands.

The mapped-plot design poses another challenge for forest

growth estimates because the shape and area of condition class-

es change over time. This design complicates the partitioning

of growth, removals, and mortality by condition-class parame-

ters at either time t or time t + 1. Summarizing timber removal

volume by condition -class parameters such as forest type,

stand origin, and ownership at the time of the initial inventory

is usually desirable in broad-scale reporting.

Consider the following example. Figure 3 illustrates a situation

where at time t, a plot was separated into two forest conditions,

a hardwood and a softwood stand. Between time t and time t + 1,

Figure 2.—Selection circles for nongrowth trees for a horizontal
point sample and a microplot and subplot for the mapped plot
design.
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Figure 3.—Example of condition classes at time t, time t + 1, and associated transition matrix.
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the stand was harvested resulting in one condition at the second

visit. The table in figure 3 indicates the subplot, tree number,

condition number, and tree status assignment at the two points

in time. The shaded area in the time t and time t + 1 transition

illustration indicates the position of the two previous conditions

in relation to the current condition. Visually, a condition class

transition matrix is produced by overlaying a map of each subplot

at time t with a similar map of the same subplot at time t + 1.

A population estimate of removal volume by previous forest

type requires a condition indicator assigned at time t to all trees

assigned a tree status of cut at time t + 1.

The previous condition numbers of all remeasured trees are

automatically available from the data collected at time t; however,

in some cases the assignment of previous condition to new trees

(missed, ingrowth, and nongrowth trees) requires additional

effort. The assignment of previous conditions to new trees can

be automated for subplots that had no boundaries at time t, but

for subplots with previous boundaries, the previous condition

numbers of new trees may need to be assigned in the field. This

aspect of mapped plots has the potential to increase measurement

error associated with change estimation. The extra fieldwork

could be avoided by using a computer algorithm such as the

one developed by Bechtold et al. (2003), which uses geometry

to superimpose a previous condition map over the coordinates

of new trees, but at least some of the automated assignments

(i.e., trees close to boundaries) still need to be manually

checked when the data are processed.

In addition to the extra fieldwork and/or processing requirements,

another major consideration associated with the mapped plots

is how the database will be structured for temporal comparisons.

Linking plot-level, condition-level, or tree-level data between

two points in time can be cumbersome, if not impossible, if

certain coding schemes change. Adopting a procedure that may

not be as accurate but eases the burden on the information

management effort may be simpler. 

The following two alternatives for assigning a previous condition

to remeasured trees would eliminate the need for a complicated

simulation procedure and be simple to apply in the field or office:

1. Plot-level approach. All remeasured trees on the plot at

time t + 1 are assigned the condition value of plot center at

time t. The condition assignment to a remeasured tree

remains the same at time t + 1. A slight modification to this

approach would be to assign a condition value associated

with the predominant condition at time t—i.e., the previous

single condition with the highest area percent of the plot

area. This would alleviate the occasional situation where a

road, right-of-way, or other small feature passes through

plot center.

2. Subplot-level approach. All remeasured trees on the plot at

time t + 1 area are assigned the condition value at subplot

center at time t. The condition assignment to a remeasured

tree remains the same at time t + 1. A slight modification

to this approach would be to assign a condition value asso-

ciated with the predominant condition at time t—i.e., the

previous single condition with the highest area percent of

the subplot area. This would alleviate the occasional situation

where a road, right-of-way, or other small feature passes

through subplot center.

Forest Area Change

Forest area change may be defined as the difference in the

aggregate acreage of forest or stand area based on the remea-

surement of the same area at two points of time. FIA typically

uses a two-phase sampling approach for estimates of forest area

where a large sample of photo points or pixels are interpreted

to assign strata for a smaller sample of ground plots (Cochran,

1963. Quantifying changes in forest populations over time is

usually accomplished by changes measured on field plots.

Having a measure of new forest land coming into the land base

(such as reversions and encroachment) and forest land leaving

the land base (such as forest land being converted to urban or

agricultural land use) are often desirable, as is tracking certain

stand conditions over time for ecological monitoring and trend

analysis. For example, FIA has often produced estimates of

acres harvested, regenerated, or disturbed for various stand

classifications such as forest type, stand origin, and ownership.

