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Abstract.—The USDA Forest Service’s Forest

Inventory and Analysis (FIA) unit maintains a net-

work of tens of thousands of georeferenced forest

inventory plots distributed across the United States.

Data collected on these plots include direct measure-

ments of tree diameter and height and other variables.

We present a technique by which FIA plot data and

coregistered remotely sensed raster data were used to

predict the basal area of deciduous trees at a spatial

resolution of 30 m. Results varied, generally indicat-

ing that culling putatively unrelated variables did not

improve estimates over those obtained using all the

potential variables in the model.

The USDA Forest Service’s Northeastern Forest Inventory and

Analysis unit (NE-FIA) is charged with conducting a portion of

a national forest inventory. NE-FIA uses data collected on a

network of ground plots to produce reports on the status of the

region’s forests. 

In addition to tabular reports, analysts and data consumers

frequently request spatially explicit, highly resolute maps of forest

variables. To produce these maps, data from geographic informa-

tion systems (GIS) and satellites are often used to build models

that predict attributes such as volume, biomass, and basal area.

There are many choices of GIS data and satellite layers for

a given region. The National Land Cover Dataset (NLCD)

project, a USGS-led, collaborative effort among several gov-

ernmental and nongovernmental groups, is producing national

land cover maps using GIS and satellite data. The USGS Eros

Data Center compiled 18 GIS and satellite imagery layers for a

mapping area covering several Mid-Atlantic States (NLCD

mapping zone 60).2 These data layers are coregistered, so they

can be easily combined with NE-FIA plot data to produce a

data set that can be used for predictive modeling. The goal of

the current study was to assess the effects of subsetting these

18 layers to arrive at a model training set that would lead to

more accurate predictions of the basal area of deciduous trees.

Methods

The study area included that portion of New Jersey covered by

the NLCD imagery data (fig. 1). Data were collected on NE-

FIA plots in New Jersey between 1998 and 1999.3 The total

amount of deciduous tree basal area measured on each plot was

used as the dependent variable in the predictive modeling. Only

1 Forester, Research Forester, Research Forester, and Supervisory Forester, respectively. U.S. Department of Agriculture, Forest Service, Northeastern Research
Station, Newtown Square, PA 19073. Phone: 610–557–4038; e-mail: alister@fs.fed.us.
2 Homer, C.; Gallant, A. 2001. Partitioning the conterminous United States in mapping zones for Landsat TM land cover mapping. USGS Draft White Paper, on
file at USGS Eros Data Center, 47914 252nd Street, Sioux Falls, SD 57198. 
3 USDA Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.4.
USDA Forest Service, internal report. On file at USDA Forest Service, Washington Office, Forest Inventory and Analysis, Washington, DC.

Figure 1.—The study area in central and southern New Jersey;
141 homogeneous, forested plots were used for the analysis.
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completely forested plots were used in the analysis. 

The portion of the NLCD data in New Jersey was used as

a source of potential predictor variables. The NLCD data set

was assembled by mosaicking, georeferencing, and radiometri-

cally correcting three-season satellite imagery collected by the

Landsat 7 satellite between 1999 and 2001 (USGS Eros Data

Center 2002). These assembled raw images were transformed

using the Tassled Cap (TC) transformation, a procedure that

produces new images consisting of three layers per original

seasonal six-band image (USGS Eros Data Center 2002). The

TC transformation typically is used because the composite lay-

ers have a higher correlation with some features of vegetation

than do the constituent layers. In addition to these nine TC lay-

ers, elevation, slope percentage, aspect, and slope position

index were derived from digital elevation models (DEMS),

which are raster GIS layers with a value for elevation at each

pixel location. Slope, aspect, and slope position (ranging from

0 in the valley to 100 on the ridgetop) also were calculated for

each pixel using a GIS. Soil quality, available water content

(awc), and soil carbon percentage (variables that often are con-

sidered when measuring site quality) were derived from the

STATSGO soils data set produced by NRCS (USDA Soil

Conservation Service 1993). Layers consisting of geographic

Easting and Northing also were created. All NLCD data layers

were coregistered, standardized to be within the range of 0-255,

and resampled to a 30-m pixel size. 

Values of predictor variables at plot locations were obtained

with Erdas Imagine software. Scatterplots of deciduous basal

area vs. each of the predictor variables were generated and corre-

lation matrices were created with SAS software. To create a sub-

set of predictors for modeling, variables that were not

significantly correlated with basal area were excluded from mod-

eling, as were plots that were significantly correlated but subjec-

tively considered weakly related after assessing the scatterplots. 

The two modeling data sets (the full set and the subset)

were used to produce maps of deciduous basal area for each

30-m pixel defined by the predictor layers. The technique used

was a minimum-distance supervised classification, which is in

effect a k-nearest neighbor imputation with a k of 1 (McRoberts

et al. 2002, Franco-Lopez et al. 2001). This procedure is based

on the multidimensional Euclidean distance between pixels

where basal area is unknown but the predictor variables have

known values, and a pixel with known values for both basal

area and predictor variables. The basal area of the plot whose

associated pixel has the smallest multidimensional Euclidean

distance from the unknown pixel is assigned to the pixel being

evaluated. Each pixel is treated in this way until a continuous

map of basal area is produced. 

The modeling procedure is such that a given plot’s value

never influences the prediction at its own location; it always is

a different plot whose value is assigned to the pixel on which a

plot sits, making it possible to use the modeling data for valida-

tion. To assess the accuracy of the resulting maps, scatterplots

of observed vs. predicted basal area were generated from the

original data, and simple linear regression models describing

the relationship between observed and predicted values were

created. Histograms of absolute error were generated for both maps.

