
2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 231

Regression and Geostatistical Techniques:
Considerations and Observations from
Experiences in NE-FIA

Rachel Riemann1 and Andrew Lister2

Abstract.—Maps of forest variables improve our

understanding of the forest resource by allowing us to

view and analyze it spatially. The USDA Forest

Service’s Northeastern Forest Inventory and Analysis

unit (NE-FIA) has used geostatistical techniques, par-

ticularly stochastic simulation, to produce maps and

spatial data sets of FIA variables. That work under-

scores the importance of generating uncertainty infor-

mation along with the modeled estimates, the value of

incorporating additional satellite and other data into

the modeling, and the need to understand the charac-

teristics of the output data set. In our study, we inves-

tigated three questions: Does spatial structure matter

when satellite-derived and ancillary spatial data sets

are incorporated into the modeling of forest attrib-

utes? If we use a modeling technique such as multiple

linear regression, how do we calculate or estimate the

uncertainty? And what are the characteristics of the

output data set with respect to the original sample

data and the ancillary data used?

Background

Spatial depictions of forest variables improve our understand-

ing of the forest resource by allowing us to view and analyze it

spatially and ask questions such as: How are things distributed

spatially, and how are they related to other social, environmen-

tal, and historical patterns? Estimates in small areas may be

improved because additional, relevant information is incorpo-

rated into the modeling and estimation. Two extremely valu-

able data sources for mapping forest attributes are the Forest

Inventory and Analysis (FIA) plot data and satellite-derived

imagery. FIA data contain an enormous amount of information

on a large number of sample plots collected in an unbiased

manner and spread relatively uniformly across nearly the entire

United States. Many ecosystems, small and large, and much of

the variation within them are captured. In addition, satellite

sensors capture data at every location (at various resolutions),

and the resulting imagery often is strongly related to many of

the forest variables we are interested in. For example, in a New

Jersey study, we found that the correlation between basal area

and several imagery-based satellite layers is high (table 1). In

this paper we review the lessons learned from using the geosta-

tistical technique sequential Gaussian conditional simulation

(SGCS) to model the relative basal area of individual tree

species, and investigate the use of multiple linear regression to

model similar variables using satellite-based data sets and other

available spatial layers. 

Geostatistical Techniques

Much of the spatial modeling work in NE-FIA has been con-

ducted with plot data and geostatistical techniques. For exam-
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Total 
Item Pitch pine Red maple coniferous 

basal area

Spring_bright 0.26 -0.17 -0.43

Spring_green 0.49 -0.23 0.61

Spring_wet 0.39 — 0.60

Summer_bright -0.57 0.30 -0.67

Summer_green -0.63 0.34 -0.58

Fall_bright -0.56 0.19 -0.71

Fall_green -0.54 0.21 -0.53

Table 1.—Pearson’s Correlation Coefficients between three
tassel cap bands for each of three seasons (2000 data) and
normal–score transformed relative basal-area values for each
of three species variables being modeled (1996 data; all val-
ues are significant (p< 0.05), and bold values are more highly
significant (p<0.005)
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Figure 1.—Like kriging, sequential Gaussian conditional simulation (SGCS) uses a model of the spatial structure present to esti-
mate values at unknown locations: a) original plots (darker red are increasing values of %ba of hemlock); b) correlogram calcu-
lated from the sample plot data; c) model used to describe the structure depicted in the correlogram; d) a resulting output map of
modeled values (darker green are increasing values of %ba of hemlock).

Figure 2.—SGCS creates a distribution of possible values for each pixel (one generated with each simulation) from which the user
can easily extract a clear measure of the uncertainty of each local estimate. a) the distribution of values at a single, randomly
chosen cell; b) the modeled estimate where the value at the 65% percentile was chosen for each pixel (with nonforest areas
masked out); and c) the value of the interquartile range (iqr) at each pixel, representing the range of uncertainty associated with
each modeled value.
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ple, species distribution maps were created using SGCS

(Riemann et al. 1997, Riemann and Lister,3 http://www.fs.fed.

us/ne/fia/spatial/specdist/species_dist.html). Like kriging,

SGCS uses a model of the spatial structure present to estimate

values at unknown locations (fig. 1). However SGCS differs in

that it is a stochastic simulation technique that uses a random

function to incorporate uncertainty into the model (Rossi et al.

1993). This creates a distribution of possible values for each

pixel (one generated with each simulation) from which the user

can easily extract a clear measure of the uncertainty of each

local estimate (fig. 2). In addition, depending on the summary

statistic chosen as the estimate (e.g., mean, median, or another

percentile) this technique provides spatial output with a more

realistic depiction of heterogeneity and is more effective than

kriging in retaining original data characteristics. 