Estimates associated with change are usually stratified by the

classification assigned at time t.
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The procedures to accomplish forest area change estimates are

similar to those described for assigning remeasured trees to

condition class, except the attribute of interest is area instead of

volume. Figure 4 illustrates a common occurrence in which the

edge of a forest-nonforest boundary has changed between two

points in time on a subplot, a typical situation along the edges

of agricultural fields or alongside roads where small amounts

of forest land have been cleared. The crosshatched area in the

time t and t + 1 transition indicates the actual area that has been

cleared. If this small amount of land area can be quantified, and

an area percent can be developed, this proportion could be

applied to a total land area figure to determine the amount of

acreage that was cleared.

If the plot map from time t + 1 is superimposed over the map

from time t to estimate change, several considerations become

evident. First, a distinction between real change, field crew

error, and measurement error must be made. Subtle changes in

boundary delineation due to measurement error could result in

absurdly small change polygons that are meaningless for analysis

purposes. In the figure 4 example, suppose the change was due

to nothing other than field crew error at time t or time t + 1?

Figure 4.—Example of forest land being cleared on a subplot,
with condition classes at time t, time t + 1, and associated
transition matrix.

Should error be treated as real change, or should it be identified

and corrected? Second, because an infinite number of shapes

are possible when a subplot mapped at time t is overlaid with its

counterpart at time t + 1, database management could become

unwieldy if condition-level observations are needed for every

polygon created by change. Third, scale is always an important

consideration in broad-scale inventories. Does FIA really need

to identify small areas at a scale smaller than a subplot? Is it worth

the time and effort to develop the field procedures, algorithms,

simulation techniques, and databases to accommodate very

small changes that occur on plots or subplots? 

The following are two alternatives to the fully mapped

approach:

1. Plot-level approach. All forest area change estimates are

based on the assignment of the condition value at plot center

at time t and time t + 1. The approach assumes only one

condition exists at the plot level at both points in time. A

slight modification to this approach would be to assign a

condition value associated with the predominant condition

at time t and time t + 1—the single condition with the

highest area percent of the plot area. This would alleviate

the occasional situation where a road, right-of-way, or other

small feature passes through plot center.

2. Subplot-level approach. All forest area change estimates are

based on the assignment of the condition value at subplot

center at time t and time t + 1. The approach assumes only

one condition exists at the subplot level at both points in

time—up to four per plot location. A slight modification to

this approach would be to assign a condition value associated

with the predominant condition at time t and time t + 1—

the single condition with the highest area percent of the

subplot area. This would alleviate the occasional situation

where a road, right-of-way, or other small feature passes

through subplot center.

Discussion

Several possible estimators are available for growth of survivor

trees when the fully mapped plot design is remeasured.

Whatever procedure is selected, incorporating computation of
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two or more of the estimators in the analysis of remeasured

mapped plot design data is suggested. Further analysis may be

needed when evaluating trends in components of change. Many

regions will be comparing estimates of growth, removals, and

mortality from remeasured mapped plot data to estimates from

earlier inventories in which horizontal point samples were used.

The alternative procedures suggested for quantifying forest

change and assigning a previous condition classification to

trees would simplify the data compilation process, but they

have shortcomings. The plot-level approach can obviously result

in bias in classification of change. For instance, a plot that is

subdivided into a pine and hardwood condition at time t could

result in significant numbers of trees being assigned to an

incorrect condition classification (such as softwoods getting

assigned to a hardwood forest type). The plot-level approach

could yield acceptable results in regions with broad-scale

homogenous conditions where very little condition changes are

occurring on the plots. The subplot-level approach will give a

more refined estimate of forest change than the plot-level

approach assuming that boundary mapping on subplots is not

occurring frequently. The most comprehensive evaluation of

different alternatives should consist of compiling inventory

data for a large region or a State and analyzing differences in

population estimates using the different approaches including

available mathematical simulation techniques.
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