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Preface

The Fourth Annual Forest Inventory and Analysis Symposium

was held jointly with the meeting of the Southern Forest

Mensurationists in New Orleans, Louisiana, November 19–21,

2002. The first three symposia of this series focused primarily

on the statistical and remote sensing aspects of developing and

implementing an annual forest inventory system. For this fourth

symposium, a concerted effort was made to include presenta-

tions from resource analysts from within the Forest Inventory

and Analysis (FIA) program and from researchers outside the

FIA program who use FIA data. By all accounts, the fourth

symposium achieved these objectives with numerous presenta-

tions that demonstrated the wide variety of applications for FIA

data. The symposium organizers thank all presenters and convey

special thanks to those who submitted their papers for this pub-

lication.

Ronald E. McRoberts

Gregory A. Reams

Paul C. Van Deusen

William H. McWilliams

Chris J. Cieszewski

St. Paul, Minnesota
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General Constraints on Sampling Wildlife 
on FIA Plots

Larissa L. Bailey1, John R. Sauer2, James D. Nichols2,

and Paul H. Geissler3

Abstract.—This paper reviews the constraints to

sampling wildlife populations at FIA points. Wildlife

sampling programs must have well-defined goals and

provide information adequate to meet those goals.

Investigators should choose a State variable based on

information needs and the spatial sampling scale. We

discuss estimation-based methods for three State vari-

ables: species richness, abundance, and patch occu-

pancy. All methods incorporate two essential sources

of variation: detectability estimation and spatial varia-

tion. FIA sampling imposes specific space and time

criteria that may need to be adjusted to meet local

wildlife objectives.

Traditionally, wildlife sampling programs have sought to docu-

ment species distribution or abundance and monitor changes in

those patterns over time. Management tended to focus on

species thought to be declining (the “Declining Species

Paradigm,” Caughley 1994). Modern wildlife sampling pro-

grams focus on either management or scientific objectives

(Yoccoz et al. 2001). Managers need survey data to understand

population status, to evaluate the effects of current or past man-

agement actions, or to assist in predicting the consequences of

proposed management actions. Scientific objectives generally

focus on change in population in response to experimental

manipulations or environmental change. The field of adaptive

management combines science and management objectives by

analyzing wildlife surveys to differentiate among competing

scientific hypotheses of a system’s response to management

actions.

Recent criticism of wildlife sampling programs has

focused on two main issues: 1) the lack of clearly defined

goals; and 2) the need for estimation-based sampling methods

(Olsen et al. 1999, Yoccoz et al. 2001). Researchers must con-

sider their sampling objectives, and then choose a State vari-

able to characterize the status of their biological system of

interest. A State variable can be any variable within the system

used to characterize and monitor the state of the system (e.g.,

population, species diversity, or biomass) (Yoccoz et al. 2001).

Sampling methods must provide information adequate for esti-

mating the chosen State variable. Traditional, entrenched sam-

pling methods, such as point counts (birds) or time-constrained

searches (amphibians and reptiles), are usually inappropriate

for most sampling goals (Barker and Sauer 1995). While “stan-

dardization” of protocols is important to sampling, it does not

ensure consistency in detection rates of most vertebrate species

(Barker and Sauer 1995). Estimation-based methods that

accommodate detectability differences and spatial variation are

necessary to meet most wildlife sampling objectives. 

The choice of an appropriate State variable depends on the

sampling program’s objectives, scale, and resources.

Investigators must consider the biological level of the pro-

gram’s objectives and the spatial scale of the proposed sam-

pling. For example, common State variables include species

richness for community level analysis, abundance for popula-

tion analysis, and patch occupancy rate for landscape or patch

level analysis. Choosing a State variable also depends on the

feasibility and efficiency of the sampling methods. Abundance

is often the most expensive State variable to estimate in terms

of time and effort and thus is rarely used in large programs.

Occupancy and species richness estimation are less expensive

and may be more appropriate for landscape-level studies.

Occupancy estimation requires multiple visits to the same sites

within a season, but only requires the collection of

detection/nondetection information (MacKenzie et al. 2002).

Species richness can also be estimated from detection/nonde-

tection information from repeated visits (Boulinier et al. 1998)

or using the counts of individuals of each species from one

sample per location (Burnham and Overton 1979, Boulinier et

1 Post-doctorate Researcher, USGS Cooperative Fish and Research Unit, North Carolina State University, Department of Zoology, Raleigh, NC 27695. Phone:
301–497–5637; e-mail: lbailey@usgs.gov.
2 Wildlife Biologists, USGS Patuxent Wildlife Research Center, Laurel, MD 20708.
3 Biometrician, USGS Patuxent Wildlife Research Center, Beltsville Laboratory-308, Beltsville, MD 20705.
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al. 1998). However, species richness estimation is often inef-

fective in systems with small species pools. 

Regardless of the State variable, sampling “protocols”

should address two design components: the sample frame and

detectability. The sample frame is a complete list of all possible

sample units (i.e., plots, transects, quadrats, FIA points).

Usually researchers cannot sample all possible units, so a sub-

set of units is selected in some type of probabilistic manner

(e.g., stratified random sample). Results from this subset of

units are used to draw inferences about the entire area of inter-

est. Likewise, survey methods rarely detect all the individuals

or species in an area during the sampling interval. Detection

probability, or “detectability,” accounts for the proportion of

animals or species missed during sampling. Historically,

researchers have resisted estimating detection probability,

claiming that it complicates field logistics and data analysis.

Today, estimation methods are more accessible and new

approaches are currently being developed. In the next section

we detail current estimation-based methods for three common

State variables.

Estimation-based Methods

Species Richness

Well-developed statistical theory exists for species richness esti-

mation using capture-recapture methods (Boulinier et al. 1998,

Williams et al. 2002). Each species is treated as an “individual”

and either sample occasions (Boulinier et al. 1998) or spatial

sample units (Nichols et al. 1998b) are treated as the “capture

occasions.” Models allow for detection probability to vary

among sampling occasions (i.e., time), among species (hetero-

geneity), or by some “behavioral” response, or a combination of

these factors (Boulinier et al. 1998). Behavioral response may

occur when a species becomes more abundant or visible at some

point during the sampling season, or if an observer’s ability to

detect a species increases with his/her exposure to that species

(Boulinier et al. 1998). Sample units may be visited once or on

multiple occasions. If units are visited only once, relative abun-

dance data (counts of individuals for each species) can aid in

species richness estimation (Boulinier et al. 1998, Burnham and

Overton 1979). Theory exists for estimating spatial differences

in species richness and community composition (Nichols et al.

1998b), and community dynamics such as extinction and colo-

nization rates (Nichols et al. 1998a). Numerous computer pro-

grams for species richness estimation are available online at 

http://www.mbr-pwrc.usgs.gov/software.html. 

(See programs CAPTURE, SPECRICH, SPECRICH2, 

and COMDYN.)

Abundance Estimation

Extensive literature deals with abundance or population estima-

tion (see Lancia et al. 1994, Nichols and Conroy 1996 for brief

reviews). These methods can be categorized as either count-

based or capture-recapture (or re-sighting) methods. Count-

based estimation methods have seen a number of recent

advances including distance sampling (Thomas et al. 2002),

double-observer sampling (Nichols et al. 2000), temporal

removal methods (Farnsworth et al. 2002), and replicated

counts (Royle and Nichols 2003). Thompson (2002) reviews

many of these methods and their application to sampling terres-

trial bird populations. 

Capture-recapture methods have existed for over two cen-

turies (Seber 1982) and are typically classified as those suitable

for closed (population constant during sampling) or open (pop-

ulation varying among sample periods) populations. Pollock et

al. (1990), Pollock (2000), and Buckland et al. (2000) briefly

review many of the capture-recapture models, including key

references. There are many options for abundance estimation,

and investigators should pay close attention to model assump-

tions and how they apply to their own systems. Combining esti-

mation methods can increase model flexibility and help resolve

problems with restrictive assumptions (Alpizar-Jara and

Pollock 1996, Farnsworth et al. 2002, Powell et al. 2000). 

There is an increasing variety of software availabe for 

analyzing abundance data including programs MARK 

(White and Burnham 1999,

http://www.cnr.colostate.edu/~gwhite/mark/mark.html), 

DISTANCE (Buckland et al. 1993, 

http://www.ruwpa.stand.ac.uk/distance/), and others 

(see http://www.mbr-pwrc.usgs.gov/software.html). 

Most of these software packages have good technical assistance

and online user’s manuals.
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Occupancy Estimation

For many species it is difficult to estimate abundance, but it is

often feasible to estimate the proportion of the sample area

where a species occurs. MacKenzie et al. (2002) developed a

statistical-based method for estimating patch occupancy rates

when species detection probabilities are less than 1. The

method utilized detection/non-detection data from multiple vis-

its to sites within a sampling season. Parameters include

species-specific detection probabilities and the proportion of

sites occupied. Sites can be discrete sampling units (ponds or

patches of forest) or plots or quadrants chosen from an area of

interest (MacKenzie et al. 2002). Occupancy rates may be

modeled as a function of site-specific (habitat) covariates,

while detection probabilities can be modeled as functions of

both site-specific and time-specific covariates (e.g., sampling

occasion, temperature, weather conditions) (MacKenzie et al.

2002). Theory also exists to estimate extinction and coloniza-

tion rates, and occupancy change over time (MacKenzie et al.

2003). Current areas of research include estimating species co-

occurrence rates, which could prove valuable in multi-species

monitoring programs such as the Multiple-Species Inventory

and Monitoring (MSIM) approach described in other papers

from this forum. Program PRESENCE is specialized software

designed for estimating and modeling occupancy rates using

detection/nondetection information. It is available at:

http://www.proteus.co.nz, and versions of the model have also

been incorporated into program MARK

(http://www.cnr.colostate.edu/~gwhite/mark/mark.html).

Traditional Sampling Example: Limitations 
and Modifications

Count-based sampling methods are widespread and deeply

entrenched in wildlife literature. We use “point counts” as an

example of a count-based technique to demonstrate its uses and

limitations. We discuss ancillary information that can be col-

lected to estimate detection probability. 

Point counts are a traditional bird survey method used in a

wide variety of studies including the North American Breeding

Bird Survey (BBS). In point counts, a single observer counts the

individuals detected (seen or heard) of each species within a

fixed time period and sampling radius. Time periods and sample

radii often vary among studies.

Species richness and occupancy rates can be estimated

using point counts, especially if sites are visited several times

within a sampling season; however, point counts are not appro-

priate for abundance estimation without estimating detectabili-

ty. Varying traditional point count protocol would allow for

detectability estimation including collecting distance informa-

tion, using two observers, or recording time of detection.

Variable circular points (VCP) are modified point counts where

the distance to each detected bird is recorded. Detection rate is

modeled as a function of distance from the point and used to

adjust raw counts and estimate abundance. Unless all birds near

the point are detected, a “donut effect” could result, causing

biased abundance estimates. Biologists often question the accu-

racy of distance methods, but measurement error can be

reduced by carefully training observers or using rangefinders.

Program DISTANCE is a powerful software package designed

to aid in analyzing distance sampling data and it can now

incorporate GIS information (see 

http://www.ruwpa.stand.ac.uk/distance/). 

Another way to estimate detection probabilities is to use the

double-observer approach (Nichols et al. 2000). At each point

count, a “primary” observer indicates to a “secondary” observer

all birds detected. The secondary observer records all the primary

observer’s detections as well as any birds missed by the primary

observer. Observers alternate primary and secondary roles. This

approach permits estimating observer-specific detection probabili-

ty rates that can be used to adjust raw counts and estimate abun-

dance (Nichols et al. 2000). 

Finally, a time removal method is a good option when

most detections are by sound or when singing frequency is

believed to be a major factor influencing detectability

(Farnsworth et al. 2002). The timed point count is divided into

intervals (equally spaced, if possible) where all individual bird

detections are recorded in each interval. The method can esti-

mate detection probabilities that vary by species, over time, or

among observers (Farnsworth et al. 2002).

In summary, traditional, nonreplicated point counts are

appropriate only for estimating species richness. If points are

visited on multiple occasions within season, then both occupan-

cy rate and species richness can be estimated. Further ancillary
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information is necessary to estimate abundance, but investiga-

tors have a variety of options that could be tailored to their spe-

cific system of interest. 

Application to Forest Inventory and 
Analysis Plots

The Forest Inventory and Analysis (FIA) program is useful

because of its well-defined survey units and large-scale, long-

term monitoring history. The ability to coordinate wildlife sam-

pling at FIA points facilitates collection of co-located and

historical information that may be important in determining: 1)

species distributional range and temporal trends; 2) species-

specific habitat associations; and 3) species response to man-

agement action. Unfortunately, FIA imposes a sample frame at

a specific spatial and temporal scale. This scale is likely insuf-

ficient (i.e., too coarse) to meet local wildlife management or

scientific objectives. Defining the scope of inference at FIA

points in terms of wildlife populations is difficult. One alterna-

tive is to define a two-stage sampling procedure in which a

group of FIA points constitutes a “local sampling frame” and

draw samples from within the area (e.g., National Forests or

ecoregions). This is the format used in the MSIM approach dis-

cussed in detail in other papers (e.g., Dunk et. al 2004, Manley

et. al 2004). MSIM uses estimation-based methods to monitor

occupancy rate as the focal State variable, but species richness

could also be estimated under the current design. Hypotheses

about spatial and temporal variations in these State variables

can be tested statistically. 

It is useful to consider alternative designs that provide

more detailed spatial information at the scale of forests for use

in local management. For example, a stratified frame could be

developed with forest-scale monitoring of a chosen State vari-

able in which FIA points were treated as a stratum within the

forest. Again, the appropriate sampling frame will be influ-

enced by the study’s management or scientific objectives, and

any sampling “protocol” applied to sites within the frame

should incorporate estimation-based methods.
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The Application of FIA-based Data to
Wildlife Habitat Modeling: 
A Comparative Study

Thomas C. Edwards, Jr.1; Gretchen G. Moisen2; Tracey S.

Frescino2; and Randall J. Schultz3

Abstract.—We evaluated the capability of two types

of models, one based on spatially explicit variables

derived from FIA data and one using so-called tradi-

tional habitat evaluation methods, for predicting the

presence of cavity-nesting bird habitat in Fishlake

National Forest, Utah. Both models performed equal-

ly well, in measures of predictive accuracy, with the

FIA-based model having estimates of model sensitivi-

ty. The primary advantage of using the FIA data is the

ability to convert the modeled relationships to spatial-

ly explicit depictions of bird habitat.

The conservation and management of animal populations depend,

in part, on accurate and parsimonious habitat models capable of

identifying key components of an organism’s habitat. Organisms

are assumed to select a habitat that will maximize survival and

reproductive success, and determining these habitat associations

is essential to the understanding of the factors underlying species

distribution and the maintenance of biodiversity.

The inability of small, single-scale studies to adequately

explain and predict species presence, the recognition that pat-

terns and processes are often fundamentally scale-dependent,

and the desire to minimize the need for intense field sampling

have all resulted in the introduction of landscape-level and

hierarchical investigations into habitat selection (Lawler 1999,

Lawler and Edwards 2002, Mitchell et al. 2001, Morris 1987,

Turner et al. 1989, Wiens 1989, among others). Habitat selec-

tion by an individual in a population is influenced by the com-

position and configuration of the surrounding landscape matrix

(Wiens and Milne 1989), and the incorporation of the “land-

scape-level” concept and technological advances allowed for

habitat selection to be examined at multiple spatial scales and

varying hierarchical levels (Bergin 1992, Gutzwiller and

Anderson 1987, Lawler 1999, Mitchell et al. 2001, Saab 1999,

Wiens et al. 1987). 

Ecologists have suggested that to maximize predictive

capability, habitat models need to incorporate a range of scales

(Knick and Rotenberry 1995). In a management context, how-

ever, landscape-level habitat modeling is a desirable alternative

to microhabitat sampling since microhabitat field sampling is

often not spatially explicit, and it can be time consuming and

labor intensive (Mitchell et al. 2001). Landscape-level model-

ing also allows for the study and management of the environ-

ment across large areas and in remote areas. This is a desirable

goal for broad-scale wildlife management; however, these mod-

els must be applied with caution. Landscape-level habitat mod-

els must predict species presence beyond a desired accuracy, or

if maximum predictive capability is the goal, landscape models

must predict species distribution similarly or better than a

microhabitat model or combined landscape/microhabitat model

to alone suffice for wildlife habitat modeling.  

Here we evaluate the efficacy of FIA-based data and

derived information in wildlife habitat modeling. Specifically,

we use FIA-derived, spatially explicit maps of several variables

assumed related to the presence of wildlife. The obvious advan-

tage of the FIA-based variables is their ability to be used in spa-

tial extrapolation. These predictor variables are compared

against more traditionally collected habitat variables (after

James and Shugart 1970; hereafter “traditional model”) having,

perhaps, better ecological linkage to species ecology but lacking

in the capability for spatial extrapolation. We test the simple

hypothesis that FIA-based habitat models perform equally as

well as traditional models in predictive capability. Our test

species is a guild of cavity-nesting birds.

1 Research Ecologist, U.S. Geological Survey, Utah Cooperative Research Unit, Utah State University, Logan, UT 84322–5290.
2 Research Forester, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401.
3 Graduate Research Assistant, Ecology Center and Department of Forest, Range and Wildlife Sciences, Utah State University, Logan, UT 84322–5230.
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Methods

Our study area was the Fishlake National Forest in southern

Utah at the southern extent of the Wasatch Mountains. The

study area encompasses sections of four ranger districts

(Richfield, Loa, Fillmore, and Beaver) spread over three gener-

al mountain ranges. The Richfield Ranger District is located on

Monroe Mountain and the Eastern Ranges, the Loa Ranger

District is located on the southern portion of the Eastern

Ranges, and the Fillmore and Beaver Ranger District are both

located on the Pahvant and Tushar Ranges, respectively (here-

after the Western Ranges). This region of Utah is characterized

by high mountains (~2,000 to 4,000 m) consisting of broad,

rolling plateaus, large alpine meadows, and considerable

amounts of aspen (Populus tremuloides) forest. The winters are

long and cold, and the summers are warm with frequent after-

noon mountain storms and summer monsoons.

Our study species included all members of the cavity nesting

bird community found to nest in aspen forests of Fishlake

National Forest, Utah. The species included six primary cavity

nesting birds: red-naped sapsuckers (Sphyrapicus nuchalis), north-

ern flickers (red-shafted) (Colaptes auratus), hairy woodpeckers

(Picoides villosus), downy woodpeckers (Picoides pubescens),

three-toed woodpeckers (Picoides tridactylus), red-breasted

nuthatches (Sitta canadensis), and six secondary cavity nesting

birds: tree swallows (Tachycineta bicolor), violet-green swallows

(Tachycineta thalassina), mountain chickadees (Poecile gambeli),

mountain bluebirds (Sialia currucoides), western bluebirds (Sialia

mexicana), and house wrens (Troglodytes aedon).

We systematically surveyed the study region for active

nests of cavity nesting birds from late May until early July. A

nest was considered active if it exhibited evidence of incuba-

tion, presence of eggs, presence of young, and/or feeding

behavior. Due to the lack of inference available from the nest

building stage, we did not include evidence of nest building as

a sign of activity. If a nest was in the building stage, however,

we returned to the site later to determine whether or not the

nest became active. To mark the active nests, we flagged a tree

that was at least 10 m away from the nest tree and recorded the

distance and azimuth to the nest tree from the flagged tree. In

addition, we recorded the UTM coordinates at each nest site

using a global positioning system (GPS).

We measured vegetation variables within 0.04 ha surround-

ing active nest trees. This scale ensured complementarity of our

data with the wealth of existing studies on avian habitat selec-

tion (James and Shugart 1970). Furthermore, this area is effec-

tive at characterizing the nest site since it is smaller than the

average territory size for most small forest passerines (Noon

1981, Sedgwick and Knopf 1992). We measured a series of

habitat measures including canopy cover, snag density, tree den-

sity, and shrub cover. These variables constituted our traditional

models. FIA-derived variables were obtained from maps devel-

oped using emerging techniques (e.g., Frescino et al. 2001) that

convert FIA data to spatially explicit representations. Variables

modeled included canopy height (m), number of snags, number

of live trees, and average tree height (m). Values were obtained

from the FIA maps by intersecting the UTM coordinates of the

nest sites with the digital FIA data. The result was two sets of

observations for modeling purposes: one based on data collected

within a 0.04-ha area surrounding active nest trees and the other

extracted from the FIA-based maps.

We used stepwise logistic regression to model the proba-

bility of presence of nest sites based on traditional and FIA-

based predictors. Although the number of nests varied

depending on guild type and model type, we used all of the

non-nest locations from 2001 in each habitat model. Models

were evaluated using these criteria: (1) estimates of model fit

based on model R2 and the Somer’s D statistic; (2) model pre-

dictive capability based on the 2001 training data; (3) predic-

tive capability based on internal cross-validation; and (4)

predictive capability based on the 2002 external model valida-

tion data. Measure of predictive capability included percent

correctly classified (PCC), sensitivity, specificity, and the area

under curve (AUC). The first three measures are considered

threshold-dependent measures, and their values are dependent

on a user-specified threshold. In our case we considered a

threshold value of >0.5 to be indicative of nest site presence.

AUC is threshold independent and is a measure of model pre-

dictive capability across the range of thresholds t, where

0<t<1.0.
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Results

A total of 227 nests were found during the 2001 and 2002 field

seasons. Of these nests, 165 were found in 2001 and used for

model building. The remaining 62 nests found in 2002 were

used for model validation.

Model fit was relatively poor for both the traditional and

FIA-based models (table 1), but differences between the two

model forms were negligible. Percent correctly classified and

AUC values were similar for both model forms for both training

and cross-classified data (tables 2, 3). However, model forms

differed in their sensitivity and specificity, with the FIA-based

model having greater sensitivity but lower specificity. When

tested with independent field data, the FIA-based model form

Model R2 Somer’s D

Traditional 0.039 0.020

FIA-based 0.174 0.048

Table 1.—Estimates of model fit for traditional and FIA-based
habitat models of nest sites of cavity-nesting birds, Fishlake
National Forest, Utah

FIA-based Traditional

PCC 0.633 0.637

Sensitivity .910 .593

Specificity .239 .739

AUC .600 .742

Table 2.—Measures of model accuracy of training data for tra-
ditional and FIA-based habitat models of nest sites of cavity-
nesting birds, Fishlake National Forest, Utah

FIA-based Traditional

PCC 0.633 0.637

Sensitivity .910 .593

Specificity .240 .740

AUC .565 .720

Table 3.—Measures of model accuracy of cross-validated train-
ing data for traditional and FIA-based habitat models of nest
sites of cavity-nesting birds, Fishlake National Forest, Utah

FIA-based Traditional

PCC 0.557 0.703

Sensitivity .790 .593

Specificity .283 .830

AUC .541 .755

Table 4.—Measures of model accuracy of independent data for
traditional and FIA-based habitat models of nest sites of cavity-
nesting birds, Fishlake National Forest, Utah

had a somewhat lower PCC and AUC value (table 4). The same

pattern in sensitivity and specificity found in the training and

cross-validated data occurred in the independent data as well.

Discussion

Forest wildlife management often requires not only understand-

ing of the ecological reasons behind a species presence on land-

scapes, but also a depiction of the spatial distribution of the

species. Variables suited for explaining why a species is found at

specific locations are not necessarily the best for predicting

where a species is located. Moreover, the types and kinds of

variables associated with species presence (e.g., presence of fun-

gal conks as an indicator of suitable trees for cavity nesting

birds) are often difficult to model and map. Consequently biolo-

gists must often choose, based on management objectives,

whether explaining the why of species presence location is more

important than the where of species presence. Ideal models

would simultaneously address both questions, but variables well

suited for mapping are not the same as those suited for explana-

tion. The results presented here indicate that habitat models for

cavity nesting birds based on variables having less ecological

explanatory value do as equally well in prediction as those with

high ecological explanatory value. The added value to the FIA-

based variables is the ability for spatial extrapolation. These

spatially explicit maps can provide managers with much needed

information on the spatial distribution of critical habitats.

However, use of maps of forest type and structure in

wildlife management are only as accurate as the models that

created the structural maps. There are several means of model-

ing or mapping forest structure across space, the first of which

is statistical modeling. In the Uinta Mountains of Utah,
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Frescino et al. (2001) built and validated statistical models of

forest presence, forest type, basal area, shrub cover, and snag

density using remotely sensed imagery and a suite of environ-

mental predictor variables (environmental gradients, tempera-

ture, precipitation, elevation, aspect, slope, and geology). The

models for forest presence and forest type were 88 percent and

80 percent accurate, and an average of 62 percent of the predic-

tions for basal area, shrub cover, and snag density fell within ~

15 percent deviation of field values (Frescino et al. 2001). Such

levels of accuracy are well within the margins of error for

wildlife management.

The ability to predict where a species occurs and where it

does not occur is vital to management decisions. Biologists

must evaluate their habitat models using rigorous model valida-

tion to test the spatio-temporal accuracy of their predictions.

Our results indicate, at least for the system studied here, that

equally reliable models could be built using so-called tradition-

al methods as well as new methods capable of translating FIA

data into spatial representations. The advantage of latter is the

clear ability to use these maps for spatial extrapolation for use

in wildlife management.
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Nonnative Plants in the Inventory of 
Western Oregon Forests

Andrew N. Gray1

Abstract.—Vegetation data from the 1997 inventory

of non-Federal forests in western Oregon were exam-

ined to assess the abundance of invasive nonnative

plants detected by the inventory. Inventoried plants

were the more common, identifiable species; compos-

ites and graminoids were underrepresented.

Nonnative species were found on 1,040,000 ha (35

percent) of the non-Federal forest land in western

Oregon. Abundance of most nonnatives was greater

on lands that had been recently clearcut or thinned

and was more closely related to stand density than cli-

mate. Most species were shade-intolerant, but shade-

tolerant ivy and holly have the potential to greatly

increase in abundance.

Invasion of plants and animals into new regions around the

world dramatically impacts the economics of human communi-

ties, and seriously threaten native species and ecosystems

(Mooney and Hobbs 2000, Vitousek et al. 1996). Biological

invasions may be second only to land use change as causing

species extinction (D’Antonio and Vitousek 1992).

Competition from nonnative plants is a ubiquitous problem in

most agricultural areas, and can also jeopardize the success of

forest plantations and the availability of forage on rangeland

(e.g., Crompton et al. 1988, Randall and Rejmánek 1993).

Public agencies in the Pacific Northwest are struggling to

evaluate and control the spread of invasive, nonnative plant

species. The Oregon Department of Agriculture maintains lists

of the most threatening exotic plants and has guidelines for

controlling them (Oregon Department of Agriculture 2001).

However, there have been few assessments of the distribution

and rate of spread of many of these species. Most published

information about the distribution of individual species is

derived from collected locations of specimens in herbaria, or

from general descriptions of their association with plant com-

munity types published in floras. The objective of the study

reported here was to assess the abundance of nonnative plant

species recorded during an inventory of non-Federal forests in

western Oregon and to examine the effects of environment and

management on their abundance.

Methods

Inventory Design

Forest land in western Oregon was inventoried from 1995 to

1997 by the USDA Forest Service’s Forest Inventory and

Analysis (FIA) unit in the Pacific Northwest Research Station.

The study area consisted of the counties of western Oregon,

generally extending west from the crest of the Cascade

Mountains to the Pacific Ocean, and south from the Columbia

1 Research Ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331. Phone: 541–750–7252; e-mail:
agray01@fs.fed.us.

Figure 1.–Map of western Oregon study area, showing bound-
aries of ecoregions (Bailey 1980) and approximate locations of
forestland FIA plots.
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River to the California border. The area has a broad range of

climate and vegetation, ranging from the Picea sitchensis Zone

along the moist, warm coastline, to the Tsuga heterophylla Zone

in the cooler Coast Ranges and the lower Cascades, to Quercus

garryana communities in the dry, warm interior valleys

(Franklin and Dyrness 1973). This range of conditions can be

stratified into four main ecoregions: Coast Range, Cascades,

Willamette Valley, and Klamath (Bailey 1980) (fig. 1).

The field plot sample design consisted of a systematic grid

on a 5.4-km spacing (1 point per 3,000 ha). Inventory data from

land managed by the Bureau of Land Management and the

USDA Forest Service were excluded from this study because

they were not collected by FIA and did not have comparable

information on vegetation composition. Field plots were

installed by FIA at all grid locations on remaining lands that

met the criteria for “forest land” (i.e., land area ≥0.4 ha in size

that had, or had previously had, 10 percent canopy cover by

trees and was not primarily managed for nonforest land use). A

total of 1,127 plots were sampled.

At each forest sample grid location, five subplots were

installed (or remeasured) over a 2-ha area at 66-m intervals.

Understory vegetation was sampled on 5-m radius plots around

each subplot center. All species of shrubs, and of trees <2.5-cm

diameter at breast height (d.b.h.) (“seedlings”) were recorded;

“herb” species (forbs, graminoids, and ferns) were recorded if

present at ≥3 percent cover. Species’ cover was estimated in 5-

percent increments. Trees were identified by species and sam-

pled more intensively than other plants. Trees ≤12.5-cm d.b.h.

were measured on 2.35-m fixed radius plots at each subplot

point, and larger diameter trees were sampled with a variable-

radius, 7-m basal area factor prism, up to a maximum distance

of 17 m. Diameter, height, species, crown class, and other

attributes were recorded for all sample trees. Additional meas-

urements of tree canopy cover were made along three 17-m

transects on each subplot. Trees were assigned to as many as

three canopy layers, and the portions of the transect covered

(using vertical projection from crown edges) by each species

were recorded. Other data collected on FIA plots (e.g., root dis-

ease, snags, and down wood) were not used in this study.

The systematically placed subplots often sampled different

forest types, stand age classes, or land types, termed “condition

classes” (e.g., clearcut vs. pole stand, pasture vs. forest). Obvious

differences in vegetation types were distinguished and mapped in

the field, and all collected data were identified to the condition

class in which they were found.

Analysis

There were 545 plant species recorded at the 1,127 sample grid

locations that were forested. To reliably examine the distribution

of a given species, it was first necessary to select only those

species that had a high probability of being detected by most

field crews. For each species, an estimate was made of the ability

of most of the crew members to identify it if encountered (low,

medium, or high) based on personal experience with plant identi-

fication in the region, and corroboration with an experienced

field crew member (Erica Hanson, personal communication).

Some species were combined at the genus level based on similar

ecological attributes and/or difficulty of identification. Of the

Species Code Common name Number Percent 
of plots frequency

Cirsium spp. CIRSI thistle 102 9.1

Cytisus scoparius CYSC4 Scotch broom 55 4.9

Digitalis purpurea DIPU foxglove 57 5.1

Hedera helix HEHE English ivy 9 0.8

Hypericum perforatum HYPE St. John’s wort 32 2.8

Ilex aquifolium ILAQ80 English holly 41 3.6

Rubus discolor RUDI2 Himalayan blackberry 264 23.4

Rubus laciniatus RULA cutleaf blackberry 148 13.1

Table 1.—Plant species not native to western Oregon selected for analysis, and their frequency in the FIA inventory
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species recorded, all 37 tree species were judged to have a high

to medium probability of being identified by most crews; 84

shrubs, 50 forbs, and 0 graminoids were judged to meet the same

criteria (there was no specific training for identification of

graminoids for this inventory). These species were then matched

with a national list of nonnative species (USDA 2002), resulting

in a final list of eight species examined in this study (table 1).

Summaries of species frequency and abundance were cal-

culated for the study area and by ecoregion. Additional analy-

ses of species frequency in relation to environment and

management history were done at the stand level. Independent

variables were various potentially important site, stand, and cli-

matic attributes. Site attributes consisted of elevation, aspect

(linearized to reflect solar heating with the coversion

cosine(aspect-45)), percent slope, potential annual direct radia-

tion (from equations in Oke (1987)), and topographic moisture

index (Parker 1982). Stand attributes included percent tree

canopy cover, proportion of cover in hardwoods, basal area per

hectare of all trees and of shade-tolerants only, quadratic mean

diameter, stand size class, and stand age. Climatic variables

included mean annual and mean summer precipitation, mean

annual and mean summer temperature, mean annual range in

temperature, and a moisture stress index of summer tempera-

ture divided by summer precipitation, all derived from the

PRISM climatic interpolation model (Daly et al. 1994).

Logistic regression was used to examine species-distribu-

tion patterns where the dependent variable was the odds ratio,

expressed as the number of subplots with a species over the

number of subplots sampled within a stand on a plot (GENMOD

procedure, SAS Institute (1999)). The regression analyses could

not accommodate multiple conditions (“stands”) on the same

plot because many of the independent, plot variables would be

identical for different stands. Therefore, only the largest condi-

tion on each plot was included in the analyses. A modified step-

wise procedure was used by running the logistic regressions for

each species on all independent variables individually, and then

building the model with the strongest variable and assessing the

strength of additional (uncorrelated) variables. Pearson correla-

tion coefficients among the independent variables were used to

help guide model development. Residuals were examined and

plotted against the next variable in the model to avoid inclusion

of spurious relationships.

Additional analyses were used to evaluate the effect of

logging on the presence of the selected species. Two types of

logging were evaluated: stand-replacing harvest (clearcutting,

usually with no retention of trees from previous stand), and

partial harvest (primarily commercial thinning). The former

was assessed by comparing seedling/ sapling stands with a

mean tree d.b.h. ≤12.5 cm with stands with larger trees.

Thinning was assessed for pole- and sawtimber-sized stands

(d.b.h. >12.5 cm) by comparing stands that had been partially

harvested in the 10 years before measurement to stands that

had not. To test the effect of logging, the best logistic regres-

sion model for a species was developed using the approach

described above but without including stand density or stand

size attributes, and then applying a least-square means test on

either stand size or thinning (Ramsey and Schafer 1997).

Results

Overall, 450 of the 1,127 stands (40 percent), and 1,726 of the

4,924 vegetation subplots (35 percent) had one or more of the

selected weed species. Applying the latter percentage to the

Figure 2.–Proportion of sample plots by ecoregion, compared
to the proportion of sample plots where each nonnative species
was found, by ecoregion. Species codes are defined in table 1.
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area of non-Federal forestland in western Oregon (Azuma et al.

2002) suggests these species were present on 1,040,000 ha of

non-Federal forestland in western Oregon. Himalayan blackber-

ry (Rubus discolor Weihe & Nees) was the most abundant of

the nonnative species, having been found on almost one-quarter

of the plots and across most of the study area (table 1). On the

other hand, English ivy (Hedera helix L.) was the least abun-

dant of the nonnative species and was primarily found close to

Portland and other urban areas.

The proportion of sample plots by ecoregion was usually dif-

ferent from the proportion of sample plots where nonnative species

were found (fig. 2). All of the nonnative species, except for fox-

glove (Digitalis purpurea L.), were more common in the Willamette

Valley ecoregion than in the other ecoregions. Foxglove was partic-

ularly common in the Coast Range ecoregion. The Klamath ecore-

gion had fewer plots with Scotch broom (Cytisus scoparius (L.)

Link), English ivy, or English holly (Ilex aquifolium L.).

Stand density was strongly associated with the frequencies

of all of the nonnative species, but the most significant vari-

ables, and their signs, differed among species (table 2).

Increasing tree canopy diminished the frequency of thistles

(Cirsium P. Mill.), Scotch broom, St. John’s wort (Hypericum

perforatum L.), and cutleaf blackberry (Rubus laciniatus

Willd.). In addition, the greater the basal area the less the fre-

quency of foxglove and Himalayan blackberry. Increasing stand

density increased the frequency of English ivy and English

holly, with the most important variables being canopy cover

and quadratic mean diameter, respectively.

Climatic and site variables were also strongly associated

with the frequency of most species. Increasing annual precipita-

tion reduced the frequency of thistle, but increased the frequen-

cy of foxglove. There was a positive relation between annual

range in temperature and frequency of St. John’s wort. For the

rest of the species, frequency diminished with increasing eleva-

tion. Although elevation is a complex climatic gradient, across

this population of plots (where elevation ranged from 0 to 1433

m) the correlations between elevation and climatic variables

were not high: r=-0.50 for annual temperature, and r=-0.11 for

annual precipitation.

All the species were significantly affected by harvest activi-

ty, except for English ivy (possibly due to low sample size for

this species). Most species were at least twice as frequent (close

to 10 times more for thistle) in seedling-sapling stands (d.b.h.

≤12.5 cm) than in pole and sawtimber stands (d.b.h. >12.5 cm)

(fig. 3). The reverse was true for English holly, and English ivy

was only found in the larger size classes. Thinning the larger size

classes within the 10 years before inventory also significantly

affected frequency of most of the species. Except for English ivy,

species were two to four times more likely to be found in thinned

stands than in unthinned stands of the same size class.

Discussion

This analysis of recent forest inventory data in western Oregon

indicates that nonnative species have become an important part

of the flora in these forests, having been detected on 40 percent

Species code Variable Sign F(1,1124)

CIRSI Tree cover – 613.13

Annual precipitation 31.28

CYSC4 Elevation – 76.85

Tree cover – 70.4

Aspect (cosine) – 30.89

DIPU Basal area – 293.19

Annual precipitation + 172.57

Topographic moisture – 11.53

HEHE Elevation – 257.13

Tree cover + 102.82

HYPE Tree cover – 131.34

Annual temperature range + 50.49

ILAQ80 Elevation – 124.45

Quadratic mean diameter + 51.52

RUDI Elevation – 242.33

Basal area – 139.34

RULA Elevation – 128.22

Tree cover – 77.29

Table 2.—Variables selected for final logistic regression models
of frequency for each nonnative species on FIA plots, the direc-
tion of the effect (as sign, positive or negative), and the strength
of the variable (only F-statistics are shown; P values for all
variables were <0.0005)
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of the plots on non-Federal forest lands. It is unknown, howev-

er, if a complete botanical inventory on these plots (i.e., geared

to sample species that were difficult to identify or that were

regionally uncommon) would have revealed a greater preva-

lence of nonnative species. Many composites and grasses are

hard to identify, even if encountered during peak phenology.

For example, spotted knapweed (Centaurea maculosa auct. non

Lam.) and quakgrass (Elymus repens (L.) Gould) are nonnative

species on the Oregon Department of Agriculture (ODA) nox-

ious weed list (Oregon Department of Agriculture 2001) but

have not been detected yet on the FIA plots. It is hoped that the

planned implementation of full species sampling on a subset

(one of every 16) of the standard FIA plots (known as “forest

health monitoring plots”) in Oregon beginning in 2004 will

provide information on the abundance of many more species

than is currently available.

Most of the nonnative plants in this study were more like-

ly to be found in the Willamette Valley ecoregion than in the

other ecoregions of western Oregon. Many of the species were

more affected by elevation than by any climatic variable. These

results suggest that the presence of these plants on forest land

is strongly affected by proximity to urban and agricultural set-

tings, where anecdotal evidence indicates they are often locally

abundant; unfortunately there is no comparable inventory of

vegetation on nonforest land to assess this quantitatively.

Shade tolerance was an important trait determining species

distributions. Six of the eight species in this study declined

with increasing stand density, were significantly more common

in seedling/sapling stands than in larger stands, and were more

common in thinned stands than in unthinned stands. While this-

tle, Scotch broom, St. John’s wort, and cutleaf blackberry

appeared to be more sensitive to canopy cover than other meas-

ures of stand density, foxglove and Himalayan blackberry

appeared to be more sensitive to basal area. Because basal area

increases slower than canopy cover, foxglove and Himalayan

blackberry may be more shade-tolerant than the other four

species. Because they are most common during early stages of

succession, these six species may be ephemeral on forest land.

Nevertheless, their prevalence in recently thinned stands indi-

cates the presence of persistent seed banks in the soil or abun-

dant seed sources.

Unlike the relatively shade-intolerant species, the frequen-

cy of English ivy and English holly was associated with

increasing stand density, and both were more common in larger

stand size classes than in seedling/sapling stands. These ever-

green shrubs are common in urban areas where they are plant-

ed as ornamentals, they are shade-tolerant, and their seed is

readily consumed and dispersed by native birds. The ivy is cur-

rently on the ODA weed list while the holly is not. Their ability

to persist in closed-canopy stands and their lack of association

with any climatic variables in this study suggest a high poten-

tial for future spread in the forests of western Oregon.

Figure 3.–Magnitude of logging effect on the frequency of non-
native species. Estimated frequencies for each species were
determined by least-square means from logistic regression
models, and means and 95-percent confidence intervals were
expressed as proportions of the largest value to display all
species on the same scale. For each species, the upper panel
compares estimated frequency between stands with mean d.b.h.
≤12.5 cm with those greater, and the lower panel compares
thinned and unthinned stands for stands >12.5-cm d.b.h..
Differences were significant at the p=0.05 level for all species
except HEHE. Species codes are in table 1.
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Providing Confidence in Regional Maps in
Predicting Where Nonnative Species are
Invading the Forested Landscape

Dennis M. Jacobs and Victor A. Rudis1

Abstract.—Nonnative invasive plant species intro-

duced to the South during the past century threaten to

forest resources. Knowing their extent is important for

strategic management and planning. We used U.S.

Department of Agriculture, Forest Service, Forest

Inventory and Analysis (FIA) field observations at

ground-sampled locations to model the geographic

occurrence probability of forest land in the sampled

region, and selected nonnative invasive species in

ground-sampled forest land locations. We chose krig-

ing to interpolate and map features geostatistically,

and to portray quantitative confidence in the estimates

across the sampled region.

Nonnative invasive species are invading forest land. Inventory

field crews, along with State partners, now record the presence

and dominant cover of selected species in annual inventories in

the South (USDA 2001). Using traditional numerical proce-

dures, analysts can determine the area of timberland that con-

tains these species, but maps provide additional information.

One is able to quickly visualize the range and distribution of

invasion hot spots, initiate hypotheses for species distributions,

and provide tabular information to potential stakeholders. Maps

help regional administrators, managers, planners and policy-

makers to quickly locate where nonnative invasive species

occur, but more detail is needed to permit a discussion of

strategies for managing nonnative invasive species and control-

ling their spread. 

Simple dot maps of the approximate sample locations

show the distribution of forest land as well as individual

species, e.g., Beltz and Bertelson (1990). That same location

information also may be used to interpolate the occurrence of

these species between plot locations by generating a probability

surface with a finer resolution than the original spacing. We

report on interpolation procedures used in Rudis and Jacobs (in

preparation) to map Japanese honeysuckle (Lonicera japonica

Thunb.), privet (Ligustrum spp.), multiflora rose (Rosa multi-

flora Thunb. ex Murray), tree-of-heaven (Ailanthus altissima

[Mill.] Swingle), kudzu (Pueraria. montana [Lour] Merr. var.

lobata [Willd.] Maesen & S. Almeida), melaleuca (Melaleuca

quinquenerva [Cav.] S. T. Blake), and royal paulownia

(Paulownia tomentosa [Thunb.] Sieb. Zucc. ex Steud.) in

selected States of the South.

Methods

We used plot coordinates that were nominally correct to within

800 m of the actual plot location. Land use at field plots and

selected nonnative invasive species’ presence and absence val-

ues on ground-sampled forest locations were data variables. We

chose the survey years 1988 to 1995 as data were complete and

species selection procedures were consistent within the then

three FIA survey regions. For calculating forest land probabili-

ty, State surveys included South Central States—Alabama

1990, Arkansas 1995, Louisiana 1991, Mississippi 1994, east

Oklahoma 1993, Tennessee 1989, east Texas 1992;

Southeastern States—Florida 1995, Georgia 1989, North

Carolina 1990, South Carolina 1993, Virginia 1992; and

Kentucky 1988. 