Advantages and Limitations of SGCS

The use of SGCS offers several advantages. First is the way

Monte Carlo techniques offer a clear depiction of the model

uncertainty, which reflects both sample intensity and variation

in the available data. This feature is valuable because some

uncertainty is inevitable in all modeled output, and the magni-

tude and direction of uncertainty are important aspects of any

modeled map created. In addition, since there is a probability

distribution built for each location of the map, the user can

depict the error in different ways based on her/his goals and

choice of risk (e.g., of overestimating or underestimating). For

example, if in a study of the hemlock woolly adelgid (an insect

associated with hemlock mortality), the cost of sending crews

to a site with an insufficient amount of hemlock is greater than

missing a site that might have sufficient hemlock to complete

the study, i.e., the cost of overestimation is greater than that of

underestimation. The user would thus want to choose a depic-

tion of error that reflects the wish to avoid wasting field crew

resources—one that reduces the risk of overestimation. 

Like all techniques, however, there are also limitations to

SGCS that make us want to pursue additional approaches.

First, not all variables of interest have a strong spatial structure

that can be modeled and used in SGCS to improve estimates.

Second, satellite data and other relevant spatial data layers

(e.g., topographic information, climatic information, soils infor-

mation), are becoming increasingly available and affordable

and are of increasing quality. Also, our technical ability to dis-

play and manipulate these data is continually improving.

Finally, because of the sampling intensity of FIA data and the

level of unexplained variation typically remaining, using only

FIA data in the modeling limits the spatial resolution and levels

of uncertainty in the final output. 

To address the shortcomings of univariate geostatistical

methods, we are incorporating this increasing wealth of addi-

tional ancillary environmental information into the modeling

process. Many multivariate modeling techniques are available

for this, each of which utilizes and maintains different charac-

teristics of the sample data, has different output characteristics,

and makes different assumptions. Many of these methods are

being investigated throughout FIA (e.g., Lister and Hoppus

2002; McRoberts et al. 2002; Moeur and Riemann 1999;

Moisen and Frescino 2002; Ohmann and Gregory 2002). The

goal of our study was to investigate the use of multiple linear

regression to make predictions of FIA attributes by answering

the following questions: 

• Does spatial structure matter when satellite-derived and

ancillary spatial data are incorporated into the modeling of

forest attributes? 

• If we use a modeling technique such as multiple linear

regression, how do we calculate or estimate the uncertainty? 

• Using this technique, what are the characteristics of the

output data set based on the original sample data and the

ancillary data used?

Methods

Data.—In all, 141 100-percent forested FIA plots from the 1998

inventory were used from the study area in central and southern

New Jersey. FIA defines a forested plot as being at least 1 acre in

area and 120 feet wide, having a minimum of 10-percent stocking,

and an undisturbed understory.4 Variables calculated from plot data

and chosen for modeling were: the relative basal area of pitch pine

(pp%ba), relative basal area of red maple (rm%ba), and total

3 Riemann, R. and Lister, A.J. Stochastic simulation for mapping ground inventory variables: Creating and using the species distribution maps. Unpublished report
on file at USDA FS NE-FIA, 11 Campus Blvd., Newtown Square, PA 19073.
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coniferous basal area on a plot (conifba). Because of their skewed

distributions, all three variables were normal–score transformed

before all analyses—a 1-1 linear transform to a perfectly normal

distribution (Deutsch and Journel 1998).

Only forested plots were used because we wanted to

model the characteristics of forest land rather than the distinc-

tion between forest and nonforest land. Nonforest land was

applied afterward as a mask on the modeled output, using data

derived from a classification dedicated to accurately identifying

those classes (Zhu and Evans 1994). Separating these two tasks

and focusing on modeling only the forested population was

considered a valuable part of the modeling exercise. Mixed

plots, those partly on forest land and partly on nonforest land,

add an additional complication when attempting to match plot

data with the 30-m pixel of Landsat Thematic Mapper (TM)-

derived layers. With mixed plots, being off by even a half pixel

in co-registration of the data sets can place the plot in an entire-

ly different land use class, which is well below the georeferenc-

ing accuracies currently achievable. This did reduce the usable

number of plots available (from 206 forested and mixed plots

to the 141 completely forested plots). Future studies should

explore ways to address this uncertainty and use this plot infor-

mation, but in this study mixed plots were simply removed. 

The following predictor variables were used: 

• Spectral information derived from Landsat ETM+ (USGS

Eros Data Center 2002): three tassel cap bands each from

three seasons (spring, summer-leaf on, fall-leaf off), image

dates: approx. 2000 (range: 1-255).

