A CONTRIBUTION TO THE PROBLEM OF STRONG ACID DETERMINATION IN AIR

DIETER KLOCKOW AND HELMUT DENZINGER, Chemisches Laboratorium der Universität Freiburg, West Germany, GERHARD RÖNICKE, Umweltbundesamt, Aerosolstelle Schauinsland, West Germany.

ABSTRACT

The main indicator for acidic substances in the atmosphere is, now as before, the pH of rainwater. Factors influencing the acidity of precipitation are discussed, using results of air monitoring stations in Germany. These results seem to confirm the general assumption, that mainly sulphuric acid is responsible for the increase in atmospheric acidity. Only little information exists, however, on the concentration of sulphuric acid and other strong acids (HCl, HNO₃) in air. A few attempts have been made to solve this analytical problem, and the present situation in this field is briefly reviewed. Finally a simple radiochemical thermodiffusion-procedure for the selective determination of strong acids is described. The basis of this technique is the reaction between a strong acid and sodium chloride, labelled with 36Cl:

$$H^+ B^- + Na^{36}Cl \rightarrow H^{36}Cl^+ + Na^+ B^-$$

The reaction is carried out in an aqueous or partially aqueous medium at temperatures, at which the labelled hydrochloric acid is easily volatilized. The activity of the volatilized acid is proportional to the amount of protons of strong acids present in the sample.

Experimental details of this new method are presented as well as results of interference studies. The thermodiffusion technique can be applied to the analysis of precipitation and air-borne particulate matter. Its combination with a selective extraction and a new sensitive sulphate-specific method makes possible the analysis of air samples for strong acids in total and for sulphuric acid separately.
ACKNOWLEDGEMENT

This work was supported by a research grant of the German Research Society.

REFERENCES

1Askne, C., and Brosset, C.: 1972, ATMOSPHERIC ENVIRONMENT 6, 695.