We entered the selected data variables into a geostatistical

software program (GS+ (Robertson 2000)). Calculations

involved two essential steps. The first step was to assess the

optimum range (the distance at which pairs of plot samples no

longer influence one another and are statistically independent)

and best-fit parameters from the best model (the model that

minimizes the residual sum of squares while also retaining a

high R-square value from the available data). The second step

was to apply the parameters of the best-fit model to generate a

grid surface through a routine called a kriging system (Krige

1951, Matheron 1963). We selected 1 km as the standard grid

cell size and limited the range to the 16 plots closest to the 1-

km grid cell.

Kriging variance provides data to produce a companion

map showing reliability of the data for each grid cell value in

the kriged map. These kriging variance values are mapped in

1 Research Foresters, Southern Research Station, Forest Inventory and Analysis Unit, Starkville, MS 39760–0928. E-mail: djacobs@fs.fed.us and vrudis@fs.fed.us. 
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conjunction with the cell values generated during the kriging

routine. A higher number of plots within a close radial distance

and the shorter the distance from the grid cell to each of the

surrounding plots provide lower kriging variance values to

show the better quality of these data. Areas of higher kriging

variance may be compared to the same areas within the forest

probability map to determine which areas are suspect to a high

degree of error. These geographic areas of high error are then

blocked out of the map to prevent the portrayal of potentially

erroneous information. 

Results

The kriging variance grid (fig. 1) showed the difference in den-

sity of the plot locations across the South through the portrayal

of the kriging variance value for each grid cell. Geographic

areas containing high numbers of plots in close proximity to one

another exhibited low kriging variance for grid cells near those

plots. Where plots were less dense or unevenly spaced, the krig-

ing variance was slightly higher for neighboring grid cells.

For Southeastern States (Florida, Georgia, North Carolina,

South Carolina, and Virginia), the Southeastern Coastal Plain

contained roughly one plot per 1,100 ha; the Piedmont one plot

per 1,400 ha; and the Mountains, one plot per 1,900 ha.

Clumping of plots, as seen in the Mountains, produced a spotty

effect, i.e., a patchwork of high and low kriging variance.

Kentucky was an excellent example. The western portion aver-

aged fewer plots than any of the other States in the South.

However, in eastern Kentucky, the national forest land aver-

aged a higher proportion of plots.

The South Central States (Alabama, Arkansas, Louisiana,

Mississippi, eastern Oklahoma, Tennessee, and eastern Texas)

had nearly uniform plot spacing due to the historical layout of

plots on a 4.8-km x 4.8-km sample grid, i.e., one plot per 2,300

ha. Also, there were no field plots in western Oklahoma and

western Texas and along predominantly swampland portions of

Coastal Plain counties in Louisiana and Texas. This western

portion of the map shows a uniform kriging variance across the

South Central region with one easily seen exception: Plot spac-

ing within the region’s small national forests was denser, thus

providing for lower kriging variance. Another exception, light

areas within the map not easily seen, was along county lines. In

such cases, the kriging variance map illustrates a somewhat

Figure 1.—Kriging variance, Southern United States, 1988-
1995. (South Central—Alabama 1990, Arkansas 1995,
Louisiana 1991, Mississippi 1994, east Oklahoma 1993,
Tennessee 1989, east Texas 1992; Southeastern—Florida
1995, Georgia 1989, North Carolina 1990, South Carolina
1993, and Virginia 1992; and Kentucky 1988.)

Figure 2. —Forest land area from ground-sampled locations,
Southern United States, 1988-1995. (South Central—Alabama
1990, Arkansas 1995, Louisiana 1991, Mississippi 1994, east
Oklahoma 1993, Tennessee 1989, east Texas 1992;
Southeastern—Florida 1995, Georgia 1989, North Carolina 1990,
South Carolina 1993, and Virginia 1992; and Kentucky 1988.)
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larger spacing than the suggested 4.8-km distance for laying

out the original plot grid. 

Interpolation outside the grid of plots resulted in extremely

high kriging variance values. Likewise, interior holes of no data

are visible where ground-sampled information in areas reserved

from timber production was unavailable for this study (e.g.,

Everglades, Great Smoky Mountains, and Okefenokee Swamp).

The forest probability map (fig. 2) portrays densely and

sparsely forested areas of the South with a gradient from dark

gray to light gray. Sparsely forested areas include south

Florida, the Mississippi Alluvial Valley, the Arkansas River and

Red River, Blackbelt Prairies, and Interstate Highway corri-

dors. This map provides a method to block out the species grid

surface layer to the grid cells having a minimum threshold for-

est land probability. 

Discussion and Conclusion

Future plans for the location of plots include dropping some

plot locations and adding others to form a regular grid network

to provide for a more uniform statistical kriging variance across

the entire South. As FIA and State partners implement the new

wave of forest inventory plot designs across all States, more

data will be available for modeling nonnative invasive species.

When completed, occurrence maps will become available for

detecting both the current status and change in distribution of

nonnative invasive species. 

New FIA procedures include refining all spatial data with

more precise location information obtained from GPS units,

which will improve the utility of the final map for linkage with

other georeferenced data sources, and various other uses. At the

same time, spatial accuracy also could be improved, especially

in predominantly nonforest regions, with sampling of selected

attributes on plots categorized as agricultural or urban land, but

that contain forest land elements such as trees and other attrib-

utes of interest, i.e., nonnative invasive species.
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Measuring Tree Seedlings and 
Associated Understory Vegetation in
Pennsylvania’s Forests

William H. McWilliams1, Todd W. Bowersox2, Patrick H.

Brose3, Daniel A. Devlin4, James C. Finley2, Kurt W.

Gottschalk5, Steve Horsley5, Susan L. King1, Brian M.

LaPoint1, Tonya W. Lister1, Larry H. McCormick2, Gary W.

Miller5, Charles T. Scott1, Harry Steele3, Kim C. Steiner2,

Susan L. Stout3, James A. Westfall1, and Robert L. White6

Abstract.—The Northeastern Research Station’s

Forest Inventory and Analysis (NE-FIA) unit is con-

ducting the Pennsylvania Regeneration Study (PRS)

to evaluate composition and abundance of tree

seedlings and associated vegetation. Sampling meth-

ods for the PRS were tested and developed in a pilot

study to determine the appropriate number of 2-m

microplots needed to capture variability in seedling

abundance. The findings resulted in a decision to use

one 2-m fixed-radius microplot per 7.3-m fixed-radius

subplot of the NE-FIA design. Preliminary results

indicate that one-half to two-thirds of the region’s

forests would require remedial treatment if preferred

species are the management objective.

Forest inventory data are being used to monitor understory com-

munities as part of the inventory of Pennsylvania by the

Northeastern Research Station’s Forest Inventory and Analysis

(NE-FIA) unit (McWilliams et al. 2002). The primary objective

of the landscape-level Pennsylvania Regeneration Study (PRS)

is to determine the composition and abundance of tree seedlings

and associated understory vegetation. The PRS is part of a larg-

er research initiative by cooperating institutions to develop site-

and species-specific stocking guidelines and other management

criteria for the range of forest systems in the State. The results

of a pilot study to test and evaluate sampling methods for tree

seedlings and understory communities are presented along with

preliminary results from the first year of data collection.

Methods

Study Region

The PRS region consists of the entire State and is excellent for

regeneration measurements and assessments (fig. 1a), as compli-

cated forest associations abound: mixed mesophytic in the south-

west (Braun 1985); mixed oak throughout but concentrated in

the Central Appalachians; Allegheny and northern hardwoods

along the northern tier; coniferous systems mixed throughout;

and several other cover types (see Fike 1999). Actual species

composition and structure vary greatly due to interrelated factors

such as topographic location, land use and disturbance history,

anthropogenic forces, and geographic differences. An overpopu-

lation of white-tailed deer (Odocoileus virginianus Zimmerman)

that has devastated regeneration over vast areas adds a particu-

larly complex factor to this mix (McWilliams et al. 1995).

Current deer populations are well above the thresholds for

healthy understory development (deCalesta and Stout 1997).

Determining the Number of Microplots to Measure

Sampling methods for the PRS were tested and developed from

a pilot study using a subset of NE-FIA sample locations during

the 2000 field season (McWilliams et al. 2001). Sample plots

occupy 2,400-ha hexagons that mosaic the State. Because the

NE-FIA sample is measured over 5 years, 20 percent of the

sample locations are measured each year in an “interpenetrat-

ing” fashion; that is, no plots are measured in two adjacent

hexagons in a given year. Regeneration was measured during

the leaf-on season; the interpenetrating concept (fig. 1b) was

1 U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA, 19073. Phone: 610–557–4050; fax: 610–557–4095; e-mail:
wmcwilliams@fs.fed.us.
2 The Pennsylvania State University, School of Forest Resources, University Park, PA.
3 U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Irvine, PA.
4 The Pennsylvania Department of Conservation and Natural Resources, Bureau of Forestry, Harrisburg, PA.
5 U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Morgantown, WV.
6 Allegheny National Forest, Warren, PA.
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Figure 1.—Ecoregions of the study region (a), systematic interpenetrating sample design (b), and sample location layout
(c), Pennsylvania.
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used. Each year, about 300 regeneration plots are measured.

The NE-FIA sample location consists of four 7.3-m fixed-

radius subplots spaced 36.5 m apart with a 2-m fixed-radius

microplot used for saplings (fig. 1c). 

One objective of the pilot study was to determine the appro-

priate number of 2-m microplots needed to determine in situ vari-

ability in seedling abundance. A model was fit for every number

and spatial combination of 16 microplots—the maximum that

would fit onto the sample location, or four microplots per subplot. 

A relative-variance function relates the plot and sampling

design variables to the attribute of interest. A relative-variance func-

tion for a single plot of varying size (z) takes the form (Smith 1938):

Ri(z) = b0i z
b1i (1)

where:

b1i = a negative exponent relating the area sampled to 

the relative-variance of an attribute i such as species

b0i = a coefficient

As b1i approaches 0, little information is gained by

increasing plot size, whereas as b1i approaches -1, increasing

the plot size provides new information. Scott (1993) extended

Smith’s formula to include the case of multiple subplots:

Ri(m, –d, z) = b0im
b1i 

–db2i zb3i (2)

where:

m = the number of subplots 
–d = averaged paired distance between subplots

z = subplot size

In this application, the distance between the subplots and

the size of the plots is fixed. Therefore, the only variable is the

number of plots. The relative-variance was replaced by its

square root, the coefficient of variation (CV). 

CVi (m) = b0i mb1i (3)

Using nonlinear regression, the coefficients b0i and b1i con-

verged to 1 and 0 respectively for any combination of species,

and subplots. Linearizing the coefficient of variation equation,

by taking the natural log of both sides allowed a differentiation

of the coefficients.

1n (CVi (m)) = 1n (b0i) + b1i 1n(m) (4)

The intercepts varied by species, but the slopes ranged

from -0.6 to -0.16. Figure 2 shows the plotted function for all

species combined. Individual species had similar curves. Since

the curve was flat for four or more microplots, the decision is

to use one 2-m microplot per 7.3-m subplot.

Sample Design

The overall nested plot design follows protocols used by

Marquis (1994). A focus session with field staff following the

pilot-study fieldwork resulted in suggestions for modifying

tally procedures. For example, the number of tree-seedling

height classes was reduced from eight to six without sacrificing

scientific utility. The final design consists of a tally of all fully

established seedlings (less than 2.5 cm in diameter) by species,

source, and height class. Seedling source includes stump

sprout, other seedling, and a “competitive” category for large-

seeded deciduous species. The minimum threshold of 1.9-cm

root-collar diameter for competitive status was based on Brose

and Van Lear’s (1998) findings for long-term stem survival.

Microplot variables also include standard NE-FIA sapling meas-

urements, presence of a large tree, and site limitations. Percentage

cover of associated understory vegetation was estimated by

species using the larger subplot. Marquis (1994) found that the

7.3-m size captured the variation of fern, grass, and other herba-

ceous vegetation. Associated understory vegetation was tallied

using standard FIA codes for woody shrub species and three

groups for other life forms: fern, grass, other herbaceous.

Preliminary Results

Indicators of Regenerative Capacity

Indicators used to analyze advance tree seedlings were devel-

oped to provide results that span a range of stocking that

Figure 2.—Coefficient of variation for numbers of tree
seedlings as a function of numbers of microplots used.
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reflects both standard guidelines (Gingrich 1967, Sander et al.

1976) and those for the high deer impact-conditions of

Pennsylvania (Marquis and Bjorkbom 1982). The standard

guideline for acceptable stocking is 25 seedlings per 2-m

microplot versus 100 for high deer-impact conditions. Each

sample tree is weighted by height class before the thresholds

are applied:

Any combination of weighted stems that meets or exceeds

the minimum number required is considered adequate stocking.

For example, one seedling from 1.5 to 3.1 meters in height repre-

sents 50 seedlings. The indicators also used the tally of saplings

(2.5 to 12.5 centimeters in diameter) to fully account for under-

story tree stocking. The results were partitioned by species

groupings that reflect a range of management objectives: pre-

ferred, commercial, or woody (McWilliams et al. 1995).

Advance Tree-seedling Component

Applying the stocking thresholds to the sample data provides

estimates of the proportion of forest that met or did not meet

accepted silvicultural guidelines for advance tree-seedling

stocking (table 1). The sample data were filtered to include

only forested sample locations within the range of stocking

where silvicultural guidelines indicate sufficient light for tree-

seedling establishment (from 40- to 75-percent stocked with

overstory trees). The findings indicate from one-third to one-

half of the region’s forests would need some form of remedial

treatment if commercially acceptable species are the manage-

ment objective; one-half to two-thirds require remedial treat-

ment if preferred species are desired. Estimates for the

indicators were lower for the Laurentian Mixed Forest Province

and the Eastern Broadleaf Forest (Oceanic) Province (East)

than for the Central Appalachian Broadleaf-Coniferous Forest-

Meadow Province and Eastern Broadleaf Forest (Oceanic)

Province (West) (Bailey 1995). Data from future samples

should reveal additional spatial information, for example, test

results of ecoregions and deer management zones for detectable

differences in regenerative capacity; and data specific to natural

and managed systems, advance- and post-disturbance regenera-

tion, and composition of understory communities.

Associated Understory Vegetation

Tree seedlings and associated understory vegetation compete

for growing space (Lorimer et al. 1994). Using percentage

cover as a surrogate for growing space allows us to compare

cover for samples that did and did not meet the tree-seedling

stocking thresholds. Results for the two stocking guidelines by

vegetative component are shown in table 2. Samples that did

not meet the thresholds had more growing space allocated to

associated understory vegetation than those that did. Fern was

particularly opportunistic. The most common ferns in

Pennsylvania, rhizomous, are not preferred deer food, and

quickly spread across the forest floor in the absence of compe-

tition for available light. 

Conclusions

The PRS results are commonly cited in policy discussions

within Pennsylvania’s environmental community because the

implications for forest management are controversial. These

include significantly reducing the State’s doe herd, installing

and maintaining deer fencing, applying herbicides and other

control measures, and introducing prescribed fire in areas

where species such as Quercus spp. are desired future stand

cohorts. The PRS sampling protocols and indicators are useful

for characterizing understory vegetation. Future work will be

directed toward refining existing methods with the study team

focusing on reviewing and expanding specific indicators to

address a wider range of questions. 

The detailed understory measurements collected in this study

can be used to address additional research questions. Extensions

include developing models for prospective vegetational changes

based on overstory-understory relationships, gaining insight into

differences between advance- and post-disturbance regeneration,

Height Class Weight

5.1 cm to 14.7 cm 1

14.7 cm to 0.3 m 1

0.3 m to 0.9 m 2

0.9 m to 1.5 m 20

1.5 m to 3.1 m 50

Greater than 3.1 m 50
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additional indicator development, and improving stocking guide-

lines for managed and unmanaged eastern hardwood forests.

Understory measurements also will improve estimates of under-

story biomass and carbon by vegetational component.
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Species group Stocking guideline Ecoregiona

All EBF-W PLAT C APP EBF-E

Preferred Standard 48 58 45 44 50

High deer 31 45 24 30 22

Commercial Standard 66 69 65 64 61b

High deer 51 57 46 52 39
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b Indicates nonsignificant differences between standard and high deer guidelines for H0: Ps >Phd at the 95% confidence level.

Table 1.—Percentage of samples that met regeneration indicator thresholds by species group, stocking guideline, and ecoregion,
Pennsylvania, 2001

Vegetative Componenta

F FGH SB All F FGH SB All

Threshold status Standard High deer

Preferred

Met 23b 21b 17b 18 b 20 21 b 16 b 18 b

Not met 28 25 16 22 27 24 16 21

Commercial

Met 22 20 16 b 18 20 19 16 b 18

Not met 31 29 17 24 31 27 16 23

Woody

Met 23 20 16 b 18 19 19 16 b 18

Not met 32 29 18 25 33 27 17 23

a F=fern; FGH=fern, grass, and other herbaceous; SB=woody shrubs and vines.
b Indicates nonsignificant differences between vegetative components for H0: PNOT >PMET at the 95% confidence level.

Table 2.—Mean percentage cover by threshold status, vegetative component, stocking guideline, and species group,  
Pennsylvania, 2001
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Linking Soils and Down Woody Material
Inventories for Cohesive Assessments of
Ecosystem Carbon Pools

Katherine O’Neill1, Christopher Woodall1, Michael

Amacher2, and Geoffrey Holden1

Abstract.—The Soils and Down Woody Materials

(DWM) indicators collected by the Forest Inventory

and Analysis program provide the only data available

for nationally consistent monitoring of carbon storage

in soils, the forest floor, and down woody debris.

However, these indicators were developed and imple-

mented separately, resulting in field methods and com-

pilation procedures that overlap and are not entirely

compatible. Here we outline an initial approach for

combining carbon estimates from the soil and DWM

indicators, highlight the potential limitations of this

approach, and discuss future research or protocol

changes that may improve regional C estimation.

Down woody materials (DWM), the forest floor, and the upper

soil horizons have been identified as critical reservoirs for car-

bon over time scales ranging from decades to centuries.

Sequestering carbon in these pools has been proposed as a way

to offset CO2 emissions from fossil fuels. As a result, monitor-

ing changes in carbon storage is currently required by several

national and international agreements including the Montreal

Process Criteria and Indicators of Sustainable Forest

Management. However, no data on carbon storage in DWM

exist for many forests and current estimates of soil carbon stor-

age are largely based on static soil maps that do not reflect

changes resulting from differences in land-use or management

practices. In addition, many soil maps are biased toward agri-

cultural systems and may not fully account for carbon stored in

the forest floor and upper mineral horizons. Measuring these

carbon reservoirs and the rates at which carbon accumulates and

decomposes is critical for constraining carbon budgets in

forests. 

Forest Inventory and Analysis (FIA) Detection Monitoring

plots (Phase 3) are the only nationally consistent data available

for monitoring changes in carbon storage in forest soils, the

forest floor, and woody debris. However, the Soil and DWM

indicators were developed and implemented separately without

reference to one another, resulting in field methods and compi-

lation procedures that overlap and, in some cases, are not com-

patible for carbon accounting. This paper presents an initial

approach for integrating carbon storage estimates from soil and

DWM inventories to provide a cohesive, dynamic assessment

of forest floor and soil carbon pools. At this early stage of

implementation, there were insufficient data to provide mean-

ingful estimates of carbon storage at the regional level. Instead,

the focus of this analysis is to identify the strengths and poten-

tial limitations of combining the carbon accounting approaches

for these two indicators in order to streamline data collection

and compilation and improve future carbon estimates. 

Methods

Field Methods

Soil chemical and physical properties were assessed by collect-

ing of soil samples, which were then analyzed at a regional lab-

oratory. Soil samples were collected within the annular plot

along soil sampling lines adjacent to subplots 2, 3, and 4 (fig.

1). During the first visit to a plot, soil samples were collected

at the point denoted as Soil Visit #1. On subsequent visits to a

plot, soil sampling sites visit #2 or larger will be sampled. The

soil sampling sites were spaced at 10-ft intervals alternating on

opposite sides of soil sampling site number 1. 

Samples were collected from the forest floor (subplots 2,

3, and 4) and underlying mineral soil layers (subplot 2). Forest

floors were sampled after measuring the thickness at the north,

south, east, and west edges of a sampling frame of known area.

Once the forest floor had been removed, mineral and organic

1 Research Soil Scientist, Research Forester, and GIS Analyst, respectively, U.S. Department of Agriculture, Forest Service, North Central Research Station, St.
Paul, MN 55108. 
2 Research Soil Scientist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan, UT.



28 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium

soils were sampled volumetrically by collecting bulk density

cores from two depths: 0 to 10 cm and 10 to 20 cm. In organic

soils, samples are collected from the litter layer and the 0 to 10

cm and 10 to 20 cm organic layers. If the soil could not be

sampled at the designated sampling point due to trampling or

an obstruction (e.g., boulder, tree, standing water), the sampling

point was relocated to any location within a radius of 5 ft. A

maximum of five samples (three forest floor and two mineral

soil samples from a single core) were collected per plot. The

samples were then sent to one of three regional laboratories

where the carbon concentration (%) and bulk density (g cm-3)

were determined analytically (Palmer et al. 2001).

DWM were sampled using a planar-intersect method in

which three 24-ft transect lines were established on each sub-

plot (fig. 1). Coarse woody debris (larger than 3 inches in

diameter) was sampled along the entire length of the transect.

Crews recorded the length, diameter of the large and small

ends, and the decay class of each CWD piece to allow for esti-

mating volume. Down woody materials smaller than 3 inches

in diameter, or fine woody debris (FWD), were divided into

three size classes (0.0-0.25, 0.25 to 1.0, and 1.0 to 3.0 inches)

and sampled along sub-sections of the transect lines. For FWD,

only the number of pieces crossing the transect line was tallied.

Duff, litter, and fuelbed depths were measured at a single point

at the end of each transect line for a total of 12 measurements

on each FIA plot.

Carbon Estimation Procedures

Carbon estimation for the soils indicator consisted of three

parts (table 1). First, carbon concentration and bulk density

data determined in the laboratory were combined to produce

estimates of carbon storage within a single soil sample. The

compilation differs slightly for mineral and forest floor samples

due to the different number of samples collected for each soil

layer. Next, data from each soil layer (forest floor, 0-10 cm, 10-

20 cm) were aggregated within genetic soil mapping units

using a digitized soil map. For this study, we used State soil

survey data from the NRCS STATSGO (State Soil Geographic)

database mapped according to soil order. Plot estimates of car-

bon storage for each layer were overlain onto a digital coverage

of soil orders. The mean value of all plots that fell within a

given soil order was then used to develop a spatial coverage of

carbon storage within a given soil layer. Finally, the mean car-

bon storage estimates within each soil layer were summed to

Figure 2.—Soil carbon storage in tons ha-1 (1999–2001 data).
Areal carbon estimates for each soil layer were aggregated to
the soil order taxonomic level using NRCS STATSGO data. The
mean values for each soil order were then summed across all
soil layers. Data were then masked using a forest/ nonforest
map from Phase 1 of the FIA inventory. Map is not based on a
full panel of data and carbon estimates are preliminary.

Figure 1.—Diagram of the soil and DWM sampling design.
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provide a mean estimate of carbon storage in the upper 20 cm

for a given map unit (fig. 2). 

In this approach, bulk density is necessary for converting

percent C concentration data to an aerial (tons ha-1) basis.

However, volumetric sampling for bulk density was not added

to the soils protocol until 2000. In addition, not all samples col-

lected since 2000 have a bulk density value due to the difficulty

of using the impact driven corer in certain soil types. In order

to use laboratory data from these plots, we applied a bulk den-

sity value estimated from STATSGO. This was done by calcu-

lating a depth- and spatially weighted average bulk density for

Figure 3.—Carbon storage in DWM in tons ha-1 (2001) data.
Plot level estimates of C storage were interpolated using ordi-
nary kriging with an exponential model. Data were then
masked using a forest/nonforest map from Phase 1 of the FIA
inventory. Map is based on a single year of data and carbon
estimates are preliminary.

Figure 4.—Carbon estimates in DWM, the forest floor, and the
upper 20 cm of the mineral/organic soil. Data layers from fig-
ures 1 and 2 were converted to a raster image and then com-
bined by summing across 250-m cells. Map is not based on a
full panel of data and carbon estimates are preliminary.

Estimate level Units Equation

Plot (1 sample) Mineral Soil (0–10 cm; 
10–20 cm) g C cm-2 Bulk density (g cm-3) x thickness (cm) x %C

Plot (3 samples) Mean forest floor g C cm-2 [Oven dry weight (g)/Area(cm-2) x %C]
# of samples

Map Unit Layer (forest floor, 0–10 cm, 
10–20 cm) tons C ha-1 Mean of plot level estimates within a soil taxonomic unit

Map Unit Total (forest floor –20 cm) tons C ha-1 Summation of layer C across all soil layers

Table 1.—Compilation and estimation procedures for the soil indicator
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each map, overlaying the FIA plots, and extracting the mean

bulk density value at those locations. Carbon estimates were

limited to forest soils by using a forest/non-forest map based on

the Phase-1 National Land Cover Database (NLCD) imagery

(Vogelmann et al. 2001) (fig. 2). Regional carbon estimates

were based on 1,198 soil samples from 467 plots collected

from 1999 to 2001. 

Carbon estimates for DWM were determined at the plot

level. Transect data for each size class were combined through a

series of algorithms and models into plot level of estimates of

volume per acre. The algorithms used for these calculations are

provided in Woodall and Lutes (2005). Carbon contents were

then determined by multiplying biomass estimates by a conver-

sion factor (Birdsey et al. 1992, Waddell 2002). Birdsey et al.

(1992) provide conversion factors for both softwood (0.521) and

hardwood species (0.491). However, since species data were not

collected on the smaller DWM size classes, we applied the

mean value of these two conversion factors (0.506). Carbon

storage for < 0.25 inch size class was subtracted from plot totals

because this pool is also measured as part of the forest floor

sample in the soils indicator. Regional estimates of DWM car-

bon were interpolated from plot estimates using ordinary kriging

with an exponential model (fig. 3). Carbon estimates for soils

and DWM were then combined by converting the spatial data

layers for these indicators into a raster format and then summing

across 250-m cells. The legend intervals were rescaled and then

the final product was masked using a forest/nonforest map from

Phase 1 of the FIA inventory (fig. 4).

Results and Discussion

Comparison of Field Methods

The key differences between the two indicators in terms of

sampling design were: (1) the samples were collected on differ-

ent portions of the plot; (2) the methods were designed for

aggregation at different levels; (3) for the soil indicator, both

the number of samples and the method used to collect these

samples can vary from plot to plot; and, (4) the smallest size

class of DWM (<0.25 in diameter) was also sampled as part of

the forest floor sample in the soil indicator and must be sub-

tracted from the DWM estimate to avoid double counting. 

Comparison of Estimation Procedures

Carbon estimation procedures for soils and DWM differ in a

number of key areas that limit both the precision and the spatial

scale of combined estimates (table 2). First, both carbon con-

centration and bulk density were determined analytically for

each soil sample in a laboratory. In contrast, the carbon content

of individual pieces of DWM were either modeled (CWD) or

estimated (FWD) and carbon concentrations were not empiri-

cally derived, but based on published conversion factors.

Second, the DWM protocol was designed to provide a plot-

level estimate of variance, with three transect lines sampled on

each of the four subplots. In contrast, soil estimates were based

on a single set of samples per plot (forest floor, 0-10 cm, and

10-20 cm); on some plots, the difficulty of sampling prevented

collecting even a single set of measurements. This requires that

C estimation for soils must be aggregated at a level above the

plot scale, such as the soil order. Finally, the scaling approaches

for expanding data beyond the grid framework differed, with

soils data aggregated using digital soil mapping data and DWM

scaled to the regional level using either ecological provinces or

interpolation.

Limitations and Directions for Future Research

For the soil indicator, several limitations need to be kept in

mind when estimating carbon storage. Soils are sampled

destructively, which means that remeasurements will reflect a

component of spatial variability in addition to change over

time. Destructive sampling also has important implications for

quality assurance since it is difficult for field crews to assess

measurement error in bulk density. Compiling soil data is com-

plicated by the fact that plot conditions such as difficulty in

accessing soil sampling points (e.g., obstructions, water on

plot), the presence of nonforested conditions, or the absence of

a forest floor at the sampling point, may prevent collecting all

five samples on the plot and preclude estimating C storage at

the plot level. In addition, not all soils can be sampled using

the bulk density corer, so crews may need to use an alternate

method, such as excavation, to collect a sample for chemical

analysis. Samples collected using an excavation method are not

volumetric and require the use of ancillary data or interpolation
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based on existing data in order to scale carbon concentrations

to a weight per unit area basis.

Another critical issue related to sample collection is that

only one mineral core was collected per plot. This prevents

assessing within-plot spatial variability and may limit our abili-

ty to detect change in carbon storage over time. Collecting

additional mineral cores on subplots 3 and 4 would provide an

estimate of within-plot variability that would improve carbon

accounting. Although additional samples would increase the

cost of laboratory analysis, modifying the field collection strat-

egy by either lengthening the sampling cycle and reducing the

number of plots sampled per year or collecting additional sam-

ples only on a subset of plots may offset these costs. Alternate

sampling techniques such as composite sampling, in which

multiple samples are collected in the field and then combined

into a single sample for laboratory analysis, may also improve

estimates in a cost-effective manner and should be investigated.

For DWM, carbon accounting limitations involve post-

field sampling data processing and scaling. The DWM indica-

tor does not directly sample carbon concentrations, but rather

predicts carbon content based on the inventory of down woody

components. Currently, a single conversion factor is used to

predict %C. This methodology needs to be refined to better

incorporate the species, decay, and inherent differences among

individual DWM components. Another concern is that the

DWM sample methods and data compilation routines obfuscate

determination of variance estimates for different DWM compo-

nents within any given sample plot. For example, different

transect lengths were used to sample fine and coarse woody

debris, resulting in different, but unquantified, levels of confi-

dence in estimates. Finally, to create regional maps of DWM

carbon concentrations, peer-reviewed scaling techniques need

to be developed. Currently, only two methods have been pro-

posed: ancillary data layers (e.g., ecological provinces or forest

types) or data interpolation (e.g., kriging or nearest neighbor).

Soil DWM

Carbon concentration Weight %C is directly determined for sample Predicted using set conversion factors from
by lab analysis (Dry combustion method). the literature. In this study, assumed to be 

0.506 for all DWM pieces.

Density Determined directly from field samples. Oven For CWD (> 3.0 in diameter), estimated from 
dry weight of soil sample (g) is divided by the the length, diameter, and decay class estimate 
volume that the sample was collected from recorded in the field. For FWD, density is
(cm3) to provide bulk density (g cm-3). In cases determined from models. 
where sample was not collected volumetrically, 
determined from spatially weighted mean values 
from digital soil survey data (STATSGO). 

Estimation level Methods designed for a single estimate (without Multiple measurements collected per plot.
variance) at the plot level. Population estimate Methods designed for determining plot level 
must be determined by averaging data within mean values.
a larger unit such as soil order.

Expansion/interpolation Scaling to the regional level requires use of Scaling done by interpolation (e.g., kriging) 
ancillary data set such as ecoregion section or of plot level mean values. Plot level means 
soil taxonomic unit (e.g., soil orders) can also be aggregrated using ancillary data 

such as ecoregion section.

Table 2.—Comparison of field methods and estimation procedures for the soils and DWM indicators
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Summary

Although the current protocols for the soil and DWM indica-

tors were designed and implemented separately, these data are

the only source of information for monitoring changes in car-

bon storage in woody materials and forest soils for reporting

under the Montreal Process Criteria and Indicators. For this

reason, it is critical that FIA take the lead in developing statisti-

cally valid methods of carbon accounting that combine data

from these two indicators. This study presented an initial

approach for combining carbon estimates from the soil and

DWM indicators into a regional estimate of carbon storage. As

additional data become available, it will become possible to

compare C estimates from this approach with values reported

in the literature. Meanwhile, results from this study can be used

as a basis for streamlining the field and compilation procedures

for these two indicators in order to facilitate better and more

efficient carbon accounting in the future. Additional research is

needed to integrate these estimates with carbon models devel-

oped for other phases of the FIA program. 
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Clearcutting in the South: Issues, Status,
and Trends

Jacek Siry1 and Frederick Cubbage2

Abstract.—Clearcutting has been the most controver-

sial and enduring forest management issue since its

widespread adoption on public land in the 1960s.

Public opinion generally opposes clearcutting, but

foresters and forestry firms have adopted it widely.

Despite the controversy, we have little data about the

extent of clearcutting by region in the South. Forest

Inventory and Analysis (FIA) data indicate 5.2 mil-

lion acres are harvested annually in the South, with 39

percent being clearcut. This includes 1.67 million

acres in the Southeast (85 percent clearcut), and 3.52

million acres in the South Central (17 percent

clearcut). Measurement discrepancies among these

regions may account for some of these differences.

Including seed tree and salvage cuts, about half the

timber harvests in the South are made by clearcutting.

The large clearcut area, especially in the more popu-

lous Southeastern States, will continue to evoke con-

cern about harvest practices and forest management.

This issue must be addressed by careful logging and

attention to public concerns, safety, and esthetic con-

siderations in forest harvesting.

The South currently provides about 63 percent of annual timber

removals in the United States (Smith et al. 2001) and about 18

percent of the industrial roundwood harvests in the world (FAO

2002). In addition, the South is projected to provide nearly all

the increases in national timber removals over the next 50

years (Haynes, in press). Increasing removals and rising invest-

ment in timber growing will encourage more intensive manage-

ment practices. Few of them are as controversial as timber

harvesting, particularly clearcutting. Clearcutting removes most

trees in a stand at one time, and the sight of barren forestland

often evokes perceptions of widespread environmental damage,

fueling opposition to its use in forest management.

The division between proponents and opponents of

clearcutting is marked. Our knowledge of the extent of clear-

cutting and its ecological and economic impacts is modest,

however. Previous studies have dealt with the environmental

and economic impacts of logging practices, including clearcut-

ting, but our basic knowledge of the extent of clearcutting in

the South is almost totally lacking. Accordingly, this paper

briefly reviews the current issues about clearcutting and then

provides up-to-date analyses of the extent of clearcutting in the

U.S. South. 

The Clearcutting Issue

In the late 19th to mid-20th century, exploitative and destruc-

tive timber harvesting prompted calls for, first, Federal regu-

lation of private forestry, and later, State forest practice laws.

Currently, regulatory or non-regulatory Best Management

Practices (BMPs) have been developed and implemented to

protect water quality during timber harvesting, and are at least

partly a response to broad concerns about clearcutting. Bliss

(2000) suggests that we cannot ignore public opposition to

clearcutting, no matter how compelling our scientific bases or

professional beliefs. Clearcutting has been a lightning rod for

public opposition to forestry practices from the cut-out-and-

get-out practices of the mid-1800s to the Bitterroot and

Monongahela issues in the 1960s and 1970s (Gorte 1998) to

virulent opposition today. A casual search of the Internet on

the subject of clearcutting is illustrative. Using Google, a

search for the word clearcutting generated 31,200 sites;

adding the word South reduced this to only 10,900 sites. A

nonrandom sample of those sites indicated that most were

either critiques or attacks on clearcutting, scientific articles

about the subject, or professional discussions of the merits of

the practice.

Critics of clearcutting state that it causes ecological

degradation and soil erosion, reduces water storage capacity,

1 Jacek Siry is an Assistant Professor at the University of Georgia Warnell School of Forest Resources, Athens, GA 30602–2152, jsiry@forestry.uga.edu.
2 Fred Cubbage is a Professor at North Carolina State University Department of Forestry, Raleigh, NC 27695–8008, fred_cubbage@ncsu.edu.
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destroys wildlife habitat, loads streams and rivers with sedi-

ment, kills fish, and results in economic ruin. The Natural

Resources Defense Council states that clearcutting can jeop-

ardize an area’s ecological integrity by destroying water

buffer zones and habitat for insects and bacteria, removing

forest carbon sinks, eliminating fish and wildlife species via

erosion, removing important underground worms and fungi,

causing loss of small-scale economic opportunities, and

destroying esthetic values and recreational opportunities.

Other environmental groups have programs and Web sites that

focus on forest practices in general, and opposition to

clearcutting specifically, including the Southern

Environmental Law Center (2002), The Dogwood Alliance

(2002), and Heartwood (2002). A wealth of other literature

exists on the potential adverse effects of clearcutting on water

quality, wildlife, and scenic beauty, which is too extensive to

review here.

The clearcutting issue has expanded significantly in the

South since the mid-1990s. The increase of timber harvesting

and wood chip mills in the Southeast has increased public dis-

content with forestry practices. From 1997 to 1999, the gover-

nors of Tennessee, North Carolina, and Missouri formed

advisory committees to study the impact of proliferating chip

mills and clearcutting. In 1999, the governor of South Carolina

replied to the outcries of a coalition of 30 organizations to press

for a moratorium on licensing chip mills there and to initiate a

study. All those studies produced balanced reviews of forest

practices and their impacts; none led to major forest policy

changes to date. But widespread opposition to clearcutting and

wood chip mills has not abated. More recently, the North

American Coalition for Christianity and Ecology (2000) and

the Progressive Presbyterians (Witherspoon Society 2001) have

advocated moratoriums on clearcutting, and environmental

groups throughout the South and the world continue to oppose

the practice.

Scientific forestry and professional organizations have

extolled the merits of clearcutting, including the Society of

American Foresters (2002) and most southern State forestry

associations. West Virginia University (2002) publishes a good

Web-based summary on clearcutting, dispelling most myths

except the obvious problem that clearcuts are (temporarily)

ugly. Of course, opposition to clearcuts in Maine was so strong

that the State had a ballot referendum in 1997 that unsuccess-

fully tried to limit clearcut sizes in the State. To combat the

public protest of their recent purchase of 905,000 acres in

Maine, the Plum Creek Timber Company allowed access for

groups to inspect the land through guided tours. An official

spokesman for Plum Creek Timber offered 100 percent public

access of its land, and sponsored a media event for local news-

papers in an attempt to gain public support, having been previ-

ously criticized for poor forest practices based on its reputation

for clearcutting. The continued importance of clearcutting is

reflected in both SFI and FSC forest certification schemes,

which have clearcut size limits of 120 acres on average and 40

acres in total in the South, respectively.

Southern Clearcutting Data

From analyses performed by Siry (2002) we summarized recent

FIA harvesting statistics from data sets prepared for use in

SOFRA assessment to estimate the annual clearcut and partially

cut areas in the 12 Southern states from Texas to Tennessee to

Virginia. The latest FIA survey for each State occurred in the

1990s. In the South Central region, partial cutting, seed-tree

cutting, and salvage cutting were merged into one partial cut-

ting category that corresponds to the Southeast partial cutting

category. Annual averages were obtained by dividing harvested

area by the number of years between FIA surveys.

Average Annual Harvest Acreage Estimates Based on 

FIA Data

Table 1 summarizes the annual harvest area by type of cutting in

the South by State. FIA results indicate that clearcutting occurs

on about 2 million acres annually in the 12 Southern States.

Upland hardwood accounts for 39 percent of clearcut land and

is followed by planted pine with 22 percent (table 2). The area

of clearcut planted pine is probably larger, since planted pine

stands with a large hardwood component are classified as oak-

pine. If so, planted pine clearcut area would be similar to upland

hardwood. Clearcutting is most common on nonindustrial pri-

vate land, which accounts for 57 percent of harvested area (table

3). This result is as expected because nonindustrial private own-

ers hold most of the forestland in the region.
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Total Type of harvest

Region/State Forest area harvest area Clearcut Partial cut

(acres) (acres) (acres)          (%) (acres)          (%)

Southeast 85,060,000 1,666,000 1,415,000 85 251,000 15

FL 14,651,000 268,000 247,000 92 21,000 8

GA 23,796,000 543,000 446,000 82 97,000 18

NC 18,710,000 316,000 265,000 84 51,000 16

SC 12,45,000 313,000 276,000 88 37,000 12

VA 15,448,000 226,000 181,000 80 45,000 20

South Central 103,329,000 3,518,000 600,000 17 2,918,000 83

AL 21,932,000 765,000 168,000 22 597,000 78

AR 18,392,000 531,000 0 0 531,000 100

LA 13,783,000 593,000 109,000 18 485,000 82

MS 18,587,000 804,000 171,000 21 633,000 79

OK 4,895,000 94,000 7,000 7 87,000 93

TN 13,965,000 229,000 60,000 26 169,000 74

TX 11,774,000 501,000 85,000 17 416,000 83

South 188,389,000 5,184,000 2,014,000 39 3,169,000 61

Table 1.—Annual timber harvest in the South by State and type of harvest

Region

Timber Southeast South Central South

Type Harvest Clearcut Partial Harvest Clearcut Partial Harvest Clearcut Partial
area cut area cut area cut

acres % % acres % % acres % %

Planted pine 396,000 98 2 383,000 12 88 779,000 56 44

Natural pine 210,000 76 24 552,000 5 95 761,000 25 75

Oak pine 300,000 84 16 701,000 13 87 1,000,000 35 65

Upland 

Hardwood 520,000 79 21 1,455,000 25 75 1,975,000 39 61

Bottomland 

Hardwood 241,000 83 17 415,000 16 84 656,000 41 59

Nonstocked 0 0 0 13,000 51 49 13,000 51 49

Total 
harvest area 1,666,000 85 15 3,518,000 17 83 5,184,000 39 61

Table 2.—Annual timber harvest in the South by timber type and type of harvest
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The area clearcut in the South grew by nearly 10 percent

over the period covered by the FIA surveys. This represents a

1.4 percent annual increase from 1986 to 1993. While clearcut-

ting increased on public, nonindustrial private, and miscella-

neous corporate land, it actually decreased on forest industry

land by 5 percent. The total annual clearcut area is only about 1

percent of timberland area in the region. 

FIA data indicate that partial cutting is more widespread in

the South than clearcutting, occurring on about 3.2 million

acres annually. Partial cutting acreage has increased by 12 per-

cent over the period covered by the FIA surveys. The total area

on which harvest cuts (clearcutting and partial cutting) are car-

ried out is about 5.2 million acres. Clearcutting was done on

about 40 percent of the harvested area. Partial cutting account-

ed for the remaining 60 percent of the harvested land.

Data Issues

During the SOFRA review process, the clearcutting estimates

based on FIA data were called too conservative and suggestions

were made that clearcutting estimates should correspond to the

total area harvested, including the area that was clearcut and

partially cut. Although we found no support for this proposi-

tion, we examined the FIA results in greater detail and used

other sources of information to develop average annual

clearcutting estimates for the South.

Examination of the FIA results revealed large differences

between the Southeast and the South Central. For example, in

the Southeast clearcutting accounted for 85 percent of the har-

vested area while in the South Central partial cutting accounted

for 83 percent of the harvested area (table 1). Although some of

these differences may be explained by different ownership,

management objectives and approaches, and local forest condi-

tions, these factors alone do not explain such big differences in

the harvest area estimates. 

Another factor that could have contributed to these dis-

crepancies is differences in harvest definitions and their inter-

pretation by the individual FIA units in both regions as well as

our assumptions concerning the development of South-wide

cutting categories. We assumed that the extent of clearcutting in

the Southeast is described by the harvest variable defined as the

liquidation of a merchantable-size stand of timber, leaving

insufficient residual stocking for a manageable stand. In the

South Central, we used the clearcut variable defined as a

removal of all merchantable trees. Although these two defini-

tions appear to be similar, there were larger differences

between partial cutting definitions.