• Topographic variables derived from the 30-m digital eleva-

tion model (DEM): elevation, slope, aspect, position indi-

cator (range: 0-100, representing location between the

valley (0) and the ridgetop (100)).

• Soils variables derived from STATSGO (USDA 1993): soil

quality, soil carbon, available water content (soil_awc)

(range: 1-255).

• Spatial information – X, Y (converted to a range of 1-255). 

Modeling Approach.—Descriptive statistics were calculated

and plotted to assess the characteristics of the dependent vari-

ables, and the data were normal-score transformed (a 1-1 linear

transform of the data to a perfectly normal distribution) before

further analysis. Variography was performed and variogram

descriptive statistics were calculated to assess the degree of

spatial continuity of each of the dependent variables.

Scatterplots were constructed and correlation statistics were

produced to assess the degree of correlation with predictor data

and eliminate predictor data layers that were not linearly relat-

ed to the dependent data layers. Data redundancy was reduced

by removing one variable from pairs of predictor variables that

were collinear. We performed stepwise linear regression to

make maps of predicted pp%ba, rm%ba and conifba, both

including and excluding X and Y as possible predictor vari-

ables. To assess the accuracy of the regression model, we ana-

lyzed the model fit and performed a tenfold cross-validation

procedure in which successive sets of 10 percent of the data

were withheld from the model and subsequently predicted.

Scatterplots of observed vs. actual values and residual plots

were produced and assessed. Finally, we compared the charac-

teristics of the output data sets with those of the original sam-

ple data, looking for differences that might be effects of the

modeling technique or data sets used. 

Results and Discussion

Characteristics of the Data.—The skewed distributions of the

dependent variables indicated a probable need for transforma-

tion before analysis, and indeed a clearer spatial structure and

stronger correlations with the independent variables were

observed with the normal-score transformed data. 

The following are results of variography and correlation

analyses: 

Species Variogram nugget (% of variation explained) r value

pp%ba 0.45 (55%) 0.4–0.6

rm%ba 0.8 (20%) 0.2–0.3

conifba 0.55 (45%) 0.5–0.7

Both pitch pine relative basal area (pp%ba) and total coniferous

basal area (conifba) had a strong spatial structure and fairly

strong correlations with the independent/explanatory variables.

Red maple had weak spatial structure and weaker correlations

with the independent/explanatory variables.

4 U.S. Department of Agriculture, Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase
2 plots, version 1.4. Unpublished report on file at USDA Forest Service, Forest Inventory and Analysis, Washington, DC.



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 235

Models.—The model developed by the linear regression using

the full set of sample points and used for producing the final

conifba map was:

conifba = -1.22186 + (0.03134*fall_wet) –

(0.02951*fall_bright) + (0.02204* spr_green) - (0.01713 *

sum_green) + (0.00265*y) - (0.00906*soil_awc) 

R2 = 0.62, p = 0.13, RMSE = 0.63.

The model used for the rm%ba final map was: 

rm%ba = -1.1885 + (0.03983*sum_green) –

(0.03552*fall_green) – (0.00774*position_ind) +

(0.00825*soil_awc)

R2 = 0.25, p = 0.046, RMSE = 0.88.

The model for predicting pp%ba was:

pp%ba = 1.63594 + (0.03333*spr_green) -

(0.02823*sum_green) - (0.01128*soil_awc) 

R2 = 0.54, p = 0.0006, RMSE = 0.686.

The same larger set of potential predictor variables was

provided for the development of the 10 validation models.

Each of these models was similar to that developed from all the

sample points. 

Calculating and Depicting Map Error/Uncertainty

How good is the model? How close to reality is the output

map? How likely are we to find on the ground what is depicted

in my map? A measure of uncertainty associated with each esti-

mate can reveal some pertinent information, and it can capture

one or more of the above elements of uncertainty since they are

related. The most directly interpretable values for the user are

measures of how the output map relates to reality, typically in

terms of comparison to point locations on the ground. How-

ever, depending on the final use(s) of the output data set, other

characteristics may also be important, such as the accuracy of

area summaries or the spatial distribution of features.

We assessed the uncertainty of our regression models by

examining the results of the tenfold cross validation. This

involved dividing the data into 10 random parts, each contain-

ing 90 percent of the data, and running linear regression on

each of the 10 sets. Each of the original values was then com-

pared with that value predicted using the model created without

it. Scatterplots of observed vs. predicted backtransformed val-

ues from this validation for each of the dependent variables are

shown in figure 3. From these validation data we can calculate

an RMSE value to describe the uncertainty associated with our

output map. The validation RMSE with an average uncertainty

of +/- 23 percent for estimates of red maple relative basal area,

and 31 ft2 for estimates of total coniferous basal area. However,

RMSE is only a single average value for the entire map. How

does the magnitude and direction of that difference vary with

location and predicted value?

