Short Rotation *Populus*: A Bibliography of North American Literature, 1989-2011

Ronald S. Zalesny, Jr., and David R. Coyle
Abstract
There have been three comprehensive poplar bibliographies dating back to 1854 and the most recent contained literature published through 1988. Given that these bibliographies are outdated, the number of forestry/bioenergy related journals has increased dramatically (along with subsequent publications), and there have been profound advances in science (particularly in the areas of genetics and molecular biology) within the past two decades, development of the current bibliography was necessary. In addition to compiling the information, our objectives were to encourage publication in peer-reviewed journals and to enhance collaborations with partners outside the poplar community. The current bibliography contains 864 unique citations that are cross-listed among as many as three topic areas, resulting in 1,395 total entries. The topic areas are cell and tissue culture, conservation, diseases, economics and social science, general, genetics, global change, growth and productivity, insects and mites, physiology, phytotechnologies, silviculture, and wood science and wood products.

Authors
RONALD S. ZALESNY, JR., is a research plant geneticist with the U.S. Forest Service, Northern Research Station, Institute for Applied Ecosystem Studies, Rhinelander, WI
DAVID R. COYLE is a post-doctoral research associate at the University of Georgia, D.B. Warnell School of Forestry and Natural Resources, Athens, GA

Cover Photo
Poplars at a phytoremediation site in northern Wisconsin. Photo by Ronald S. Zalesny, Jr., U.S. Forest Service.

Manuscript received for publication April 2012

Published by:
USDA FOREST SERVICE
11 CAMPUS BLVD., SUITE 200
NEWTOWN SQUARE, PA 19073-3294
January 2013

For additional copies:
USDA Forest Service
Publications Distribution
359 Main Road
Delaware, OH 43015-8640
Fax: 740-368-0152

Visit our homepage at: http://www.nrs.fs.fed.us/
The world’s population is expected to exceed 10 billion people by 2100, and this population increase will require many additional natural resources. Natural forests are being harvested at greater rates than they are being replaced, and alternate sources for structural and housing materials will need to be identified. Gasoline and other fuel prices continue to rise, and locally available methods of green power and energy are necessary, both to decrease costs and to diversify our power sources. Environmentally friendly means of removing soil and water contaminants (i.e., phytotechnologies) will also be necessary, as the costs associated with chemical waste removal continue to escalate.

Poplars (Populus spp.) and their hybrids have a plethora of uses for modern society, such as structural lumber, building materials, biofuels and bioenergy, and as phytoremediative agents on polluted sites. Poplars have several characteristics that make them desirable for production in short-rotation woody crop production systems. Poplars are easily propagated, have fast growth rates, respond well to agricultural management techniques, and can be grown across North America. Poplars are known to be effective in phytoremediation and associated phytotechnologies, and are capable of high rates of water and pollutant uptake and assimilation. Overall, poplars have a wide variety of beneficial uses that have warranted their research and production.
The first comprehensive poplar bibliography reported literature published from 1854 to 1963 (Farmer and McNight 1967), the second from 1964 to 1974 (Hart 1976), and the last from 1975 to 1988 (Ostry and Henderson 1990). Given that these bibliographies are outdated, the number of forestry/bioenergy related journals has increased dramatically (along with subsequent publications), and there have been profound advances in science (particularly in the areas of genetics and molecular biology) within the past two decades, development of the current bibliography was necessary. In addition to compiling the information into one interactive location, our objectives were to encourage publication in peer-reviewed journals and to enhance collaborations with partners outside the poplar community (i.e., to provide them with easily accessible poplar information).

THE BIBLIOGRAPHY

Four primary parameters were considered when including literature in our updated bibliography. The papers had to be peer-reviewed (1) and they had to contain information about poplars, cottonwoods, aspens, and their hybrids grown as short rotation woody crops (2) in North America (3), and be pertinent to at least one topic area (4). The topic areas are cell and tissue culture, conservation, diseases, economics and social science, general, genetics, global change, growth and productivity, insects and mites, physiology, phytotechnologies, silviculture, and wood science and wood products. The bibliography contains 864 unique citations that are cross-listed among as many as three topic areas, resulting in 1,395 total entries. The number of citations within each topic area is shown in Figure 1.