In the South Central, partial cut, seed-tree and shelter-

wood cut, and salvage cut variables were combined into one

partial cutting category. Partial cut includes all selection cuts,

high-grading, diameter-limit cutting, and any other sawtimber

Region

Southeast South Central South

Owner Harvest Clearcut Partial Harvest Clearcut Partial Harvest Clearcut Partial
area cut area cut area cut

acres % % acres % % acres % %

Public 78,000 84 16 160,000 14 86 238,000 37 63

Forest   

industry 434,000 94 6 990,000 17 83 1,424,000 41 59

Miscellaneous 

corporate 186,000 85 15 303,000 16 84 489,000 425 58

Nonindustrial 

private 968,000 81 19 2,065,000 17 83 3,033,000 38 62

Total 
harvest area 1,666,000 85 15 3,518,000 17 83 5,184,000 39 61

Table 3.—Annual timber harvest in the South by ownership and type of harvest
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cutting practice that leaves a residual stand of crop trees or

potential crop trees and cull trees. It does not include 

poletimber thinning. Seed-tree and shelterwood cuts leave a

small number of crop trees to provide seed or shade to estab-

lish a new stand. Salvage cuts remove damaged or salvable

dead trees.

In the Southeast, there is only one partial cut category and

that includes selective cutting and high grading—the removal

of selected trees of highest value from a merchantable stand of

timber, leaving sufficient stocking of residual trees for a man-

ageable stand. This category excludes commercial thinning and

other stand improvements used to enhance the growth and

quality of the stand).

These definitions and assumptions indicate that while the

total area on which harvest (clearcut and partial cut) took place

can be reliably estimated from FIA data, there could be prob-

lems in determining the precise extent of clearcutting and par-

tial cutting. One possible solution may be developing our own

clearcutting and partial cutting definitions based on initial and

residual stocking as well as volume removed. Without more

detailed information about relevant FIA procedures, however, it

is difficult to make additional assumptions so other information

sources, such as timber sales and logging surveys, would need

to be used. 

Greene et al. (1997) provide another means to check our

summary of the FIA data. They surveyed nearly 6,000 private

timber sales between 1988 and 1994 in Georgia and the neigh-

boring States of Alabama, Florida, South Carolina, and

Tennessee, and recorded the type of harvest used, i.e., clearcut

or partial cut. The median timber sale was 85 acres. They

found that clearcutting was used on 67 percent of the sales and

partial cutting on 33 percent. Furthermore, sales on forest

industry land used clearcutting exclusively.

The analysis of FIA data and other sources of information

indicates that annual clearcut area may be higher than that

based purely on FIA data and our assumptions about combin-

ing various categories of harvest cuts. Further, seed-tree cutting

and salvage cuts in the South Central could be considered

clearcuts. Then, South-wide, clearcutting and partial cutting

would each have a 50-percent share in harvest cuts, both being

used on about 2.6 million acres annually. If Greene et al.

(1997) estimates hold for the whole South, clearcutting would

be occurring on nearly 3.5 million acres and partial cutting on

the remaining 1.7 million acres. This would imply that in our

estimates based on FIA data too many harvested acres were

classified as clearcuts in the Southeast and too many acres

were classified as partial cuts in the South Central.

While clearcutting area apparently is greater than that

based on our analysis of the reported FIA data, it is not likely

that all harvested land was clearcut. First, partial cutting is fre-

quently practiced in hardwood stands, and even if these stands

were high-graded, sufficient trees, albeit many of poor quality,

may have been left. That may be the case if the objective was

to harvest sawtimber of high-value species, leaving lower grade

logs and less desirable species. Second, the growing success of

Best Management Practices (BMPs) also indicates that only

partial cutting is practiced in these areas. These voluntary pro-

grams require that up to 50 percent of trees will be left follow-

ing harvest in Streamside Management Zones (SMZs), areas

adjacent to streams and lakes. Cubbage and Woodman (1993)

estimated, for example, that, in Georgia, SMZs cover about 1.5

million acres or 7 percent of the State’s forestland. Growing

compliance and stricter requirements indicate that partial cut-

ting is the only harvesting practice permitted and practiced on

southern forestland covered by SMZs.

Conclusions

Given the best available evidence presented here, we conclude

that the annual clearcut area in the South averages about 3 mil-

lion acres and can vary between 2.5 and 3.5 million acres

annually. The total annual average harvest area is nearly 5.2

million acres. This area increased by 14 percent during the 7-

year FIA survey cycle, or about 2 percent annually.

The average area harvested annually is likely to increase

in the future to meet growing demand. As total harvest volumes

increase, so will the harvested area. Results of the current RPA

and SOFRA assessments indicate that the South will continue

to be a major timber supplier in the United States and that har-

vests will increase considerably (Adams 2002, Prestemon and

Abt 2002). While increasing harvests will increase harvest

areas, this trend will be mitigated by the growing productivity

of forest plantations.
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Past experience indicates that harvest volume increases are

accompanied by increases in harvest areas. But the growth in

harvested areas was less than proportional. Over the period

covered by FIA surveys, average annual removals of growing

stock increased by 26 percent while the area harvested

increased only by 12 percent (Conner and Hartsell 2002). In

other words, the area of harvest cuts increased only half as fast

as volume harvested.

One reason for increased timber removals from less land

area is the increasing productivity of southern forests, primarily

of intensively managed pine plantations. Growing more timber

per acre allows meeting wood demand by harvesting less tim-

berland area. This could be important on forest industry land,

which is intensively managed. Indeed, FIA data indicate that

harvesting intensity as measured by the percent of area harvest-

ed has decreased on forest industry land. Greene et al. (1997)

also found that forest industry sales averaged 59 tons per acre

versus 40 tons per acre from private sales. Technical innova-

tions, such as wood chip mills, have allowed greater volume

utilization per acre as well. These factors suggest that the area

of clearcuts and partial cuts in the South will continue to

increase more slowly than harvest volumes.

While intensive forestry and better utilization will foster

more efficiency, the use of clearcutting must be sensitive to the

context of the specific intended forestry operation. The practice

will remain contentious. At the very least, it is esthetically

undesirable, and at least some of the environmental concerns

over its use may have merit. Most of the general public dislikes

clearcuts, as evidenced by the extensive Web sites, as well as

by the limits on clearcut size in the industry-initiated SFI pro-

gram. The practice of clearcutting must be done in an ecologi-

cally sensitive manner, adhering to Federal, State, and local

environmental guidelines, as well as forest certification stan-

dards. Strict enforcement of these guidelines is also required to

protect forest areas and to ensure that forest operations will

continue to have reasonable freedom in the future. Continued

research into the ecological, economic, and social effects of

clearcutting versus other timber harvesting methods also can

help clarify tradeoffs and values. As this paper suggests, per-

haps half of our timber harvests in the South are made by

clearcuts, with a greater share occurring in the Southeast than

the South Central. Our ability to continue practicing such even-

age management in the future will depend on our skill in doing

it well, with minimum adverse impacts today. 
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The Effect of Data Quality on Short-term
Growth Model Projections

David Gartner1

Abstract.—This study was designed to determine the

effect of FIA’s data quality on short-term growth

model projections. The data from Georgia’s 1996

statewide survey were used for the Southern variant

of the Forest Vegetation Simulator to predict

Georgia’s first annual panel. The effect of several data

error sources on growth modeling prediction errors

was determined, including the effect of site index

measurement errors. The study suggests that for tree

attributes, such as volume by species-diameter class

combinations, data quality will be the largest source

of prediction error. For plot attributes, site index

measurement errors will be the largest source of pre-

diction error. 

With the change from a periodic statewide survey to the current

rotation panel system, a method of combining the data from sev-

eral panels into a single estimate is needed. The current official

statistic is the moving average. However, the moving average

will be biased in the presence of a linear trend. Therefore, an

alternative that will reduce this bias is needed. One of the alter-

natives being considered by the Southern Station is imputation.

Previous short-interval studies (Gartner and Reams 2002) have

suggested that using growth model projections will improve the

imputation results. However, growth model projection errors will

be incorporated into the variance of imputation results. This

stimulated my interest in growth model projection errors.

Research on the propagation of measurement errors in the

input data through the growth projection process has found that

site index measurement errors created some of the largest vari-

ations in the predicted values (Gertner and Dzialowy 1984,

Mowrer and Frayer 1986). Since I did not have much confi-

dence in our site index estimates, I decided to empirically esti-

mate the amount of prediction error due to different

measurement errors, including site index measurement errors. 

Methods

Data

The data from Georgia’s 1996 statewide survey were used to

predict Georgia’s first annual panel. The site indices from the

first panel were used in the growth model. Only plots that were

completely within one condition class were used. Plots that had

been harvested during the time between measurements and

plots that had no trees or saplings were not used. This left 369

plots and over 9,000 trees. Even though the surveys were about

2 years apart, the actual elapsed time between measurements

ranged from 0.1 to 3.6 years.

Model

The Southern variant of the Forest Vegetation Simulator (FVS)

(Donnelly et al. 2001) from the Forest Service’s Forest

Management Service Center in Fort Collins, Colorado, was

used to make the predictions. To incorporate the effects of the

different elapsed times between measurements, predictions

were made for 1, 2, and 3 years. Then the changes predicted by

the growth model were multiplied by the actual elapsed time

divided by the number of years in the growth projection. For

example, for the plot with 3.6 years of actual elapse time, the

growth model projected changes were multiplied by 3.6 and

then divided by 3.0.

Effects

The study involved: 1) using the FVS growth model with the

site index estimate from the first panel, 2) removing the effects

of tree damage on tree growth, 3) eliminating some apparent

diameter and height data problems, and 4) rerunning the FVS

growth model with a range of site indices to determine which

site index minimized the residual sum of squares for individual

tree volumes for each plot. 

Damaged trees were taken to be outliers in terms of the

growth model’s behavior. That is, the growth model was designed

to predict growth that is uninterrupted by exogenous damage.

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, Southern Research Station, Knoxville, TN 37919. Phone: 865–862–2066; e-mail:
dgartner@fs.fed.us.
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Damaged trees had their observed values set to their predicted val-

ues. About 4 percent of the trees had signs of damage.

To determine whether a tree had questionable data, I created

an acceptance region for diameter and height growth that ranged

from a maximum growth plus a measurement error to zero growth

minus the measurement error. The maximum growth rates were

determined by running the North Carolina State University pine

plantation growth model for loblolly pine. I used 600 trees per

acre and the highest site index permitted by the software, which

happened to be 99 feet base at age 25 years. Then I multiplied the

maximum growth rates of the quadratic mean diameter and the

dominant height by 1.5. This produced a maximum diameter

growth rate of 1.135 inches per year and a maximum height

growth rate of 6 feet per year. I took the diameter measurement

error to be 0.5 inches and the height measurement error to be 15

feet. Trees with growth data outside this region had their observed

values set to the predicted value. Less than 2 percent of the trees

fell outside the acceptance region

To determine the amount of growth model prediction error

due to site index measurement error, I searched potential site

index values to determine the site index that minimized the

sum squared error for tree volume estimates for each plot.

Because of the difficulty in adapting a growth model for use in

standard optimization routines, I resorted to a grid search. The

site indices were varied in 1-percent increments from 55 per-

cent to 200 percent of their panel 1 values. Not all plots

reached their minimum in this range, but the residual sum of

squares for these plots was less than 2 percent of the total

residual sum of squares for the “optimal” site indices.

The sum squared differences between the values for the

1996 statewide survey and the first panel were calculated for

diameter growth, height growth, individual tree volume growth,

basal area growth, plot volume growth, and plot mortality. For the

tree variables, only the surviving trees were used. These sums of

squares were not corrected for the means. The sizes of the effects

were measured as the percent reduction in the sum of squares.

Results

Tree Variables

The growth model did a better job at predicting diameter

growth than height growth or volume growth (fig 1). The effect

of site index measurement errors was only 5 percent of the total

growth sum of squares for diameters, about 12 percent for

height, and about 9 percent for volume. 

The reduction in the residual sum of squares caused by

editing out probable diameter and height data errors ranged

from 10 to 18 percent. For diameters and tree volumes, the

diameter and height errors contributed twice the sum of squares

of the site index measurement errors. However, the height data

errors contributed less to the height error sum of squares than

the site index measurement errors.

Plot Variables

The growth model predicts basal area growth and plot volume

growth well, around 48 percent of the sum of squares for each,

but not for mortality (fig. 2). The growth model predictions

Figure 1.—Contributions of the growth model, damaged trees,
data errors, and site index to the percent growth sum of
squares for diameter, height, and individual tree volume.

Figure 2.—Contributions of the growth model, damaged trees,
data errors, and site index to the percent growth sum of squares
for basal area per acre, volume per acre, and mortality.
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using the standard site index estimates reduced the mortality

sums of squares by about 16 percent. But using the optimal site

index caused an 11-percent increase in the sums of squares.

The effect of site index measurement errors reaches almost

17 percent for plot volume. The effects of the diameter and

height data errors are much smaller for the plot variables than

for the tree variables.

Discussion

The site index that minimizes the sum squared error for individ-

ual tree volume is a function of not only the true site index, but

also the growth model. Therefore, the optimal site index in this

study may not be the site index as measured in the field. So the

effects of the optimal site index should be considered a maximum

attainable result. Decreasing the site index measurement errors by

increasing the number of trees used to estimate the site index may

not reduce the sum squared error shown here.

Also, the data used averaged only 2 years apart. This study

may need to be repeated when data 5 years apart become available. 

Dave Hyink2 noted that other versions of the FVS model

have given unusual mortality predictions with the default

parameters. His experience showed that resetting the maxi-

mum-potential-basal-area parameter greatly improved the mor-

tality predictions. This suggests that the mortality prediction

function can be easily improved.

The data used for this study were measured before some

of the new national data standards were implemented. One of

these standards in particular requires field crews to electroni-

cally flag any observations of trees that lose more than 0.5

inches in diameter. If this new standard can prevent accidental

recordings of reductions in diameter, then most sums of

squares for questionable diameter data will become part of the

model sum of squares. The Southern Station FIA unit’s data

acquisition team is implementing a similar data error check

for height measurements.

Growth prediction errors are only some of the errors that

will contribute to the variance of imputation results. Roesch’s

(1999) simulation study suggests that the greatest source of addi-

tional variation will be associated with predicting harvesting and

conversions from forest to nonforest. We currently don’t have

any good models for predicting harvesting rates and intensities. 

The long-term goal is to determine the different sources of

error that contribute to the variances of imputation results and to

determine the tradeoffs available to reduce these sources of vari-

ance. This study suggests that for tree attributes, such as volume

by species-diameter class combinations, data quality will be the

largest source of prediction error. The data acquisition band is

already working on this problem. For plot attributes, site index

measurement errors will be the largest source of prediction error.

For combinations of plots, predicting harvesting rates and intensi-

ties will become the largest source of prediction error. This study

is a small first step in determining the different sources of error

that contribute the variances of imputation results, and the trade-

offs available to reduce these sources of variance.

Literature Cited

Donnelly, Dennis; Lilly, Barry; Smith, Erin. 2001. The

Southern variant of the forest vegetation simulator. Fort

Collins, CO: U.S. Department of Agriculture, Forest Service,

Forest Management Service Center. 61 p.

Gartner, David; Reams, Gregory. 2002. A comparison of sever-

al techniques for estimating the average volume per acre for

multipanel data with missing panels. In: Reams, Gregory A.;

McRoberts, Ronald E.; Van Deusen, Paul C., eds. Proceedings,

2nd Annual Forest Inventory and Analysis symposium; 2000

October 17–18; Salt Lake City, UT. Gen. Tech. Rep. SRS-47.

Asheville, NC: U.S. Department of Agriculture. Forest Service,

Southern Research Station. 76–81. 

Gertner, George Z.; Dzialowy, Paul J. 1984. Effects of meas-

urement errors on an individual tree-based growth projection

system. Canadian Journal of Forest Research. 14: 311–316. 

Mowrer, H.T.; Frayer, W.E. 1986. Variance propagation in

growth and yield projections. Canadian Journal of Forest

Research. 16: 1196–1200.

Roesch, Francis. 1999. Mixed estimation for a forest survey

sample design. In: Proceedings of the Section on statistics and

the environment of the American Statistical Association.

2 David Hyink, personal communication, Senior Scientific Specialist, Forest Resources Research and Engineering, Weyerhaeuser Company, Tacoma, WA 98477.



44 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 45

Partitioning the Uncertainty in Estimates of
Mean Basal Area Obtained from 10-year
Diameter Growth Model Predictions

Ronald E. McRoberts1

Abstract.—Uncertainty in model-based predictions of

individual tree diameter growth is attributed to three

sources: measurement error for predictor variables,

residual variability around model predictions, and

uncertainty in model parameter estimates. Monte Carlo

simulations are used to propagate the uncertainty from

the three sources through a set of diameter growth

models to estimate the total uncertainty in 10-year pre-

dictions of mean basal area per unit area for a sample

of Forest Inventory and Analysis plots. Response sur-

face methodology is used to partition the total uncer-

tainty by source. Of the three sources, the uncertainty

in parameter estimates contributes most to the variance

of the estimate of mean basal area per unit area.

The objectives of this study were threefold: (1) to obtain 10-

year predictions of mean plot basal area per unit area for a

sample of Forest Inventory and Analysis (FIA) plots using

diameter growth models; (2) to propagate uncertainty from

three sources (measurement error, residual variability around

model predictions, and uncertainty in parameter estimates)

through the models to estimate the total variance of mean plot

basal area per unit area, and (3) to partition the total uncertain-

ty in the mean plot basal area estimates by underlying source.

Methods

The FIA program of the USDA Forest Service has initiated an

annual forest inventory system featuring measurement of a pro-

portion of plots each year, 20 percent annually in much of the

eastern United States. One approach to calculating annual

inventory estimates using data obtained with the new system is

to update to the current year data for plots measured in previ-

ous years and then base estimates on the updated information

for all plots. If the updating procedure is sufficiently unbiased

and precise, this approach is nearly as precise as using all plots

but without the adverse effects of using out-of-date informa-

tion. With the latter estimation approach in mind, a set of indi-

vidual tree, diameter at breast height (d.b.h.) (1.37 m above

ground) growth models was constructed and calibrated for use

in updating FIA plot information. 

The mathematical form of the d.b.h. growth models is:

(1)  

where E(.) is statistical expectation, d.b.h. is annual d.b.h. growth,

the ∃ s are parameter to be estimated, and the Xs are predictor vari-

ables in addition to d.b.h. The additional predictor variables, X2-

X9, include a suite of tree and plot variables either measured by

FIA field crews or calculated from their measurements. Tree vari-

ables include d.b.h., crown ratio (CR), and crown class (CC) at the

time of the initial inventory. CR is the proportion of tree height that

is in the crown, and CC is a measure of a tree’s dominance in rela-

tion to adjacent trees in the same stand and is coded as follows: 1-

open grown; 2-dominant; 3-codominant; 4-intermediate; and

5-overtopped (USDA FS 2001). Plot variables include latitude

(LAT) and longitude (LON) of the plot center, plot basal area

(BA), and physiographic class (PC). PC is a measure of site soil

and water conditions that affect tree growth coded as follows: 3-

xeric; 4-xeromesic; 5-mesic; 6-hydromesic; 7-hydric; and 8-bot-

tomland (USDA FS 2001). Plot basal area in trees larger than the

subject tree (BAL) is a plot variable but is calculated for each tree.

BA and BAL are the sum of cross-sectional areas of live tree boles

at breast height and are scaled to a per unit area basis. Details

regarding calibration of model (1) are discussed by Lessard (2001).

The Annualized Inventory Database

An annualized 11-year database of plot and tree variables was

constructed using the methodology described by McRoberts

(2001) to provide a basis for estimating model prediction

uncertainty and the total uncertainty of mean plot BA esti-

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
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mates. The database was constructed using measurements of

forested FIA plots in Michigan, Minnesota, and Wisconsin in

Bailey’s eco-province 212 (Bailey et al. 1994) for the two most

recent USDA periodic inventories in each state (Michigan

1979: Spencer and Hahn 1984; Michigan 1993: Leatherberry

and Spencer 1996; Minnesota 1977: Spencer 1982; Minnesota

1990: Miles et. al. 1995; Wisconsin 1983: Raile 1983:

Wisconsin 1996; Schmidt 1998). Because special analyses were

necessary to estimate the uncertainty in the d.b.h. growth model

parameters, the data were restricted to plots that included only

the four most commonly occurring tree species on FIA plots in

eco-province 212: red pine, jack pine, balsam fir, and quaking

aspen. Thus, if any tree on a plot was any other species, the

data for that plot were excluded from the database. The result-

ing database included information for 2,900 trees on 185 plots. 

Beginning with the year 0 annual database values, the

models were used to predict d.b.h. growth to obtain d.b.h. esti-

mates each tree for years 1-10. Values of all predictor variables

dependent on d.b.h.s were recalculated each year based on the

d.b.h. predictions for that year. Estimates of mean plot BA and

the standard error of the mean were calculated using stratified

estimation (Cochran 1977) where the strata are defined by

quartile categories of plot BA, and plots are assigned to strata

on the basis of the year 0 plot BA. Estimates of mean plot basal

area and the standard error of the mean obtained using this pro-

cedure were designated the MODEL estimates. As a standard

for comparing the MODEL estimates, estimates of mean plot

basal area and the standard errors of the means were calculated

each year using the data in the annualized database with the

same stratified estimation techniques and were designated the

ANNUAL estimates.

Uncertainty in Model Predictions

Uncertainty in d.b.h. growth model predictions was attributed

to three sources: uncertainty in values of predictor variables

due to measurement errors, residual variability around model

predictions, and uncertainty in model parameter estimates.

Because of their minimal distributional and linearity require-

ments and because they produce reliable estimates of model

prediction distributions, Monte Carlo methods were used to

estimate the total uncertainty in predictions from the growth

models and to propagate the uncertainties to the mean plot BA

estimates. Before the simulations could be implemented, uncer-

tainty had to be quantified for the underlying sources: measure-

ment error for tree- and plot predictor variables, residual

variability, and uncertainty in parameter estimates. 

Uncertainty in Predictor Variables.—Distributions for meas-

urement errors for the tree predictor variables were obtained

from the literature. McRoberts et al. (1994) reported the results

of a study in which 9-10 FIA field crews independently meas-

ured the same plots. They estimated a curve for describing the

standard deviation of d.b.h. measurements as a function of

mean d.b.h. They also reported that the distribution of ocular

estimates of CR as a percentage in the 0-1 range often deviated

±0.3 around the median crew estimate. Nichols et al. (1991)

reported that when crews returned to plots later in the same

growing season to obtain second ocular estimates of CC, 80

percent of estimates were unchanged while the remaining 20

percent were evenly distributed in the two adjacent classes.

Although BA and BAL are plot variables, their estimates are

based on individual tree d.b.h. measurements and are also sub-

ject to d.b.h. measurement error. Uncertainty in BA and BAL

was simulated by using d.b.h. measurements that incorporated

simulated measurement error. Finally, because of the nonunifor-

mity of plot soil, topographic, and vegetation conditions, PC is

also subject to uncertainty due to sampling variability. However,

because no empirical estimates of the sampling variability for PC

were available, no uncertainty in the measurement of this vari-

able was considered. In addition, no uncertainty was considered

for the LON and LAT predictor variables.

Residual Variability.—Estimates of residual variability were

obtained as by-products of calibrating the models. Residuals

were assumed to follow a Gaussian distribution but with het-

erogeneous variances. The standard deviations of the distribu-

tions of residuals were found to be adequately described as:

(2)

where E(.) denotes statistical expectation, σres is the sample 

estimate of  Φ̂res , and              is predicted diameter growth from

the models.
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Uncertainty in Model Parameter Estimates.—Using the dis-

tributions of residual variability as previously described, distri-

butions of model parameter estimates were obtained using a

four-step Monte Carlo procedure:

1. The parameter estimates obtained from calibrating the mod-

els were used with the growth models (1) to predict d.b.h.;

using predicted d.b.h., and (2), a residual was randomly

selected and added to each prediction to simulate an obser-

vation of d.b.h.

2. Simulated measurement errors for d.b.h., CR, CC, and PC

were obtained by randomly selecting from the appropriate

distributions and adding them to the observed values to

obtain simulated observations of these predictor variables;

BA using the simulated d.b.h. observations was calculated

for each plot, and BAL was calculated for each tree on

each plot.

3. Using the simulated observations of d.b.h. from Step 1 and

the simulated observations of the predictor variables from

Step 2, the models were recalibrated, and the resulting

parameter estimates recorded.

4. Steps 1-3 were repeated 250 times to construct a distribu-

tion of simulated parameter estimates.

Uncertainty in Model Predictions.—Estimates of mean plot

BA and the standard error of the mean were obtained using

a four-step Monte Carlo procedure:

1. Year 0:

a. Each simulation was initiated by simulating measure-

ment of all plots by adding the year 0 observed values

of d.b.h., CR, and CC in the annualized database and

simulated measurement errors obtained by randomly

selecting values from the appropriate distributions;

b. BA for each plot and BAL for each tree on each plot

were calculated using the simulated d.b.h. observations;

c. Mean plot BA and the standard error of the mean were

calculated;

d. A set of model parameter estimates was randomly

selected from the distribution for each species.

2. Subsequent years:

a. Current year d.b.h. for each tree was calculated as the

sum of previous year’s d.b.h., the model prediction of

d.b.h., and a residual randomly selected from a

Gaussian distribution using predicted d.b.h. and [2];

b. BA for each plot and BAL for each tree on each plot

were calculated using the simulated d.b.h. observa-

tions;

c. Mean plot BA and the standard error of the mean were

calculated and recorded;

3. Step 2 was repeated 10 times to obtain estimates of mean

plot BA and the standard error of mean for years 1-10.

4. Steps 1-3 were repeated 250 times to obtain distributions of

estimates of mean plot BA and the standard error of the

mean for each year.

For this study, each simulation was considered a separate,

independent imputation. Rubin (1987) advocates multiple com-

pletions of data sets via imputation to allow assessing the

uncertainty in imputed variables and to protect against extreme

results and further recommends the separate estimates be com-

bined as follows:

(3)

and

(4)

where &      and              are the stratified estimates of the

mean plot BA and the variance of the mean, respectively, for

the kth simulation, and      is the variance among the separate

estimates of mean plot BA. For this study, m=250, far greater

than the m=2 or m=3 found to be adequate in unrelated studies

by Rubin and Schenker (1986).

Partitioning Uncertainty

The goal in partitioning uncertainty is to quantify the contribu-

tions of uncertainties from individual sources to the uncertainty

of the estimate of interest. For this study, the total variance of

the model-based estimates of mean plot BA for year 10 was

partitioned with respect to uncertainty from three aggregated

sources: (1) measurement error, (2) residual variability around

d.b.h. growth model predictions, and (3) uncertainty in parame-

ter estimates. The uncertainties from all sources were aggregat-

ed into these three sources; i.e., measurement errors for all

variables were aggregated into the single source, measurement

error; residual variabilities for all species were aggregated into
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the single source, residual variability; and uncertainties in all

parameter estimates were aggregated into the single source,

uncertainty in parameter estimates. The uncertainties for indi-

vidual sources are incorporated into the simulations separately,

but their contributions to the total uncertainty of the BA esti-

mates are combined within their respective aggregated sources.  

Two approaches to partitioning uncertainty are intuitive.

First, the contribution to uncertainty of a single aggregated

source may be estimated as the difference between the total

uncertainty obtained when the uncertainties for that aggregated

source are incorporated and the total uncertainty obtained when

no uncertainty from any source is incorporated. This approach

is denoted NONE+1. Second, the contribution of a single

aggregated source may be estimated as the difference between

the total uncertainty when the uncertainties for all sources are

incorporated and the total uncertainty when uncertainties for all

sources except the aggregated source of interest are incorporat-

ed. This approach is denoted TOTAL-1. Estimates of the contri-

butions of individual sources obtained using the NONE+1 and

the TOTAL-1 approaches are frequently biased. The bias may

be seen by comparing the sums of the estimates of the contri-

butions of all aggregated sources obtained using the NONE+1

and the TOTAL-1 approaches to the difference between the

total uncertainty when uncertainties for all aggregated sources

are incorporated and the total uncertainty when no uncertainty

for any source is incorporated. If the estimates of the contribu-

tions from the individual sources are unbiased, the former sums

should equal the latter difference. Typically they are not equal

when using the NONE+1 and TOTAL-1 approaches. The bias

is attributed to lack of independence among the effects of indi-

vidual sources of uncertainty inherent in the simulation process.

An approach that produces independent estimates of the con-

tributions to total uncertainty by aggregated source is based on

response surface methodology (Myers 1971, Khuri and Cornell

1996). With this approach, small-order polynomials are used to

describe the relationship between levels of uncertainty for under-

lying sources and the uncertainty of the estimate of interest. If

estimates of total uncertainty are obtained for a factorial arrange-

ment of the levels of uncertainties for the underlying sources and

coded through orthogonal transformations, then a response surface

may be constructed using orthogonal polynomials that produces

uncorrelated coefficient estimates for first-order variables.

For each of the three sources of uncertainty, three levels of

uncertainty were considered: the first level incorporated uncer-

tainties for all individual sources corresponding to the standard

deviations of the distributions of uncertainty for those sources;

the second level simultaneously incorporated uncertainties for

all individual sources corresponding to half the standard devia-

tions; and the third level corresponded to no uncertainty from

any component source. For the measurement error of predictor

variables, the standard deviations were those obtained from the

literature, and for residual variability, the standard deviations

were calculated from (2). For model parameter estimates,

uncertainties for the first level were incorporated in the simula-

tions by randomly selecting from the simulated distributions of

parameter estimates. For the second level, random selections

were made from the simulated distributions, the deviations of

these selections from the means of the distributions were calcu-

lated, and then half this deviation was added to the mean. For

the third level, the means of the simulated distributions were

used. Within each source, the combinations of levels of uncer-

tainty for the individual sources are limited to three: simultane-

ous use of the full standard deviations for all component

sources, simultaneous use of half the standard deviations for all

component sources, and no uncertainty for any component

source. Thus, 27 sets of simulations were conducted, one for

each of the 27 combinations resulting from the three levels of

uncertainty for each of the three sources. 

The levels of uncertainty for each aggregated source were

transformed to facilitate describing the total uncertainty of the

mean plot BA estimates using orthogonal polynomials. For

each aggregated source, Φmax represented the first level corre-

sponding to the full standard deviation, Φmin represented the

third level corresponding to no uncertainty, and Φ represented

an arbitrary level. Orthogonal transformations were then

applied using the coding formula of Khuri and Cornell (1996):

(5)

where Φ and Φ’ were the untransformed and transformed cod-

ings, respectively. Although the standard deviations of the dis-

tributions of uncertainties for the individual sources differed,

the transformed codings of the three levels of the uncertainties

were the same for all individual sources: Φ’=1 for the first
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level, Φ’=0 for the second level, and Φ’=-1 for the third level.

Thus, the three common values, (Φ’=1, Φ’=0, Φ’=-1) were used

to describe the levels of uncertainty for an entire aggregated

source. Orthogonal polynomials were based on the three values

for each of three predictor variables, Φ’1, Φ’2, and Φ’3, one for

each source. These 27 combinations of values of 1, 0, and -1 for

the three sources constituted an orthogonal design. Thus, Var(–Y)

was described using orthogonal polynomials ex-pressed using

linear, quadratic, and two-way interaction terms as:

(6)

where Var(–Y) is the estimated variance of mean plot BA

obtained from (4), Φ’i is the predictor variable associated with

the ith source of uncertainty, ∃ 0 is the intercept coefficient, the

∃ is are linear coefficients, the ∃ iis are quadratic term coeffi-

cients, and the ∃ ijs and interaction term coefficients.

Although the estimates of the ∃ is are uncorrelated with each

other because of the orthogonal design, the estimate of any ∃ i is

not uncorrelated with the estimate of ∃ 0, the estimates of the ∃ iis,

or the estimates of the ∃ ijs. Nevertheless, the coefficient esti-

mates may be used to estimate the contribution to the total vari-

ance of the estimate of mean plot BA from the three aggregated

sources and to partition the variance with respect to the contribu-

tions from those sources. The total uncertainty in the mean plot

BA estimates was calculated using (6) with Φ’1=Φ’2=Φ’3=1,

which corresponds to the maximum or first level of the uncer-

tainty for all component sources. The portion of the total uncer-

tainty attributed to the ith aggregated source was estimated by

setting Φ’i=-1, the minimum or third level of uncertainty for that

source, and setting Φ’=1, the maximum level, for the other

aggregated sources, calculating the uncertainty of the mean plot

BA estimate using (6), and subtracting the result from the total

uncertainty estimate. This approach is analogous to the NONE+1

approach, except that it is based on predictions from (6) rather

than simulated estimates. An approach analogous to the TOTAL-

1 approach was also used. The estimate of uncertainty remaining

after the contributions from each of the three sources have been

estimated was attributed to natural variability among plots, can

only be reduced by using techniques such as stratified estima-

tion, and was designated sampling variability. Because the esti-

mates of the contributions of aggregated sources are

independent, the NONE+1 and the TOTAL-1 approaches pro-

duce identical results when used with a linear model, but do not

necessarily produce identical results when the model includes

quadratic and/or interaction terms.

Results

The adequacy of the 250 simulations was checked by evaluat-

ing the stability of estimates of means and standard errors of

means. Plots were ordered by their variability over simulations

in these coefficients of variation, and a graph of coefficients of

variation versus simulation for the four plots with the greatest

variability revealed that stability was achieved by approximate-

ly 100-150 simulations. Therefore, 250 simulations were

deemed adequate to evaluate uncertainty.

The MODEL mean plot BA estimates tracked the ANNU-

AL means closely, while the MODEL standard errors were

only slightly greater than the ANNUAL standard errors (table

1). The Wilcoxon Signed Ranks test (Conover 1980) detected

no statistically significant differences (α = 0.05) between the

ANNUAL and the MODEL estimates of mean plot BA. The

slight differences in the standard error estimates indicate that

the additional uncertainty due to using the growth model pre-

dictions to predict d.b.h. introduced little additional uncertainty

into the standard errors of the 10-year mean plot BA estimates.

Year ANNUAL MODEL

Mean SE Mean SE

0 6.6413 0.2235 6.6413 0.2235

1 7.4136 0.2418 7.4574 0.2386

2 8.2129 0.2765 8.4553 0.2869

3 9.1482 0.3129 9.9568 0.3445

4 10.0728 0.3607 10.7690 0.4253

5 11.1123 0.4261 12.0680 0.5256

6 12.2704 0.5028 13.5109 0.6404

7 13.6350 0.5970 15.1985 0.7797

8 15.0879 0.6925 16.9822 0.9266

9 16.6195 0.7965 18.8644 1.0884

10 18.3350 0.9086 20.9654 1.2566

Table 1.—Comparisons of ANNUAL and MODEL estimates of
mean plot BA
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Of the three sources of uncertainty considered, parameter

uncertainty made the greatest contribution to total uncertainty,

while the contributions of measurement error and residual vari-

ability were negligible (table 2). A comparison of the Subtotal 1

and Subtotal 2 values for the NONE+1 and TOTAL-1

approaches revealed the bias inherent in the estimates of the

contributions of the aggregated sources. Although the differ-

ences were not great, the LINEAR and QUADRATIC response

surface models produced values that were nearly identical. Due

to orthogonality, this result was expected and necessary for the

LINEAR model but was an unexpected positive result for the

QUADRATIC model. Based on the large R2 =0.9999 for the

QUADRATIC model, the estimates of the contributions of the

aggregated sources were considered reliable. 

Conclusions

Two conclusions may be drawn from this study. First, the

model-based d.b.h. prediction technique had only a slight nega-

tive impact on the total uncertainty of 10-year predictions of

mean plot BA. Second, among the uncertainties propagated

through the model, uncertainty in the model parameter esti-

mates made the greatest contribution to the total uncertainty in

the mean plot BA estimates. Admittedly, a complete prediction

system also requires techniques for predicting the survival,

regeneration, and removal of trees, components that were not

considered in this study.
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Individual-tree Green Weight Equations for
Loblolly Pine (Pinus taeda L.) Sawtimber
in the Coastal Plain of Arkansas

Travis E. Posey, Paul F. Doruska, and David W. Patterson1

Abstract.— Loblolly pine (Pinus taeda L.) weight

equations were developed to predict outside-bark,

green bole weight to a 4-inch diameter-inside-bark

(dib) top and an 8-inch dib top in southeast Arkansas.

Trees were sampled from 8 different tracts over the

first half of 2002: 4 tracts during winter and spring,

respectively. The sampled trees ranged from 10 to 30

inches diameter at breast height (d.b.h.) and from 45

to 100 feet in total height. Parameter estimates did not

differ significantly by season. The developed equa-

tions were compared with others published in the

Southeast. Not surprisingly, the equations developed

here outperformed the others examined for these data. 

Weight scaling has become popular in the southern United

States for buying and selling loblolly pine (Pinus taeda L.) saw

logs. At most sawmills, saw logs are bought and sold exclu-

sively by weight (primarily by the U.S. ton – 2000 pounds) to

save time and money. However, sawtimber inventory volumes

in south Arkansas are usually calculated in terms of Doyle

board feet. It is difficult to compare the value of a stand based

on a timber volume inventory ($/MBF) to the prices offered at

the mill ($/U.S. ton) because of the different units involved.

Volume tables developed in south Arkansas are readily avail-

able for conducting stand inventories in both cubic feet and

board feet. However, there are few publicly available equations

or tables that accurately report saw log weight for this region.

The need exists for calculating inventory results by weight

rather than volume for this region. We undertook a project to: 

1. Develop loblolly pine sawtimber-sized tree weight equa-

tions using trees sampled in southeast Arkansas;

2. Determine the differences, if any, in bole weight equation

parameters between winter and spring; and

3. Compare the equations developed with published equations

from the Southeastern United States. 

Methods

Procedure

All study sites were located in southeast Arkansas on land

owned by Plum Creek Timber Company. Some 155 saw log-

sized loblolly pine trees were sampled in eight stands. Eighty-

one trees were weighed during February 2002, and 74 were

weighed in May 2002. This allowed seasonal differences in

weight equations to be examined. Table 1 summarizes the

information for stands sampled during winter and spring.

Each stand was visited twice, once before and once after

harvest. The first visit consisted of locating and measuring the

trees that would later be weighed. In each stand, 20 loblolly

pine trees (≥ 10” d.b.h. class) were selected by systematic ran-

dom sampling. Several measurements including d.b.h. (inches),

number of 17-foot logs, total height (feet), and bark thickness

1 Graduate Student, Assistant Professor, and Research Professor, respectively, Arkansas Forest Resources Center, University of Arkansas School of Forest
Resources, Monticello, AR 71656. Phone: 870–460–1993; fax: 870–460–1092; e-mail: doruska@uamont.edu.

Attribute Winter 2002 Spring 2002

Basal area 
(sq. ft/acre) 76.0 (8.1) 69.5 (14.5)

Pine trees/acre 58.8 (6.2) 67.9 (18.9)

Site index 
(ft. base age 25) 65.6 (6.1) 60.3 (5.3)

D.b.h. (in.) 15.1 (0.7) 13.2 (0.4)

Total height (ft.) 80.5 (5.0) 64.4 (3.7)

Age (yrs.) 37.0 (2.4) 34.3 (3.5)

Weight (lbs.) 2,903.2 (518.0) 2,759.5 (429.8)

Table 1.—Mean and standard deviation (in parentheses) of
inventory data by season
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(inches) at breast height were taken on each of the study trees

using a diameter tape, clinometer, and a bark gauge. Table 2

shows the distribution of all study trees based on d.b.h. and total

height. After all measurements were taken, each tree was num-

bered and marked with paint for identification on the log deck.

Soon after the first visit to each stand, logging contractors

from Georgia Pacific Corp. harvested the trees. Each study tree

was felled and brought to a designated log deck where it was

delimbed and topped at approximately 4 inches dib. Within 2

days of felling, the felled trees were measured and weighed.

Measurements taken on each of the felled study trees include

length (feet) to a 4-inch dib top, dib at both ends, age, and

heartwood diameter at both ends. Each study tree was then

weighed using a digital scale, loader, chains, and tongs. Then

the trees were bucked into merchantable lengths to satisfy

Georgia Pacific’s saw log specifications (17, 26, or 35 feet with

a minimum top diameter of 8-inches inside bark). The same

measurements that were taken on the felled study trees, includ-

ing weight, were then taken on each of the merchantable saw

logs. Each measurement taken (before and after harvest) was

used later as a potential independent variable in creating regres-

sion equations.

Analysis

Data from 40 trees were set aside as a validation data set and

data from the remaining 115 trees were used in building the

regression models. Typical regression diagnostics were used in

comparing and selecting the best equation forms. Indicator

variables were used to determine if equation parameters varied

significantly between winter and spring. The validation data set

served as an additional diagnostic for comparing equations. The

equations that best predicted weight to a 4-inch dib top and

weight to an 8-inch dib top were chosen based on the diagnos-

tics and indicator variable significance.

Model Comparisons

The final weight equations were compared with three published

equations developed in the Southeast: 

1. Newbold et al. (2001),

2. Clark and Saucier (1990), and

3. Baldwin (1987).

Each of these models was applied to the validation data set and

the residuals were used to compare models. The models devel-

oped, which were created using only the regression data set,

were also applied to the validation data.

D.b.h. Total height by 5-ft class
class 45 50 55 60 65 70 75 80 85 90 95 100 Total

10 1 1 1 1 1 2 7

12 1 3 3 2 5 5 6 1 26

14 5 5 5 17 10 7 2 2 53

16 1 2 4 9 4 4 3 2 2 31

18 1 6 5 4 3 2 2 23

20 2 3 2 2 9

22 1 1 2

24 0

26 1 1 2

28 1 1

30 1 1

Total 2 1 4 9 10 16 43 26 20 10 10 4 155

Table 2.—Distribution of sample trees by d.b.h. and total height class



Results and Discussion

Predicting Weight to a 4-inch DIB Top

Natural log transformations were needed to assure normality of

errors. The best independent variables for predicting outside-

bark green bole weight to a 4-inch dib top were d.b.h. and total

tree height. The final 4-inch dib weight equation developed

from the regression data set was:

(1)

Where: Ŵti = Predicted green weight (lbs.) outside bark to a 

4-inch dib top for tree i,

Di= d.b.h. (in.) for tree i, and

Hi= Total tree height (ft) for tree i.

All parameters were significant at the 0.05 α-level. The R2 for

equation (1) was 0.95 and the mean absolute residual was

236.34 pounds. The indicator variables were not significant for

the intercept (p-value = 0.2969), ln(Di) partial slope (p-value =

0.3467), or ln(Hi) partial slope (p-value = 0.2925), indicating

that there was not enough evidence to conclude a significant

difference in 4-inch dib weight equation parameters between

winter and spring.

Table 3 compares the residuals obtained by applying each

equation to the validation data set. It appears that all the equa-

tions overpredicted weight to a 4-inch dib top on average.

According to the standard deviation and the mean absolute

residual, which indicate on average how far off the regression

line the actual values are, equation (1) appears to be best at

predicting tree weight in south Arkansas. It was expected that

our equation would be better at predicting weight of trees in

validation data acquired in this study. However, this was the

most objective means of comparison available.

Figure 1 depicts the results when the four equations were

applied to the validation data set. There is little difference in

predicted weights between any of the equations. The variation

in predicted weights between models supports the idea that

specific gravity varies somewhat by geographic location. As

figure 1 shows, the equation developed by Clark and Saucier

(1990) consistently estimates the lowest weight relative to the

other equations. This is followed (in order from lightest to

heaviest) by equation (1), Newbold et al. (2001) and Baldwin

(1987). This corresponds to the variation in loblolly pine spe-

cific gravity by location found by the USDA (1965). Loblolly

pine specific gravity in the Southeastern United States tends to

increase from east to west and from north to south. This illus-

trates the impacts of using weight equations in this region that

were developed in other geographic locations.
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Figure 1.—Comparison of 4-inch dib top equations using the
validation data set.