The previous analysis estimated the error associated with

each known value. We also wanted to produce a spatial depic-

tion of model uncertainty. Assuming that the validation we con-

ducted using plots for which we had data provided a picture of

the distribution of possible prediction errors, we grouped all the

predicted values into classes, ensuring that enough plots fell in

each, and calculated the average validation error associated

with that class (table 2). We then reclassified our table of pre-

dictions to create an error map (fig. 4a) using table 2 as a

lookup table. Figure 4b is the associated map of estimated val-

ues. Note that we are also assuming that we can associate a

pixel (30- x 30-m grid cell) with a plot (a 4-point cluster of

1/24-acre circular plots spread over approximately 1 acre). 

Checking Characteristics of the Output Data Set

What are the characteristics of the output maps in relation to

the original sample data and the ancillary data used? When we

checked the univariate statistics of the output data set, the pre-

dicted data duplicated the original data’s sample histogram for

all three variables fairly well (fig. 5). Looking at the correlo-

gram/spatial structure of the output data set, the output is spa-

tially more smoothed than the original data (table 3). This is

partly due to the characteristics of the predictor data sets used.

Figure 3.—Actual vs. predicted values for a) proportion of red
maple basal area and b) total coniferous basal area. Diagonal
line is the line of 1:1 agreement. 
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Joint attribute structure—the relation between the forest vari-

ables predicted—is another important characteristic for those

interested in querying the output data sets together. Although

we did not model the three variables together, and thus did not

explicitly attempt to retain this information in the modeling, it

is nevertheless important to understand how this is expressed in

the output data sets. Comparing the joint attribute structure in

the output to the original data shows substantial similarities but

also some truncation of the original ranges of values (fig. 6).

Finally, looking at the output map and the input data sets that

were used to create it, we observed that the characteristics of

the source data sets were influencing the output in ways that

may be undesirable. For example, in figure 7d, areas with the

highest estimates (along the shorelines) are clearly influenced

strongly by soil available water content (soil_awc) values (7a).

In figure 7b, some relics of how the position_index value was

calculated appear as “contour lines” in the rm%ba map. Such

effects may be important clues to the driving factors associated

with particular species, or, in this case, more likely suggest

room for improvement in the model and/or in the

a The average plus error can be sufficiently different from the average minus
error such that one might want to depict them separately.

Table 2.—Calculating average error for each class of predict-
ed value—i.e., for each range of predicted values, the range of
possible actual valuesa

Figure 4.—Map of the predicted values (a) and of the estimat-
ed uncertainty plotted from table 2 (b).

Figure 6.—Scatterplots of the joint attribute structure of origi-
nal and predicted data.

Figure 5.—Univariate histograms of the sample data com-
pared with predicted values.
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independent/source data sets when they become available. The

results also suggest that in future studies we may want to

reevaluate the inclusion of ancillary spatial layers that adverse-

ly affect the final maps.

Incorporating Spatial Structure

On the basis of the nugget values calculated during the variog-

raphy analysis, there is spatial structure in the sample data, par-

ticularly with relative pitch pine basal area and total coniferous

basal area. In addition, the simple spatial location variables of

standardized X and Y demonstrate some level of correlation (r

values of 0.33 to 0.56 for X and 0.02 to 0.12 for Y)) with all

three species or species-group variables. Whenever X or Y was

one of the final independent variables in the model, it always

smoothed the output data set (fig. 8), and did not noticeably

change the amount of spatial structure remaining in the residu-

als (table 4). This limited effect of including or excluding X

and/or Y as predictor variables in the model is probably

because much spatial information is already implicitly con-

tained in the satellite imagery and other spatial data sets when

these are strongly correlated to the variable of interest. For

variables that are both poorly correlated with the independent

variables and contain a high level of spatial structure, incorpo-

rating spatial information could introduce important additional

information (Goovaerts 1999, Moeur and Riemann 1999).

None of the variables investigated contained this combination

of characteristics. However, where including the spatial struc-

ture in the modeling is desirable, multivariate linear least

Figure 8.—Effect of using X in the model for estimating red
maple relative basal area (rm%ba): a) a map of the model
developed excluding XY as optional predictor layers (-0.73814
+ (0.01412 * sum_green) – (0.00759 * position_ind) –
(0.00593 * X)), b) a map of the model developed including XY
as options (-1.18850 + (0.03983 * sum_green) – (0.03552 *
fall_green) + (0.00825 * soil_awc) – (0.00774 *
position_ind)). Note the increased smoothing of the results in
b) when the smoothly varying variable X is included.