<table>
<thead>
<tr>
<th>Topic Area</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology</td>
<td>272</td>
</tr>
<tr>
<td>Genetics</td>
<td>253</td>
</tr>
<tr>
<td>Growth and Productivity</td>
<td>199</td>
</tr>
<tr>
<td>Silviculture</td>
<td>130</td>
</tr>
<tr>
<td>Phytotechnologies</td>
<td>123</td>
</tr>
<tr>
<td>Insects and Mites</td>
<td>77</td>
</tr>
<tr>
<td>Diseases</td>
<td>76</td>
</tr>
<tr>
<td>Conservation</td>
<td>65</td>
</tr>
<tr>
<td>General</td>
<td>50</td>
</tr>
<tr>
<td>Wood Science and Wood Products</td>
<td>49</td>
</tr>
<tr>
<td>Global Change</td>
<td>38</td>
</tr>
<tr>
<td>Economics and Social Science</td>
<td>36</td>
</tr>
<tr>
<td>Cell and Tissue Culture</td>
<td>27</td>
</tr>
</tbody>
</table>

Figure 1.—Number of citations within each of the topic areas.

TOPIC AREAS AND DESCRIPTIONS

1) **Cell and Tissue Culture**: Proliferation of tissues from callus, ovules, nodules, buds, etc.
2) **Conservation**: Sustainability of water, soil, and wildlife resources.
3) **Diseases**: Major stem and leaf diseases impacting health and productivity.
4) **Economics and Social Science**: Financial feasibility of growing and harvesting poplars; public perception.
5) **General**: Advantages and disadvantages of short rotation poplar crops; technological innovations.
6) **Genetics**: Quantitative, molecular, and population genetics of pure species and hybrids.
7) **Global Change**: Climate change effects on tree establishment and growth.
8) **Growth and Productivity:** Belowground and aboveground growth of individual trees and plantations, including yield predictions.

9) **Insects and Mites:** Major insects and mites impacting health and productivity.

10) **Physiology:** Internal processes regulating plant growth and development.

11) **Phytotechnologies:** Use of the trees for remediation of contaminated soil, water, and sediment.

12) **Silviculture:** Production management systems, including irrigation, and fertilization.

13) **Wood Science and Wood Products:** Wood properties and conversion technologies; consumer products.

ACKNOWLEDGMENTS

This bibliography was funded by the U.S. Forest Service, Northern Research and the Wisconsin FOCUS ON ENERGY Program. We are grateful to Bruce Birr, JoAnne Lund, Kricket Koehn, and Adam Wiese for substantial contributions during bibliography development.

LITERATURE CITED

Cell and Tissue Culture

Callus development on hardwood poplar cutting. Photo by Ronald S. Zalesny, Jr., U.S. Forest Service.

Han, K.W.; Bradshaw, H.D., Jr.; Gordon, M.P. 1994. Adventitious root and shoot regeneration in vitro is under major gene control in an F₂ family of hybrid poplar (*Populus trichocarpa* × *P. deltoides*). Forest Genetics. 1: 139-146.

Sanchez, F.G.; Coleman, M.; Garten, C.T., Jr.; Luxmoore, R.J.; Stanturf, J.A.; et al. 2007. **Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability.** Biomass and Bioenergy. 31: 793-801.

Ostry, M.E.; Berguson, W.E. 1993. **Selecting hybrid poplars to reduce disease risk may also reduce biomass yield.** Tree Planters’ Notes. 44: 128-131.

Davis, M.F.; Tuskan, G.A.; Payne, P.; Tschaplinski, T.J.; Meilan, R. 2006. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology. 26: 557-564.

Han, K.H.; Ma, C.; Strauss, S.H. 1997. **Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar**. Transgenic Research. 6: 415-420.

Han, K.W.; Bradshaw, H.D., Jr.; Gordon, M.P. 1994. **Adventitious root and shoot regeneration in vitro is under major gene control in an F2 family of hybrid poplar (Populus trichocarpa × P. deltoides)**. Forest Genetics. 1: 139-146.

Kleiner, K.W.; Ellis, D.D.; McCown, B.H.; Raffa, K.F. 1995. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry IA(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environmental Entomology. 24: 1358-1364.

Newcombe, G. 1998. Association of Mmd1, a major gene for resistance to Melampsora medusae f.sp. deltoidae, with quantitative traits in poplar rust. Phytopathology. 88: 114-121.

Nicole, M.C.; Hamel, L.P.; Morency, M.J.; Beaudoin, N.; Ellis, B.E.; et al. 2006. MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMG Genomics. 7: 223-245.

Robison, D.J.; McCown, B.H.; Raffa, K.F. 1994. Responses of gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) to transgenic poplar, *Populus* spp., containing a *Bacillus thuringiensis* d-endotoxin gene. Environmental Entomology. 23: 1030-1041.

Wei, H.; Meilan, R.; Brunner, A.M.; Skinner, J.S.; Ma, C.; et al. 2006. **Transgenic sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues.** Tree Physiology. 26: 401-410.