Attribute (lbs.) Equation (1) Clark and Saucier (1990) Newbold et al. (2001) Baldwin (1987)

Mean residual -87 -25 -118 -146

Standard deviation 345 401 404 429

Mean abs. residual 253 300 299 309

Max. residual 430 583 492 454

Min. residual -1,066 -1,139 -1,240 -1,275

Table 3.—Comparison of 4-inch dib top weight equations
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Predicting Weight to an 8-inch DIB Top

As with the 4-inch dib top equation, the natural log transforma-

tion was needed to assure normality of errors. The best inde-

pendent variables for predicting outside bark green

merchantable saw log weight to an 8-inch top were d.b.h. and

the number of 17-foot logs in the tree. The final 8-inch dib top

equation built from the regression data set was:

(2)

Where: Ŵti= Predicted green weight (lbs.) outside bark to an 

8-inch dib top for tree i,

Di= d.b.h. (in) of tree i, and

Logsi= Number of 17-foot logs in tree i.

All parameters were significant at the 0.05 α-level. The R2 for

equation (2) was 0.97 and the mean absolute residual was

139.79 pounds. The indicator variables were not significant for

the intercept (p-value = 0.2851), ln(Di) partial slope (p-value =

0.2428), or ln(Logsi) partial slope (p-value = 0.2965), indicat-

ing that there was not enough evidence to conclude a signifi-

cant difference in 8-inch dib top weight equation parameters

between seasons.

The residual summary in table 4 shows that on average,

equation (2) slightly overpredicts weight to an 8-inch dib top,

whereas the others underpredict the weight. The residuals show

that there are more differences between 8-inch dib top equa-

tions than between 4-inch dib top equations. The differences

between predicted and actual weight for each observation in the

validation data set can be seen in figure 2. The variation in the

weights predicted by the equations clearly increases as actual

tree weight increases. According to table 4, equation (2) seems

to be most similar to the equation developed by Clark and

Saucier (1990).

Discussion and Conclusion

The best independent variables for predicting green bole weight

to a 4-inch dib top were d.b.h. and total tree height. D.b.h. and

the number of logs explained the most variation in green bole

weight to an 8-inch dib top. There were no significant differ-

ences in 4-inch or 8-inch dib top equation parameters between

winter and spring. It is important to note that the eight stands

used in this study were extremely variable in site characteristics

(moisture, soil type, etc.); therefore, confounding effects obvi-

ously exist. The site variability probably causes as much varia-

tion within seasons as between seasons. A more appropriate

way to test seasonality would be to visit the same stands during

different seasons. However, this was not possible for this study.

Therefore, the only sound conclusion to be drawn here regard-

ing seasonality is that there were no differences in weight equa-

tion parameters between winter and spring when averaging

across all types of sites used in this study. Our equations were

Attribute (lbs.) Equation (1) Clark and Saucier (1990) Newbold et al. (2001) Baldwin (1987)

Mean residual -41 163 188 18

Standard deviation 254 248 289 478

Mean abs. residual 171 229 249 380

Max. residual 316 880 1,294 903

Min. residual -1,119 -595 -501 -1,276

Table 4.—Comparison of 8-inch dib top weight equations

Figure 2.—Comparison of 8-inch dib top equations using the
validation data set.



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 57

most similar to the equations created by Clark and Saucier

(1990), which were developed in Georgia and the surrounding

States. The 4-inch and 8-inch dib top equations presented in

this study should be sufficient for estimating outside-bark green

bole weight of loblolly pine sawtimber in south Arkansas.
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Self-referencing Taper Curves for Loblolly
Pine

Mike Strub1, Chris Cieszewski2, and David Hyink3

Abstract.—We compare the traditional fitting of rela-

tive diameter over relative height with methods based

on self-referencing functions and stochastic parameter

estimation using data collected by the Virginia

Polytechnic Institute and State University Growth and

Yield Cooperative. Two sets of self-referencing equa-

tions assume known diameter at 4.5 feet inside (dib)

and outside (dob) bark; and one set assumes known

only dob at 4.5 feet. A fourth degree polynomial in

one minus relative height describes taper. The pro-

posed methods improved the error sum of squares by

up to 47 percent over the traditional method. 

We demonstrate here the application of self-referencing curves

to taper equations. Individual tree taper is commonly modeled

by predicting relative diameter (diameter at a reference height

divided by diameter at breast height) as a function of relative

height (reference height divided by total height). Many of the

models proposed in the past have not resulted in estimated

diameter outside bark at 4.5 feet equal to diameter at breast

height. Valentine and Gregoire (2001) proposed a model that

forces the estimated diameter outside bark to be equal to diam-

eter at breast height. Goelz and Burk (1996) and Cieszewski et

al. (2000) argue that such constraints result in parameter esti-

mates describing biased curve shapes. Our study proposes

parameter estimation techniques that avoid such a bias while

using equations that estimate diameter outside bark at 4.5 feet

equal to diameter at breast height. 

Data

Data for this study were collected by the Virginia Polytechnic

Institute and State University Growth and Yield Cooperative.

Two trees were felled at initial (1980-1982 dormant seasons)

and second thinning and in buffers of unthinned control plots

(1992-1994 dormant seasons) in a thinning study established at

186 locations across the natural range of loblolly pine. Disks

were cut from felled trees beginning at the stump and every 4

feet to approximately a 2-inch top. Diameter inside and outside

bark were measured for each disk. Diameter at breast height

and total height were also measured on each tree. 

Methods

To model tree taper we used a fourth degree polynomial in rel-

ative diameter versus relative height having two inflection

points, which is a desirable characteristic of taper equations.

We further assumed that taper curves are anamorphic in nature.

This results in the following model:

where h = reference height, d = diameter inside or outside bark at

the reference height, d.b.h. = diameter at breast height, ht = total

height, d/d.b.h. = relative diameter, and h/ht = relative height.

Common practice has been to fit this equation to all the

data pairs, or to multiply both sides of the equation by d.b.h. to

obtain an equation in diameter inside or outside bark that can

be fit to the data:

(1)

1 Forest Biometrician, Weyerhaeuser Company, P.O. Box 1060, Hot Springs, AR 71902. Phone: 501–624–8504; fax: 501–624–8505; 
e-mail: mike.strub@weyerhaeuser.com.
2 Assistant Professor of Fiber Supply Assessment, The University of Georgia, Warnell School of Forest Resources, Athens, GA 30602–2152. Phone:
706–542–8169; fax: 706–542–8356; e-mail: biomat@smokey.forestry.uga.edu.
3 Senior Scientific Advisor, Weyerhaeuser Company, P.O. Box 9777, Federal Way, WA 98063–9777. Phone: 253–924–6315; fax: 253–924–6736; e-mail:
dave.hyink@weyerhaeuser.com.



This is analogous to fitting a guide curve to dominant

height and age pairs when developing site index curves.

Hereafter we refer to fitting equation (1) to the data as fitting a

guide curve. An alternate approach is to obtain a self-referenc-

ing curve according to the generalized algebraic difference

approach developed by Cieszewski and Bailey (2000). We

introduce into the equation an unobservable variable, X, that

varies from tree to tree.

Multiplying both sides of the equation by d.b.h. results in:

d = dbh • X[a1(1 – h/ht) + a2(1 – h/ht)2 + a3(1 – h/ht)3 + a4(1 – h/ht)4]

However, this model is overparameterized. The substitu-

tion of Z = a4 • dbh • x results in:

(2)

where b1=a1/a4, b2=a2/a4, and b3=a3/a4, and Z is estimated

for each tree by minimizing the error sum of squares for each

tree:

(3)

where:

SSej is the error sum of squares for the jth tree

Nj is the number of diameter measurements for the 

jth tree

dij is the ith diameter measurement for the jth tree

Zj is a level parameter for the jth tree

hij is the height of the ith diameter measurement for the 

jth tree

htj is the total height of the jth tree

Taking the first derivative of SSej with respect to Zj, set-

ting it equal to zero and solving for Zj results in the least

squares estimate of Zj:

(4)

These estimates can be used in the SAS NLIN procedure

to obtain least squares estimates of the global parameters b2, b3,

and b4. The value of Zj can be calculated given the global

parameters and retained for subsequent data points from the

same tree. Details of this method are described in Strub and

Cieszewski (2002) for the more general case where Zj cannot

be analytically solved for in a closed form. Note that this

method is not valid if a4 is zero. However, if a4 is zero, the

model would have only one inflection point and would not be

appropriate for a taper function. Substituting equation (3) into

equation (2) results in minimizing the error sum of squares.

(5) 

Numerical techniques must be used to estimate the global

Numerical techniques must be used to estimate the global

parameters b2, b3, and b4 by minimizing this error sum of

squares. Separate parameters can be obtained for diameter

inside and diameter outside bark equations. Application of

these equations requires an estimate of both diameter inside

and outside bark at some index height, usually 4.5 feet, just as

application of site index curves requires an estimate of domi-

nant height at an index age (Cieszewski et al. 2000). Given

d.b.h., the following equation describes the outside bark taper

profile.

(6)

If bark thickness is measured at d.b.h., diameter inside

bark at 4.5 feet can be substituted for d.b.h. in equation (6) to

obtain the inside bark taper profile. Often only diameter outside

bark at 4.5 feet (diameter at breast height) is known. A system

of equations that predicts both diameter inside and outside bark

from only diameter at breast height can be developed by mod-

eling Z in the inside bark equation as a linear function of Z in

the outside bark equation (see justification for this assertion in

the Results section). Implementing this maneuver results in the

following definition of the error sum of squares for the jth tree

when both inside and outside bark measurements are given the

same weight.
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(7)

Where:

fij = bib1 (1 - hij / htj) + bib2 (1 - hij / htj)
2 + bib3 (1 - hij / htj)

3 + 

(1 - hij / htj)
4

gij = bob1 (1 - hij / htj) + bob2 (1 - hij / htj)
2 + bob3 (hij / htj)

3 +

(1 - hij / htj)4 bib1, bib2, bib3, bob1, bob2, bob3, a0, a1 are global

parameters.

Minimizing the error sum of squares with respect to Zj

results in the least square estimate of Zj for each tree:

The remaining eight global parameters (bib1, bib2, bib3,

bob1, bob2, bob3, a0, a1) can be estimated with non-linear

regression. Once the parameters are estimated, a single Z value

can be calculated from d.b.h. by using equation (8): 

(8)

The outside-bark taper profile can be determined from

equation (9) and the inside-bark equation can be estimated

from equation (10):

(9)

(10)

Results

Equation (1) was fit to the data resulting in a guide curve that

is similar to the traditional methods of modeling tree taper. The

model is shown for both diameter outside bark in black and

diameter inside bark in gray in figure 1a. Parameter estimates

are given in table 1. Given d.b.h. and total height, diameter out-

side bark at 4.5 feet or d.b.h. can be estimated from the outside

bark guide curve. The difference between the estimated d.b.h.

and the input d.b.h. is shown in figure 1b for a range of input

d.b.h.’s and total heights. Note the large discrepancy between

input d.b.h. and estimated d.b.h. for many reasonable d.b.h. and

total height pairs. This difference suggests that methodology

for ensuring the consistency of input d.b.h. and estimated d.b.h.

is well grounded.

Figure 1c shows relative diameter outside bark versus rela-

tive height for each data observation. Most of the data are plot-

ted with gray circles representing each data point. Four selected

trees were plotted as black diamonds, crosses, triangles, or

squares. Note that these four trees tend to lie at the top, middle,

or bottom of the data points. This suggests that a system of

curves analogous to site index curves could better approximate

tree taper. A single guide curve fit through the middle of the

data range will not adequately describe trees with taper profiles

like the black diamonds and squares.

Equation (2) was fit to both inside and outside bark diame-

ter. Parameter estimates are given in table 2. The taper profile

for selected total heights is shown for diameter outside bark in

Model Parameter Estimate

Diameter outside bark b1 0.314256

b2 0.462600

b3 -1.504593

Diameter inside bark b1 0.330808

b2 0.507229

b3 -1.571667

Table 2.—Parameter estimates for the self-referencing curve,
equation 2

Model Parameter Estimate

Diameter outside bark a1 1.4195

a2 2.1537

a3 -6.9315

a4 4.5998

Diameter inside bark a1 1.2879

a2 1.9968

a3 -6.1580

a4 3.9148

Table 1.—Parameter estimates for the guide curve, equation 1
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Figure 1.—(a) Relative diameter inside and outside bark versus relative height for the guide curve, equation (1); (b) error in d.b.h.

estimate obtained from the outside bark guide curve; (c) observed relative diameter outside bark versus relative height is shown

for the majority of the data in gray circles (four selected trees were plotted as black diamonds, crosses, triangles, or squares); (d)

relative diameter outside bark versus relative height for selected total heights and the self-referencing curve, equation (2); (e) rel-

ative diameter inside bark versus relative height for selected total heights and the self-referencing curve, equation (2); and (f)

Zdob versus Zdib and the linear fit (the Zdob = Zdib line is shown in gray).
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figure 1d and diameter inside bark in figure 1e. Note that the

taper profile changes dramatically as total height changes.

Fitting the outside bark equation resulted in an estimate of Zj,

Zdob, for each tree, and fitting the inside bark equation result-

ed in an estimate of Zj, Zdib, for each tree. Applying these

taper equations (eq. (6)) requires estimating both Zdob and

Zdib. Obtaining these estimates requires knowledge of both

diameter inside and outside bark at some reference point usual-

ly breast height or 4.5 feet. An alternate approach was devel-

oped that requires only d.b.h. Figure 1f shows the strong linear

relationship between Zdob and Zdib. This suggests that error

sum of squares described in equation (7) could be minimized to

obtain inside and outside bark taper estimates based on equa-

tion (9) and inside bark estimates based on equation (10). A

common Z is estimated from d.b.h. using equation (8). Table 3

gives parameter estimates for these equations.

Discussion and Conclusion

The base-age-invariant parameter estimation (Bailey and

Clutter 1974) used in this research can be successfully fit with

sufficient data and fairly straightforward programming using

SAS (SAS Institute 1990). The data must consist of repeated

measures, which are pooled cross-sectional and longitudinal

data. The number of measurements in each series has to be at

least two, and the number of series must be greater than the

number of global parameters considered in the model. The pro-

posed method does not violate regression principles. 

Error sum of squares are listed in table 4 for the guide curve

approach, the self-referencing curves when both diameter inside

and outside bark are known at breast height, and the self refer-

encing curves when only d.b.h. is known. The total error sum of

squares for both inside and outside bark guide curves was

reduced by 47 percent when self-referencing curves based on

separate Zdob and Zdib were used to describe tree taper. The

total error sum of squares for both inside and outside bark guide

curves was reduced by 39 percent when self-referencing curves

based on a common Z were used to describe tree taper. These

curves have the additional advantage of returning estimated

diameter outside bark at 4.5 feet equal to d.b.h. The senior

author has applied the same techniques to the more complex

equations of Max and Burkhart (1976) with equal success,

which demonstrates the broad utility of self-referencing curves.

The proposed methods are suitable for fitting applications

with other dependent variables such as per acre basal area, sur-

vival, and yield. 
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Model Parameter Estimate

Diameter outside bark bob1 0.311990

bob2 0.464576

bob3 -1.505517

Diameter inside bark a0 -0.009822

a1 0.850341

bib1 0.333494

bib2 0.505446

bib3 -1.571255

Table 3.—Parameter estimates for the self-referencing
curves, equations 8, 9, and 10

Model Guide curve Self-referencing 
equations

Diameter inside bark 2372.8 1098.0

Diameter outside bark 2436.7 1456.8

Total inside bark and 
outside bark 4809.5 2554.8

Zib=ao+a1*Zob 2912.3

Table 4.—Sum of squared errors for the guide curve approach
and self-referencing equations
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D.B.H. and Survival Analysis: A New
Methodology for Assessing Forest
Inventory Mortality

Christopher W. Woodall1, Patricia L. Grambsch2, and

William Thomas2

Abstract.—Tree mortality has typically been assessed

in Forest Inventory and Analysis (FIA) studies

through summaries of mortality by location, species,

and causal agents. Although these methods have his-

torically been used for most of FIA’s tree mortality

analyses, they are inadequate for robust assessment of

mortality trends and dynamics. To offer a new method

of analyzing tree mortality in forest inventories, we

used survival analysis techniques to estimate survival

and hazard functions for FIA periodic inventories in

Minnesota. The study’s method for applying survival

analysis techniques to FIA inventories successfully

estimates survivor and hazard models. Classifying

trees into classes of d.b.h. and d.b.h. growth may

facilitate applying of survival analysis techniques by

providing a surrogate for tree ages and vigor.

Applying survival analysis techniques to forest inven-

tories allows FIA inventory analysts to test tree mor-

tality hypotheses and summarize regional tree

mortality trends, and affords a solid foundation for

development of individual tree mortality models.

Tree mortality in forest inventories has traditionally been

assessed using simple summary statistics. Mortality informa-

tion in Forest Inventory and Analysis (FIA) State reports has

typically included losses in timber volume due to mortality,

summaries of mortality causal agents, locations of dead trees,

and mortality trends by species (Leatherberry et al. 1995).

More in-depth mortality analysis has been facilitated only

through development of logistic regression models of individ-

ual tree mortality, a technique that is cumbersome and inade-

quate for large forest inventories (Eid and Tulius 2001).

Current forest mortality analytical techniques lack methods for

incorporating the time-dependent nature of tree mortality, test-

ing hypotheses, censoring observations, and conducting tests

for effects of covariates (i.e., stand basal area and crown ratio).

Given the past diseases and epidemics that have greatly altered

North American forest ecosystems (e.g., chestnut blight

[Cryphonectria parasitica] and Dutch elm disease [Ceratocystis

ulmi]) and the threats of future forest health hazards, novel and

statistically robust techniques for assessing forest mortality

would greatly benefit forest inventory analysts.

Analytical methods developed by the medical sciences, col-

lectively termed survival analysis, may provide the basis for

developing new forest mortality analytical techniques. Survival

analysis is usually defined as a class of statistical methods for

studying the occurrence and timing of events, such as death

(Allison 1995, Collett 1994). Waters (1969) first proposed using

survival analysis to address forest mortality, but such applica-

tions have been restricted to forest inventories in even-aged for-

est plantations (Morse and Kulman 1984, Wykoff and Clark

2000) due to the inherent lack of detailed time and age informa-

tion for larger-scale inventories (Flewelling and Monserud

2002). Given the current dearth of forest inventory mortality

analysis techniques, a re-examination of the basics of survival

analysis in the context of the FIA inventories is warranted and

may provide a novel mortality analysis methodology.

The primary goal of our study was to estimate and inter-

pret the central functions of survival analysis (survivor and

hazard functions) for an FIA inventory in the State of

Minnesota. Specific objectives included:

1. To use d.b.h. and d.b.h. growth (∆d.b.h.) in applying sur-

vival analyses techniques to forest inventories.

2. To determine if survivor/hazard functions can represent

actual mortality trends in a manner practical for ecological

interpretation.

1 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108. Phone: 651–649–5141; 
e-mail: cwoodall@fs.fed.us.
2 Associate Professors, School of Public Health, University of Minnesota, Minneapolis, MN 55455.
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Forest Survival Analysis Supposition

Time to an event is the defining component of survival meth-

ods. Hence, the major limitation often cited for the limited

application of survival analysis to forest inventories is the lack

of specific tree ages and the censoring of tree mortality

(Flewelling and Monserud 2002). However, knowledge of age

is not necessary for implementing survival analyses (Allison

1995). Any measurement unit that indicates changes in an indi-

vidual’s status between remeasurements may replace the tradi-

tional survival analysis variables of age and time. For forest

inventories that remeasure trees at regular intervals, d.b.h. and

∆d.b.h. (time 2 d.b.h. - time 1 d.b.h.) may assign individual

trees to cells within a matrix of tree size and vigor. Whereas

medical studies may determine survivor functions for demo-

graphic cohorts across calendar years, forest inventory survival

functions may be determined for d.b.h. classes across vigor

classes. The survivor function S(t) is defined at a time t as the

probability that the time to the event is greater than or equal to

t (Collett 1994). In this study, the “clock” starts at the first for-

est inventory, when a subject begins to be “at risk” for the

event or begins to be monitored for the event. Stating this in

terms of d.b.h., the clock is ∆d.b.h. (the increase in d.b.h. from

initial survey). Our survival function S(∆d.b.h.) gives the prob-

ability that a tree will die after it has grown by at least ∆d.b.h.

= k cm. For example, S(4 cm) estimates the proportion of the

population of trees within the same d.b.h. class that will survive

to increase their d.b.h. by 4 cm. Related to the survival function

is the hazard function, h(t). The hazard function gives the prob-

ability of an event occurring at time t given that the subject has

survived up to t. In terms of d.b.h., h(∆d.b.h.) gives the proba-

bility that a tree that has survived and grown k cm will die at

that size. Given the robust and established analyses of the sur-

vival modeling community, the individual tree variables of

d.b.h. and ∆d.b.h. may allow applying survival analysis to for-

est inventories, thereby providing a novel method of assessing

forest mortality dynamics.

Methods

Survival analysis was conducted using data from the 1977 and

1990 periodic FIA inventories for the State of Minnesota (table

1). Individual trees (observations) were included that met the

following criteria: alive at time 1 and observed as either dead

or alive at time 2, d.b.h. ≥ 13.0 cm (rounded up, minimum

d.b.h. for subplot trees as defined by FIA program), and no

human-caused mortality. Additionally, to streamline the large

data sets, only the most common species representing a wide

range of growth habits and suffering from a variety of damage

agents were selected for each State (table 1). ∆d.b.h. was calcu-

lated as the difference in d.b.h. between time 1 and time 2. If a

tree was dead at time 2, its d.b.h. was equal to the d.b.h. at time

2 or the d.b.h. at time 1, whichever was larger. Since a tree’s

d.b.h. may shrink following death, an estimate of the maximum

d.b.h. the tree attained before death would better benefit sur-

vival analysis than an estimate of a decaying bole diameter.

All data set trees were grouped both by initial d.b.h. (10-cm

d.b.h. classes) and ∆d.b.h. (4-cm classes). PROC LIFETEST

(SAS 1999) and its life-table estimation method were used to

Species Group Species Number of trees

Red and jack pine Pinus banksiana, Pinus resinosa 3,935

Black spruce and balsam fir Picea mariana, Abies balsamea 14,972

Maples Acer saccharinum, Acer saccharum 2,747

Balsam poplar Populus balsamifera 4,448

Paper birch Betula papyrifera 8,603

American elm Ulmus americana 3,829

Aspen Populus tremuloides 21,303

Red oak Quercus rubra 2,962

Table 1.—FIA inventory for the State of Minnesota used in survival analysis
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estimate S(∆d.b.h.) and h(∆d.b.h.) by 10-cm d.b.h. classes for

the entire data set. Additionally, h(∆d.b.h.) was estimated for the

23.0- to 32.9-cm d.b.h. class, stratified by species groups.

Results and Discussion

A survival function S(∆d.b.h.) was estimated for selected

species in the 1977-1990 Minnesota inventories (fig. 1). The

survival function was estimated separately for five initial d.b.h.

classes. The survivor function displays the cumulative proba-

bility of trees surviving to the inventory remeasurement (time

2) across classes of ∆d.b.h. For trees of a midsize diameter,

there was approximately a 60-percent probability of mortality

for trees growing less than 4 cm during the remeasurement

interval. Using d.b.h. and ∆d.b.h. for survival analysis applica-

tion, the survivor function quantifies the stand dynamics that

may cause tree mortality. The greatest tree mortality occurs in

trees growing 4 cm or less during the inventory interval (13

years). The largest trees suffer greater mortality rates than

smaller trees. In contrast to the survivor function, the hazard

function expresses the rate of death at a specific interval mid-

point (∆d.b.h. class), allowing mortality trends to be broadly

assessed by d.b.h. and ∆d.b.h. classes (fig. 2). Hazard functions

varied both by initial d.b.h. classes and ∆d.b.h. The largest

trees with the smallest ∆d.b.h. had the highest risk (hazard) of

death, while smaller trees had lower hazards of death in the

smaller classes of ∆d.b.h. To examine h(∆d.b.h.) across species

groups, the hazard functions for the 23.0- to 32.9-cm d.b.h.

class, stratified by species group, were determined (fig. 3).

Risk of mortality was distinctly different between all species

groups across all classes of ∆d.b.h. American elm had the

greatest hazard function across all classes of ∆d.b.h., while

maples had the lowest hazard function. 

The survivor and hazard functions may offer robust tools

for analyzing forest mortality. The survivor function displays

mortality cumulatively through the diameter distribution, while

the hazard function may display specific d.b.h. midpoint mortali-

ty rates. As evident from the survivor and hazard function curves

for Minnesota, d.b.h. classes with divergent or atypical mortality

trends may be readily identified. For those that monitor forest

health across regions of the United States, the analytical ability

to identify and discern differences in mortality trends is crucial.

We suggest that survivor curves for “typical” mortality may

assume a characteristic survivor curve form. Divergences of sur-

vivor function curves from the “typical” curve bounds for specif-

ic tree populations may help identify problems in a rapid,

statistically defensible manner. For large forest inventories, haz-

ard functions may be able to attribute mortality to causal agents,

Figure 1.—Survival functions for time one diameter classes by
delta DBH (Time 2 DBH - Time 1 DBH).

Figure 2.—Hazard functions for  time one diameter classes by
delta DBH (Time 2 DBH - Time 1 DBH).

Figure 3.—Hazard functions for time one DBH class 23-32.9
(cm) for various MN species.
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further refining forest health assessments. The hazard and sur-

vivor functions can together provide a rapid and comprehen-

sive assessment of tree mortality for forest inventories as long

as the survey interval time is approximately the same between

remeasurements (FIA annual inventory remeasurement interval

≅ 5 years).

Interspecific tree mortality differences are critical to forest

health assessments. Hazard functions, determined through this

study’s methodology, allow for comparing mortality risk rates

among species and diameter classes. Although analysis using

only one diameter class was presented from this study, there

were obvious differences in hazard functions among species.

This study’s methodology may allow comparing hazard func-

tions among species over successive inventory cycles.

Detection monitoring of atypical mortality may be better facili-

tated through observing risks of mortality by species, d.b.h.

class, and ∆d.b.h. class (hazard functions).

A longitudinal unit can be any unit that measures a vari-

able’s transition from one state (i.e., class or condition) to

another (Collett 1994). The greatest hurdle in applying survival

analytical techniques to forest inventories is finding appropriate

longitudinal units to quantify the transition of individual trees

from alive to dead. If time or ages are used as longitudinal

units in forest inventory analyses, a number of problems may

be encountered. First, all observations are censored. The exact

time of tree death is uncertain, with the inventory remeasure-

ment date often serving as the longitudinal measure. Second,

the survivor function curve is partially dependent on when and

where the measurements were taken. For example, if the bulk

of mortality is located in a certain area of the State that is

inventoried at a discrete point in time, the resulting survival

curve will be biased if time is used. Third, the age of a tree is

difficult to estimate in large forest inventories. However, d.b.h.

and ∆d.b.h. are quantities that hypothetically increase until a

tree dies. Thus, tree diameter may be used as a surrogate of age

in survival analysis. ∆d.b.h., although not a surrogate for time,

may serve as a “stopwatch” for individual trees. At the start

(time 1), the ∆d.b.h. of all trees is 0. At the time of remeasure-

ment (time 2) the “stopwatch” is stopped and trees are assigned

to classes of ∆d.b.h.. Time (years) may greatly relate to the sur-

vival of humans, while tree growth over intervals of time (i.e.,

annual diameter growth) may be a more meaningful measure in

forest ecology. Using the variables of tree size and growth may

allow survival analyses to be conducted on forest inventories

and warrant future evaluation and possible application.

Conclusion

Forest inventory mortality analysis has predominantly been

focused on logistic regression modeling at the individual tree-

scale with scant data summarizations at the landscape scale.

This apparent disparity in research efforts between forest

ecosystem scales means few advances or technologies have

been forwarded for robust analysis of forest mortality dynamics

at the landscape scale. This study proposed a new approach to

forest mortality assessment by combining established survival

modeling techniques (survivor/hazard functions) with tradition-

al measurements of forest stand attributes (d.b.h.

distribution/diameter growth). This technique suggests a para-

digm shift in forest mortality analyses and nonstandard applica-

tion of survival analysis techniques. If this study’s techniques

withstand the test of time and peer review, a new forest mortal-

ity analysis approach may be gained that is more efficient and

provides statistically defensible assessments of tree mortality

for tree populations across different forest types, locations, and

various damaging agents. 
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Analysis of Pooled FIA and Remote Sensing
Data for Fiber Supply Assessment at the
Warnell School of Forest Resources at the
University of Georgia—Other Studies and
Effective Information Dissemination

Chris J. Cieszewski1, Michal Zasada2, 7, Tripp Lowe3, Bruce

Borders4, Mike Clutter4, Richard F. Daniels4, Robert I. Elle5,

Robert Izlar6, and Jarek Zawadzki2, 8

Abstract.—We provide here a short description of the

origin, current work, and future outlook of the Fiber

Supply Assessment program at the D.B. Warnell

School of Forest Resources, University of Georgia,

whose work includes various analyses of FIA data.

Since 1997, the program has intended to assist the

implementation of the new Southern Annual Forest

Inventory System through related data analyses.

Currently its projects include basic problems in theory

of equations and parameter estimation and various

analyses of ground inventories and remote sensing

and GIS data. We describe some of these projects and

associated software, hardware, and information dis-

semination problems and solutions. 

The Fiber Supply Assessment program (FSA) at the Daniel B.

Warnell School of Forest Resources was initiated by Dean

Arnett Mace, Jr. in 1997. The establishment of this program

coincided with the beginning of the implementation of the

Southern Annual Forest Inventory Analysis System (SAFIS)

and was intended to provide the school’s input into solving the

various problems of timely and accurate fiber supply assess-

ment in Georgia. 

Parties interested in creation of this program included

members of the forest product industry, and others. Their

expectations were directed toward finding new relationships

and revealing information in the new annual measurement data

produced by SAFIS. The new design of the continuous annual

inventory was attracting many questions about statistical accu-

racy, the possibility of monitoring growth, and differences

between current and former periodic estimates. 

Notwithstanding the above, in the beginning the FSA

could not focus on the annual data analysis due to the unavail-

ability of such data. Furthermore, there was also little pragmat-

ic value in work on new estimators because it seemed rather

futile to begin changing the barely conceived statistical design,

which was so new that it was not even quite implemented yet.

Thus, at the outset the FSA focused initially on theoretical

studies of inventory projection equations. Subsequent efforts

concentrated on building collaborative studies with other pro-

grams and exploring funding opportunities related to the gener-

al mandate of the program. Presently the program is

collaborating with forest biometrics, the quantitative forest

management and wood quality programs, the center for forest

business, forest finance, forest economics, and a number of for-

est product industry partners. 

Research of the Fiber Supply Assessment
Program

Inventory projection equations: Forest inventory updates and

projections frequently rely on a special type of equation known

as a self-referencing function (Northway 1985). Such equations

are applied to model such stand characteristics as basal area,

volume, and different height measures. They contain two types

of parameters: the global model parameters, and the initial con-

dition parameters, which are snapshot observations of the mod-

eled phenomena usually available through inventory

measurements. These equations are used to model various char-

acteristics that depend on unobservable variables (e.g., site pro-

ductivity). Examples of the modeled characteristics in forestry

1 Assistant Professor,  2 Postdoctoral Associate,  3 GIS Analyst,  4 Professor,  5 Research Coordinator,  6 Director of Center for Forest Business, respectively, Warnell
School of Forest Resources, University of Georgia, Athens, GA.
7 Assistant Professor at Faculty of Forestry, Warsaw Agricultural University, Poland.
8 Assistant Professor at Environmental Engineering Department, Warsaw University of Technology, Poland.
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are height (e.g., Bailey and Clutter 1974), diameter (e.g.,

Clutter et al. 1983), basal area (e.g., Pienaar and Shiver 1986),

volume (e.g., Coile and Schumacher 1964), trees per unit area

(e.g., Bailey et al. 1985), and biomass and carbon sequestration

(e.g., Cieszewski et al. 1996). The self-referencing functions, or

the inventory projection equations, are usually calibrated on

pooled longitudinal and cross-sectional data and can be

expressed by either dynamic or static equations. 

The FSA focuses almost exclusively on the dynamic equa-

tions, also known as dynamic site equations, which are relatively

scarce in forestry literature. Out of a few hundred publications

on self-referencing models, only a couple of dozen use dynamic

equations (Cieszewski 2001). Similarly, in spite of an abundance

of literature on parameterization of explicit static equations (i.e.,

Y=f(t)), there is little literature available on derivation of these

implicit dynamic equations Y=f(t, Y)). Our program made major

contributions in this area by founding the generalization of the

algebraic difference approach (Cieszewski and Bailey 2000),

providing internationally examples of its applications (e.g.,

Cieszewski et al. 1999; Cieszewski, in press; Cieszewski and

Nigh 2002; Cieszewski and Zasada 2002), and presenting new

methods of dynamic equation derivation (e.g., Cieszewski 2001). 

Long-term sustainability analysis: In 2000 collaboration

between the Wood Quality, Forest Biometrics, and the FSA

began a major research effort on long-term sustainability analy-

sis of fiber supply in Georgia. The Dean of the School support-

ed this effort with an initial investment of $40,000 for software

and hardware necessary for initiation of spatially explicit estate

simulation analysis. At the beginning of 2001 this effort created

a new postdoc position and led to extensive research and analy-

ses of various Georgia forest resource data. Subsequently, long-

term research was made possible through TIP3 funding of a

3-year project with the postdoc position and graduate students.

The main data for the analysis came from the FIA 1997 and

2000 surveys. Supplementary information came from various

GIS and remote sensing sources including the Landsat TM 7

imagery. A preliminary approach to the analysis was described

first in Cieszewski et al. (2001). Subsequent stages and techni-

cal details can be found in Cieszewski et al. (2002) and Zasada

et al. (2002). Part of the long-term sustainability analysis proj-

ect concentrates on studying impacts of intensive management

practices on future wood production in Georgia. Assumptions

and results for the intensive plantation management practices

are described in Zasada et al. (2003a).

The sustainability project involves many simulations and

massive numerical outputs. Reviewing the results is a consider-

able challenge even for the team members and much more so

for the clients and public. The initial results consisted of over

1,000 graphs, maps, and tables that were organized for public

access on the Web at http://www.growthandyield.com/sustain/

in a navigational tree framework with expandable/collapsible

branches (fig. 1A). This presentation is fairly effective but as

the number of images and text files grew it became apparent

that invoking images by mouse click is not an effective way of

viewing thousands of images. To solve this problem and enable

more effective browsing through the massive outputs, we

designed a new Web construct based on dynamic image tables

(e.g., fig. 1B and 1C) being displayed automatically when a

mouse cursor browses over navigation tables (on a click the

display image table becomes the navigation table and a new

display image table is browsed as the mouse-over display as on

figure 1C). The later results from this project are being pub-

lished at http://www.growthandyield.com/movesustain/ in a

dynamic navigation framework optimized for fast and efficient

browsing of large numbers of tables and images; however, the

users need to be patient at loading time when large numbers of

images are preloaded to speed up subsequent response time. 

Assessment of stream and road buffers: In 2002 the

USDA Forest Service agreed to sponsor a study on assessment

of protective buffers such as the stream management zones and

road beautifying buffers. It has been a major contribution to the

research in the FSA. The technical aspects and preliminary

results of this project are described in detail in Zasada et al.

(2003b) in the proceedings of the joint meeting of the 4th

Annual FIA Symposium and 2002 Southern Mensurationists

conference. Lowe et al. (2003) describe the technical details

associated with the GIS analysis of spatial distribution of

stream and road buffers and assumptions behind the spatial dis-

tribution of the FIA and industrial ground measurement data

used in this and the long-term sustainability analysis. 

Landscape level inventory visualization: Initial efforts

towards effective presentations of the results of inventory pro-

jections in the long-term sustainability analysis included

research in computer-generated landscape images for inventory
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Figure 1.—Information dissemination on the spatially explicit analysis: A) Phase 1 static presentation; B) Phase 2 dynamic
presentation; C) Dynamic map display for various inventory projections; D) Phase 2 of landscape visualization; E)
Example of a Phase 2 computer generated image of forecasted inventory.
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visualization. It was a seed project intended to attract explicit

funding for such research, results of which could be used in

public relations and various analysis of aesthetical, recreational,

and visual implications of different forest management prac-

tices. Examples of the results of this research have been pub-

lished on the Web at http://www.growthandyield.com/

landscape/ in the form of two tables (e.g., fig. 1D) of image

thumbnails. These Web pages include short descriptions of an

initial and an advanced phase of the project with a number of

examples illustrating how the quality of the images changed at

different phases of the project. The quality of the final phase

images (e.g., fig. 1E) is by far not the best possible, but the

project was suspended due to lack of funding.

Biomass and carbon analysis: We have derived in this

study an estimate of carbon and biomass pools in Georgia

forests based on the USDA Forest Service Forest Inventory

Analysis data of the 1997 survey. The results include tables

with estimates and a map of the biomass density and pools at a

subcounty level of resolution, which is based on spatially

explicit simulations of the potential cover type polygons

implied by the FIA data with approximate plot locations. Our

results include estimates of the biomass pools in the below-

ground roots, aboveground tree, and foliage. This study esti-

mates biomass density and pools at a tree level using diameters

and heights. The results are then propagated to the plot level

using the USDA Forest Service tree expansion factors, and then

transformed to plot-dependent polygons using the plot expan-

sion factors. The plot-dependent polygons were spatially simu-

lated using a simplified assumption of homogeneity of

conditions surrounding each plot to the extent of the area

defined by this plot’s expansion factor. Despite the simplified

assumption, the derived map provides an excellent visual repre-

sentation of the distribution of forest biomass densities and

pools in the State with distinctive patterns observed in various

areas of urban development, federally owned forests, primary

commercial forestland, and other land use areas. Coniferous

forests with the highest total biomass density are located most-

ly in three regions: northern Georgia (Appalachian Highlands),

the southern part of the Piedmont, and the eastern part of the

Coastal Plain. Deciduous and mixed forests with the highest

biomass density are concentrated first of all in the northern part

of the State—especially in the Blue Ridge physiographic

province, and in the western part of the East-gulf Coastal Plain.

Counties with the highest biomass density were located prima-

rily in the northern part of the State while counties with the

lowest density tended to be on the coast. A journal manuscript

describing this study is under review. 

Hypermap Web Pages: To facilitate online Internet access

to the inventory estimates for various types of geographical

divisions in Georgia, we have developed several types of

hypermap systems (fig. 2), which are interactive, user-friendly,

and rich in abundant information on Georgia forest inventories.

The first generation of the hypermaps is available at

http://www.growthandyield.com/LiveMaps/clickmaps.htm and

requires the user to click on a selection of a display on a first-

level selection navigation table. Changing the display of the

maps from static to dynamic with different maps displayed as

the user moves the mouse over different navigation selections

was a major improvement, which can be accessed at

http://www.growthandyield.com/LiveMaps/movemaps.htm (fig.

2A). In both these map systems, once the first-level selection is

executed, the maps dynamically display a small table with sum-

mary statistics for different subunits of the State (fig. 2B). The

newest system of the hypermaps is the most comprehensive

and dynamic. Mouse-over movement over the first level navi-

gation table dynamically displays tables with various maps that

are available for the different divisions of Georgia and can be

accessed at http://www.growthandyield.com/movemaps/ (fig.

2C). When one of the map-tables is selected, it becomes a navi-

gation table displaying enlarged map images dynamically as it

is browsed over (fig. 2D). When one of the maps is selected, it

becomes a navigation table/map displaying dynamically sum-

mary graphs for each subunit of the State (fig. 2E). Finally,

when the subunit of the State is selected in any of the systems,

the user is taken to a page with extensive inventory summary

tables (fig. 2F). 

Other associated projects and solutions: Among the

most important projects associated with the FSA is the geosta-

tistical analysis study described in these proceedings. The

objective of this project was to evaluate the applicability of the

Landsat TM imagery for analyzing the textural information of

pine forest images. Other associated projects have mostly been

the results of seeking the best solutions in work organization

and the most productive work environment. The bibliography
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Figure 2.—Hypermap Web pages with inventory estimates for different divisions of Georgia: A) Navigation table with
dynamic maps; B) Navigation hypermap with a dynamic table; C) Navigation table with dynamic would-be navigation map-
table; D) Navigation map-table with dynamic hypermap; E) Navigation hypermap with dynamic graphs.
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Figure 3.—Other studies and administrative/management Web sites associated with the Fiber Supply Assessment program:
A) Online literature database; B) Fiber supply assessment online publication retrieval system; C) Comparison of the first
panel FIA annual inventory estimates to the last periodic inventory estimates; D) Comparison of the first and second panel
FIA annual inventory estimates to the last periodic inventory estimates. 
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project was initiated to streamline literature reviews and data-

base management with online access at

http://www.growthandyield.com/biblio/ (fig. 3A). The system

contains full texts of all the articles researched in the program

(available only for internal use due to copyright laws). All pub-

lications produced in the FSA can be retrieved online using a

self-maintained user-database at http://www.growthandyield.

com/cieszewski/WebScholarly.htm (fig. 3B), or through the

information dissemination page at http://www.growthandyield.

com/chris/. Finally, the FSA timely comparisons of recent FIA

inventory estimates are available online at http://www.

growthandyield.com/safis/ in the form of Excel-generated

HTML spreadsheets with various associated graphs (e.g., fig.

3C). The spreadsheets contain more extensive comparisons

between inventories than those commonly published by the

USDA Forest Service or the Georgia Forestry Commission.

The main analysis for the comparisons between the inventory

estimates is conducted in SAS and then published on the Web

using Excel only for presentation of the results. 

FSA Innovative Hardware and Software
Solutions 

Hardware solutions: Analysis of satellite imagery in conjunc-

tion with various inventory and GIS data requires massive

computing and storage capabilities (needs at the time of writing

this piece exceeded 5 Terabytes and were expected to double

before June 2003). The most productive and cost efficient solu-

tion was based on building a high-speed computing cluster (fig.

Figure 4.—Optimized hardware/software solutions: A) Cost of a computing cluster built with inexpensive generic hardware.
The lines on the graph mark expandability of the hard disk storage from 1 to 5 Hard Disks per CPU. Note that the 5th HD
is priced as an external FireWire disk that is portable and can be used with laptops. B) Mirror of the USDA Forest Service
database site, having the same appearance as the original site. C) As in B) but with different skin. 
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4A). We built a 1-Gb project-specific sub-networked comput-

ing cluster designated for extensive data processing and forest

inventory simulations. The cluster enables the FSA program to

perform many new strenuous computational tasks such as long-

term, spatially explicit simulations of forest resource availabili-

ty in Georgia or complex GIS analyses. The project allows for

a computer simulation series that previously required months to

complete to now be done in less than a week per each subdivi-

sion. Moreover, the high-speed sub-network provides opportu-

nities for high-efficiency data storage because transfer rates

between different CPUs are comparable to the access rates on

native drives. Even with an administrative overhead, the effec-

tive time of copying data between different CPUs is much

faster than going through the school network. The project-spe-

cific sub-network benefits the school at large by freeing up a

large amount of resources since all traffic commonly generated

by projects is removed from the school lines.