Figure 7.—Degree to which the spatial characteristics of the
predictor data sets can contribute to the final map. This may
or may not be realistic, but in the Northeast, where things are
seldom driven so cleanly by a single variable, we would tend
to suspect this as a characteristic of the data and model rather
than of the phenomena: a) soil_awc; b) position_indicator; c)
plus/minus error associated with predicted estimate; d) pre-
dicted %ba value for red maple.

Item Original Predicted

rm%ba 80 12

conifba 55 8

Table 3.—Comparison of nugget values in the correlograms of
the original values and the predicted values, expressed as %
of the sill. A lower nugget indicates more spatial structure;
there is a noticeable difference between the original and pre-
dicted values here.

Model
Item With X Without X

rm%ba 52 68

conifba 100 100

Table 4.—Nugget values in the residuals, expressed as % of
the sill. A low nugget often indicates spatial structure not
explained by the model. Including X in the model did not
reduce the amount of spatial structure in the residuals.
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squares regression is probably not the best tool to take advan-

tage of spatial information. Because it is mostly a per pixel

modeling technique, linear regression does not easily incorpo-

rate information on the value, distance, or direction of neigh-

boring data when producing an estimate. Other approaches may

be much more effective in taking advantage of this spatial

information. 

Conclusions

Know the characteristics of your data and the phenomena going

in—it will help greatly in the modeling, both in effectiveness

and accuracy, for each has different characteristics that can

affect the effectiveness of a particular modeling technique.

Similarly, check the characteristics of the data coming out—it

will help in understanding the characteristics of the output data

set, which, in turn, may result in iterative improvement even if

it does not contribute directly to a calculation of error/uncer-

tainty. As stated earlier, the characteristics of the spatial data

sets used in predicting the variable of interest affected the char-

acteristics of the output. Such effects may be important clues to

the driving factors associated with particular species, or, more

likely in this case, signal possible improvements in the model

and/or in the independent/source data sets. 

Having some measure of uncertainty is SO important!

Each of these maps is only a modeled estimate of what is

occurring on the ground, so there is always some level of

uncertainty as to the degree to which the modeled map reflects

reality. Providing a measure of uncertainty with each estimate

gives the user additional information to work with. With linear

regression, a single validation RMSE value, such as a single

%accuracy value for a classified map, doesn’t tell the whole

story with the mapped output of a regression model because we

know there is spatial and class variability to that error and we

want to know where that occurs. A single RMSE value calcu-

lated without the use of a validation data set is even less satis-

factory because an uncertainty value calculated only from data

that went into the modeling does not account for errors in our

admittedly less-than-perfect input data sets. Error/uncertainty

from comparisons between modeled estimates and plot data can

be calculated when both are of a reasonably similar scale/reso-

lution (e.g., a 30-m pixel with a 1/6-acre clustered plot). 

Does spatial structure matter when we incorporate satel-

lite-derived and ancillary spatial data sets into the modeling of

forest attributes; that is, do we lose potential information by not

including it? In this study, bringing the satellite and other layers

into the modeling seemed to account for much of the variability

that the spatial structure was describing. However, if we wish

to include spatial structure in the modeling (as might be the

case with a variable with weak correlations with the independ-

ent variables but a strong spatial structure), bringing X and Y

into the regression as simple variables is only a partial solution

with some consequences (i.e., smoothing), and is probably not

the best technique for this task.

There are many characteristics of a spatial data set. Many

maps are a compromise of some characteristics in favor of oth-

ers, e.g., smoothing the map to discern patterns at the expense

of local heterogeneity. Which aspects are most important in the

output map will depend on how the data will be used. What the

maps are being used for will direct/dictate how we look at

them, what we consider to be accurate (or the most important

aspect of accuracy), what we consider to be the dominant char-

acteristic that makes us accept or reject a map, and what mod-

eling techniques we choose because of the characteristics they

preserve or the characteristics of their output.

The models produced from linear regression procedures in

this study are by no means the best that could be obtained

given the independent data currently available. However, they

point out potential characteristics and tendencies that can result

when input variables are used in a regression model to simply

predict forest attributes by their relationship to other spatial

variables. Characteristics of the input data sets, which may be

derived from numerous sources and via other modeling tech-

niques, can greatly influence the characteristics of the output. 
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