Predictor variable r value p value

Position index – 0.09 0.31

Slope 0.29 <0.001

Aspect 0.26 <0.01

Elevation 0.25 <0.01

Easting – 0.54 <0.0001

Northing – 0.24 <0.01

Soil water content 0.44 <0.0001

Soil carbon 0.08 0.33

Soil quality 0.33 <0.0001

Summer brightness 0.60 <0.0001

Summer greenness 0.65 <0.0001

Summer wetness – 0.10 0.24

Fall brightness 0.58 <0.0001

Fall greenness 0.59 <0.0001

Fall wetness – 0.06 0.45

Spring brightness 0.30 <0.01

Spring greenness – 0.54 <0.0001

Spring wetness – 0.41 <0.0001

Table 1.—Correlation coefficients (r values) and p values from
correlation analyses of the relationship between deciduous
basal area and several predictor variables ( N=141)
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Results and Discussion

The final map is shown in figure 2. The correlation statistics and

resulting p values are shown in table 1. Fourteen of the 18 origi-

nal predictor variables had significant correlation coefficients.

Position index, soil carbon, and summer and fall wetness (two of

the TC layers) were not significant (p>0.05). After subjectively

assessing the scatterplot matrix (fig. 3), we decided to eliminate

aspect, elevation, slope percentage, and Northing.

We had hypothesized that the DEM-based layers would be

related to site quality and probability of development; low

slope sites closer to a valley floor should have deeper, moister

soil and be more prone to human development than sites on

steep hillsides or ridgetops. There were no or only weak rela-

tionships between topographic site factors and basal area of

Figure 2.—Final map of predictions of deciduous basal area
for central and southern New Jersey. The map was produced
using all 18 GIS and imagery layers. Lighter values indicate
higher levels.

Figure 3.—Scatterplot matrix showing relationship between the basal area of deciduous trees on FIA plots and several GIS
and imagery-based values (see Methods for information on predictor variables). Y axis values ranged from 0 to 255; x axis
values ranged from 0 to 192 ft2/acre (N=141). 
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deciduous trees measured on NE-FIA plots in our study area,

possibly because there are higher order interactions among

topographic variables or between them and other unmeasured

variables. Similarly, Xu and Prisley (2000) hypothesized that

the local variation in carbon distribution could be due to factors

such as previous land use, forest growth phase, forest type dif-

ferences, geomorphology, natural disasters, or other unmea-

sured factors. 

The lack of relationship between basal area and soil car-

bon might be caused by the same phenomenon or by the nature

of the soil carbon data. Soil carbon may not be measurably bio-

logically related to basal area production. The relationship

between Northing and basal area did not appear to be linear.

Perhaps the relationships could have been improved via trans-

formation or by creating composite variables to test the effects

of interactions, but we chose not to transform the data to pre-

serve biological interpretability of our model outputs.

The TC wetness layer historically has been used to repre-

sent different levels of soil moisture. Perhaps during summer

and fall, little bare soil was exposed on the FIA plots, making

the wetness layer less useful during these seasons. However,

before the deciduous trees produce leaves in spring, the satellite

acquires reflected light from bare soil beneath the trees and

thus might be measuring an ecological factor that affects decid-

uous basal area.

The scatterplots and diagnostic statistics of the regressions

of observed vs. predicted for the full model and for the subset

model are shown in figures 4a and 4b, respectively.

Considering the shape of the scatterplot and the regression out-

puts, the full model performed better than the subset model.

The R2 value was higher, the slope was closer to 1, and the y

intercept was closer to zero (figs. 4a - 4b). The histogram of

absolute errors (fig. 5) indicates that the subset model per-

formed slightly better in the second and third lowest basal area

categories, but the subset model’s errors generally had higher

variances than those from the full model.

These results were unexpected. We had hypothesized that

several of the potential predictor layers would be extraneous,

that is, the effects of strong predictors on the estimate would be

diluted. But we found that the full model performed better in a

validation. The scatterplots indicate that the full model’s accu-

racy was consistent throughout the distribution of observed val-

Figure 4.—Observed vs. predicted scatterplots from valida-
tion of the full model (A) and the subset model (B). The full
model used 18 GIS and imagery layers; the subset model
used only 10 (N=141).

Figure 5.—Absolute error histograms of the full model and
the subset model. Absolute errors were calculated for each
model by calculating the absolute difference between
observed and expected (N=141).
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ues, whereas for the subset model, the accuracy was much

worse in the lower tail of the observed data’s distribution. A

possible explanation is that, when extraneous data layers are

used as predictors, the potential negative impact of anomalous

model training data is mitigated. An unknown pixel that is

incorrectly classified by a “bad” training site using the subset

model might not be classified incorrectly if the distances are

perturbed slightly by the addition of extraneous data layers.

That extra distance raises the probability that a “better” training

site might be assigned to that unknown location. 

If this is the case, there must be a tradeoff between dilut-

ing the strength of mechanistic relationships between predictors

and dependent data and susceptibility to poor training data. Our

results suggest that the extraneous data layers served as a safe-

ty net, removing some of the effects of outlaying data points

but not increasing the overall variance of our residual error to

an unacceptable level. 

In future studies, we plan to analyze the effects of individ-

ual training data sites on the accuracy of our modeling. Much

of the variance in our absolute errors may be due to rogue

training data. We also plan to test the effects of transforming

the variables and creating composite layers consisting of inter-

actions of the GIS and imagery layers. And we will investigate

additional variable reduction methods, including multiple linear

regression, principal components analysis, and other univariate

and multivariate techniques. We also will assess the relation-

ship between the amount of training data used and the number

of spectral bands used. A phenomenon called the “Hughes

Phenomenon” (Hughes 1968) occurs when accuracy is degrad-

ed when one increases the number of predictor variables but

does not change the number of training sites.
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