Software “programming optimization”: Because many

of the FSA studies use the FIA data and its Web pages, it is

critical that the relevant online access be in good working order

and available at all times. For this reason, we make mirrors of

various sites and copy entire structures of their directories onto

our computers so that we can use them for offline browsing

even when they, or the network, are down. At the same time

some Web sites cannot be used offline because of the way they

are programmed, and we need then to either reprogram the sites

or to refrain from making their mirrors. Such decisions depend

on how reliable is the original provider of the subject site and

on how much work is required for the reprogramming. The

USDA Forest Service Database Retrieval System is a good

example of a site that needs reprogramming for offline brows-

ing. First, the provider was frequently inaccessible and even

when accessed was painfully slow. The problem is that the pro-

gram is too advanced. It computes tables in real time generat-

ing many temporary files, which quickly reach a critical

number—crashing the server. We optimized the program by

replacing the dynamic table generating programs with pre-

processed static HTML tables. The improved mirror of this

database can be accessed at either of the two locations:

http://www.growthandyield.com/fiamirror/SE/www.srsfia.usfs.

msstate.edu/fia.htm (fig. 4B) and/or http://www.growthandyield.

com/fiamirror/ (fig. 4C). 

Summary and Conclusions

The FSA has developed many diverse research studies intended

to satisfy current funding requirements or to attract different

funding sources. Future directions of research will depend

chiefly on funding opportunities. In hardware solutions we will

follow the computing cluster strategy as the cheapest solution

to large computing and storage needs, which can be built even

with moderate equipment. 
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Rapid Classification of Landsat TM Imagery
for Phase 1 Stratification Using the Automated
NDVI Threshold Supervised Classification
(ANTSC) Methodology

William H. Cooke and Dennis M. Jacobs

Abstract.—FIA annual inventories require rapid

updating of pixel-based Phase 1 estimates. Scientists

at the Southern Research Station are developing an

automated methodology that uses a Normalized

Difference Vegetation Index (NDVI) for identifying

and eliminating problem FIA plots from the analysis.

Problem plots are those that have questionable land

use/land cover information. Four Landsat TM scenes

in Georgia have been classified using this methodolo-

gy. A cross-validation approach was used to assess

accuracy. The results are compared with an alternative

methodology: the Iterative Guided Spectral Class

Rejection (IGSCR) methodology.

Several FIA units have examined methodologies that test the

usefulness of pixel-based estimates for Phase 1 stratification.

Among these are k-Nearest Neighbor (k-NN) (Franco-Lopez et

al. 2000), Iterative Guided Spectral Class Rejection (IGSCR)

(Wayman et al. 2001) and various model-based approaches

(Moisen et al. 1998). A new methodology developed by scien-

tists at the USDA Forest Service Southern Research Station

seeks to combine simple concepts of satellite image data classi-

fication with FIA plot data and automate the process. This new

methodology compares FIA plot information with spectral

information from an NDVI transform, using an automated

approach for choosing Euclidean distances used to generate

FIA plot-based classification “signatures.” An additional com-

ponent of this methodology was tested that examines crown

modeling quantitatively to assess the usefulness of FIA plots

for generating signatures over the portion of the NDVI range

(150–185) that is most problematic for distinguishing forest

from nonforest pixels. The result of these comparisons is the

development of efficient Phase 1 classification techniques that

meet FIA remote sensing business requirements.

Operational Efficiencies

The Southern Research Station inventories forests in 13

Southern States and requires approximately 131 TM scenes for

complete “wall-to-wall” coverage of all States. Phase 1 stratifi-

cation procedures need to keep pace with changes in forest

conditions in the South and with the pace of inventory report-

ing cycles that require re-measuring all FIA ground plots every

5 years. The rate of change of southern forests is rapid and sub-

ject to environmental, social, and economic forces including:

• Clearcutting

• Urbanization

• Landowner assistance programs

• Population shifts

Any classification methodology adopted for FIA should be

operationally efficient for FIA purposes and address the follow-

ing requirements:

• High automation potential

• Straightforward implementation

• High CPU and storage efficiencies

• High repeatability

To date, the various Phase 1 methodologies that have been pro-

posed and tested have failed to meet one or more of these

requirements. For example, the IGSCR methodology requires a

great deal of subjective interpretation to establish signatures

and the iterative nature of the classification requires a great

deal of storage space. 

Figure 1 indicates the study area for the ANTSC method-

ology test project. Figure 2 indicates the subset of the study

area used for examining crown modeling approaches aimed at

refining the NDVI threshold component of the ANTSC

methodology. Comparison of the results of the ANTSC

methodology with the IGSCR methodology requires examining

both methodologies in more detail.
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IGSCR Methodology

The IGSCR methodology uses FIA plot information for devel-

oping statistical signatures. These signatures consist of the

mean and variance of the spectral reflectance of the ground

conditions in several Landsat TM spectral channels. The ana-

lyst views the location of the FIA plot on the image and, at that

spot, chooses a pixel (seed) for the signature growing process.

Using the pixel collocated at the FIA plot position, the analyst

specifies a Euclidean distance in multi-spectral space that cap-

tures contiguous pixels to be accepted, if within the Euclidian

distance of the same land use condition. Pixels outside the dis-

tance are rejected as the same land use condition. The analyst

must be able to recognize whether the region included in the

signature growing process remains in the land use condition of

seed pixel initiation. Figure 3 indicates a region that was grown

using a Euclidean distance of 10. The analyst must adjust the

Euclidean distance to ensure that the signature does not grow

beyond the land use class of initiation, so must frequently zoom

in and out of the image to subjectively assess the results of the

seed-growing process. 

Figure 1. Study area for ANTSC methodology test project. Figure 2. Subset of the study area used for tests of crown modeling.

Figure 3. Region that was grown using a Euclidean distance
of 10.
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The IGSCR process is detailed in Wayman (2001). To begin

the IGSCR classification process, an unsupervised classification

of 100 classes using a convergence threshold of 0.95 and variance

set to one standard deviation was performed for each TM image.

Collected signatures were then used to extract the class values

that result from the classification process, and output those class

pixel values to a text file suitable for statistical analyses. The

class information was analyzed for purity (95 percent) and classes

deemed pure were removed (masked) from the original TM

imagery. The remaining image pixels were then separated into

100 classes for the second iteration of class purity testing. At least

three iterations were performed for each image.

Table 1 lists the accuracies obtained for each of the four

TM scenes that were classified using the IGSCR methodology.

The methodology was relatively accurate for the binary classi-

fication of the forest and nonforest conditions, but required sig-

nificant analyst time and effort for choosing Euclidean

distances in the signature collection process. The multiple clas-

sifications of the imagery required by IGSCR occupied a lot of

storage space. These shortcomings of the methodology prompt-

ed the development of a hybrid classification approach combin-

ing NDVI-based techniques (Hoppus et al. 2000) with the

Euclidean distance signature development component of the

IGSCR methodology.

ANTSC Methodology

The IGSCR subjective signature generation process relies on

visual interpretation of forest and nonforest cover types.

Familiarity with the landscape and ecosystem processes is a

prerequisite for accurate image classification. At present, the

signature collection process is time consuming and tedious, and

interpreter fatigue is a real problem. 

Euclidean Distance Component

Signature collection in support of the IGSCR methodology

resulted in the visual interpretation of over 1,200 signatures for

four TM images from 1992 and four TM images from 2000.

These results suggested that a Euclidean distance of 13 opti-

mized signature growth for forested conditions but rarely

caused the signature to grow out of the condition of seed pixel

initiation. A Euclidean distance (D) of 21 gave similar results

in nonforest conditions. 

Euclidean distance, D:

Where a and b are values of pixels being evaluated and n is the

total number of satellite layers.

Forest Nonforest

TM scene Overall Producers Users Kappa Producers Users Kappa
path/row accuracy accuracy accuracy statistic accuracy accuracy statistic

IGSCR

17/37 84.79 89.67 88.71 0.6241 73.42 75.32 0.6473

17/38 85.38 92.44 89.08 0.5516 65.28 75.20 0.6649

18/37 84.93 92.17 89.08 0.4855 58.06 66.67 0.5768

18/38 86.71 98.22 83.73 0.5519 66.52 95.51 0.9296

ANTSC

17/37 90.01 91.03 97.26 0.9884 90.48 73.08 0.7498

18/37 95.28 95.11 99.43 0.9570 96.43 75.00 0.7120

18/38 95.01 95.52 99.58 0.9884 99.32 88.48 0.8182

Table 1. Georgia IGSCR/ANTSC accuracy assessment comparisons
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NDVI Component

A large body of literature exists confirming the usefulness of

the Normalized Difference Vegetation Index (NDVI) band

transformation for extracting information about forest vegeta-

tion (Iverson et al. 1989, Anderson et al. 1993). Results using

an NDVI threshold by the Northeast FIA unit confirmed that

NDVI was useful for separating forest from nonforest condi-

tions. Figure 4 illustrates how the NDVI values for FIA plots

(subplot 1) compare for a single TM scene. 

The search for operationally efficient automated classifica-

tion methodologies led researchers at the Southern Research

Station (SRS) to develop an integrated methodology that used

an NDVI threshold with automated signature collection to rap-

idly classify TM images using a Maximum Likelihood-based

“Supervised Classification” approach, dubbed the Automated

NDVI Threshold Supervised Classification (ANTSC) method.

An NDVI threshold of 165 was used to differentiate

between forest and nonforest. Each FIA plot’s NDVI value was

extracted from an NDVI-transformed TM image using a Pixel-

to-ASCII extraction program. The NDVI values were compared

to the field-derived land use information. Forested plots with

NDVI values below 166 and nonforest plots with NDVI values

above 165 were considered separate populations of plots that

did not represent land cover information contained with the

spectral response surface of Landsat TM imagery. Several

explanations for the origination of this population of plots may

be hypothesized. The following are possible:

• Change based on disturbance

• Land use versus land cover differences (clearcut = forest)

• Pixel/plot mis-registration

It was considered important to the ANTSC process that this NDVI

or parity test be conducted to remove these plots from training and

accuracy assessment. Certainly, the removal of these plots purifies

the training and accuracy assessment pool of plots used in the

cross-validation approach. The IGSCR methodology also indirect-

ly purifies the accuracy assessment pool of plots by removing

those plots that resulted in poor signatures during the signature

generation process. A poor signature was one that did not include

a minimum of 9 pixels, or one that grew into a land cover class

different from that of the original pixel. 

Accuracies for three TM scenes classified using the

ANTSC methodology are shown in table 1. A final accuracy

assessment test was performed using the accuracy assessment

plots from each method (IGSCR, ANSTC) to test the accuracy

of the other method. Results showed accuracy differences for

the three scenes done by both methods to be less than 5 per-

cent. Differences in operational efficiency between the two

methods were obvious. The IGSCR method took 3 to 7 days

per scene, while the ANTSC method took less than 1 day. It

should be noted that working through the IGSCR methodology

enabled the automated specification of Euclidean distances for

the ANTSC methodology. It is not known whether the specifi-

cation of Euclidean distances for forest and nonforest used in

this study are stable across a wide variety of ecological condi-

tions or differing image radiometric conditions.

Utilizing a hard NDVI threshold of 165 assumes that the

NDVI ratio is consistent from image to image and that radio-

metric differences among images are not reflected in the NDVI

transform. To test the concept of using a soft threshold, plots

that fell into the range of NDVI values between 145 and 165

were assessed for their correct land use call by using a process

of crown modeling. Crown modeling uses the distance and

azimuth of each tree tallied on an FIA plot, coupled with

regression estimates of crown width derived from Forest Health

Monitoring (FHM) data, to calculate the proportion of crown

reflectance per FIA subplot. These subplot proportions were

compared with the NDVI values at the same location to deter-

mine land use/land cover compatibility. A somewhat arbitrary

threshold of 16.7 percent crown cover per FIA subplot was

chosen as the cutoff between forest and nonforest conditions

for the comparisons made in this study.

Figure 4.—NDVI values for FIA plots on a Landsat TM scene
at FIA subplot 1. 
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Crown Modeling

Crown modeling for calculating the average canopy reflectance

by subplot follows these steps:

• Develop local regressions that predict crown diameter by 

species from Forest Health Monitoring data. 

• Compute the crown radii for each tree species. 

• Use a buffer approach in the GIS software to draw the

crowns in their real world locations.

• Intersect the crowns with the subplot circles and calculate

proportional reflectance per subplot/plot.

For the subset study area of one TM scene, 28 FIA plots

fell within the 145-165 NDVI range. Of these 28 plots, 4 had

crown proportion reflectance percentages that were inconsistent

with the FIA land use call. The crown models are superim-

posed on the TM imagery and comparisons shown for 3 of

these plots in figures 5, 6, and 7. 

Figure 5 shows that for this FIA plot, subplot 4 fell in a

forest. The average crown proportion for the four subplots was

19.4 percent. This exceeds the 16.7 percent threshold of canopy

reflectance, but the NDVI value (154) for this plot was deter-

mined from the pixel that corresponded to subplot 1. Since the

calculated average crown reflectance proportion was inconsis-

tent with the NDVI value at subplot 1, the analyst has the

option to use the pixel at subplot 1 as a seed for a nonforest

signature since the plot was not thrown out on the basis of the

NDVI parity test. 

Figure 6 shows an FIA plot that is classified as forest in

the field, but the calculated average crown reflectance propor-

tion (13.8 percent) is less than the 16.7 percent threshold. The

crown models reveal a plot that is in an area that was likely

clearcut a few years ago and is reverting to forest. The

canopies are small and the crown reflectance proportion calcu-

lations are predicated on using FIA tally trees that are 5 inches

Figure 5.—Crown proportion (19.4 percent) and NDVI value
(154) not consistent.

Figure 6.—Crown proportion (13.8 percent) and NDVI value
(174) not consistent.

Figure 7.—Crown proportion (7.9 percent) and NDVI value
(170) not consistent.
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d.b.h. or greater. The NDVI value at subplot 1 (174), indicates

a forest condition that is consistent with the FIA land use call

but inconsistent with the crown modeling-based proportion.

The analyst should initiate a seed based on the NDVI value that

is consistent with the land use call in the field.

Figure 7 shows an FIA plot in a recent clearcut that has a

low average crown reflectance proportion (7.9 percent) but a

relatively high NDVI value at subplot 1. It is obvious that sub-

plot 1 falls in a forest edge while the other 3 subplots fall in the

clearcut (nonforest). The crown modeling procedure points out

a classic land use/land cover conflict. If the analyst places the

seed for this forested plot at subplot 1, the signature will reflect

the nonforest condition. If the analyst places the seed for this

forested plot at subplot 4, the signature will reflect the forested

condition. In this case, the crown proportion calculations raised

a red flag that leads the analyst to a closer look at the land

use/land cover issue.

Conclusions

Classification accuracies for the ANTSC and the IGSCR

methodologies were similar. The ANSTC classification

methodology is less subjective and requires no analyst input,

making it easy to implement by analysts with minimum remote

sensing expertise. Results of the crown modeling experiments

indicate that the NDVI threshold of 165 is a good choice but

some land use/canopy reflectance inconsistencies exist with the

145-165 NDVI range. The number of inconsistencies was small

(<14 percent of the total FIA plots). The additional time spent

assessing the problem plots within the 145-165 NDVI range is

likely worth the improvement in precision, although a small

amount of automation potential may be sacrificed. 

It is not known whether the Euclidean distance measures

used in the ANTSC methodology will work as well in other

States or in different ecological conditions. It is possible that

some preliminary work will be required to determine the opti-

mum Euclidean distances for forest and nonforest signatures

when ecological conditions are significantly different.
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Quantifying Forest Ground Flora Biomass
Using Close-range Remote Sensing

Paul F. Doruska; Robert C. Weih, Jr.; Matthew D. Lane1;

and Don C. Bragg2

Abstract.—Close-range remote sensing was used to esti-

mate biomass of forest ground flora in Arkansas. Digital

images of a series of 1-m2 plots were taken using Kodak

DCS760 and Kodak DCS420CIR digital cameras. ESRI

ArcGIS™ and ERDAS Imagine® software was used to

calculate the Normalized Difference Vegetation Index

(NDVI) and the Average Visible Reflectance (AVR)

index for each plot. Regressions, developed to estimate

green and dry biomass from the NDVI and/or AVR val-

ues, explained 30-40 percent of the variation. A vegeta-

tion mask and/or different independent variables are

needed to improve the regression models. 

Many forest research projects estimate forest ground flora bio-

mass via the labor-intensive technique of clipping, drying, and

weighing vegetation samples (Brower et al. 1990). When com-

bined with species identification, such work is used to report

various diversity measures (Elzinga et al. 1998, Foti and

Devall 1994, Magurran 1988) used in ecosystem studies and

reporting. Such information is also used when assessing

wildlife habitat (National Wildlife Research Center 2000). 

Satellite imagery combined with computer algorithms has

been used to estimate forest biomass (Ahern et al. 1991, Baret

et al. 1989), but this imagery cannot be used to estimate forest

ground flora biomass because of canopy blockage and scale.

Our pilot project sought to determine whether techniques used

to estimate forest biomass from satellite imagery can be used to

estimate forest ground flora biomass using close-range, remote-

ly sensed imagery. Photoplots have been used in ecological

research for change detection (Schwegman 1986, Windas

1986). This project combines the use of photoplots with the

techniques of satellite imagery to estimate forest ground flora

aboveground biomass. 

Equipment

Two digital cameras were used in conjunction on this project:

A Kodak DCS760 camera with a Nikon F5 body was used to

take color digital images at a 6 million pixel (3038 x 2028) res-

olution; a Kodak DCS420CIR camera with a Nikon F90 body

camera operating at a 1.5 million pixel (1524 x 1020) resolu-

tion was used to take the color infrared images. Twenty mm

auto-focus lenses were used on both cameras, and an Omega

Optical band pass filter (500-900 nm) was used in conjunction

with the DCS420CIR camera to block blue light.

An aluminum stand was constructed to frame the 1-m2 plot

and mount the cameras. (The actual frame size was 0.966 m2

but will be referred to as 1 m2 in this manuscript.) The cell size

for the imagery was 0.1015 cm. Black and white bands were

painted onto the frame to calibrate images from 0 to 255 to

take into account variations in illuminations. Cross hairs (or

tick marks) were drawn onto the frame to develop a local coor-

dinate system for image comparisons. ESRI ArcGIS™ 8.x and

ERDAS Imagine® 8.5 software was used to process the

imagery and calculate the vegetative indices used herein.

Methods

Collecting Images and Vegetation

A series of 1-m2 plots were randomly established on the

University Forest at the University of Arkansas-Monticello for

the initial analysis. Once a plot was located, the aluminum

camera stand was set up and vegetation overlapping or extend-

ing beyond the border of the frame was removed to ensure only

vegetation within the plot would appear in the images. Each

camera was then mounted on the frame separately and raised to

the appropriate level. Three pictures were taken per camera to

be sure at least one usable image was captured. After the

images were taken, the vegetation on the plots was clipped at

1 Assistant Professor, Spatial Information Systems Program Director, and Research Specialist, respectively, Arkansas Forest Resources Center, University of
Arkansas School of Forest Resources, Monticello, AR. E-mail: doruska@uamont.edu.
2 Research Forester, U.S. Department of Agriculture, Forest Service, Southern Research Station, Monticello, AR. E-mail:dbragg@fs.fed.us.
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ground level, sorted by species, and placed into labeled plastic

bags and sealed for laboratory analysis.

Mass Determination

The green mass of the contents of each bag was determined

immediately upon return to the laboratory. The contents of each

plastic bag were then transferred to labeled paper sacks and

placed in a drying oven at 60ºC for 3 to 4 days. After drying,

the dry mass of the contents of each bag was measured. 

Image Registration and Standardization

The camera stand used in this study had seven tick marks on its

frame. These tick marks were measured to within 0.025 cm and

placed in a shapefile to represent a local coordinate system for

the camera stand. Each collected image was then registered to

that coordinate system within ArcGIS™ ArcMap™ using the

georeferencing extension. The referencing was done by lining

up the measured tick marks with the marks seen on the image;

this ensured that all images would line up exactly with each

other and could be compared.

Because the amount of solar energy incident on the plots

can change, the camera stand also had black and white painted

regions on it so the illumination of images could be standard-

ized. To ensure that the digital values represented the same

color from one image to the next, a GER2600 spectroradiome-

ter determined the reflectance of the painted regions for four

bands (Near Infrared[NIR], Red[R], Green[G], and Blue[B])

and represented the extremes of the range of colors present in

any image for any band. A simple linear regression was created

per band per image to convert the range of values present with-

in a given band/image combination to the range defined via the

spectral radiometer. The regressions were used to calibrate each

image.

Images were then subsetted by creating areas of interest

(AOI’s) manually in Imagine®. The AOI’s contained only that

portion of each image that was inside the borders of the camera

stand and were used for all subsequent analyses.

When applying the regression models to the areas of inter-

est for each band/image combination, any values in the output

grid less than 0 were reset to equal 0 (negative values can dis-

rupt calculation of certain vegetation indices). The final output

grid was a six-band image consisting of standardized NIR, red

and green bands from the color infrared image, and the red,

green, and blue bands from the color image. 

Vegetation Indices and Regression Modeling

The CIR camera images were used to calculate the Normalized

Difference Vegetation Index (NDVI). The Average Visible

Reflectance (AVR) index was calculated using the color camera

images for each pixel in each image.

NDVI = (NIR-R)/(NIR+R) (1)

AVR = (G+R+B)/3 (2)

The output image from this step was a two-band grid (NDVI

and AVR) with a cell size of 0.1015 cm by 0.1015 cm. 

Once the NDVI and AVR values for the images were cal-

culated, they were summed and averaged for use as potential

independent variables in regression equations to predict green

or dry biomass.

Results and Discussion

Thirteen of the plots have been completely processed so far.

Green mass of the forest floor aboveground vegetation ranged

from 30 g to about 415 g and dry mass ranged from 14 g to

about 200 g. Figures 1 and 2 show the relation between green

and dry biomass, respectively, versus the sum of the NDVI val-

ues of the plots. A slight curvilinear pattern is apparent.

Several regression model forms were examined to fit a

curve to the data appearing in figures 1 and 2. For predicting or

estimating mass (green and dry, respectively) in grams, the fol-

Figure 1.—Relationship between green mass (g) and NDVI values.



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 89

lowing model form was most successful across the collection

of images (i’s):

Ln(massi) = β0 + β1(sum NDVIi) + i (3)

Fit statistics for equation (3) appear in table 1.

NDVI was found to be a better independent variable than

AVR. Although parameter estimates were significant, the R2’s

of these initial models were fairly low. A few plots greatly

impacted model performance. Visual inspection of the images

of these plots indicated that a fair amount of vegetative overlap

was present, which prevents the cameras from seeing the true

quantity of vegetation. Vegetation overlap is definitely of con-

cern to the researchers. If the problem persists as the data set

grows, a method to account for vegetative overlap needs to be

developed and included.

Other model forms/variables will be considered as the data

set continues to grow. In this initial analysis, calculated vegeta-

tive indices (NDVI and AVR), not individual color bands, were

used when building regression models. Use of individual color

band values, especially red, may improve model performance.

A vegetation mask was not used in this initial analysis, but will

be used in any future analyses. We hope a vegetation mask will

further distinguish pixels that contain live vegetation from pix-

els that contain just the forest floor.

These preliminary results suggest the potential of handheld

color and color infrared cameras for quantitative forest floor

vegetation sampling by means other than clipping and weigh-

ing. This project, as it unfolds, should serve as a good first step

in that direction. 
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Measuring Forest Area Loss Over Time
Using FIA Plots and Satellite Imagery

Michael L. Hoppus and Andrew J. Lister1

Abstract.—How accurately can FIA plots, scattered

at 1 per 6,000 acres, identify often rare forest land

loss, estimated at less than 1 percent per year in the

Northeast? Here we explore this question mathemati-

cally, empirically, and by comparing FIA plot esti-

mates of forest change with satellite image based

maps of forest loss. The mathematical probability of

exactly estimating a 5-percent loss within a 600,000-

acre forest, where 5 percent has actually been con-

verted, is 18 percent. A GIS experiment in

Connecticut, using 452 FIA plots and a satellite-

derived forest cover map, where 5 percent of the total

forest area was “lost” by 7.5-acre units, indicates that

the sample estimates a 5-percent loss 35 percent of

the time with a range of estimated loss of 3 to 8 per-

cent. Satellite image classification can probably esti-

mate the amount of forests lost to urbanization more

accurately, especially over small areas, while provid-

ing a more useful map of forest loss.

Forest Inventory and Analysis (FIA), a program of the USDA

Forest Service, is responsible for the nationwide forest invento-

ry and monitoring of the United States. Congress mandates,

through the Forest and Rangeland Renewable Resources

Planning Act of 1974 and the McSweeney-McNary Forest

Research Act of 1928, that FIA continuously determine the

extent, condition, and volume of timber, as well as the growth

and depletion on the Nation’s forest land. FIA inventories must

meet specified sampling errors: a 3-percent error per 1 million

acres of timberland is the maximum allowable for area.

Timberland is a category of forest land that is producing or

capable of producing 20 cubic feet of industrial wood per acre

per year (Hansen et al. 1992). Timberland area is usually 80

percent or more of the total forest land of the States in the

Northeast. 

Users of FIA data in the Northeast increasingly are inter-

ested in how much forest land is being converted to other land

uses, such as residential housing developments. A low rate of

forest land loss per year can still amount to an ecologically sig-

nificant area. An annual 0.3 percent loss of forest land in the

Northeast would equal about 436 square miles, or 2,180 square

miles of forest land in 5 years (1.5 percent). The question is

whether the current FIA inventory program can identify small

rates of forest loss when it occurs somewhat randomly over

large areas. 

Another source of survey information that the FIA pro-

gram is evaluating is Landsat 7 satellite imagery. Imagery from

two dates can provide a forest loss map. The maps have no

sampling error but do have classification or mapping errors.

The question is whether the accuracy of such maps is sufficient

to determine how much forest is being lost.

Objectives

One objective of this study was to see if it is reasonable to

reject the null hypothesis that the density of FIA plots (1 plot

per 6,000 acres) does not permit accurate estimates of forest

land loss, if the area of loss is only 1 to 5 percent of the total

forest area. This hypothesis was evaluated both in terms of

mathematical probability and by an empirical GIS evaluation

of how actual FIA plots located on a real forest-cover map

identify forest loss that was artificially induced at random with

a computer.

Another objective was to evaluate the ability of Landsat

satellite imagery to detect and map forest loss. Several change-

detection methods were evaluated and the resulting change

maps compared with the corresponding estimates of forest

change made by the FIA ground plot survey. The ultimate goal

of the investigators was to evaluate the ability of the FIA sur-

vey design to estimate the rare occurrence of forest loss com-

pared to total forest cover in the Northeast, and to determine

1 Research Forester and Forester, respectively, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA 19073. Phone:
610–557–4039; fax: 610–557–4250; e-mail: mhoppus@fs.fed.us.
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how well satellite-derived change-detection maps could provide

additional forest loss information. 

Methods

Determining the Binomial Probabilities of Forest Loss

Given the General FIA Sampling Design

To determine the likelihood that the FIA survey design identi-

fies rare patches of forest loss, a binomial probability function

was applied to 100 FIA ground plots within a 600,000-acre for-

est in which 5 percent of the forest area has been cleared at ran-

dom in circular patches of 5 acres. For simplicity, we assume

that each FIA ground plot consists of a 1-acre circle. (An actual

plot consists of four 0.04-acre circular subplots distributed

evenly within a 1-acre circle.) The 600,000-acre forest consists

of 100 hexagons covering 6,000 acres each. Each hexagon con-

tains one FIA ground plot.

The probability that a plot will hit a cleared patch exactly r

times, P(r), is given by the binomial probability function:

P(r) = 

where: 

p = the probability of a plot hitting a forest loss patch on 

a single trial 

n = the number trials 

r = the total number of times that plots hit any forest loss 

patch

A hit occurs when a plot center falls within any portion of

the 5-acre circular patches of cleared forest. The numbers rep-

resented by p and n were computed by throwing 6,000 5-acre

patches of “forest loss” at random into the 600,000-acre forest

that contains 100 plots (1 plot per 6,000 acres). 

The formula presented here is not precisely correct

because it applies to sampling with replacement. It unrealisti-

cally allows two forest loss patches to be located on the same

piece of ground. However, this formula still accurately approxi-

mates the probability that the total number of times a plot hits a

forest loss patch equals r, since n, the number of trials, is small

compared to the total number of trials possible (Huntsburger

and Billingsley 1977). The formula that deals with sampling

without replacement is difficult to use with large differences

between p and (1-p)—hypergeometric probability is generally

applied to much smaller problems. 

GIS Experiment Using FIA Plot Locations in Connecticut

and a Forest Cover Map of the State

A more empirical approach to determining how well the FIA

plots estimate forest loss was used to experiment with various

levels of loss in a more realistic setting. Using GIS software,

we combined the actual FIA plot locations with a forest/nonfor-

est map produced from the U.S. Geological Survey Multi-

Resolution Landscape Characterization (MRLC) vegetation

cover map for Connecticut derived from a classified 1993

Landsat TM satellite image. Connecticut had about 1,825,700

acres of forest land (59 percent) out of a total land area of

3,117,800 acres (Brooks et al. 1993). Plots located in forested

areas, according to the MRLC map, totaled 300 out of 452.

Five levels of forest loss were applied to the forest area of the

map: 1, 2, 3, 4, and 5 percent. Each level of loss was applied at

random in multiples of 7.5-acre units. For example, a 1 percent

loss in forest land in Connecticut (18,257 acres) required 2,434

unit areas of loss at 7.5 acres each. Random selection of forest

loss was repeated 250 times, and the number of forested plots

changing to nonforest counted for each percentage level of loss.

A histogram of the 250 counts of the number of plots hitting an

area of forest loss was plotted for each of the loss levels. In this

experiment, a hit occurred when the center of a previously

forested plot fell on any portion of an area of forest loss. If the

plots can capture low rates of loss, the expected value (mean),

or highest frequency in the histogram (mode), should be equal

to the percent loss applied to the forested map area.

A Comparison Between Change (Loss) Detection Maps

Produced from Landsat TM Satellite Imagery and Estimates

of Forest Change Provided by the FIA Survey Reports

Change detection maps derived from two Landsat satellite

images, taken 5 to 6 years apart, were evaluated for their ability

to estimate forest land area that had changed to other land

cover types. If accurate, these maps also could show where this

change is taking place and the size class distribution of the

change. First, a change map of a large portion (64 percent) of
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New York State was evaluated. This map, commissioned by the

National Oceanic & Atmospheric Administration (NOAA) was

produced by Earth Satellite Corp. (Earthsat). The NOAA

Coastal Change Analysis Program (C-CAP) is a national effort

to develop and distribute regional land cover and change analy-

sis data for the coastal zone (including the Great Lakes) by

using remote sensing technology. C-CAP classifies land cover

types into 22 standardized classes that include forested areas,

urban areas, and wetlands (fig. 1). For New York, the changes

between two dates of satellite imagery, 1995 and 2000, are

based on how these 22 classes of land cover are converted

from to another over the 5-year interval. There are five classes

of forest land: Deciduous, Evergreen, Mixed, Palustrine

Forested Wetland, and Estuarine Forested Wetland. In the C-

CAP classification scheme, these forest classes can change to:

High Intensity Developed, Low Intensity Developed,

Cultivated, Grassland, Shrub Land, Shrub Wetland, Emergent

Wetland, Shore Land, Bare Land, Water, Tundra, and Palustrine

Aquatic Bed, as well as snow, clouds, and image background.

The image processing technique employed by Earthsat

starts by classifying the two scenes using a combination of

unsupervised and supervised methods. Unsupervised classifica-

tion was used to create a signature file for 233 classes. The sig-

nature file was then run through a maximum likelihood

supervised classification process. For a general description of

these classification methods, see Jensen (1996). The resulting

clusters were labeled using the Earthsat-developed addition to

ERDAS Imagine 8.5 image processing software, called

Geotools, which uses field and aerial photo-derived estimates.

A change map was then constructed by using an Earthsat

change detection technique called Cross Correlation Analysis

(CCA). This analysis technique uses the labeled cluster file of

the early-date image combined with the late-date multispectral

image and statistically analyzes it against the labeled cluster

file of the late-date image with the early-date multispectral

image. Each pixel is ultimately placed into a change category

(including “no change”) based on the CCA process. More

details on the method are located in the map metadata found in

the C-CAP citation. The advantage is that it performs well

regardless of seasonal differences because it uses former class

boundaries summarized with new class signatures to determine

the relationship between pixel brightness values and a feature

class. In fact, direct pixel value comparison between the differ-

ent scenes is not required (NOAA 2002).

The percentage area of forest land lost to urbanization and

other land cover based on the NOAA change map was com-

pared to the FIA estimates of percentage forest land change

from 1980 to 1993 in the three New York FIA survey units that

are wholly contained within the NOAA mapped area.

A change detection map based on the difference between

pixel brightness values between two dates of Landsat imagery

was also evaluated. For two counties in New Jersey,

Monmouth and Ocean, change maps were produced using 1991

and 1997 Landsat images. Three different change layers were

used to construct the map: a red band subtraction layer; a

Normalized Difference Vegetation Index (NDVI) subtraction

layer; and a layer consisting of the fourth principal component

of a principal component analysis of the “brightness” and

“greenness” layers of the Tasseled Cap transformation of both

images. Again, for a detailed discussion of these bands, the

NDVI, and band transformations, see Jensen (1996). In each of

these layers, the pixel brightness values are highly correlated

with a gain or loss of green biomass. 

When the red spectral layer of the 1991 image is subtract-

ed from the 1997 image, a high (bright) pixel value indicates a

loss of forest canopy if the pixel area was forested in 1991.

Green biomass is dark in the red band due to photosynthetic

Figure 1.—Landsat images used for NOAA’s Great Lakes
Coastal Change Map (outlined square image footprints) and
the area extent of the Change Map (dark gray). Note that two-
thirds of New York was mapped. (Reproduced with permission
from NOAA and Earthsat, Corp.)
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light absorption. Similarly, when the 1991 NDVI is subtracted

from the 1997 NDVI, a low (dark) pixel value indicates a loss

of forest canopy. Green biomass has a high NDVI pixel value.

A Tasseled Cap transformation produced a “brightness” band

that is negatively correlated with forest canopies and a “green-

ness” band that is positively correlated with forest canopies for

each of the images. Principal component analysis was applied

to the four input layers to condense them into one biomass loss

layer (Gessler et al. 1998). For each of the change images, a

change map was constructed by selecting a pixel brightness

threshold where forest canopy loss was on one side or the

other. Threshold selection was based on aerial photo interpreta-

tion of areas where the forest canopy was completely removed

(fig. 2).

Each of the change maps was very sensitive to even slight

changes in the brightness value selected for the threshold.

Furthermore, even though the maps were similar, the total num-

ber of pixels classified as “forest canopy loss” varied as much

as 20 percent. So, a final forest canopy loss map was construct-

ed by combining the three input maps. A pixel classified as

“forested” in the USGS-MRLC map in 1991 and classified as

“forest canopy loss” on all three change maps for New Jersey

was required for a pixel to be labeled “forest canopy loss” in

the final map.

Results

Binomial Probabilities 

In our mathematical evaluation of how well FIA plots can esti-

mate small amounts of forest loss equal to 5 percent of the total

area, we found that the probability of a plot hitting an area of

change exactly 5 times is 18 percent. In other words, 100 plots,

distributed randomly at  one 1-acre plot per 6,000 acres, will

correctly estimate 5 percent loss of forest cover about one-fifth

of the time. Only 1 percent of the time will no change of forest

cover be detected at all; however, 50 percent of the time the

estimate of forest loss will differ from that estimated by more

that 1 percentage point, or by 9 square miles or more (fig. 3).

Figure 3.—The probability that exactly a given number of plots
will fall on change, if 5 percent of the area has changed and
there are 100 plots. Note there is a relatively high probability
(18 percent) the plots will estimate the exact area of change.

Figure 2.—Urban development has removed forest cover between 1991 and 1997, as shown in these portions of NDVI scenes from
the two dates. When the brightness values of the 1991 scene are subtracted from those of the 1997 scene, a forest canopy loss map
is produced.
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GIS Experiment Using FIA Plot Locations in Connecticut

and a Forest Cover Map of the State

In our GIS experiment, we found that the expected values of

estimates of forest change are equal to the modes of the fre-

quency distribution of 250 realizations for each actual percent-

age forest cover removed. Remember that a “realization” is the

estimate of forest cover loss provided by 300 forested plots in

Connecticut after a selected per-centage forest area is removed

in multiples of 7.5-acre units. The range of estimates for each

of the actual percentage removals was nearly identical to what

the 99 percent confidence interval would be for a sample size

of 300 and a fraction observed of 1 percent, 2 percent,...,5 per-

cent forest cover loss (based on table 1.4.1 “Confidence inter-

vals for binomial distribution” of Snedecor and Cochran

(1967)) (fig. 4). Keep in mind that a 1 percent error in estimat-

ing change is equal to 29 square miles of forest land in the state

of Connecticut. Before we leave the results of plot-based esti-

mates of forest loss, consider that as the number of plots

decrease, the ability to estimate small change is diminished. In

a county like New Haven, CT, with 180,000 acres of forest

land, a 1-percent loss would not be detected 75 percent of the

time due to the low number (30) of forested plots.

Comparison of the NOAA/Earthsat Change Map with FIA

Estimates 

A summary of the forested Landsat pixels that changed in the

5-year period from 1995 to 2000 according to the

NOAA/Earthsat change map of New York indicates that out of

15,817 square miles of forest, 251 square miles (1.5 percent)

were lost to other land cover types. The average size of change

was 1 acre with a range of 1/4 acre to 8,000 acres. Most of the

change ranged from 1 to 38 acres. It is difficult to compare

these results with forest change based on FIA plot data because

the last periodic FIA survey of New York by the Forest Service

was in 1993. The three northern FIA survey units in New York

are contained within the NOAA mapped area and cover 67 per-

cent of the acreage. Between 1980 and 1993 this area had a net

increase of 143,000 acres of forest land, for a gain of 1.8 per-

cent or 210 square miles (Alerich and Drake 1995). 

In both the satellite-based estimate and FIA plot-based

estimate, the map error and sampling error, respectively, are

about the same magnitude as the change. The error matrix pro-

vided with the NOAA/Earthsat map estimates that the classifi-

cation accuracy of forest land on the year 2000 map is 95

percent (96 percent correct omission error and 95 percent cor-

rect commission error) based on 750 ground truth plots, of

which 200 plots were on forest land. This is a high level of

accuracy not often exceeded in Landsat image based maps.

Even though the forest loss estimate is smaller than the map

error rate for forest land, experience shows that certain types of

change should be accurately depicted, such as forest land to

residential housing, commercial, and industrial areas. The

NOAA map indicates that 16 square miles (0.01 percent) were

lost to urbanization. Furthermore, the map shows the location

and size of likely forest-loss patches.

Comparison of Forest Change Estimation: FIA Plots vs.

Landsat Pixel Algebra Maps

Our forest loss map, based on an algebraic comparison of pixel

brightness values of two Landsat scenes, shows a forest canopy

loss of 3,547 acres in Monmouth County, New Jersey, between

1991 and 1997. The corresponding FIA estimate shows a net

loss of 7,000 acres out of 90,300 acres of forest land from 1987

to 1999 (Griffith and Widmann 2001). If the rate of forest loss

was evenly distributed over each of the 12 years, these two

Figure 4.—Histograms of 250 realizations each for a 1%
through 5% GIS removal of the mapped forest cover of
Connecticut (removed, at random, in unit areas of 7.5 acres).
For each actual amount of forest removed, the frequency of
realizations for each forest change percentage estimated by 300
forested plots is shown.
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estimates are in close agreement. Based on aerial photo com-

parison and the complete classification redundancy of the com-

bined three image inputs to the satellite map, it is highly likely

that the estimates of “loss of forest canopy” are accurate even

though accuracy was not formally assessed. This method of

classification does not necessarily allow a final estimate of how

much forest land is converted to other land cover types because

the area of lost forest canopy may regenerate back into a closed

canopy forest, as it might after fire or harvesting.

In adjacent Ocean County, New Jersey, the Landsat map

estimated a forest canopy loss of 2,047 acres (1991–1997). FIA

estimates a 42,000-acre gain (1987–1999), up from a forested

area of 204,000 acres in 1987. Since FIA reports only net forest

change, the 2,047 acres of possible forest loss would be diffi-

cult to detect. Furthermore, the FIA estimate has a sampling

error of about 8 percent, so sampling error alone would not

allow for accurate detection of a 2,000-acre loss of forest land.

Conclusions

The authors reject the hypothesis that the density of FIA plots,

1 plot per 6,000 acres, does not permit accurate estimates of

forest land loss if the area lost is low—1 to 5 percent of the

total forest area. This rejection, however, requires that the num-

ber of plots is reasonably large, which in the FIA survey pro-

gram also means a reasonably large survey area. It does seem

paradoxical that a sample that covers only 0.017 percent of the

area can detect and accurately estimate a small amount of

change, but one of the properties of statistics is that it only

requires there be a large absolute number of plots, not a large

sample relative to the population. However, in small counties

that have few plots, accurate estimates of forest loss are not

possible. This also limits the ability of FIA plots to provide

useful information on the spatial distribution of forest loss.

So, accurate FIA plot-based state estimates of forest loss

are possible, even if the percentage loss is low. Of course, if the

estimate is only of net forest change, the important measure-

ment of forest loss is not likely to be obtained. In sufficiently

large areas, such as at the State level, the FIA program could

add forest area loss to its list of reported estimates. Landsat-

derived forest change maps can provide both quantitative and

spatial information on how, where, and why forest land is lost.

Map error and the inability of moderate resolution imagery to

classify seedling/sapling covered forest areas will continue to

degrade the accurate interpretation of these forest cover maps.

However, satellite imagery can be an efficient tool for small

and large area forest assessments, especially in those frequently

found cases in the East where forest land is lost to urbanization,

roads and freeways, and reservoirs. 

The NOAA/Earthsat change map seems to be a high-quali-

ty map asset for analyzing landscape changes. State and

Federal land management agencies may wish to consider using

it to provide large area land cover change information. The

authors find, as many have before, that Landsat can be used

quickly, simply, and robustly to detect forest area loss. 

The USDA Forest Service Forest Inventory and Analysis

program will continue to explore the use of remote sensing to

augment the ability to determine the extent, condition, and

trends of forest land.
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Spatially Locating FIA Plots from Pixel
Values

Greg C. Liknes1, Geoffrey R. Holden1, Mark D. Nelson1,

and Ronald E. McRoberts2

Abstract.—The USDA Forest Service Forest Inventory

and Analysis (FIA) program is required to ensure the

confidentiality of the geographic locations of plots. To

accommodate user requests for data without releasing

actual plot coordinates, FIA creates overlays of plot

locations on various geospatial data, including satellite

imagery. Methods for reporting pixel values associated

with FIA plots that reduce the likelihood of inadvertent

release of plot locations were tested. The number of

plots that can be correctly located using only pixel val-

ues was reduced by perturbing image band values, aver-

aging band values of neighboring pixels, and reducing

the number of image bands.

In the FY2000 Consolidated Appropriations Bill (PL 106-113),

Congress included language that modified the Food Security

Act of 1985 (7 U.S.C. 2276(d)) to add FIA data collection to a

list of items requiring confidential treatment. As a result, the

FIA program must ensure the confidentiality of coordinates of

field plots, maintaining sample integrity and protecting the pri-

vacy of landowners granting FIA access to their lands.