Stem cross section being evaluated for effects of changing climate on tree growth. Photo by Ronald S. Zalesny, Jr., U.S. Forest Service.

Clendenen, G.W. 1996. **Use of harmonized equations to estimate above-ground woody biomass for two hybrid poplar clones in the Pacific Northwest.** Biomass and Bioenergy. 11: 475-482.

Coyle, D.R.; Coleman, M.D. 2005. **Forest production responses to irrigation and fertilization are not explained by shifts in allocation.** Forest Ecology and Management. 208: 137-152.

Czapowskyj, M.M.; Safford, L.O. 1993. **Site preparation, fertilization, and 10-year yields of hybrid poplar on a clearcut forest site in eastern Maine, USA.** New Forests. 7: 331-344.

Nguyen, P.V.; Dickmann, D.I.; Pregitzer, K.S.; Hendrick, R. 1990. Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones. Tree Physiology. 7: 95-105.

Bauer, L.S. 1990. **Response of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. san diego.** Environmental Entomology. 19: 428-431.

Federici, B.A.; Bauer, L.S. 1998. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Applied and Environmental Microbiology. 64: 4368-4371.

Kleiner, K.W.; Ellis, D.D.; McCown, B.H.; Raffa, K.F. 1995. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry1A(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environmental Entomology. 24: 1358-1364.

Robison, D.J.; McCown, B.H.; Raffa, K.F. 1994. Responses of gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) to transgenic poplar, Populus spp., containing a Bacillus thuringiensis d-endotoxin gene. Environmental Entomology. 23: 1030-1041.

Federici, B.A.; Bauer, L.S. 1998. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Applied and Environmental Micorbiology. 64: 4368-4371.

Houle, G.; Babeux, P. 1993. Temporal variations in the rooting ability of *Populus balsamifera* and *Salix planifolia* from natural clones-populations of subarctic Quebec. Canadian Journal of Forest Research. 23: 2603-2608.

Kleiner, K.W.; Ellis, D.D.; McCown, B.H.; Raffa, K.F. 1995. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry 1A(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environmental Entomology. 24: 1358-1364.

Nguyen, P.V.; Dickmann, D.I.; Pregitzer, K.S.; Hendrick, R. 1990. Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones. Tree Physiology. 7: 95-105.

Nicole, M.C.; Hamel, L.P.; Morency, M.J.; Beaudoin, N.; Ellis, B.E.; et al. 2006. MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMG Genomics. 7: 223-245.

Pitre, F.E.; Lafarguette, F.; Boyle, B.; Pavy, N.; Caron, S.; et al. 2010. *High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways*. Tree Physiology. 30: 1273-1289.

Choi, W.; Chang, S.X.; Hao, X. 2005. Soil retention, tree uptake, and tree resorption of 15NH$_4$NO$_3$ and NH$_4$ 15NO$_3$ applied to trembling and hybrid aspens at planting. Canadian Journal of Forest Research. 35: 823-831.

van den Driessche, R. 1999. **First-year growth response of four *Populus trichocarpa* × *Populus deltoides* clones to fertilizer placement and level.** Canadian Journal of Forest Research. 29: 554-562.

Wood Science and Wood Products

Harvested poplar trees in Minnesota. Photo by Ronald S. Zalesny, Jr., U.S. Forest Service.

Davis, M.F.; Tuskan, G.A.; Payne, P.; Tschaplinski, T.J.; Meilan, R. 2006. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiology. 26: 557-564.

Pitre, F.E.; Lafarguette, F.; Boyle, B.; Pavy, N.; Caron, S.; et al. 2010. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiology. 30: 1273-1289.

There have been three comprehensive poplar bibliographies dating back to 1854 and the most recent contained literature published through 1988. Given that these bibliographies are outdated, the number of forestry/bioenergy related journals has increased dramatically (along with subsequent publications), and there have been profound advances in science (particularly in the areas of genetics and molecular biology) within the past two decades, development of the current bibliography was necessary. In addition to compiling the information, our objectives were to encourage publication in peer-reviewed journals and to enhance collaborations with partners outside the poplar community. The current bibliography contains 864 unique citations that are cross-listed among as many as three topic areas, resulting in 1,395 total entries. The topic areas are cell and tissue culture, conservation, diseases, economics and social science, general, genetics, global change, growth and productivity, insects and mites, physiology, phytotechnologies, silviculture, and wood science and wood products.

KEY WORDS: hybrid poplar, short rotation woody crops, *Populus*, intensive forestry