Researchers interested in using FIA plot data as a source of

training data for remote sensing classification do not necessarily

need plot location information. Rather, FIA staff could extract

spectral values from satellite imagery at plot locations and pro-

vide the spectral information along with requested FIA plot data

(e.g., percent forest cover, basal area), but without plot coordi-

nates. This method of providing FIA data, however, may inadver-

tently reveal plot location information when a pixel associated

with a plot has a combination of spectral values unique to that

pixel. In this study, we examined the probability of determining a

plot’s location from spectral information.

Data

We used data from the Multi-Resolution Land Characterization

(MRLC) Consortium National Land Cover Dataset 2000

(NLCD 2000) mapping zone 41 (Homer and Gallant 2001).

Zone 41 encompasses part of Minnesota, a portion of western

Wisconsin, and Isle Royale in Michigan (fig. 1). The data set is

comprised of multiple Landsat Thematic Mapper (TM) and

Landsat Enhanced Thematic Mapper+ (ETM+) scenes at 30-m

pixel resolution.

Thermal bands and Landsat-derived data, including tas-

seled cap transformations (greenness, soil brightness, and wet-

ness), and textural information, were available for the area of

interest. Additionally, digital elevation data and State Soil

Geographic (STATSGO)

(http://www.ftw.nrcs.usda.gov/stat_data.html) soil data (avail-

able water content, carbon content, quality) were available, as

well as a data band containing the date of the input image used

for each pixel. In total, 24 bands of data (19 continuous and 5

categorical) were used in this study (table 1). Of the 5,939

measured FIA plots falling within zone 41 cloud-free areas,

200 were randomly selected for testing.

Figure 1.—MRLC NLCD 2000 mapping zone 41 (hatched
area) covering a large portion of Minnesota, some of
Wisconsin, and Isle Royale in Michigan.

1 GIS/RS Specialist, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108.
2 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108.
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A second study was performed using the data from a sin-

gle Landsat ETM+ scene, path 27 row 27 (P27R27) (fig. 2),

which is one of the scenes contained in zone 41. For this single

scene, imagery from three different dates (31 May 2000, 5 July

2001, and 5 November 1999) was available. The six reflective

bands (1-5, and 7) for each date were used, totaling 18 bands

for this scene. Of the 1,277 measured FIA plots falling within

the scene, 200 were randomly selected for testing.

Methods

To determine if providing spectral information reveals plot

location information, pixel values at each of the 200 plot loca-

tions were extracted for all the data bands in each study. Each

field plot consists of four 7.31-m (24-foot) radius circular sub-

plots. The subplots are configured as a central subplot and three

peripheral subplots with centers located  36.58 m (120 ft) and

azimuths of 0°, 120°, 240° from the center of the central sub-

plot.  The plot/pixel arrangement shown in figure 3 is the most

probable arrangement and therefore was used in this study. The

arrangement of pixels relative to subplots can change slightly

depending on where the center subplot falls within a pixel.

Three methods for extracting pixel values were considered: (1)

values associated with the pixel containing the central subplot,

(2) the average of the pixel values associated with the four sub-

plots (fig. 3), and (3) the average of the pixel values in a 3x3

window centered on the pixel associated with the center sub-

plot. For methods 2 and 3, new images were generated using

Figure 2.—Location of Landsat path 27 row 27 (P27R27),
Minnesota.

Figure 3.—Location of FIA subplots relative to Landsat TM
30-m pixels.

Data band Band name Data type

1 Texture (band 1—leaf-on) continuous

2 Texture (band 4—leaf-on continuous

3 Texture (band 7—leaf-on) continuous

4 Greenness (spring) continuous

5 Brightness (spring) continuous

6 Wetness (spring) continuous

7 Greenness (leaf-on) continuous

8 Brightness (leaf-on) continuous

9 Wetness (leaf-on) continuous

10 Greenness (leaf-off) continuous

11 Brightness (leaf-off) continuous

12 Wetness (leaf-off) continuous

13 Thermal (spring) continuous

14 Thermal (leaf-on) continuous

15 Thermal (leaf-off) continuous

16 Elevation continuous

17 Slope continuous

18 Aspect categorical

19 Soil quality categorical

20 Soil carbon continuous

21 Soil available 
water content continuous

22 Spring date categorical

23 Leaf-on date categorical

24 Leaf-off date categorical

Table 1.—Available data bands and their data types for MRLC

NLCD 2000 mapping zone 41
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focal analysis techniques, with the averaged values applied at

every pixel. 

To test the effect of alterations of pixel values on a user’s

ability to determine correct and unique plot locations, extracted

values were perturbed for each of the three methods by an inte-

ger randomly selected from the following intervals: [0], [-1, 1],

[-2, 2], and [-3, 3]. The combination of the four perturbation

intervals with the three methods resulted in 12 tests for both

the zone 41 and the P27R27 studies. Additionally, the 12 tests

were repeated for a single date (leaf-on) of P27R27.

For each test, the extracted values for each plot were com-

pared to all image pixel values in respective bands. To illus-

trate, consider a 25-pixel, 3-band image (fig. 4), and suppose

band values were extracted at the location of a plot falling

within the image. Values for bands 1, 2, and 3 were 108, 79,

and 209, respectively. Furthermore, a perturbation of [-1, 1]

was then applied to the extracted values, resulting in a set of

band values of 109, 78, and 209. The data from band 1 are

shown in figure 4(a). All pixels with values not within ±1 of

the perturbed value (109) are grayed out in figure 4(b). The

data from band 2 are displayed in figure 4(c). Note that all gray

pixels no longer need to be checked against the perturbed val-

ues because they failed to match the band 1 perturbed value.

The remaining data that fell within ±1 of the band 2 perturbed

value (78) are shown in white in figure 4(d), and the non-

matching pixels are now shown in gray. The same process is

applied for band 3 data (perturbed value 209) in figures 4(e)

and 4(f). In the end, a single pixel remains that matches all

three perturbed values. If Landsat TM pixels are represented in

figure 4, this process reveals the location of an FIA plot to

within 30 m (the resolution of a Landsat pixel), assuming the

true ground position of each pixel is known.

For each test, if only a single pixel matched the extracted

values for all bands, its location was compared with the FIA

plot locations to determine if the plot had been correctly “locat-

ed” using only spectral information. All processing was per-

formed using ESRI Grids in ArcInfo and automated using an

Arc Macro Language (AML) script.

Results and Discussion

For zone 41, all of the 200 FIA plots were correctly located

using only spectral (pixel) information for the single pixel and

4-subplot average methods with no perturbation, while 98 per-

cent were located for the 3x3 average method (table 2). As the

amount of perturbation increased, the percentage of plots cor-

rectly located decreased. This is because the number of poten-

tial matches for each pixel increased as the interval around

each extracted value increased, thereby reducing the likelihood

of uniquely identifying a pixel. Although the percentage of

plots correctly located decreased with increased perturbation,

more than half of the plots were located for each of the three

methods at all perturbation levels. 

For the P27R27/multiple date study (18 bands), all of the

200 FIA plots were correctly located using only spectral (pixel)

information for each of the three methods with no perturbation

(table 3). As was the case for zone 41, the percentage of plots

located in P27R27 decreased as the amount of perturbation

increased. For P27R27, the percentage of plots located is not

Figure 4a–f.—The sequence of steps involved in determining
from which pixel an extracted set of values came. Extracted
values with [-1, 1] perturbation applied: band 1 = 109, band 2
= 78, band 3 = 209. In this example, pixels are grayed out if
they don’t fall within ±1 of the perturbed values for the corre-
sponding band. Grayed pixels are then ignored for each subse-
quent band.
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nearly as high as in zone 41 for the [-3,3] perturbation. In fig-

ure 5, the cumulative percentage of extracted values that identi-

fy single pixels (single pixel method, [-3,3] perturbation) is

graphed against the band that has been processed. In both the

zone 41 and P27R27 tests, a high percentage of the plots were

located before all bands were processed. Thus, the difference is

not simply a matter of the number of bands (18 vs. 24). All

zone 41 and P27R27 bands were 8-bit data (256 possible val-

ues), with the exception of elevation (zone 41 only), which had

values ranging from 177 to 701. The greater variability in this

band may have contributed to the higher percentage of plots

located in zone 41 in the single pixel method, [-3,3] perturba-

tion test. Also, the elevation band was processed first for all

zone 41 tests, which may have significantly impacted at which

step unique pixels were identified in the process (fig. 5).

For the P27R27/single date study (6 bands), few plots

were correctly located. For example, 17 percent of plots were

correctly located in the single pixel/no perturbation test. In this

case, the noticeable decrease in correctly located plots is most

likely due to the small number of bands considered. In both the

zone 41 study (24 bands) and the P27R27/multiple date study

(18 bands), most plots could not be found until after the sixth

band (fig. 5). 

Conclusions

If the method for extracting pixel values at plot locations is

known and no perturbation is applied to the pixel values, it is

possible to locate correctly all or nearly all of the plots with 18

or 24 bands of data. For a single-date, 6-band image, few plots

can be correctly located if no perturbation is applied, and

Method Perturbation [0] [-1,1] [-2,2] [-3,3]

Single pixel / center subplot 100 94 89 72

3x3 average 98 88 72 53

Four subplot average 100 91 76 58

Table 2.—Percentage of FIA plots located from MRLC NLCD 2000 mapping zone 41 pixel information for various methods and
perturbation levels

Method Perturbation [0] [-1,1] [-2,2] [-3,3]

Single pixel / center subplot (three dates) 100 97 63 32

3x3 average (three dates) 100 71 31 14

Four subplot average (three dates) 100 84 41 19

Single pixel / center subplot (summer only) 17 0 0 0

3x3 average (summer only) 6 1 0 0

Four subplot average (summer only) 7 0 0 0

Table 3.—Percentage of FIA plots located from Landsat TM path 27 row 27 pixel information for various methods and perturba-
tion levels

Figure 5.—Cumulative percentage of FIA subplots correctly
located as a function of sequentially adding bands, MRLC
NLCD 2000 mapping zone 41 (24 bands) and Landsat TM path
27 row 27 (18 bands).
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almost no plots if a perturbation is applied. Increasing the per-

turbation reduces the number of plots that can be correctly

located but also reduces the usefulness of the pixel information

for some users’ applications.

In the future, if spectral data are requested for FIA plot

locations, the method described in this paper could be used to

screen plots for possible inadvertent disclosure of plot informa-

tion. Currently, the greatest drawback to the procedure is the

time involved in processing an array of extracted values. Future

work may include optimizing this processing or develop alter-

native processing procedures. 
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Variable Selection Strategies for Small-area
Estimation Using FIA Plots and Remotely
Sensed Data

Andrew Lister, Rachel Riemann, Jim Westfall, and 

Mike Hoppus1

Abstract.—The USDA Forest Service’s Forest

Inventory and Analysis (FIA) unit maintains a net-

work of tens of thousands of georeferenced forest

inventory plots distributed across the United States.

Data collected on these plots include direct measure-

ments of tree diameter and height and other variables.

We present a technique by which FIA plot data and

coregistered remotely sensed raster data were used to

predict the basal area of deciduous trees at a spatial

resolution of 30 m. Results varied, generally indicat-

ing that culling putatively unrelated variables did not

improve estimates over those obtained using all the

potential variables in the model.

The USDA Forest Service’s Northeastern Forest Inventory and

Analysis unit (NE-FIA) is charged with conducting a portion of

a national forest inventory. NE-FIA uses data collected on a

network of ground plots to produce reports on the status of the

region’s forests. 

In addition to tabular reports, analysts and data consumers

frequently request spatially explicit, highly resolute maps of forest

variables. To produce these maps, data from geographic informa-

tion systems (GIS) and satellites are often used to build models

that predict attributes such as volume, biomass, and basal area.

There are many choices of GIS data and satellite layers for

a given region. The National Land Cover Dataset (NLCD)

project, a USGS-led, collaborative effort among several gov-

ernmental and nongovernmental groups, is producing national

land cover maps using GIS and satellite data. The USGS Eros

Data Center compiled 18 GIS and satellite imagery layers for a

mapping area covering several Mid-Atlantic States (NLCD

mapping zone 60).2 These data layers are coregistered, so they

can be easily combined with NE-FIA plot data to produce a

data set that can be used for predictive modeling. The goal of

the current study was to assess the effects of subsetting these

18 layers to arrive at a model training set that would lead to

more accurate predictions of the basal area of deciduous trees.

Methods

The study area included that portion of New Jersey covered by

the NLCD imagery data (fig. 1). Data were collected on NE-

FIA plots in New Jersey between 1998 and 1999.3 The total

amount of deciduous tree basal area measured on each plot was

used as the dependent variable in the predictive modeling. Only

1 Forester, Research Forester, Research Forester, and Supervisory Forester, respectively. U.S. Department of Agriculture, Forest Service, Northeastern Research
Station, Newtown Square, PA 19073. Phone: 610–557–4038; e-mail: alister@fs.fed.us.
2 Homer, C.; Gallant, A. 2001. Partitioning the conterminous United States in mapping zones for Landsat TM land cover mapping. USGS Draft White Paper, on
file at USGS Eros Data Center, 47914 252nd Street, Sioux Falls, SD 57198. 
3 USDA Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.4.
USDA Forest Service, internal report. On file at USDA Forest Service, Washington Office, Forest Inventory and Analysis, Washington, DC.

Figure 1.—The study area in central and southern New Jersey;
141 homogeneous, forested plots were used for the analysis.
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completely forested plots were used in the analysis. 

The portion of the NLCD data in New Jersey was used as

a source of potential predictor variables. The NLCD data set

was assembled by mosaicking, georeferencing, and radiometri-

cally correcting three-season satellite imagery collected by the

Landsat 7 satellite between 1999 and 2001 (USGS Eros Data

Center 2002). These assembled raw images were transformed

using the Tassled Cap (TC) transformation, a procedure that

produces new images consisting of three layers per original

seasonal six-band image (USGS Eros Data Center 2002). The

TC transformation typically is used because the composite lay-

ers have a higher correlation with some features of vegetation

than do the constituent layers. In addition to these nine TC lay-

ers, elevation, slope percentage, aspect, and slope position

index were derived from digital elevation models (DEMS),

which are raster GIS layers with a value for elevation at each

pixel location. Slope, aspect, and slope position (ranging from

0 in the valley to 100 on the ridgetop) also were calculated for

each pixel using a GIS. Soil quality, available water content

(awc), and soil carbon percentage (variables that often are con-

sidered when measuring site quality) were derived from the

STATSGO soils data set produced by NRCS (USDA Soil

Conservation Service 1993). Layers consisting of geographic

Easting and Northing also were created. All NLCD data layers

were coregistered, standardized to be within the range of 0-255,

and resampled to a 30-m pixel size. 

Values of predictor variables at plot locations were obtained

with Erdas Imagine software. Scatterplots of deciduous basal

area vs. each of the predictor variables were generated and corre-

lation matrices were created with SAS software. To create a sub-

set of predictors for modeling, variables that were not

significantly correlated with basal area were excluded from mod-

eling, as were plots that were significantly correlated but subjec-

tively considered weakly related after assessing the scatterplots. 

The two modeling data sets (the full set and the subset)

were used to produce maps of deciduous basal area for each

30-m pixel defined by the predictor layers. The technique used

was a minimum-distance supervised classification, which is in

effect a k-nearest neighbor imputation with a k of 1 (McRoberts

et al. 2002, Franco-Lopez et al. 2001). This procedure is based

on the multidimensional Euclidean distance between pixels

where basal area is unknown but the predictor variables have

known values, and a pixel with known values for both basal

area and predictor variables. The basal area of the plot whose

associated pixel has the smallest multidimensional Euclidean

distance from the unknown pixel is assigned to the pixel being

evaluated. Each pixel is treated in this way until a continuous

map of basal area is produced. 

The modeling procedure is such that a given plot’s value

never influences the prediction at its own location; it always is

a different plot whose value is assigned to the pixel on which a

plot sits, making it possible to use the modeling data for valida-

tion. To assess the accuracy of the resulting maps, scatterplots

of observed vs. predicted basal area were generated from the

original data, and simple linear regression models describing

the relationship between observed and predicted values were

created. Histograms of absolute error were generated for both maps.

Predictor variable r value p value

Position index – 0.09 0.31

Slope 0.29 <0.001

Aspect 0.26 <0.01

Elevation 0.25 <0.01

Easting – 0.54 <0.0001

Northing – 0.24 <0.01

Soil water content 0.44 <0.0001

Soil carbon 0.08 0.33

Soil quality 0.33 <0.0001

Summer brightness 0.60 <0.0001

Summer greenness 0.65 <0.0001

Summer wetness – 0.10 0.24

Fall brightness 0.58 <0.0001

Fall greenness 0.59 <0.0001

Fall wetness – 0.06 0.45

Spring brightness 0.30 <0.01

Spring greenness – 0.54 <0.0001

Spring wetness – 0.41 <0.0001

Table 1.—Correlation coefficients (r values) and p values from
correlation analyses of the relationship between deciduous
basal area and several predictor variables ( N=141)



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 107

Results and Discussion

The final map is shown in figure 2. The correlation statistics and

resulting p values are shown in table 1. Fourteen of the 18 origi-

nal predictor variables had significant correlation coefficients.

Position index, soil carbon, and summer and fall wetness (two of

the TC layers) were not significant (p>0.05). After subjectively

assessing the scatterplot matrix (fig. 3), we decided to eliminate

aspect, elevation, slope percentage, and Northing.

We had hypothesized that the DEM-based layers would be

related to site quality and probability of development; low

slope sites closer to a valley floor should have deeper, moister

soil and be more prone to human development than sites on

steep hillsides or ridgetops. There were no or only weak rela-

tionships between topographic site factors and basal area of

Figure 2.—Final map of predictions of deciduous basal area
for central and southern New Jersey. The map was produced
using all 18 GIS and imagery layers. Lighter values indicate
higher levels.

Figure 3.—Scatterplot matrix showing relationship between the basal area of deciduous trees on FIA plots and several GIS
and imagery-based values (see Methods for information on predictor variables). Y axis values ranged from 0 to 255; x axis
values ranged from 0 to 192 ft2/acre (N=141). 
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deciduous trees measured on NE-FIA plots in our study area,

possibly because there are higher order interactions among

topographic variables or between them and other unmeasured

variables. Similarly, Xu and Prisley (2000) hypothesized that

the local variation in carbon distribution could be due to factors

such as previous land use, forest growth phase, forest type dif-

ferences, geomorphology, natural disasters, or other unmea-

sured factors. 

The lack of relationship between basal area and soil car-

bon might be caused by the same phenomenon or by the nature

of the soil carbon data. Soil carbon may not be measurably bio-

logically related to basal area production. The relationship

between Northing and basal area did not appear to be linear.

Perhaps the relationships could have been improved via trans-

formation or by creating composite variables to test the effects

of interactions, but we chose not to transform the data to pre-

serve biological interpretability of our model outputs.

The TC wetness layer historically has been used to repre-

sent different levels of soil moisture. Perhaps during summer

and fall, little bare soil was exposed on the FIA plots, making

the wetness layer less useful during these seasons. However,

before the deciduous trees produce leaves in spring, the satellite

acquires reflected light from bare soil beneath the trees and

thus might be measuring an ecological factor that affects decid-

uous basal area.

The scatterplots and diagnostic statistics of the regressions

of observed vs. predicted for the full model and for the subset

model are shown in figures 4a and 4b, respectively.

Considering the shape of the scatterplot and the regression out-

puts, the full model performed better than the subset model.

The R2 value was higher, the slope was closer to 1, and the y

intercept was closer to zero (figs. 4a - 4b). The histogram of

absolute errors (fig. 5) indicates that the subset model per-

formed slightly better in the second and third lowest basal area

categories, but the subset model’s errors generally had higher

variances than those from the full model.

These results were unexpected. We had hypothesized that

several of the potential predictor layers would be extraneous,

that is, the effects of strong predictors on the estimate would be

diluted. But we found that the full model performed better in a

validation. The scatterplots indicate that the full model’s accu-

racy was consistent throughout the distribution of observed val-

Figure 4.—Observed vs. predicted scatterplots from valida-
tion of the full model (A) and the subset model (B). The full
model used 18 GIS and imagery layers; the subset model
used only 10 (N=141).

Figure 5.—Absolute error histograms of the full model and
the subset model. Absolute errors were calculated for each
model by calculating the absolute difference between
observed and expected (N=141).
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ues, whereas for the subset model, the accuracy was much

worse in the lower tail of the observed data’s distribution. A

possible explanation is that, when extraneous data layers are

used as predictors, the potential negative impact of anomalous

model training data is mitigated. An unknown pixel that is

incorrectly classified by a “bad” training site using the subset

model might not be classified incorrectly if the distances are

perturbed slightly by the addition of extraneous data layers.

That extra distance raises the probability that a “better” training

site might be assigned to that unknown location. 

If this is the case, there must be a tradeoff between dilut-

ing the strength of mechanistic relationships between predictors

and dependent data and susceptibility to poor training data. Our

results suggest that the extraneous data layers served as a safe-

ty net, removing some of the effects of outlaying data points

but not increasing the overall variance of our residual error to

an unacceptable level. 

In future studies, we plan to analyze the effects of individ-

ual training data sites on the accuracy of our modeling. Much

of the variance in our absolute errors may be due to rogue

training data. We also plan to test the effects of transforming

the variables and creating composite layers consisting of inter-

actions of the GIS and imagery layers. And we will investigate

additional variable reduction methods, including multiple linear

regression, principal components analysis, and other univariate

and multivariate techniques. We also will assess the relation-

ship between the amount of training data used and the number

of spectral bands used. A phenomenon called the “Hughes

Phenomenon” (Hughes 1968) occurs when accuracy is degrad-

ed when one increases the number of predictor variables but

does not change the number of training sites.
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Distributing FIA Information onto Segmented
Landsat Thematic Mapper Images Stratified
with Industrial Ground Data

Tripp Lowe1, Chris J. Cieszewski2, Michal Zasada3,4, and

Jarek Zawadzki3,5

Abstract.—The ability to evaluate the ecological and

economical effects of proposed modifications to

Georgia’s best management practices is an important

issue in the State. We have incorporated tabular FIA

data with Landsat Thematic Mapper satellite images

and other spatial data to model Georgia’s forested

land and assess the area, volume, age, and site quality

of two stream and road buffer regimes. Each regime

included different buffer widths for perennial and

intermittent streams and slope classes. We discuss

here the technical details of this work. 

With ever-increasing public awareness of the welfare of natural

resources, land managers are under great pressure to manage

our forestlands with publicly acceptable stewardship. One of

the prevalent issues is maintaining and improving the quality of

our streams, public lakes, reservoirs, and wetlands. As a guide-

line for the forestry community, the Georgia Forestry

Commission has compiled a set of “common sense, economi-

cal, and effective” methods, called “best management prac-

tices” (BMPs) (GFC 1999), designed to reduce nonpoint source

pollution and protect the waters. While the BMPs are now vol-

untary in Georgia, many forest managers in the State believe

that the regulations within the riparian zones should be further

expanded. 

For each change considered, we must be able to evaluate

the possible ecological and economical impacts. As a basis for

these evaluations, we need to know the amount and type of

land that will be influenced by the considered change. Here we

describe the use of currently available GIS and remote sensing

technologies for evaluating such potential adjustments to the

BMPs and their likely impacts on the resource availability. We

performed several analyses of Georgia’s timberlands in which

tabular FIA data were incorporated into stands derived from

various types of GIS data. 

Objectives

The main objective of this study was to model and estimate the

cover types in buffers around water resources and roads. This

included spatially explicit analysis of various types of ground

measurement, GIS, and other remote sensing data and model-

ing the distribution of forest inventory within the buffer cover

type assignments. These analyses were necessary for estimating

the effects of establishing different riparian zone buffers in

terms of their total area, volume, age, and site quality at the

State level as well as at a FIA-unit conglomerate. 

Data

We analyzed various spatial data from several different sources.

Vector hydrology and county boundary data sets, and raster

National Elevation Datasets (NED) were downloaded from the

Georgia GIS Data Clearinghouse located at

http://www.gis.state.ga.us/Clearinghouse/clearinghouse.html.

The hydrology data set includes rivers, streams, and artificial

flow paths through water bodies captured from USGS 7.5-

minute topographic maps. The NED data contain elevation

information for the county at a resolution of 30 m.

The raster “1998 landcover map of Georgia” (GAP) data

set, produced by the Natural Resource Spatial Analysis

Laboratory (NARSAL, Institute of Ecology, University of

Georgia), was used to quickly assess landcover types through-

out the entire State. The GAP data set was generated by classi-

fying Landsat Thematic Mapper (LTM5) images captured in

1 GIS Analyst, 2Assistant Professor, 3Postdoctoral Fellow, respectively, Warnell School of Forest Resources, University of Georgia, Athens, GA. 
4 Assistant Professor at Faculty of Forestry, Warsaw Agricultural University, Poland.
5 Assistant Professor, Environmental Engineering Department, Warsaw University of Technology, Poland.
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the summers and winters of 1997 and 1998 and distinguishes

among 18 different general landcover types. We evaluated areas

classified as “clearcut/sparse,” “deciduous forest,” “evergreen

forest,” “mixed forest,” and “forested wetland.” All other areas

classified as something else were ignored. Also obtained from

NARSAL was the “Trout Streams of Georgia” vector data set

including all streams in Georgia classified as habitable for trout.

Eight LTM 7 data sets were used as a second method to

evaluate land cover throughout the State. The winter scenes

were captured in November of 1999 and encompass the entire

State except for the extreme northwestern and southern parts.

LTM 7 satellite data capture information about the Earth’s sur-

face in three visible portions, two infrared, one thermal, and

one panchromatic portion of the electromagnetic spectrum.

Information from the visible and infrared bands was captured at

a 30-m resolution, 60 m in the thermal band, and 15 m in the

panchromatic band. 

Methods

The analyses conducted in this project can be classified into five

separate steps. The LTM images were classified by basal area

using industrial ground data in the “image classification” phase.

The images in the “image segmentation” phase were converted

to homogenous polygons representing either coniferous, decidu-

ous, or mixed timber stands. FIA information was distributed to

those polygons using two different methods in phase 3, “FIA

information distribution.” Riparian and transportation buffers

were generated in the “buffer creation” phase. Hydrology buffers

were created using two buffer widths that incorporate three slope

classes, and transportation buffers were generated using two

buffer widths. In the final “data intersection” phase, the LTM-

generated polygons and buffers were combined.

Image Classification

As a first-stage sample of landcover type, the GAP data set was

used to locate coniferous and nonconiferous lands. Areas that

were not classified by GAP as evergreen forests were masked

out and ignored in subsequent analysis. The evergreen areas in

the LTM images were classified by basal area using ground-

measured industrial data recorded in 1998 (Ruefenacht et al.

2002) and the Euclidian spectral distance (Ruefenacht et al.

2002) from the “low basal area” signature (eq. 1): 

where,

S = the seed pixel’s LTM value

A = the adjacent pixel’s LTM value

i = the LTM band (excluding the thermal band 6)

Due to the limited number of large, low basal area stands

in the industry data set, we derived the “low basal area” signa-

ture by first generating a “high basal area” signature by sam-

pling LTM pixels within those stand boundaries that had a high

basal area. The average pixel value for bands 1-5 and 7 were

calculated to yield the high basal area signature. Assuming that

the pixels that are spectrally the furthest away from this signa-

ture represent low basal area stands, we calculated the

Euclidian spectral distance from the high basal area signature

to all other cells. The cells with the largest spectral distance

were sampled and averaged to create the low basal area signa-

ture. Once again, the Euclidian spectral distance was calculated

for all evergreen cells in the data set, but this time it was gener-

ated using the low basal area signature. 

Separate regression models were generated and applied to

the two scenes for which ground data were available by regress-

ing stand basal area on the average Euclidian spectral distance

for the stand. See table 1 for the regression model results.

We applied these models to the adjacent LTM scenes using

their areas of overlap. Using the LTM-estimated basal area val-

ues, the high basal area regions were located on the adjacent,

unprocessed scenes. Following the steps described above, the

Euclidian spectral distances from the low basal area signature

were calculated. Random sample points were generated in the

unprocessed scene’s area of overlap with the modeled scene.

LTM Scene Adjusted R2 Standard Error

Path 19, Row 37 0.82 19.20

Path 19, Row 38 0.80 21.11

Table 1.—Basal area–spectral distance regression results
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The LTM-estimated basal area from the modeled scene and the

spectral distance from the unprocessed scene were recorded at

each point. We combined samples into one-unit spectral dis-

tance classes where the basal area values in each sample in the

class were averaged because of the large amount of noise in the

LTM data set. The averaged sample data were then used to

derive similar basal area—Euclidian spectral distance regres-

sion models. These steps were then repeated for all the

unprocessed scenes adjacent to those LTM scenes. The results

of the regression models applied to adjacent scenes are listed in

table 2.

Image Segmentation

We used the GAP landcover data set as a first-stage sample of

landcover type. We located on them the timbered and nontim-

bered areas, and ignored regions not classified as

clearcut/sparse, deciduous forest, evergreen forest, mixed for-

est, or forested wetland. Then, we generated separate “ever-

green,” “deciduous,” and “mixed” data sets by masking out all

areas in the LTM scene that were not:

a. GAP-classified as evergreen forest for the evergreen LTM

data set

b. GAP-classified as deciduous forest or forested wetland for

the deciduous LTM data set

c. GAP-classified as mixed forest or clearcut/sparse for the

mixed LTM data set.

As the second-stage sample of landcover type, the ever-

green, deciduous, and mixed LTM data sets were then convert-

ed to homogenous polygons using an image segmentation

module for ERDAS Imagine that was developed by the USDA

Forest Service Remote Sensing Applications Center

(Ruefenacht et al. 2002). This module iteratively compares the

Euclidian spectral distance (Equation 1) between the first pixel

in the image, the seed pixel, and the adjacent cells. If the

Euclidian spectral distance between the two cells is less than or

equal to the threshold value specified by the user, the pixel is

assigned to the same region as the seed. The region is finished

when there are no more cells adjacent to a member in the group

that satisfy the threshold criteria. When the region is closed, the

next seed pixel is selected and the process is repeated.

When vectorized, these image-segmented scenes produce a

data set with over one million polygons, too many for ArcInfo

to process in one data set. To reduce the data to a manageable

size, the image-segmented LTM scenes were clipped using the

county boundary. All processes described from this point on

were applied on the county data sets. The image-segmented

LTM data sets were then vectorized using ArcInfo’s GRID-

POLY command. Finally, the evergreen, deciduous, and mixed

LTM-generated polygon data sets were combined and cleaned

LTM Scene Parent Scene Adjusted R2 Standard Error

Path 19, Row 36 Path 19, Row 36 0.82 19.20

Path 18, Row 36 Path 19, Row 36 0.80 21.11

Path 18, Row 37 Path 19, Row 37 0.88 22.49

Path 18, Row 38 Path 19, Row 38 0.89 16.23

Path 17, Row 37 Path 18, Row 37 0.93 10.67

Path 17, Row 38 Path 18, Row 38 0.86 13.01

Table 2.—Adjacent basal area-spectral distance regression results

Figure 1.—LTM scene boundaries.
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up by merging all polygons less than 10 acres with a larger

adjacent polygon using the ArcInfo ELIMINATE command.

GAP polygon data were substituted for those regions with no

LTM coverage (fig. 1).

FIA Information Distribution

FIA information was distributed throughout the LTM-generated

polygon data sets using two different methods. The first

method iteratively assigned FIA information to the LTM-gener-

ated polygons using proximity to the FIA plot, current FIA plot

type, and LTM-generated polygon type. The FIA data were dis-

tributed to the polygons until the sum of those polygons’

acreage was within 99 percent of the FIA plot’s per acre expan-

sion factor or until there were no more polygons to fill. The

data distribution criteria were applied to each FIA point before

the next was applied. The criteria were as follows:

1) Assign FIA information to polygons that are within 1,000

meters of the plot location and of the same general type:

evergreen, deciduous, or mixed.

2) Assign FIA information to polygons that are within 12,800

meters of the plot location and of the same general type:

evergreen, deciduous, or mixed.

3) Assign information from evergreen FIA plots to evergreen

or mixed polygons within 6,040 meters. 

4) Assign information from deciduous FIA plots to deciduous

or mixed polygons within 6,040 meters. 

5) Assign information from mixed FIA plots to mixed or

deciduous polygons within 6,040 meters.

6) Assign information from any FIA plot to polygons of any

type within 6,040 meters. 

7) Assign information from any FIA plot that has not been

fully distributed to polygons of any type that have not

been fully filled.

The second method iteratively assigned FIA information to

the LTM-generated polygons using LTM-estimated pine basal

area, polygon size, FIA volume per acre, and FIA peracre

expansion factor. The evergreen polygons were first assigned

the average (for the areas that fell within the stand) LTM-esti-

mated basal area and ranked from highest to lowest; deciduous

and mixed polygons were ranked according to acreage from

highest to lowest, and the FIA plots were ranked from highest

to lowest according to volume per acre. The FIA data were dis-

tributed to the polygons in proportions relative to polygon

acreage and FIA plot per acre expansion factor. The data distri-

bution criteria were as follows:

1) Assign information from evergreen FIA plots to evergreen

LTM-generated polygons and then to mixed and hardwood

polygons if more area is needed.

2) Assign information from deciduous FIA plots to deciduous

LTM-generated polygons and then to any unassigned

mixed and hardwood polygons if more area is needed.

3) Assign information from mixed FIA plots to mixed LTM-

generated polygons and then to any unassigned deciduous

or evergreen polygons.

Buffer Creation

Following the criteria set forth in Georgia’s BMPs, the hydrog-

raphy, GAP, and NED data sets were used to generate riparian

zone buffers that incorporated two buffer widths and three

slope classifications. A total water mask was generated by first

buffering the hydrology data set. Streams and rivers classified

as perennial and those streams classified as trout streams in

NARSAL’s trout data set were buffered on each side by 15 feet,

creating a 30-foot primary stream mask. The intermittent

streams were buffered on each side by 12.5 feet, creating a 15-

foot secondary stream mask. Those bodies of water contained

in the GAP data set, all cells classified as “open water” or

“coastal marsh,” were vectorized and merged with the existing

stream water masks to create the total water mask polygon data

set. All areas within this mask were considered to be water.

Percent slope data sets were generated from the elevations

contained in the NED data. Following the BMP guidelines for

slope class, they were reclassified into three classes: 1) slight (<

20 percent), 2) moderate (20 – 40 percent), and 3) steep (> 40

percent). The slope data were then vectorized and incorporated

into the water masks by intersection (fig. 2). This process pro-

duced a data set containing the polygons in the original water

mask cut into smaller pieces where it and the slope data meet.

Transportation buffers were generated using similar meth-

ods. Cells classified as “transportation” in the GAP data set

were buffered on both sides by 40 feet and 100 feet, excluding

the “transportation” cells. 
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Data Intersection

The LTM-generated polygons were incorporated into the

hydrology and transportation buffers by intersection (fig. 2).

This process produced data sets similar to those created when

the hydrology masks were intersected with the reclassified

slope data. The final intersected data contain the buffer poly-

gons cut into smaller pieces where they and the LTM-generated

polygons meet. Attribute information from both data sets is

stored for each data set, as well.

Results

Landsat Thematic Mapper satellite images and other spatial and

tabular data were combined to assess the area, volume, age,

and site quality of Georgia’s riparian zone timberlands. LTM-

derived Euclidian spectral distance–basal area models were cal-

ibrated using industrial ground data and applied statewide

using LTM scene overlap. Homogenous evergreen, deciduous,

and mixed forest polygons generated from the LTM images

were populated with FIA tabular data using two different meth-

ods. The first method was based on the proximity to the FIA

plot. Polygons, of the same type as the FIA plot, were assigned

data, starting with the closest and proceeding away until the

FIA per acre expansion factor-based criteria were met. The

other method assigned FIA data to the polygons using ranking

criteria. Evergreen polygons were ranked according to LTM-

estimated basal area, hardwood and mixed forest polygons

Figure 2.—Stream buffer LTM polygon intersection.

Data Set Name Description

Primary Primary hydrology buffer 
hydro/proximity intersected with landcover containing

FIA information assigned using the
proximity criteria

Primary hydro/rank Primary hydrology buffer intersected
with landcover containing FIA infor-
mation assigned using the ranking
criteria

Secondary Secondary hydrology buffer inter-
hydro/proximity sected with landcover containing FIA

information assigned using the prox-
imity criteria

Secondary hydro/rank Secondary hydrology buffer intersect-
ed with landcover containing FIA
information assigned using the rank-
ing criteria

100-foot 100-foot road buffers intersected
road/proximity with landcover containing FIA infor-

mation assigned using the proximity
criteria

100-foot road/rank 100-foot road buffers intersected with
landcover containing FIA information
assigned using the ranking criteria

40-foot 40-foot road buffers intersected
road/proximity with landcover containing FIA infor-

mation assigned using the proximity
criteria

40-foot road/rank 40-foot road buffers intersected with
landcover containing FIA information
assigned using the ranking criteria

Table 3.—Intersection data set descriptions
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according to acreage, and FIA data by plot volume per acre

measures. The highest ranked polygons were assigned informa-

tion from the highest ranked FIA plots (of the same type), and

so on. Riparian zone buffers were generated using two different

buffer distances incorporating three different slope classes.

Similar transportation buffers were generated, buffering GAP-

classified roads by 40 feet and 100 feet. LTM-generated poly-

gons and riparian and road buffers were incorporated by

intersection (fig. 2). Eight intersection data sets were generated

(table 3), each containing the buffer polygons split where they

and the landcover polygons meet. 
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Assessing the Effects of Forest
Fragmentation Using Satellite Imagery and
Forest Inventory Data

Ronald E. McRoberts1 and Greg C. Liknes1

Abstract.—For a study area in the North Central

region of the USA, maps of predicted proportion forest

area were created using Landsat Thematic Mapper

imagery, forest inventory plot data, and a logistic

regression model. The maps were used to estimate

quantitative indices of forest fragmentation.

Correlations between the values of the indices and for-

est attributes observed on forest inventory plots were

estimated. One interesting result was a statistically sig-

nificant negative correlation between total forest area

and number of tree species per unit forest area.

Montreal Process

Over the last decade, natural resource managers, the scientific

community, and the general public have voiced serious con-

cerns regarding the status of and emerging trends in the world’s

forests. In 1993, the government of Canada began a series of

meetings to develop scientifically rigorous methods for evalu-

ating forest management. These meetings led to the Montreal

Process criteria and indicators for environmental and ecological

assessments of forest sustainability. One criterion describes

conditions or processes by which sustainable forest manage-

ment may be evaluated and is further characterized by a set of

indicators that are monitored periodically to assess change.

Four of the seven Montreal Process criteria deal with forest

conditions and attributes: (1) conservation of biological diversi-

ty, (2) maintenance of productive capacity of forest ecosystems,

(3) maintenance of forest ecosystem health and vitality, and (4)

maintenance of forest contribution to global carbon cycles.

Forest fragmentation affects several of these criteria. Our study

sought to evaluate the effects of forest fragmentation on a vari-

ety of forest stand attributes. The study was conducted in the

North Central region of the United States and included portions

of Minnesota, Wisconsin, and Michigan (fig. 1). 

Data and Methods

Inventory Plot Data

The Forest Inventory and Analysis (FIA) program of the Forest

Service, U.S. Department of Agriculture, has established an

array of permanent field plots using a systematic sampling

design. In the North Central region, a fixed proportion of plots

are measured each Federal fiscal year (01 October to 30

September). Plots measured in the same Federal fiscal year

comprise a single panel of plots, and panels are measured on a

rotating basis. In aggregate, over a complete measurement

cycle of 5 years, a plot represents approximately 2,403 ha. In

general, locations of forested or previously forested plots are

determined using global positioning system receivers, while

locations of nonforested plots are determined using digitization

methods. Each field plot consists of four 7.31-m radius circular

1 Mathematical Statistician and Computer Specialist, respectively, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell
Avenue, St. Paul, MN 55108.

Figure 1.—Study area.
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subplots configured as a central subplot and three peripheral

subplots with centers located 36.58 m and azimuths of 0

degrees, 120 degrees, and 240 degrees from the center of the

central subplot (fig. 2). For each tree, field crews report

species, live or dead status, and diameter at breast height

(d.b.h.) (1.37 m). Regression models are used with observed

d.b.h. as an independent variable to predict the volumes and

biomass for individual trees. In addition, field crews note evi-

dence of both natural and human disturbances, estimate the

number of seedlings, and estimate the proportions of each sub-

plot that satisfy specific land use conditions. Subplot estimates

of forest land proportions are obtained by aggregating these

land use conditions into forest and nonforest uses. Plot esti-

mates of number of species, number of live and dead trees, bio-

mass in live and dead trees, live tree volume, number of

seedlings per unit area, and average stand diameter were

obtained by aggregating individual trees and subplots.

Observations for 1,185 plots were available for the 1999, 2000,

and 2001 panels. 

Satellite Imagery Classification

Landsat TM imagery, classified according to forest and nonfor-

est, was used to quantify fragmentation. The images included

data for three dates, consisted of 30 m x 30 m pixels for bands

1-5 and band 7, and were geo-referenced to Albers Equal Area

projection, NAD 83. 

The first step was to calibrate a model for predicting the

proportion of forest land for each image pixel. Because forest

land proportions are always in the closed interval [0,1], it is

appropriate to select a model with mathematical properties that

restrict predictions to the same interval. The logistic model is

often used with such data and was selected for this study to

describe the relationship between observed forest land propor-

tion for FIA subplots and the spectral values of the pixels con-

taining the subplot centers,

where E(.) denotes statistical expectation, Yk is the forest land

proportion for the kth subplot, Xjk is the spectral value for the jth

band for the pixel containing the center of the kth subplot, and

the βs are parameters to be estimated. For each study area, all

possible band combinations were compared according to root

mean square error, and the combination with the smallest root

mean square error was selected.

After calibration, the models were used to predict forest

land proportion for each pixel in the study area. In accordance

with the practice of other mapping agencies, pixels with propor-

tion forest land predictions less than 0.25 were designated non-

forest, and pixels with forest land predictions equal to or greater

than 0.25 were designated forest. Slightly less than 90 percent of

the nonforest plots were correctly classified, and slightly more

than 90 percent of the forest plots were correctly classified.

Correlation and Validation Analyses

For the 0.4-ha circle circumscribing the four subplots of each

FIA plot, four measures of forest fragmentation were taken:

forest edge length, edge forest area, interior forest area, and

total forest area. Forest edge length was calculated as the total

length within the 0.4-ha circle of the forest/nonforest boundary

between pixels classified as forest and pixels classified as non-

forest; edge forest was calculated as the total area within the

circle of forest pixels within two pixel widths of the forest/non-

forest boundary; interior forest area was calculated as the area

within the circle of forest pixels greater than two pixel widths

from the forest/nonforest boundary; and total forest area was

calculated as the sum of edge and interior forest area. The three

Figure 2.—Forest Inventory and Analysis standard plot design.
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area measures were divided by the total area of the 0.4-ha cir-

cle and were analyzed as proportions of that area.

The first stage of analysis consisted of simple correlation

analyses between the estimates of forest attributes and the four

measures of forest fragmentation (table 1). Plots with no forest

land within the 0.4-ha circle were excluded from the analyses

as were plots with evidence of human-caused disturbance, leav-

ing 1,185 plots. The forest attribute measures previously

described were all divided by the total forest area to scale esti-

mates to a per unit forest area basis. The high negative correla-

tions between number of species per unit forest area and total

forest area were of particular interest and suggested that the

number of species per unit of forest area may be greater when

forest fragmentation is greater. This result warrants further

investigation because lesser fragmentation and greater species

richness, defined as the number of species per unit area, are

both generally viewed as positively affecting forest sustainabil-

ity. The observed result, however, suggests that greater species

richness is associated with greater, not lesser, fragmentation. 

The second stage of analysis focused on validating the

inverse relationship between number of tree species per unit of

forest area on FIA plots and the proportion of the 0.4-ha circu-

lar plot that was forested (fig. 3). The primary issue was deter-

mining if the large negative correlation could be due to artifacts

resulting from expressing number of species found on a plot on

a per unit forest area basis. First, if even small forested areas

are saturated with species, then the decrease in number of

species per unit of forest area as the proportion of plot forest

area increases could be attributed to dividing a relatively con-

Figure 3.—Number of species per unit area on FIA plots versus
proportion of plot in forest area.

Figure 4.—Absolute number of tree species found on FIA plots
versus proportion of plot in forest area.

Fragmentation index

Forest Edge Total Interior
attribute forest forest forest

area area area

No. species 0.03 -0.19 -0.44

No. live trees -0.19 0.14 -0.05

Live biomass -0.05 -0.03 -0.20

Seedlings -0.01 -0.03 -0.10

Mean d.b.h. 0.11 -0.13 -0.10

1 Estimates in bold are statistically significant at α=0.01.

Table 1.—Estimated correlations between measures of forest
fragmentation and forest stand attributes1
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stant number by an increasing number. A graph of the data,

however, reveals that the absolute number of species increases

as the proportion of forest area increases (fig. 4). Second, if

only the same small number of species ever occur on plots with

small proportion forest areas, then the large number of species

per unit forest area could be attributed to dividing this same

small absolute number of species by small proportion forest

areas. However, the absolute numbers of species found on all

plots listed by categories of proportion forest area appear to

dispel this possibility (table 2). In addition, these latter results

confirm that absolute numbers of species per plot increases as

the proportion of forested area on the plot increases. Over all

plots with proportion forest area between 0.00 and 0.0, 25

species were found, while on plots with proportion forest area

between 0.10 and 0.29, 31 species were found. These numbers

are similar to those indicated by figure 4 for plots with small

proportion forest areas. Although there are additional sampling

issues associated with estimating number of species per unit

area that have not been addressed in this study, it appears that

the large, statistically significant, negative correlation between

tree species per unit forest area and total forest area may be a

genuine phenomenon and not simply an arithmetic artifact. 

Summary

In brief summary, a forest/nonforest classification of satellite

imagery provided a good means of measuring forest fragmenta-

tion such as edge length, edge forest area, and interior forest

area. Further, these measures may be easily correlated with esti-

mates of forest attributes such as tree species per unit area

obtained from forest inventory plot data. The most significant

result was the negative correlation between number of tree

species per unit forest area, a measure of species richness, and

proportion forest area, a measure of forest fragmentation. This

correlation suggests that two positive indicators of forest sustain-

ability, less forest fragmentation and greater tree species rich-

ness, perhaps should not be expected to occur simultaneously.

Proportion forest No. plots Cumulative 
no. species 

0.00-0.09 13 25  

0.10-0.29 22 31  

0.30-0.49 21 27  

0.50-0.69 31 35 

0.70-0.89 100 39  

0.90-1.00 998 67

Table 2.—Number of different species
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Comparing Forest/Nonforest Classifications
of Landsat TM Imagery for Stratifying FIA
Estimates of Forest Land Area

Mark D. Nelson1, Ronald E. McRoberts2, Greg C. Liknes1,

and Geoffrey R. Holden1

Abstract.—Landsat Thematic Mapper (TM) satellite

imagery and Forest Inventory and Analysis (FIA)

plot data were used to construct forest/nonforest

maps of Mapping Zone 41, National Land Cover

Dataset 2000 (NLCD 2000). Stratification approach-

es resulting from Maximum Likelihood, Fuzzy

Convolution, Logistic Regression, and k-Nearest

Neighbors classification/prediction methods were

superior to an unstratified, simple random sampling

approach for producing stratum weights used to

lower the variance of estimates of FIA mean propor-

tion forest land. The stratification approaches were

comparable to one another.

Each of the Forest Inventory and Analysis (FIA) units of the

U.S. Department of Agriculture is required to report estimates

of forest land area for their respective regions every 5 years.

These estimates are obtained by multiplying total area invento-

ried by the mean proportion forest land estimated from forest

inventory field plots. Forest land, as defined by FIA, includes

commercial timberland; some pastured land with trees; forest

plantations; unproductive forest land; and reserved, noncom-

mercial forest land. Additional criteria for FIA forest land

include 10 percent minimum stocking (5 percent canopy cover

for several western woodland types where stocking cannot be

determined), minimum area of 0.405 ha (1 acre), and minimum

continuous canopy width of 36.58 m (120 ft) (USDA 2002).

National FIA precision standards limit the allowable error for

estimates of forest land area. Due to natural variability among

plots and budgetary constraints, sample sizes sufficient to satis-

fy national FIA precision standards are seldom achieved. To

meet these standards, a stratified estimation approach is used to

reduce errors of estimates.

Traditionally, FIA has interpreted a set of aerial photo

plots to obtain stratum weights (Phase 1). A subset of Phase 1

plots was measured in the field (Phase 2). This double sam-

pling approach produced estimates that attained national preci-

sion standards for forest area (Hansen 1990). However,

stratification based on aerial photography has some limitations:

It is labor intensive and subjective; photos are expensive and

cumbersome to transfer, handle and store, the interpretation is

prone to bias when field plots are interpreted differently than

nonfield plots; and the photos can be of variable quality and

timeliness (McRoberts et al. 2002a). 

To overcome these limitations, FIA is developing methods

of satellite image classification for creating Phase 1 strata.

Image pixels within an area of interest are divided into homo-

geneous classes, based on predictions of land cover. These

classes form strata for stratified estimation of Phase 2 data.

Stratified estimation can yield increases in precision, even

when within-stratum sampling intensities are independent of

stratification (McRoberts et al. 2002a). Advantages of using

satellite imagery for stratification include the following: the

resulting coverage is “border-to-border,” not a sample of the

analysis area; stratum weights are obtained easily from pixel

counts; Phase 2 plots are assigned objectively to strata using a

geographic information system (GIS); and satellite image strat-

ification can be much cheaper and faster than photo-based

stratification. The question is, How precise are estimates based

on these stratifications—do they satisfy allowable error stan-

dards?

The North Central Research Station (NCRS) FIA program

(NC-FIA) measures plots every 5 years across 11 States in the

upper Midwest and Great Plains. A stratification based on

Landsat-5 Thematic Mapper (TM) or Landsat-7 Enhanced

Thematic Mapper Plus (ETM+) imagery will require process-

ing of approximately 125 scenes in the NC-FIA region. Thus, a

need exists for rapid processing of TM imagery for creation of

Phase 1 strata used in stratified estimation. 

1 GIS/RS Specialist, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
2 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, North Central Research Station, 1992 Folwell Avenue, St. Paul, MN 55108.
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The Multi-Resolution Land Characterization (MRLC) con-

sortium of the U.S. Geological Survey has mosaicked Landsat

TM and ETM+ imagery into regional mapping zones. These

National Land Cover Dataset 2000 (NLCD 2000) mapping zone

image data allow for more efficient image classification than

when individual TM scenes are used (Homer and Gallant 2001).

The objective of our study was to compare stratifications

produced from classifications of an NLCD 2000 mapping zone

data set using four approaches: (1) maximum likelihood super-

vised classification, (2) maximum likelihood fuzzy convolution

classification, (3) a classification using a logistic regression

modeling approach, and (4) a classification using a non-para-

metric, k-Nearest Neighbors (k-NN) approach.

Study Area

The study was conducted within NLCD 2000 Mapping Zone

41, hereafter referred to as Zone 41. This zone encompasses

181,000 square kilometers in portions of eastern Minnesota,

northwestern Wisconsin, and northwestern Michigan (fig. 1).

The area is characterized by prairie agriculture, a diverse mix-

ture of forest land including both coniferous and deciduous

species, and a portion of Lake Superior.

Data

Satellite Imagery

Satellite data for Zone 41 are from TM and ETM+ images (fig.

2). This set of images has the following attributes: (1) 30 m x 30

m pixels from bands 1-5 and band 7; (2) absolute radiance units

scaled to 8 bits; (3) processing to level 10: radiometrically cor-

rected, using satellite model and platform/ephemeris information,

rectified using ground control points and digital elevation model

terrain correction, and resampled, using cubic convolution with

resulting root mean square error less than 8.5 m; and (4) geo-ref-

erencing to USGS Albers Equal Area projection, NAD83. Image

data include optical band values and tasseled cap transformations

for three seasons: spring, leaf-on (summer) and leaf-off (late fall /

early winter). Kauth and Thomas (1976) introduced the “tasseled

cap” transformation of Landsat Multispectral Scanner (MSS)

imagery as an easily visualized, three-dimensional construct of

the most important phenomena of crop development. Key forest

attributes, e.g., species, age, and structure also may be revealed

by the transformation (Cohen et al. 1995). Crist and Cicone

(1984) modified the tasseled cap transformation for TM imagery.

Images resulting from the transformation collectively explain

about 97 percent of spectral variance within a scene while reduc-

ing six original TM bands to three components: brightness, green-

ness, and wetness.

Figure 2.—NLCD 2000 Mapping Zone 41, leaf-on, true color
image; TM/ETM+ bands 1 (blue), 2 (green), and 3 (red).

Figure 1.—NLCD 2000 Mapping Zones and the Zone 41 study
area (gray).
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FIA Plot Data

Under the FIA program’s annual inventory system, field plots

are established in permanent locations using a systematic sam-

pling design with each plot representing 2,403 ha (McRoberts

1999). Approximately 20 percent of the plots in each State are

measured annually. Locations of forested or previously forested

plots are captured using global positioning system (GPS)

receivers. Locations of nonforested plots are determined using

digitization methods.

Each field plot consists of four 7.31-m (24-ft)-radius circular

subplots, configured as a central subplot and three peripheral sub-

plots with centers separated by 36.58 m (120 ft) at azimuths of

0°, 120°, and 240° from the center of the central subplot (fig. 3). 

Observations obtained by field crews include the propor-

tions of subplot areas that satisfy specific land use conditions.

Plot-wise proportions of forest and nonforest land are deter-

mined by computing the mean proportions of these two land

uses across the four subplots. Measurements from 5,939 plots

associated with cloud-free areas of Zone 41 satellite imagery

were used in this study: 5,242 from Minnesota (years

1999–2001) and 697 from Wisconsin (years 2000–2001). Of

the measured plots, 2,439 were completely forested, 94 were

partially forested, and 3,406 were nonforested.

Methods

Mapping

Seven stratification maps were produced using variations of

two classification methods and two prediction methods: (1)

maximum likelihood (ML), (2) fuzzy convolution (Fuzz), (3)

logistic regression modeling (Log) and (4) k-Nearest Neighbors

(k-NN), respectively. Names of stratification approaches incor-

porate notation for the classification or prediction method (e.g.,

ML), the number of input training classes for the two classifi-

cation methods, and the presence or absence of edge strata

(table 1).

ML

ML classifications were produced using training data from the

following tasseled cap images: spring brightness, spring green-

ness, spring wetness, leaf-on greenness, and leaf-off brightness.

Figure 3.—FIA Phase 2 plot design.

Stratification Classification/ 

approach prediction Strata

method Inputs NF NFE F FE TNF W

ML2Edge ML Nonforest, forest X X X X

ML3 ML Nonforest, forest, water X X X

ML3Edge ML Nonforest, forest, water X X X X

Fuzz3 Fuzz ML3, distance X X X

Fuzz3Edge Fuzz ML3, distance X X X X

LogEdge Log Proportion forest land use X X X X

k-NNEdge k-NN Proportion forest land use X X X X

Table 1.—Approaches for producing stratified estimates of mean proportion forest land, NLCD 2000  Mapping Zone 41;
Nonforest (NF), Nonforest Edge (NFE), Forest (F), Forest Edge (FE), Terrestrial Nonforest (TNF), and Water (W) strata
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These image layers were selected to correspond with those iden-

tified as the “best” bands for k-NN analysis (see below). Chen

and Stow (2002) recommend using single pixels for training

because pixels that are contiguous or close together may exhibit

spatial autocorrelation. If training data are collected from auto-

correlated pixels, the variance of this training data tends to be

reduced. This may produce biased training signatures that are

less representative. Therefore, we used single pixels associated

only with central subplots, which are spatially separated from

pixels associated with central subplots of other plots. 

Based on proportion forest land use, each subplot was cat-

egorized as nonforest (< 0.25) or forest (≥ 0.25) before per-

forming the image classifications. The 0.25 minimum threshold

for proportion forest land is comparable to the definition of for-

est land currently used for the Natural Resources Conservation

Service (NRCS) Natural Resources Inventory (NRI) (Lessard et

al. 2003) and is approximately equivalent to FIA’s requirement

of 10 percent minimum stocking. In comparison, the NLCD

definition of forest is land that has 20 percent or more forest

cover (tree crown cover or crown closure); Anderson et al.

(1976) define forest land as having 10 percent or more tree-

crown density (crown closure percentage).

Nonforest and forest class signature files were created by

appending individual spectral signatures from image pixels

associated with each plot location. Due to the cumbersome

nature and long processing time associated with nearly 6,000

individual signatures (1 pixel for each central subplot), a guid-

ed clustering technique was used (Bauer et al. 1994, Lillesand

et al. 1998). Using this approach, two ISODATA unsupervised

classifications were performed, one for pixels associated with

central subplots defined as nonforest and one for pixels associ-

ated with central forested subplots. Parameters for both ISO-

DATA classifications were as follows: classes = 5, iterations =

20, convergence threshold = 0.98. The resulting five signatures

each for nonforest and forest were subsequently merged into

one signature for each of the two classes. A classification based

on these two signatures was used to produce the ML2Edge

stratification.

Merging the five nonforest signatures into a single signa-

ture resulted in a bimodal distribution of tasseled cap data—a

violation of the requirement for normal data distribution when

performing a maximum likelihood classification. Therefore,

ISODATA classes 1 and 2 and ISODATA classes 3, 4, and 5

were merged into two normally distributed signatures, charac-

teristic of water and terrestrial nonforest, respectively. Water,

terrestrial nonforest, and forest signatures were used to com-

plete a supervised classification using the ML parametric rule

and a fuzzy classification option. Output consisted of the three

best classes per pixel with a corresponding distance image.

Layer one of the fuzzy classification output represents the most

likely class for each pixel and was used to produce the ML3

stratification. Following classification, water and terrestrial

nonforest pixels were recoded as a single nonforest class,

resulting in a classification used for the ML3Edge stratification.

ML3Edge is comparable to ML2Edge, but the classification

used for ML3Edge conforms to the requirement for using nor-

mally distributed data in ML analyses.

Fuzz

Fuzzy convolution is a technique that creates a classification

layer by “…calculating the total weighted inverse distance of

classes in a window of pixels and assigning the center pixel the

class with the largest total inverse distance summed over the

entire set of fuzzy classification layers” (Pouncey et al. 1999).

Whereas classes with higher distance values may change to a

neighboring value, classes with a very small distance value will

remain unchanged. The result is a context-based classification

with reduced speckle. The Fuzz3 stratification was produced

using the ML3 fuzzy classification and distance layers described

above. The distance neighborhood weighting was calculated

within a 3-by-3 window with the central pixel weighted by 1.0,

four vertical/horizontal pixels weighted by 0.646, and four diag-

onal pixels weighted by 0.500. Following classification, water

and terrestrial nonforest classes were merged into a single non-

forest class. This nonforest class, along with the Fuzz3 forest

class was used to produce the Fuzz3Edge stratification.

Log

A logistic regression model with mathematical properties that

restrict predictions in the interval [0,1] was selected to accom-

modate forest land proportions, which also are constrained to

the interval [0,1]. McRoberts and Liknes (2002) describe this

approach for estimating proportion forest land. In this

approach, all four subplots associated with each plot were used.
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In brief, a three-step process was used to select spectral bands

for inclusion in models. First, the data were transformed to per-

mit use of a linear model, which accelerated  the computer pro-

cessing speed for selecting optimal image band combinations.

Second, simple linear regression models were fit to the trans-

formed observations. Third, Logistic models using the five best

combinations of bands with smallest Root Mean-Square Error

(RMSE) were fit to the forest land proportion observations

using weighted nonlinear regression where the weights reflect-

ed the correlations among observations of subplots within the

same plot. The model using the band combination and the cor-

responding parameter estimates obtained from the nonlinear

analyses was used to create a map of forest land proportion

predictions by calculating a prediction for each pixel. Each of

the five best Log models contained three spectral bands. The

best combination of bands identified for the Log approach were

leaf-off near infrared (TM band 4), leaf-off normalized differ-

ence vegetation index (NDVI), and leaf-on NDVI. Continuous

estimates of proportion forest cover were divided into forest

and nonforest land cover strata using the same definitions as

for ML, described above. 

k-NN

The k-Nearest Neighbors technique is a nonparametric

approach for predicting values of point variables. Similarity is

based on a covariate space between the point and other points

with observed values of the variable. McRoberts et al. (2002b)

describe the k-NN methodology used in this study to create

continuous estimates of forest cover. The observed values are

the forest cover proportions for each FIA subplot. The forest

cover prediction for each pixel is based on the average propor-

tion forest cover of the k subplots with corresponding pixel

spectral values nearest to that of the pixel in question.

Unweighted Euclidean distance was used to identify those k-

neighbors nearest in spectral space. The value of k was based

on the number that minimized RMSE for each combination of

spectral bands. The leaving-one-out method was used to obtain

RMSE of forest land proportion. The five combinations of

spectral bands with smallest resulting RMSE were used to pre-

dict proportion forest cover for each image pixel. The five best

k-NN calibrations had three to five bands. The best calibration

contained five bands (tasseled cap: spring brightness, spring

greenness, spring wetness, leaf-on greenness, leaf-off bright-

ness) and had a value of k=24. Continuous estimates of propor-

tion forest cover were divided into forest and nonforest land

cover strata using the same definitions as for ML and Log,

described above. 

Classifications based on ML, Fuzz, Log, and k-NN meth-

ods were processed further using clump and eliminate func-

tions (Pouncey et al. 1999) to remove isolated single pixels and

groups of pixels of one class when their contiguous area was

smaller than < 0.405 ha (FIA definition of 1-acre minimum

area).

Hansen and Wendt (2000) and McRoberts et al. (2002a)

reported that the efficiency of stratifications was improved

when separating edge strata from forest and nonforest strata at

forest/nonforest boundaries. Therefore, before performing strat-

ified estimation, image pixels were processed to subdivide both

forest and nonforest classes into interior and edge classes.

Pixels of either forest or nonforest class that are within a 2-

pixel distance (60 m horizontal/vertical distance, 85 m diagonal

distance) from a forest/nonforest boundary are labeled as edge

pixels. All other pixels are considered non-edge and retain their

original designation as forest or nonforest. This procedure

resulted in the following classes representing four strata: non-

forest, nonforest edge, forest, and forest edge (fig. 4). Edge

pixels were not identified for ML3 or Fuzz3 stratification

approaches (table 1).

Figure 4.—ML3Edge stratification: nonforest, nonforest edge,
forest, and forest edge strata.
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Stratified Estimation

Stratified estimates of mean plot forest land proportion,        ,

and estimated variance,                 , are calculated using formu-

lae for stratified analysis (Cochran 1977):

and

where h = 1,…,L denotes stratum; wh is the hth stratum weight;    

is the mean forest land proportion for plots assigned to the

hth stratum;  nh is the number of plots assigned to the hth stra-

tum; and        is the within-stratum variance for the hth stratum.

Variance estimates obtained using (2) ignore the slight effects

due to finite population correction factors and to variable,

rather than fixed, numbers of plots per stratum.

Stratum weights were determined as the proportions of

pixels assigned to strata. Each FIA plot was assigned to one

stratum. We avoided the mathematical complexity associated

with spatial correlation among four subplots by assigning plots,

rather than subplots, to strata. For this study, only the pixels

associated with central subplot locations (plot centers) were

used for assigning strata to plots.

Comparisons

Estimates of mean forest land proportion and the standard error

of the mean were calculated assuming simple random sampling

(SRS) for comparison purposes. Stratified analyses were con-

ducted using either three or four strata, as defined in table 1.

For the Log and k-NN analyses, stratifications from only the

single best models (based on the smallest standard error of

mean proportion forest land) were used (McRoberts 2002). 

Results

Zone 41 estimates of mean proportion forest land were similar

among all stratified approaches and were slightly smaller than

the SRS estimate. Standard errors (SEs) of these estimates were

noticeably smaller for the stratified approaches than for the SRS

unstratified approach. For ML classifications, replacing

bimodally distributed spectral signatures with signatures of nor-

mal distribution did not change estimates or standard errors of

estimates. Standard errors based on stratifications with four stra-

ta were indistinguishable for ML, Fuzz, and Log approaches,

and were slightly larger for the k-NN approach. Standard errors

were slightly smaller when using stratifications with four strata

(nonforest, nonforest edge, forest, and forest edge) than when

using stratifications with three strata (water, terrestrial nonforest,

and forest) for both ML and Fuzz approaches (table 2).

Discussion

Zone 41 stratifications derived from image classifications are

useful for reducing standard errors of mean proportion forest

land estimates. None of the stratification approaches is superior

to the others, but all are superior to the unstratified SRS

Estimate Stratification Mean proportion
approach forest land Standard error

Unstratified SRS 0.41 0.0061

Stratified ML2Edge .37 .0038

Stratified ML3 .38 .0040

Stratified ML3Edge .38 .0038

Stratified Fuzz3 .38 .0039

Stratified Fuzz3Edge .38 .0038

Stratified LogEdge .38 .0038

Stratified k-NNEdge .38 .0039

Table 2.—Simple random sampling and stratified estimation of mean proportion forest land, NLCD 2000 Mapping Zone 41
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approach. A vegetation index (NDVI) and a tasseled cap trans-

formation were more useful than TM/ETM+ optical band data

for the k-NN and Log approaches, respectively.

In two related studies, both within Zone 41, standard

errors of estimates from the Log approach were smaller than

for ML and larger than for k-NN approaches in a less heavily

forested area in central Minnesota (Nelson et al. 2002) but

smaller than for the k-NN approach in a more heavily forested

area in northeastern Minnesota (McRoberts 2002). 

The ML, Fuzz, Log, and k-NN approaches all require

acquisition and processing of satellite imagery. A visual com-

parison revealed the Fuzz approach produced smoothed vari-

ants of ML classifications, as expected. Although ML and Fuzz

approaches are available as standard components of image pro-

cessing software, Log and k-NN approaches are less accessible.

A tool currently being developed to allow k-NN processing

directly from ERDAS Imagine software will allow more wide-

spread use of k-NN for processing satellite imagery. Although

the k-NN technique is conceptually easy to implement, careful

attention must be paid to its calibration to achieve optimal

results. In addition, several precautions should be observed

when using the k-NN technique (McRoberts et al. 2002b).

More work is needed to determine the optimal threshold

for producing stratifications from continuous estimates of pro-

portion forest (e.g., Log and k-NN estimates). Rather than pro-

ducing a binary stratification (nonforest vs. forest) a

stratification with multiple strata could be tested, e.g., 0.0 –

0.2, 0.2 – 0.4, 0.4 – 0.6, 0.6 – 0.8, and 0.8 – 1.0 proportion for-

est land. Since the estimate of proportion forest land follows a

continuum, could we stratify along a comparable continuum?

Multiple iterations of stratified estimation could be run, select-

ing those thresholds where SE’s are minimized. If FIA policy

requires a nonforest/forest stratification, the above methods

could provide a benchmark of potential SEs to gauge perform-

ance of nonforest/forest stratification methods.

Zone 41 Landsat TM and ETM+ imagery consists of three

seasonal mosaics of adjacent, semi-overlapping scenes from

1999-2001. Spring, leaf-on, and leaf-off imagery include scenes

from early March through early May, early June through early

August, and mid October through mid November, respectively.

When producing zonal mosaics, MRLC gave precedence to

selecting overlapping portions of scenes to those dates with least

cloud cover. Despite these and other image processing steps

employed by MRLC, some cloud cover and scene-related radio-

metric variability is evident within each seasonal mosaic (fig. 2).

The classification/estimation of any portion of an NLCD 2000

mapping zone (e.g., individual TM/ETM+ scene) depends upon

the selection of plots and their associated pixels. Future study

could compare classifications of individual scenes using only the

pixels associated with plots in that scene with their correspon-

ding areas subset from classifications of zonal mosaics using

pixels associated with plots distributed throughout the zone.

When conducting stratified analyses requiring complete cover-

age of an area (assigning every pixel to a stratum for determin-

ing stratum weights), additional image processing of zonal

mosaics may be required to eliminate cloud cover. 
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Use of Semivariances for Studies of Landsat
TM Image Textural Properties of Loblolly
Pine Forests

Jarek Zawadzki1, 4, Chris J. Cieszewski2, Roger C. Lowe3,

and Michal Zasada5, 6

Abstract.—We evaluate the applicability of Landsat

TM imagery for analyzing textural information of

pine forest images by exploring the spatial correlation

between pixels measured by semivariances and cross-

semivariances calculated from transects of the

Landsat TM images. Then, we explore differences in

semivariances associated with images of young, mid-

dle-aged, and old, and natural versus planted stands.

Finally, we compare semivariances for loblolly pine

(Pinus taeda L.) with those of longleaf pine (Pinus

palustris Mill.) in Georgia, U.S.A. The results show

that, in spite of the low Landsat TM resolution, the

semivariances and cross-semivariances may provide

useful additional information. 

Remotely sensed data are inexpensive supplements to ground

measurements and are frequently used in forest inventories of

large areas due to the cost efficiency and the ability to provide

a large amount of information in a short time (Campbell l994,

Vogelmann et al. 1998). Most common methods for image

classification of remotely sensed images are applied without

considering potentially useful spatial information among vari-

ous pixels. Semivariograms consider the spatial information

and have proved useful in analyzing various spatial data

(Curran 1988, Woodcock et al. 1988a, 1988b). So far, the semi-

variograms have been successfully used in forestry applications

only with expensive high-resolution data (St.-Onge and

Cavayas 1995, Treitz and Howarth 2000). 

The objective of our study was to evaluate the applicabili-

ty of the relatively inexpensive, low-resolution Landsat TM7

TM imagery for analyzing the textural information in images

of loblolly pine forests (Pinus taeda L.) in Georgia, U.S.A.,

using geostatistical methods. We analyzed different ages and

natural versus planted stands of loblolly pine using semivari-

ograms and cross-semivariograms. To check if semivariograms

can discriminate between different species, semivariograms for

loblolly pine were compared with those of longleaf pine (Pinus

palustris Mill.). 

We analyzed data from the Thematic Mapper sensor of the

Landsat TM7 satellite in combination with ground measure-

ments. We used information from the visible red (RED), the

near-infrared (NIR), and the middle-infrared (MIR) bands. The

Normalized Difference Vegetation Index (NDVI) as well as the

corrected NDVI (NDVIc) and MIR/RED indices were studied. 

Area Description, Methods, and Material
Studied

Study Site and Data Description

We linked remote sensing images to vegetation data by using

data collected in the field. The study area was located in west-

ern Georgia, U.S.A. The data collected contained stand infor-

mation including stand-polygon GIS/GPS coordinates,

vegetation type (e.g., species) as well as some quantitative data

(e.g., age, basal area, density). We also used data from longleaf

pine stands to compare their textural characteristics with anoth-

er species. We differentiated between planted and natural

stands, and divided all stands of both species into three age

classes: young (6–11 years), medium (16–26 years), and old

(older than 31 years). 

Landsat TM data are appropriate for mapping and investi-

gating broad vegetation types classified by the sensor’s spectral

and spatial characteristics. The important characteristics of the

Landsat TM7 satellite are:
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4Assistant Professor, Environmental Engineering Department, Warsaw University of Technology, Nowowiejska 20, 00–61 Warsaw, Poland, jarek97@yahoo.com. 
6Assistant Professor, Department of Forest Productivity, Faculty of Forestry, Warsaw Agricultural University, Rakowiecka 26/30, 02–528 Warsaw, Poland,
zasada@delta.sggw.waw.pl.
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1. scene coverage–115 miles by 115 miles

2. spectral resolution–three bands in the visible portion of the

spectrum, three bands in the reflective-infrared portion of

the spectrum, one band in the thermal portion of the spec-

trum, and a panchromatic (black and white) band 

3. spatial resolution–30 meters for the visible band 

4. temporal resolution–16 days 

We used digital numbers (DN) from the RED band (red,

0.63-0.69µm), the NIR band (reflective-infrared, 0.76-0.90µm),

and the MIR band (mid-infrared 1.55-1.75µm). The RED band

is sensitive enough for discriminating between many plant

species. The NIR band is especially sensitive to the amount of

vegetation biomass present in a scene. The MIR band is sensi-

tive to the amount of water in plants (ERDAS Field Guide

1990). Finally, we also studied the geostatistical characteristics

of the Normalized Difference Vegetation Index (NDVI) by

Rouse (1973), and the corrected NDVIc as well as the MIR to

RED ratio vegetation index (MIR/RED) by Jordan (1969). The

NDVI was calculated according to the following formula:

where RED and MIR denotes the red and the near-infrared

reflectance. The NDVIc vegetation index is a NDVI modified

index, especially designed for distinguishing coniferous forests

(Nemani et al. 1993). NDVIc is given:

where the first factor in the equation is the NDVI and the sec-

ond factor is a correction of the NDVI. The NIRmin is the

reflectance value of pixels corresponding to field plots with the

lowest tree canopy, and NIRmax is the reflectance value of pix-

els with the highest canopy cover.

All remotely sensed images were analyzed using ERDAS

Imagine 8.5 Software.

Methods

Geostatistics comprises many methods for evaluating the auto-

correlation that commonly exists in spatial data. The main tool

of geostatistics is the semivariogram (semivariance), which is a

measure of spatial continuity. The experimental semivariogram

is derived by calculating half the average squared difference in

data values for every pair of data locations along a specified

direction:

where xi is a data location, h is a lag vector, Z(xi) is the data

value at location xi, N is the number of data pairs spaced a dis-

tance and direction h units apart. These values are then plotted

against the distances between data pairs. Such a plot is com-

monly referred to as a variogram and has a classic form shown

in figure 1.

Semivariograms are roughly defined by three characteristics: 

1. sill–the plateau that the semivariogram reaches. The sill is

the amount of variation explained by the spatial structure. 

2. range of the influence (correlation)–the distance at which

the semivariogram reaches the sill. 

3. nugget effect–the vertical discontinuity at the origin. The

nugget effect is a combination of sampling error and short-

scale variations that occur at a scale smaller than the clos-

est sample spacing. The sum of the nugget effect and the

sill is equal to the variance of the sample.

Figure 1.—The “classic” form of semivariance.
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The obtained experimental semivariogram is used to fit an

appropriate theoretical model, as e.g., spherical, exponential,

etc., and can be used in other geostatistical analyses, e.g. kriging.

Remotely sensed images can be also used in semivari-

ogram calculations. The semivariogram is calculated from the

transects running across a remotely sensed image using digital

numbers as data values Z(xi).

Another important measure of spatial correlation is the

cross-semivariogram:

where xi is a data location, h is a lag vector, Z(xi) and W(xi) are

the DN values at location x for different bands, N is the num-

ber of data pairs spaced a distance and direction h units apart.

The cross-semivariogram quantifies the joint spatial variability

(cross correlation) between two radiometric bands. 

Semivariograms can be a useful tool in classification, but

there are some important difficulties in applying semivari-

ograms to forest classification. First of all, often in forested

areas semivariograms are much more complicated than the

“classic” ones. For example, some periodic and aspatial varia-

tions of the classic semivariogram were often observed for

forested areas. The first type of semivariogram appears when a

repetitive pattern is studied, and the second one appears when

random patterns are investigated. There were also “unbounded”

forms of semivariograms observed in the study. The unbounded

semivariogram may represent a situation in which a trend or

many spatially correlated phenomena exist. These nonclassic

semivariograms are much more difficult to model and interpret. 

Results and Analyses

The basic descriptive statistics of the analyzed forest types (fig.

2) reveal some distinctions between the different stands but do

not provide any textural information. To explore the textural

continuity of studied stands, we calculated and analyzed the

semivariograms for RED, MIR, and NIR bands, as well as the

cross-semivariograms between these bands. The semivari-

ograms for the above mentioned vegetation indices were also

calculated. 

To understand better the factors that influence the semivari-

ograms, we calculated them in large and potentially homogeneous

areas, changing for comparison only one essential stand feature,

e.g., age (young, medium, old) or type of stand (planted, natural).

Figure 3 shows typical, standardized (divided by theirs variances)

Figure 2.—Mean of DN for loblolly pine and longleaf pine calculated from Landsat TM image, channels RED, NIR and MIR,
stand origin 1988.
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semivariograms, calculated for 12-year-old planted loblolly pine

stands. These semivariograms have a typical “unbounded” shape

showing many spatially correlated phenomena. 

For the small separation distances (a few lags) the semi-

variogram curve rises relatively fast. Then, at the greater dis-

tances it exhibits a gentle sloping and becomes almost linear.

The initial increase of the semivariogram curve results from the

fast decrease of spatial continuity at the distances of a few lags

(1 lag = 30 meters). This means that the spatial correlations

between pixels decreases rapidly for short distances. 

At longer distances, the semivariograms do not reach satu-

ration but increase almost linearly. This means that many sizes

and shapes of the forest stands are present in the scene. As was

already mentioned, these semivariograms are difficult to use for

classification purposes. For example, it is clear that the range

and the sill cannot be distinctive parameters for different vege-

tation communities (fig. 3).

To check whether the semivariograms can be treated as

“spatial signatures” of different type of coniferous forests, we

calculated them for different types of loblolly pine stands. We

calculated semivariograms using the DNs from RED, NIR, and

MIR bands as well as NDVI and MIR/RED indices. The largest

differences between semivariograms calculated for the investi-

gated loblolly pine stands were obtained from the RED and

MIR bands. The results of the calculations for the RED band

are shown in figure 4.

Distinctly smaller differences were observed between

semivariograms calculated for DN from the NIR band as well

as between semivariograms calculated from the vegetation

indices NDVI and MIR/RED. This somewhat surprising behav-

ior of semivariograms from vegetation indices can be explained

by the smoothing effect; these indices are the ratios of DNs

coming from different bands.

Natural stands have higher semivariogram values than

even-aged planted stands (fig. 4). This is because natural

stands’ have a higher textural variability than planted stands. 

We also compared semivariograms for different species of

pine by calculating semivariograms for planted and natural

stands of longleaf pine. The exemplary semivariograms of

loblolly pine and longleaf pine calculated from the DN for the

MIR band are shown in figure 5. 

Large differences exist between semivariograms calculated

from loblolly pine and longleaf pine stands. The semivariogram

values for longleaf pine are much higher than those of loblolly

pine, calculated for the stands of similar type and age. The val-

ues of semivariograms at the distance of a few lags can be also

used as a discriminative parameter. 

The cross-semivariograms quantify the joint spatial variabil-

ity between two bands. Therefore, they can be also used for tex-

ture-based classification adding new spatial information. So, at

the end of our analysis we calculated also cross-semivariograms

between bands RED, MIR, and NIR for planted and natural,

medium-aged stands of loblolly pine. The largest cross-correla-

tions were between the RED and MIR bands both for the planted

and for natural stands. The cross-correlations between bands

RED and NIR as well as between MIR and NIR were substan-

tially smaller. The values of the cross-semivariogram for natural

stands were much higher than for planted stands. The cross-cor-

Figure 4.—Isotropic semivariances for different types of loblolly
pine stands, calculated from Landsat TM image using RED band.

Figure 3.—Isotropic semivariances for a planted loblolly pine
stand calculated from Landsat TM images; stand origin 1988.
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relations between the RED and MIR bands calculated for studied

loblolly pine stands are shown in figure 6. Clearly, all age class-

es are well separated. The largest cross-semivariogram values

were obtained for young stands and the smallest for old stands,

both for planted and natural stands.

Conclusions

In spite of the low-resolution of the remote imagery, distinct

differences were found in semivariograms of images for the

studied forests. This means that such semivariograms can be

treated as “spatial signatures” for the studied forest stands. The

classical semivariogram’s parameters, such as range and sill,

are not appropriate as differentiated parameters because of the

low-resolution of the remote imagery and the nonclassic,

unbounded type of observed semivariograms. However, there

are important differences for semivariogram and cross-semivar-

iogram values at the distances of several lags. Our study sug-

gests that the semivariogram values for such separation

distances (e.g., from the 4th to the 7th lags) are appropriate for

these purposes. The observed differences between semivari-

ograms at distances of several lags arise from different spatial

correlations existing in the studied forest stands at distances of

a few tens to a few hundred meters. The low-resolution of

Landsat TM7 remote imagery does not allow distinguishing

separate trees. The observed spatial correlations can be attrib-

uted to the similarity in arrangements of bigger objects as

groups of trees (or stands), areas with similar underbrush, etc.

The largest differences in semivariograms were obtained for

RED and MIR bands. 
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Alternative Natural Resource Monitoring
Strategies in the Mexican States of Jalisco
and Colima

Cele Aguirre-Bravo and Hans Schreuder1

Abstract.—This paper presents a strategy for invento-

rying and monitoring the natural resources in the

Mexican states of Jalisco and Colima. The strategy

emphasizes a strong linkage between remote sensing

with field sampling design to produce statistical sum-

maries and spatial estimates at multiple scales and res-

olution levels. Outputs derived from this strategy are

expected to have significant local use where policy

and management decisions are most effectively made. 

Through the Consortium for Advancing the Monitoring of

Ecosystem Sustainability in the Americas (CAMESA), various

federal agencies of Canada, the United States, and Mexico are

working in partnership with the Mexican states of Jalisco and

Colima to advance the science and technology of monitoring

natural resource sustainability at multiple scales and resolution

levels. Central to this work is the need to design and implement

inventory and monitoring programs that are cost effective,

technically defensible, scientifically credible, and of high social

utility for multiple natural resource applications. Within the

USDA Forest Service, the Rocky Mountain Research Station is

currently leading this effort. In light of the successful results so

far, these cooperative activities have been organized into a

Pilot Study and Learning Center so that a variety of stake-

holders (i.e., federal and State government, industry, academia,

and nongovernmental organizations) can learn and benefit from

the results of this experience. Should this undertaking succeed,

it could then be recommended as a model for implementing

similar initiatives elsewhere in Mexico and other countries in

the Americas.

Vision and Mission

The vision in this cooperative undertaking is to advance the

human values of environmental sustainability and the socioeco-

nomic system by providing the resources that will enable indi-

viduals, agencies, organizations, governments, and other

entities in Mexico and the Americas to effectively manage their

natural resources in a way that sustains, rather than degrades,

the ecosystem and enriches, rather than impoverishes, the

social and cultural environment.

Goal and Objectives

The pilot study’s overall goal is to develop a well-structured set

of strategies that incorporates state-of-the-art science, technolo-

gy, and analytical capabilities together with an Internet-based

strategy for communicating program outputs. A seamless

process will be created to provide all stakeholders the tools and

knowledge needed to make intelligent decisions regarding the

profitable and sustainable management and utilization of natu-

ral resources. Investments in this program will be directed to

achieving the following specific objectives:

• Train a cadre of workers to inventory, monitor, and assess

the sustainable management of natural resources.

• Create an appropriate physical infrastructure through which

users may acquire, store, manage, analyze, report, and dis-

seminate the information to inventory and monitor natural

resources for their profitable and sustainable management

and utilization.

• Create strategies for developing accurate and useful infor-

mation about natural resources to help in decisionmaking

and planning for sustainability.

If successful, this cooperative initiative will facilitate a

multi-institutional capability for managing natural resources

1 Research Coordinator for the Americas and Mathematical Statistician, respectively, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station, 2150 Centre Ave., Building A, Fort Collins, CO 80526–1891; e-mail: caguirrebravo@fs.fed.us, hschreuder@fs.fed.us.
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for their sustained use and productivity, while at the same

time ensuring their vitality, diversity, and ability to provide

important ecological services for the enjoyment of present and

future generations.

Scope and Context

While focused on the goals described above, and using a hier-

archical system of “Watershed Units” for ecological and eco-

nomic accounting, the program will address a variety of critical

questions regarding the information needed for assessing and

managing natural resources within watersheds, at multiple

scales and resolution levels. For example, what are the extent

and condition of the watershed resources and processes (i.e.,

vegetation, soils, water, animals, landscapes, runoff, erosion,

human activity, etc.)? What components of the watershed are

changing and why? Why are some resources changing faster

than others and where are these changes taking place (i.e.,

within and across watersheds)? What are the quantity, quality,

and extent of services provided by watersheds, and how do

human systems benefit from them? Within and across water-

sheds, where is mitigation/restoration of resources and process-

es most practical and beneficial? How are human systems

sustaining the ecological integrity and societal value of water-

sheds? Will the current extent and condition of resources/serv-

ices of watersheds meet future ecological and economic needs?

How can stakeholders (i.e., landowners, federal and State gov-

ernment, industry, academia, and nongovernmental organiza-

tions) work together to solve the problems and issues within

and across watersheds so that we can ensure the health of these

systems and the well-being of present and future generations?

Specific strategies will be developed and implemented to

address these questions.

Study Area Significance

The Pilot Study Area comprises the Mexican southwestern

states of Jalisco and Colima. The two states together cover an

area of approximately 10 million hectares (25 million acres).

Although Jalisco occupies 90 percent of the area, the State of

Colima plays a distinctive role in the economy of the whole

region and helps to diversify the Pilot Study Area. Four major

ecological regions provide the natural resources and environ-

mental conditions that make this region one of the most pros-

perous in Mexico. These ecoregions are the transversal

neo-volcanic system, the southern Sierra Madre, the Southern

and Western Pacific Coastal Plain and Hills and Canyons, and

the Mexican High Plateau. Nested within these ecological

regions are several important Hydrological Regions (HR) that

drain to the Pacific Ocean: (HR12 Lerma-Santiago, HR13

Huicicila, HR14 Ameca, HR15 Costa de Jalisco, HR16

Armeria-Coahuayana, HR18 Balsas, and HR37 El Salado). One

of the watersheds, the Lerma-Santiago Hydrological Region, is

connected to Chapala Lake, the primary source of water for the

City of Guadalajara.

Variables and Indicators

To maximize data versatility, the variables and indicators pro-

posed in this pilot study either are directly parallel or are simi-

lar to those used in inventory and monitoring programs used by

land management and environmental protection agencies of the

United States and Canada. By adopting variables and indicators

that meet Quality Assurance/Quality Control (QA/QC) require-

ments, the data and information collected through this program

should be fully compatible or comparable with North American

databases and other international programs. Local needs for

more specific information for natural resource management

will influence significantly the collection of additional vari-

ables and indicators. Long-term comparability of variables and

indicators between and among various jurisdictions can be

achieved by measuring a minimum subset of them (Core

Variables and Indicators) at each site to address issues and

problems of common concern. Some of the core variables will

be standard information necessary to locate each site and define

its basic physical and resource use characteristics. These vari-

ables will be measured once or remeasured occasionally. Other

“Core Variables and Indicators” will also be measured to docu-

ment the factors that have historically affected the status of the

ecosystem. Metadata records will be kept to document these

processes.
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Strategy for Sampling Design

In designing an integrated multi-resource inventory and moni-

toring system to evaluate the condition and change of variables

and indicators for sustainable natural resource management

(forest, rangeland, agriculture, wildlife, water, soils, biodiversi-

ty, etc.), one needs some baseline data for comparison. Because

one is generally dealing with complex systems, it may not be

wise to select one or two variables for ecological monitoring.

Also, analyzing these variables independently may lead to

incorrect conclusions because of their interdependencies. One

approach is to model the spatial relationship between key indi-

cator variables. In natural resource management, for example,

this information can be used to identify forest habitats that are

either conducive or a deterrent to the presence of ecologically

important plant and/or animal species. Techniques commonly

used in describing spatial relationships between two or more

variables include regression analysis and a variety of spatial

statistical procedures that take into consideration the spatial

dependency. The proposed natural resource monitoring system

will rely on information collected at different spatial scales of

resolution and sampling intensities to provide detailed informa-

tion at the local level for natural resource planning and man-

agement (Schreuder et al. 2002).

Spatially Continuous Monitoring

Landsat Thematic Mapper (TM) data will be used to provide a

complete and uniform census of individual Environmental

Accounting Units (EAU) across jurisdictions (i.e., private

lands, federal and state lands, ejidos, communities, counties,

regions, etc.). This approach will provide measurements col-

lected as a series of contiguous and simultaneous measures

across land tenure units. It will also allow monitoring EAU’s

for changes in spectral and spatial characteristics that can be

applied over a range of spatial and temporal scales appropriate

for addressing specific natural resource issues.

Design-based Monitoring

The development of the sampling and plot designs is compli-

cated by the variety of indicators to be assessed, the need to

assess the natural resources at a range of scales, the need to

monitor the indicators over time, and the need to do so effi-

ciently. To meet national and State level objectives for natural

resource assessments, we will develop a grid-based, traditional

sampling design. For the remaining objectives involving esti-

mation at local scales, the design will be enhanced to provide

information needed to develop spatial statistical models to esti-

mate key attributes at all locations within the sampled popula-

tion (Reich and Aguirre-Bravo 2002). 

Site-specific Monitoring

Because of the biological importance of certain areas in terms of

threatened and endangered plant and animal species, there is a

great need to initiate species- and/or site-specific research and

monitoring. Detailed information should be collected at this stage

through specific projects if funding is available. In addition, data

should be collected that are compatible with key indicator vari-

ables collected at other monitoring levels. All data should be geo-

referenced to allow the integration with information collected at

the different levels using spatially explicit models.

Quality Assurance/Quality Control

Quality assurance (QA) and quality control (QC) are essential

to any monitoring and inventorying system. Quality Assurance

builds confidence in the results of the inventory and monitoring

program. Quality Control documents the quality of various pro-

gram components to ensure that the components meet some

minimal level of desired quality. QA/QC protocols apply to all

components of the inventory program: program planning, data

collection, information management and compilation, analysis

and reporting, and continuous program improvement.

Compatibility of QA/QC protocols across monitoring programs

in the NAFTA countries is essential for this pilot study

(Aguirre-Bravo and Alonso 2002).

Statistical Spatial Modeling

Detailed spatial models describing natural resources are typi-

cally limited by the spatial resolution of the data on which the

models are based. For large geographical surveys, obtaining

sufficient coverage further complicates the modeling process,

as time and resource limitations preclude detailed sampling

over large areas. Use of remotely sensed information, such as
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multi-spectral satellite imagery, allows one to easily derive

large amounts of resource information over large areas; howev-

er, these sensors gather information at a fixed spatial resolution

(e.g., 30 x 30 m for Landsat satellite imagery), and resources

(such as forest structure, soil properties, etc.) may still occur at

scales smaller than the resolution of the sensors with which the

data were collected. Both Metzger (1997) and Joy and Reich

(2002), however, were able to improve the spatial resolution of

satellite-based classifications of forest structure and composi-

tion, respectively, using fine-scale field data for the classifica-

tion procedure.

Modeling key indicator variables will be similar to what

was done in Metzger (1997) and Joy and Reich (2002).

Ordinary least squares (OLS) procedures will be used to gener-

ate trend surface models (TS) that describe the large-scale spa-

tial variability in each of the vegetative elements measured in

the field. Proportional data (basal areas by species, canopy clo-

sure, etc.) will be transformed using logistic transformation to

stabilize the variance of the large and small proportions. OLS

will be used twice in the model-building process —once as a

preliminary means to reduce the number of independent vari-

ables used to predict the vegetative characteristics of interest,

and secondly to generate the final TS model. In the preliminary

analysis, independent variables with a P-value > 0.15 will be

dropped. Independent variables used in the model may include

slope, aspect, elevation, landform, information from Landsat

bands 1-5 and 7, and land use class. Dummy variables can be

added to the TS models to account for interactions between the

various land use classes and the other independent variables.

Combinatorial regression will be used to determine which

of the remaining independent variables best predict the depend-

ent variable of interest. This “screening” procedure, which

examines all possible combinations of independent variables in

all possible orders to yield the best fit, determined by the low-

est Akaike’s Information Criteria (Akaike 1973), requires enor-

mous amounts of computer memory. So it is important to

eliminate unnecessary variables in the model (hence, the pre-

liminary OLS) before running this screening procedure. The

best fitting models will be used to generate a grid for each

structural component of interest using ARC/INFO® (ESRI

1995). Kriging, cokriging, or regression trees will be used to

describe small-scale spatial variability (i.e., error associated

with the residuals from each TS model) in the landscape (Reich

and Aguirre-Bravo 2002).

Project Coordination

Initially, the proposed organizational structure for coordinating

this undertaking consists of a Project Technical Coordinator, a

Science and Technical Committee (STC), and various Task

Force Units for technical training, field implementation, data

analysis, information management, and reporting. Members of

the STC are senior executives/scientists from CAMESA institu-

tional partners, as well as experts from other participating insti-

tutions and organizations. In this organization, the STC

provides a mechanism to foster and coordinate technical and

scientific cooperation and collaboration on matters concerning

the design, planning, and execution of activities related to this

project. Periodic meetings with the STC serve to analyze strate-

gies and recommend ways to successfully implement this proj-

ect. Aguirre-Bravo and Alonso (2002) provide detailed

information about the coordination, organization, and imple-

mentation of this pilot study project.

Expected Products and Benefits

The pilot study creates a window of opportunity for a coordi-

nated multinational effort to design and implement integrated

approaches for inventorying and monitoring natural resources

in the Mexican states of Jalisco and Colima. Salient to this

undertaking is the opportunity to further improve information

compatibility and procedures for use in integrating and evaluat-

ing information on the status, extent, trends, and projected

changes in natural resources across jurisdictions, and at multi-

ple scales and resolution levels. As a multinational partnership

effort, it promotes the sharing of scientific and technical infor-

mation and approaches to gain common understanding on a

variety of issues and problems of current and future concern

within and across jurisdictional boundaries and geographical

scales. In addition, it addresses new approaches and method-

ologies for advancing the design and implementation of inven-

tory and monitoring programs for the assessment and
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sustainable management of natural resources, at multiple scales

and resolution levels. For the Americas, and particularly for

Mexico, the pilot study serves as a learning center upon which

scientists and resource managers learn and benefit from the

results of working in partnership.
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Coordination, Cooperation, and
Collaboration between FIA and NRI 

Raymond L. Czaplewski1, James Rack2, Veronica C.

Lessard3, David F. Heinzen4, Susan Ploetz5, Thomas L.

Schmidt6, and Earl C. Leatherberry7

Abstract.—The USDA Forest Service conducts a

detailed survey of the Nation’s forests through the

Forest Inventory and Analysis (FIA) program. The

USDA Natural Resources Service conducts an entire-

ly separate survey, the National Resources Inventory

(NRI), to monitor status and trends in the Nation’s

soil and other natural resources. Blue Ribbon Panels

for both FIA and NRI have recommended better

cooperation and collaboration. In response, a joint

venture among the State of Minnesota, the U.S.

Geological Survey, NRI, and FIA searched for poten-

tial synergies by fusing FIA and NRI plot data with

Landsat imagery and a statewide geographic informa-

tion system. FIA and NRI plot data did prove useful

as training data for classifying land cover, and as sup-

plemental labeling data for detecting changes with

multi-date Landsat imagery. 

The U.S. Department of Agriculture (USDA) conducts three

statistical surveys of the Nation’s natural resources: 

1. The USDA National Agricultural Statistics Service

(NASS) estimates annual production and supplies of food

and fiber, prices paid and received by farmers, farm labor

and wages, and farm aspects of the agricultural industry

(e.g., pesticide use). The annual NASS budget is approxi-

mately $100 million. 

2. The National Resources Inventory (NRI) is conducted by

the USDA Natural Resources Conservation Service

(NRCS) on all non-Federal lands. NRI estimates the extent

of different kinds of land cover and land use in the USA;

indicators of soil condition and erosion; and the extent and

changes in land management; wetlands; and other natural

resources. For example, NRI estimates area of cropland,

pastureland, rangeland, land enrolled in the Conservation

Reserve Program, other rural land, builtup and urban land,

water bodies, and forestland (including nonstocked and 22

broad categories of forest type). 

3. The Forest Inventory and Analysis (FIA) program is con-

ducted by the USDA Forest Service. FIA estimates tree,

site, and stand conditions of the Nation’s forests. For

example, FIA estimates the area of forestlands by many

detailed categories of stand conditions. The FIA budget

was $49 million in 2001, with an additional $8 million in

State funds (USDA 2002). 

Each of these USDA surveys is well designed to imple-

ment a different congressional mandate that relates to the

inventory of natural resources. Each mandate serves a distinct

group of customers, each with its own unique blend of natural

resource issues. Each survey uses its own sampling designs,

1 Project Leader, Rocky Mountain Research Station, U.S. Department of Agriculture, Forest Service, Fort Collins, CO 80526. Phone: 970–295–5973; fax:
970–295–5959; e-mail: rczaplewski@fs.fed.us.
2 Senior Research Analyst, Resource Assessment Unit, Minnesota Department of Natural Resources, Division of Forestry, Grand Rapids, MN. Phone:
218–327–4449; fax: 218–327–4517; e-mail: jim.rack@dnr.state.mn.us.
3 Statistician, Natural Resources Inventory and Analysis Institute, U.S. Department of Agriculture, Natural Resources Conservation Service, co-located with the
North Central Research Station, U.S. Department of Agriculture, Forest Service, St. Paul, MN 55108. Phone: 651–649–5130; fax: 651–649–5140; e-mail:
vlessard@fs.fed.us.
4 Supervisor, Resource Assessment Unit, Minnesota Department of Natural Resources, Division of Forestry, Grand Rapids, MN. Phone: 218–327–4449; fax:
218–327–4517; e-mail: david.heinzen@dnr.state.mn.us.
5 Soil Conservationist, St. Paul State Office; U.S. Department of Agriculture, Natural Resources Conservation Service, St. Paul, MN 55108. Phone: 651–602–7888;
fax: 651–602–7914; e-mail: Susan.Ploetz@usda.gov.
6 Assistant Director for Research, North Central Research Station, U.S. Department of Agriculture, Forest Service, St. Paul, MN 55108. Phone: 651–649–5131;
fax: 651–649–5285; e-mail: tschmidt@fs.fed.us.
7 Research Social Scientist, North Central Research Station, U.S. Department of Agriculture, Forest Service, St. Paul, MN 55108. Phone: 651–649–5138; fax:
651–649–5140; e-mail: eleatherberry@fs.fed.us.
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protocols, and definitions that are designed to best serve its

own mission. 

Unfortunately, differences among USDA surveys create

discrepancies among a few important variables that overlap

surveys, such as area of forestland. For example, NRI estimates

for acres of forest can differ from FIA estimates by over 30

percent (fig. 1). Why? FIA and NRI define urban and builtup

lands differently. They can use different sources and dates of

administrative data to develop area expansion factors. While

both FIA and NRI define forest to be at least 10 percent

stocked, this definition is applied with different protocols. NRI

classifies some land with forest cover as Conservation Reserve

Program (CRP), while FIA classifies the same lands as forest.

In Minnesota, NRI often classifies as forest the tall shrubland

within the transition zone between forest and inland marshes

and swamps, while FIA classifies the same areas as nonforest.

FIA classifies vast areas of oak, pinyon, and juniper woodland

as forest in the interior west, while NRI often classifies the

same areas as shrubland or rangeland.

In 1998, a team of senior scientists from the FIA, NRI,

NASS, U.S. Geological Survey (USGS), Bureau of Land

Management, and Environmental Protection Agency demon-

strated the feasibility of combining FIA and NRI surveys while

preserving critical historic information (House et al. 1998,

USDA 1998b). They formulated a framework for estimating the

extent of forest and rangeland that explains the discrepancies

between FIA and NRI estimates. This framework envisioned a

joint USDA inventory and monitoring effort for terrestrial natu-

ral resources that links the FIA and NRI surveys through a co-

located subset of sample plots and a shared database.

Figure 1.—Differences between NRI and FIA in estimated
number of acres of forest. Discrepancies are primarily caused
by differences in measurement protocols and definitions for
land cover v. land use.

Figure 2.—Comparison of a 160-acre NRI Primary Sampling Unit with a FIA 1-acre field plot. The NRI 1:8,000-scale aerial pho-
tographs encompass approximately 5 percent of the landscape; therefore, only about 5 percent of FIA field plots are imaged within
NRI sample photographs. These are demonstration plots, and they are not part of the FIA or NRI sampling frames.
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Beginning the following year, a second team of scientists

investigated a fusion of the independent databases produced by

FIA and NRI within a geographic information system (GIS),

without a shared subset of co-located sample plots. This paper

briefly summarizes the results of these latter experiments and

suggests future experiments to improve collaboration between

FIA and NRI. 

Comparison of FIA and NRI Surveys

FIA maintains one field plot for every 6,000 acres, regardless of

land ownership or presence of forest cover. FIA uses a systemat-

ic sampling grid and equal selection probabilities for each plot.

NRI uses one plot per 8,000 acres of non-Federal lands, with

more intensive sampling where land use and resource patterns

are more heterogeneous. These unequal selection probabilities

increase statistical efficiency and accommodate special analyses.

NRI does not currently measure plots on Federal lands.

FIA relies primarily on re-measurement of field plots.

While expensive, field measurements are required for accurate

estimates of tree- and site-characteristics. However, FIA uses

remote sensing to improve precision of statistical estimates8 of

forest area using low-resolution aerial photography or Landsat

satellite imagery. NRI primarily uses high-resolution aerial

photography to measure status and changes in land cover, land

use, and land management practices. These changes are espe-

cially important in NRI erosion estimates. NRI uses a limited

amount of fieldwork to measure features they believe do not

often change over time, or cannot be accurately obtained with

aerial photography.

The FIA field plot has four subplots that together encom-

pass about 0.17-acres (fig. 2). The NRI plot, referred to as the

Primary Sampling Unit, or PSU, is typically 160-acres (fig.

2). Most NRI plots have three secondary sampling points, at

which detailed photointerpreted measurements are made. In

recent years, NRI has made these measurements with custom

1:8,000-scale aerial photos. These sample photographs pro-

Figure 3.—Comparison of FIA and NRI based on number of plots and cost (USDA 1999, 2002).

8 FIA uses post-stratification, double sampling for stratification, or double sampling for regression to reduce variance for estimates of forest area. This also reduces
variance for estimates of population totals, such as volume.
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vide unusually high resolution for interpretation of forest

cover and land use. For example, resolution at this scale is

sufficient to detect single-family houses under a tree canopy

and individual tree mortality.

There are about 360,000 permanent FIA field plots in the

U.S. (fig. 3A), located on both private and public land. About

120,000 of those are forested and are intensively measured by

field crews. The remaining 240,000 are nonforested and are not

measured in significant detail. NRI has about 300,000 NRI

plots in the U.S., all of which are measured regardless of their

land use. However, NRI does not measure Federal lands; an

additional 75,000 NRI plots would be required to cover this

land (fig. 3A). Most NRI plots include three secondary sam-

pling points (fig. 2). 

Since 1999, both FIA and NRI have adopted different

forms of annualized systems for re-measuring permanent plots.

The 1998 Farm Bill required FIA to change from re-measuring

all FIA plots in an entire State once every 10 to 20 years, to re-

measuring 10 percent to 15 percent of all FIA plots in every

State every year. FIA plots are separated into five groups,

called panels, which are uniformly distributed over the land-

scape. With current funding, all FIA plots in a single panel are

re-measured within a 12- to 24-month period. Then, fieldwork

restarts on the next panel. When partial implementation of the

1998 Farm Bill is fully funded, it will take about 7 years to re-

measure all FIA plots in the Eastern United States, and about

10 years in the Western U.S. (USDA 2002). On the other hand,

NRI plots are divided into two groups: “Core” plots are re-

measured every year; NRI “Rotational” plots are re-measured

at variable intervals, depending on analysis issues and funding.

FIA currently re-measures over 50,000 of its 360,000 field

plots each year (USDA 2002); about 19,000 of these field plots

contain trees and the remaining 31,000 have no forest cover

(fig. 3C). NRI re-measures all 42,000 Core plots and 32,000 of

its 258,000 Rotational plots each year (fig. 3C); it acquires and

processes over 74,000 aerial photographs (fig. 2) each year.

Detailed tree- and site-conditions on an FIA plot can be

accurately measured only in the field. On average, a two-per-

son field crew can re-measure one 0.17-acre forested FIA plot

each day. The average cost is $1,800 per plot (fig. 3D),

although cost varies by geographic area. NRI statistics are more

sensitive to changes in land cover and land use, which can be

reliably measured with photointerpretation (fig. 2). The average

direct cost for re-measuring a 160-acre NRI plot is about $150

(fig. 3D), of which half is for procurement of the 1:8,000-scale

aerial photograph and the remaining half is for labor costs.9

Search for Synergy

The experiments reported here evaluated the advantages of fus-

ing the FIA and NRI plot databases with remotely sensed data

and statewide GIS database.10 We hypothesized that this com-

bined database would yield synergies during important analy-

ses. We tested this hypothesis by analyzing land cover and

changes in land use with NRI data from 1987 and 1997; FIA

data from 1977, 1990, and 1996; and Landsat satellite data

from 1986 and 1996.

The most time-consuming portion of these experiments

was assembly and harmonization of data from disparate

sources. This included combining similar but different FIA and

NRI classification systems into a single system. The FIA classi-

fication system has detailed categories for stand-level forest

conditions but little detail for nonforest conditions, while the

NRI system focuses on agricultural uses and land cover on

non-Federal lands, with but little detail on forest conditions. A

cross-walk was developed that reclassified FIA and NRI cate-

gories into five common categories: forest, crops, urban, herba-

ceous cover, and other land uses (Rack et al. 2002). However,

some differences between FIA and NRI could not be fully rec-

onciled in the database; these imperfections impact our results

to some unknown degree.

FIA and NRI classification systems are based on “land

use,” which is more difficult to apply with digital classification

of satellite data than is “land cover.” For example, urban land

can include forest, grass, and shrub cover, categories easily

confused with those same types of cover in nonurban land-

scapes. A photointerpreter can use landscape patterns, and the

9 Personal communication, Dr. J. Jeffery Goebel, Senior Statistician and National Leader for Resource Inventories, Resources Inventory Division, U.S. Department
of Agriculture, Natural Resources Conservation Service, Beltsville, MD. Phone: 301–504–2284; fax: 301–504–2230; e-mail: jeff.goebel@usda.gov.
10 Standard GIS maintained by the State of Minnesota, http://www.dnr.state.mn.us/maps/index.html.
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higher resolution available in an aerial photograph, to better

deduce land use than can digital classification of satellite data.

However, there are inevitable differences among interpreters,

and some apparent changes in land cover are likely caused by

photointerpretation inconsistencies. Except for classification of

forested FIA plots, photointerpretation is used by both FIA and

NRI to classify land use. 

Spatial Patterns of Land Use Change among FIA 

and NRI Plots

The first experiment attempted to better understand changes in

land use between 1977 and 1997 by analyzing the spatial pat-

terns among changes on sample plots (Rack et al. 2002). The

union of FIA and NRI plots increased the available observa-

tions. Those plots that changed were displayed on a map.

Kriging produced no discernible relationship to patterns that

were visually apparent in the map display. There were obvious

clusters of change: near Minneapolis and St. Paul, where forest

and agriculture were changed into urban; along the Mesabi Iron

Range, where pits and overburden re-vegetated into forest; and

near Park Rapids, where forestlands changed to cropland to

serve a food processing plant constructed in the 1980s.

However, these changes were previously well known, and no

new insights were provided through spatial displays of changed

FIA and NRI plots. 

There were problems in matching locations of nonforested

FIA plots on the aerial photographs used for different surveys;

some apparent changes from urban to forest were likely caused

by registration errors rather than actual changes in land use.

Furthermore, differences between FIA and NRI classification

systems for land use and land cover made use of the combined

data set difficult. Finally, there were unlikely and unexplainable

differences occurring at some county boundaries; these were

likely caused by inconsistencies in photointerpretation methods

for nonforested FIA plots during the 1977 survey. Therefore,

the remaining experiments evaluated FIA and NRI plot-level

data in combination with remotely sensed data. 

Mapping Changes in Land Use

Several experiments evaluated FIA and NRI plots for mapping

changes in land use with Landsat data from 1986 and 1996.

The test area included one Landsat scene that covered the

Minneapolis/St. Paul area. One experiment used supervised

classification, which requires large amounts of training data.

The results were disappointing (Rack et al. 2002). There were

too few FIA and NRI plots that had changed within a single

Landsat scene, especially those associated with urban develop-

ment. Another experiment used unsupervised classification of

temporal differences in the Kauth-Thomas transformation,

which is more orthodox for digital change detection. The

resulting clusters were primarily labeled through image-inter-

pretation; however, FIA and NRI plots provided helpful exam-

ples of sites that had changed. The resulting 30-m resolution

map of changes in land use is a valuable complement to the tra-

ditional FIA and NRI statistics on rates of change. However,

map accuracy is unknown because there are no independent

reference data available. Rack et al. (2002) describe this com-

plex operation in more detail.

Supervised Mapping of Land Cover

Another experiment evaluated FIA and NRI plots as training

data for supervised classification of land cover with multiple

Landsat scenes for northeastern Minnesota.11 The remote sens-

ing procedures were designed for the National Land Cover

Data (NLCD-2001) Program12 (Homer et al. 2002). NLCD is a

consortium of Federal agencies that is building a national

Multi-Resolution Land Characterization (MRLC 2001) data-

base of Landsat 7 ETM+ imagery, nominally from the year

2001. The database includes three dates of imagery per Landsat

scene: early season, peak greenness, and late season.

Radiometric calibration of the Landsat imagery improves con-

sistency of mosaics that include multiple Landsat scenes.

NLCD-200113 will be a 30-m resolution geospatial database for

the entire U.S., including seamless, Web-based delivery of

standardized Landsat data (multi-season, Normalized Tasseled

Cap transformation); independent ancillary data layers (30-m

resolution slope, aspect and elevation); independent, Landsat-

11 NRLC-2001 Map Zone 41 (http://landcover.usgs.gov/pdf/homer.pdf).
12 The MRLC and NLCD consortia are led by the USGS EROS Data Center. See www.mrlc.gov.
13 http://www.mrlc.gov.
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based estimates of percent of imperviousness surfaces and tree

canopy density; and supervised classification of land cover

with these Landsat and ancillary data. FIA and NRI sample

plots provided sufficient training data for supervised classifica-

tion. FIA and NRI plot data helped increase map accuracy

(Huang et al. 2002) and agreement of the map with FIA and

NRI measurement protocols. If FIA and NRI join NLCD-2001,

their customers will have a more accurate and user-friendly,

nationally consistent, interagency geospatial database for

national and regional assessments.

Software for Managing Aerial Photography

An early experiment looked at cooperation in the development

of software that benefited all partners (Rack et al. 2002).

“Plotview” is a user-friendly, secure, intranet graphical system

that displays FIA and NRI plot locations, associated aerial pho-

tography, and proximate data from a statewide GIS system.

Plotview facilitated use of FIA and NRI plot data and rapid

handling of associated aerial photography and GIS data during

classification of Landsat imagery. Plotview was a useful

demonstration that led to similar developments in the FIA and

NRI programs.

Future Directions

The experiments described above produced useful results, but

they did not achieve any stunning synergies. Several additional

experiments are being considered.

The discrepancy between FIA and NRI estimates of total

forestland area is a pervasive problem (fig. 1). Many discrepan-

cies are caused by differences between FIA and NRI classifica-

tion systems for land use. Some of these differences have

already been reconciled during the construction of the database

described above. Perhaps there are additional ways to better

align the classification systems and protocols used by FIA and

NRI; separation of classifications systems into land use and

land cover holds promise. 

Assessments of forest resources with FIA data can benefit

from information on soils from NRCS,14 and assessments of

forest soils with NRCS data can benefit from information about

forest conditions from FIA. Such assessments could be

enhanced by adding the corresponding NRCS code for soil

group to each FIA plot. The average characteristics of that soil

group could be associated with each FIA plot. This would sup-

port analyses, such as those for soil carbon described by

Prisley15 (personal communication). Likewise, FIA attributes,

such as tree productivity and biomass density, could be summa-

rized across all FIA plots for each soil group, and those mean

FIA values stored in the NRCS national soils database as repre-

sentative descriptors. Since assembly of disparate databases can

be the single largest task in multi-resource assessments, cross-

referencing FIA and NRC databases could reduce these costs to

external customers. Some soil groups are rare, and association

of a plot with a rare soil group could inadvertently compromise

the privacy of the landowner. Additional experiments are being

considered to test the value of linking certain attributes in the

FIA and NRI databases while protecting privacy of landowners.

The cost of implementing the FIA Federal base program

mandated by the 1998 Farm Bill, with its requirement for more

current data and re-measurement of 20 percent of all plots each

year, is estimated at $90 million per year for full implementa-

tion (USDA 1999, adjusted to 2002 dollars), or $68 million for

partial implementation (USDA 2002, fig. 3B). In response to

the FIA Strategic Plan (USDA 1999), the FIA annual budget

has nearly tripled, from $18 million in 1997 to $49 million in

2001 (USDA 2002). However, these funds are not yet adequate

for even partial implementation of the Federal base program.

The current FIA strategy (USDA 1999) transforms traditional

FIA periodic surveys into annual surveys by changing the plot

re-measurement schedule. Alternatively, combination of FIA

and NRI statistical estimates might achieve the 1998 Farm Bill

mandate with current FIA funding. The direct cost of re-meas-

uring an NRI plot is about one-tenth the direct cost of re-meas-

uring an FIA plot (fig. 3D) The cost of the current FIA strategy

might be reduced if the NRI system could frequently monitor

changes in forest area, which can be rapid in many areas during

5 years, and the FIA system could less frequently re-measure

tree- and site-conditions within undisturbed forest stands,

which usually change more slowly (Smith et al. 2001). 

14 http://nasis.nrcs.usda.gov/index.html.
15 Prisley, Stephen. Personal communication, Virginia Polytechnic Institute and State University, Blacksburg, VA: November 20, 2002.
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Assume NRI estimates of forest area could be subdivided

into the following categories through photointerpretation: non-

stocked stands, clearcuts, partial cuts; seedling/sapling stands,

poletimber stands, deciduous sawtimber stands, coniferous

sawtimber stands, and mixed sawtimber stands. Further assume

that these NRI estimates could be statistically calibrated for

photointerpretation errors and differences between the FIA and

NRI classification systems. FIA field data could estimate vol-

ume per forested acre for each of these stand conditions. The

product: (forest acres) x (volume per forested acre) = (total vol-

ume). Other FIA estimates of population totals could be simi-

larly estimated. This approach might have little impact on

current operations within FIA and NRI, while producing high-

quality statistical estimates under current funding levels.

Additional experiments will test these assumptions and conjec-

tures in Minnesota.

Summary

Agencies can work together at three levels:16 coordination,

cooperation, and collaboration. Coordination is communication

among agencies involved, but each separately conducts its own

work. The next higher level is cooperation, which occurs when

agencies work together because it would directly benefit each

one’s mission. Collaboration emerges as agencies work togeth-

er to develop synergies. While coordination is the easiest to

implement, it brings the least benefits. Collaboration takes con-

siderable time, effort, and perseverance, but it can be the most

beneficial to participating agencies, their customers, and the

public. Future experiments in the integration of FIA and NRI

products will examine how to better achieve true collaboration.
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The Effects of Removing Condition
Boundaries on FIA Estimates

David Gartner and Gregory Reams1

Abstract. —When Forest Inventory and Analysis (FIA)

changed to the national standards for the inventory sys-

tem, plots with multiple condition codes were intro-

duced to the Southern Station’s FIA unit. FIA maps up

to five different conditions on completely or partially

forested 1/24-acre subplots. This change has made pro-

ducing inventory estimates more complex because the

data are analyzed by condition classes (partial plot)

rather than on a whole plot. Methods for analyzing by

condition classes are less intuitively obvious than meth-

ods based on a single condition for an entire plot. We

compared the current standard of fully mapped plots to

two methods that reduce the number of mapped condi-

tions per plot using the following sets of rules. Rule 1

assigns the predominant condition to the entire plot,

including plots that are partially forested. Rule 2 maps a

single nonforest condition and a single forest condition,

with the single forest condition predominant. The effects

of these changes were shown by calculating forest area

by forest type group and ownership and volume by

species and diameter class. The effect of using just one

condition per plot (rule 1) increased the estimated total

forested area by 0.4 percent. Using rule 1 decreased the

calculated total volume for the state by 3.9 percent.

Using only one forested condition per plot (rule 2) did

not change the total area estimate or the volume esti-

mates. Both methods decreased the estimated variance

for the total volume by 12 to 16 percent. The percent

changes in the estimated values were greatest in the least

occurring table entries, e.g., the rarest combinations of

forest type and ownership group or combinations of

species and diameter class. 

When Forest Inventory and Analysis (FIA) changed to the

national standards for the inventory system, plots with multiple

condition codes were introduced to the Southern Station’s FIA

unit (Reams and Van Deusen 1999). These multiple conditions

per plot require determining the boundary between the condi-

tions in the field. In natural stands, forest type boundaries are

frequently a continuum, as opposed to abruptly changing from

one forest type to another. Therefore, determining the boundary

between two forest conditions can be difficult and nonrepeatable.

This report addresses two possible changes to the current proce-

dures. One would be to ignore all the boundaries and just use the

largest condition on the plot (rule 1). The other possible change

would be to ignore boundaries between forested conditions, and

use one (the largest) forested condition per plot and one non-

forested condition. Our study sought to determine the effects of

these possible changes on State estimates of area and volume. 

Methods

To simulate the removal of all boundaries, the condition vari-

ables, such as forest type and stand age, of the largest condition

were assigned to the entire plot. To simulate the possible

removal of boundaries between forested conditions, the condi-

tion variables of the largest forest were attributed to all the

forested area on the plot. For those plots where the two largest

forests were the same size, one of the two was chosen at ran-

dom to be attributed to the larger area, whole plot, or total

forested area on the plot. The data came from South Carolina’s

first panel. 

Each plot (sample unit) consists of four 1/24-acre subplots.

The condition boundaries actually occur on the subplots.

However, there were not sufficient data to analyze the two

alternative methods at the subplot level in the database for

South Carolina’s first panel. 

The table values were calculated in the standard manner

(FIA Stat Band, in review), except for using double sampling

for forested area estimates. First, the phase 1 photo interpreta-

tion data were used to estimate the amount of forested land per

county. The phase 1 photo interpretation plots are ground

truthed on phase 2 plots and a set of ground truth intensifica-

tion plots. Because condition data are only gathered on the

1Mathematical Statistician, U.S. Department of Agriculture, Forest Service, Southern Research Station, Knoxville, TN 37919. Phone: 865–862–2066; e-mail: dgart-
ner@fs.fed.us, and Project Leader, U.S. Department of Agriculture, Forest Service, Southern Research Station, Knoxville, TN 37919.



150 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium

phase 2 plots, the two possible rule changes could not be

applied to the photo interpretation intensification plots.

The phase 2 plot data were used to post-stratify the forest-

ed area by forest management type. The table values were then

calculated using post-stratified sampling estimation techniques

(Cochran 1977). To be able to detect any differences between

the effect on estimating area and the effect on estimating vol-

ume, one area table and one volume table were calculated for

each method of handling boundaries. The two tables are ‘Table

2—Area of forest land by forest-type group and ownership

class’ and ‘Table 19—Volume of live trees on timberland by

species and diameter class’ (Thompson 1998).

Specifically, the values for the area table were calculated

using equation 1.

(1)

where       is the estimate of the area for each owner group (o)

and forest type (t) combination for a given county,          is the

total land area in the county obtained from the U.S. Census

Bureau,         is the ratio of forested land to total land area in

the county as estimated from the phase 1 data, and         is the

estimated proportion of forest land by ownership group and

forest type in the county. 

is estimated using double sampling techniques using

equation 2 (Reams 2000).

(2)

where          is the proportion of phase 1 plots photo interpreted

to be forested,          is the proportion of ground truthed plots

whose initial photo interpretation calls were forested and were

ground truthed as forested,       is the proportion of phase 1

plots photo interpreted to be nonforested, and         is the pro-

portion of ground truthed plots whose initial photo interpretation

calls were nonforested that were ground truthed as forested.

is the proportion of forested area in a given ownership

group (o) and forest type (t) combination as estimated by a

ratio of means estimator using equation 3 (Cochran 1977,

Zarnoch and Bechtold 2000). 

(3)

where        is the area in ownership group by forest type combi-

nation on phase 2 plot i,       is the amount of forested area on

plot i, and      is the number of phase 2 plots with at least one

forested condition.

Because       is a product of two random variables, the

variance of      (Var(       )) contains the product of the vari-

ances of the two random variables and the cross products of

those variances and the squared means of the random variables

using equation 4 (Goodman 1960, McCollum 2002). 

(4)

where    ,    ,    ,                and        have the same definitions

as equation 1. The variances of         and         are shown in

equations 5 and 6.

(5)

where      ,     ,     ,     ,          and        have the same defini-

tions as in equation 2, n is the total number of photo interpreta-

tion points, m1 is the number of photo interpretation plots that

were ground truthed as forested, and m2 is the number of photo

interpretation plots that were ground truthed as nonforested. 

(6)

where         ,     ,     ,     and       have the same definitions as in

equation 3.

The values for the volume table for combinations of species

group (s) by diameter class (d) are calculated using equation 7.

(7)

where          and         are as defined in equation 1,       is the

proportion of forested area in a particular forest type, and

is the volume per acre for combinations of species groups and
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diameter classes. Both      and         are ratios of means estima-

tors of the general form found in equation 3 and variances of

the general form found in equation 6.       is the ratio of the

total area in forest type t divided by the total forested area

summed over plots that contain at least one forested condition.

is the ratio of the total volume in the species group by

diameter class for forest type t divided by the total area in for-

est type t summed over plots that contain at least one condition

with that forest type.

The variance of        is calculated using Goodman’s formula for

the variance of the product of random variables, as with the

variance of      . However, instead of being a product of two

random variables,       is the product of three random variables.

Applying Goodman’s formula in succession gives rise to the

formula for the variance of       (equation 8).

(8)

where        is defined in equation 7,          and         are as

defined in equation 1,        is the proportion of forested area in

a particular forest type, and        is the volume per acre for

combinations of species groups and diameter classes.

If trees in an original forested condition occurred on a plot

that was primarily nonforested, using the one condition per plot

method removed these trees from the calculations. 

Results

Land Area

Because the total forested area is determined by ground truthed

photo interpretation points, using rule 2 does not affect the esti-

mates for the total forested area because rule 2 does not change

any ground truth calls from forested to nonforested or from

nonforested to forested. However, using rule 1 does change

some of the ground truth calls for phase 1 photo interpretation

points. Using rule 1 increased the estimated total forested area

for the State by 0.4 percent and decreased the estimated vari-

ance by 0.4 percent. The table cells with the largest area, pri-

marily marginal totals for either forest types or owner groups,

had small percent changes, ranging from –6.8 percent to + 2.5

percent. The smaller combinations of forest type and ownership

group had larger percent changes, ranging from –100.0 percent

to +18.4 percent. The effects of rule 2 on the percent changes

followed the same pattern as the effects of rule 1.

Volume

Using rule 1 decreased the estimate for total volume by 3.9 per-

cent and decreased the variance by 15.6 percent. As with the

effects on area, the table cells with the greatest amount of vol-

ume, primarily the marginal totals for species or diameter classes,

show small percent changes, from –6.6 percent to –1.7 percent.

The table cells with small amount of volume showed large per-

cent changes, ranging from –100.0 percent to +26.7 percent.

Using rule 2 caused no changes in the estimated volumes

from the current method but did change the variance estimates.

Using rule 2 decreased the variance of the estimate for total

volume by 12.9 percent. 

Discussion

Using rule 2 did change the individual cell estimates for area,

but not for volume. The reason the volume estimates do not

change can be found in equation 7. A close look at the term  

reveals the cause. In equation 9, the numerator of the

first quotient is the area in forest type t summed over all forest-

ed conditions, and the denominator of the second quotient is

the area in forest type t summed over all forest conditions in

forest type t. 

(9) 

Since the area in forest type t on plots without any forest type t

is 0, these two numbers are equal and will cancel out. Since

this is the only condition variable in this equation, the esti-

mates of volume will not depend on how the forest types are

determined. 
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The 12.9-percent decrease in the variance of the estimated

total volume for rule 2 is the result of merging forested condi-

tions. When conditions are merged, the resulting volume per

acre will be a weighted average of the volume per acre of the

conditions that are merged. This weighted average will remove

some of the variation in the volume per acre values. 

Using rule 1 did affect the estimates of both State totals:

an increase in total forest area of less than 0.2 percent and a

decrease in total volume of 3.9 percent. When rule 1 is used,

some forested and nonforested conditions will be relabeled.

The increase in the estimated total forested area suggests that

more nonforested area was relabeled as forested than forested

area was relabeled as nonforested. When forest is relabeled as

nonforest, the trees get removed from the total volume esti-

mate. When nonforest is relabeled as forest, they will con-

tribute to the area estimates, but they don’t have any trees to

add to the volume estimates, causing a decrease in the volume

per acre values for that plot. This decreases the estimated total

volume. Changes in the estimates for the individual cells on the

reporting tables were much larger, ranging from –100 percent

to +30 percent. 

Arner (1998) ran a similar study with data from Maine on

a different fixed-plot design. His design was a single 1/5-acre

plot instead of four 1/24-acre plots. His totals also changed

very little and showed larger percent changes in the smaller cat-

egories. His relative changes were smaller due in part to the

fact that he reported just marginal totals, and in part to the fact

the he had more plots. Even though Maine is a smaller state,

Arner had more plots because he used the data from a

statewide survey, while our study used only one of the panels

from South Carolina. Using the rest of the panels from South

Carolina would probably lead to smaller percent changes.

In South Carolina, 30 to 35 percent of the plots had more

than one condition, but only about 8 percent of the subplots had

condition boundaries. Of that 8 percent, about two-thirds were

forest-nonforest boundaries. This suggests that using subplot

lumping of conditions using either rule 1 or rule 2 methods will

also lead to smaller percent changes. Unfortunately, one piece

of information required to run this analysis on the subplot level

is not in the database for South Carolina’s first three panels.

Conclusions

The effect of rule 1 (one condition per plot) on the total area esti-

mate is primarily due to random error. However, rule 1 did bias

the estimate for total volume and therefore is unacceptable as an

alternative to the current methods. Rule 2 (one forested condition

per plot) did not change the estimates for either total forested

area or total volume and decreased the variance for the total vol-

ume. Rule 2 also did not change the estimates for the volume by

species and diameter class combinations. Therefore, rule 2

appears to be an acceptable alternative to the current method.

Recommendations

To determine if the current procedures ought to be changed, we

suggest the following steps:

1. To more accurately determine the size of the effects of

using rule 2, a similar study should be completed using

five sequential panels that include the data required to ana-

lyze the effects on the subplot-condition instead of the

plot-condition.

2. The results of that study should be discussed with users to

determine the effect of the changes in the tables, such as

the area by owner group-forest combination table, on the

users.

3. The effect of using rule 2 on growth projections should be

studied, because some of the condition differences are

important to growth projections. For instance, if a 5-inch-

diameter loblolly pine stand is growing next to a 9-inch-

diameter loblolly pine stand, you would assume that the

trees would grow differently in these separate stands than

if they were in a single, two-aged stand. 

These three steps should allow FIA to make an informed

decision about changing to just one forested condition per subplot.
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Comparison of Imputation Procedures for
Replacing Denied-access Plots

Susan L. King1

Abstract.—In forest inventories, missing plots are

caused by hazardous terrain, inaccessible locations, or

denied access. Maryland had a large number of

denied-access plots in the latest periodic inventory

conducted by the Northeastern Forest Inventory and

Analysis unit. The denial pattern, which can introduce

error into the estimates, was investigated by dropping

the 1999 denied-access plots in the 1986 periodic

inventory. The denied-access plots represented the

population in terms of percentages of forest and non-

forest, ownership, land use, and cubic-foot volume.

Board-foot volume was less representative. Several

single imputation group means—“Euclidean type”

distance measures, multiple regression imputation,

and listwise deletion with the adjustment of the stra-

tum weights—are compared for estimating the miss-

ing cubic- and board-foot volume on forest land.

Information on the forested condition of the denied-

access plot can be found only through photointerpre-

tation (PI) or satellite imagery such as

Multi-Resolution Land Characteristics, (MRLC).

Results were inconclusive following an examination

of the standard and sampling errors for the state or the

root mean square errors for the denied-access plots.

As a result, 2 to 12 percent of the data in increments

of 2 percent were dropped randomly in a simulation

study; the missing plot attributes estimated using each

technique. The best simulation study procedure for

PI-based forest/nonforest stratification is PI stratum

classification. The best simulation study procedure for

satellite-based forest/nonforest stratification is the list-

wise deletion alternative.

In any forest inventory across multiple ownerships, forest

crews are occasionally denied access to private and public land.

Plots can also be inaccessible due to hazardous terrain and

environmental conditions. One solution is to replace the denied

or inaccessible plot with a new plot. This raises concerns about

sampling strategies that might produce biased results when the

ownership of the new plot differs from that of the denied plot,

i.e., replacement alters the original sample design. A second

solution for denied-access plots is to replace the missing values

required for statistical tables with imputed values. This would

allow the same plots to be kept over time in the event that per-

mission for access is obtained during the next inventory cycle.

Another concern is the character of the denied-access plots.

Do they differ from those in the population? Are there more

forested denied-access plots than nonforested and are these more

prevalent in a particular ownership? The latter concern is impor-

tant because different ownerships influence how a forest is man-

aged and grows. Error can be introduced into the estimate when

a single group is over-represented. Answering these questions

not only provides useful insight to the denied-access pattern, but

also is necessary to determine whether the denied-access plots

are missing at random. Denied-access plots introduce error into

the survey estimates to the extent that they differ from the

accessed plots. The reduced sample size also increases the vari-

ance of the estimates of the mean from the sample. As the pro-

portion of denied-access plots increases, the bias and variance

also can increase leaving the results open to questioning.

Maryland was selected for the study due to its high percentage

of denied-access plots, 1.83 percent in the 1999 inventory, a large

percentage for the Northeast. Various replacement techniques as

well as listwise deletion were applied for cubic- and board-foot

volume. Mean volume estimates on forest land and their corre-

sponding standard and sampling errors provided comparison crite-

ria, although estimates of forest land also were examined.

1 U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA 19073. Phone: 610–557–4048; fax: 610–557–4350; e-mail:
sking01@fs.fed.us.
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Materials and Methods

Data

Both the 1999 and 1986 inventories of Maryland were used in

this study. The 1999 inventory was used to identify which

denied-access plots to drop when reprocessing the 1986 inven-

tory. The 1986 inventory provided truth and was used to evalu-

ate the imputation procedures and the nonresponse pattern.

To reduce the sampling error, the State population was

divided into two pools: forested and nonforested. Since the

denied-access plots were assumed to not have been visited, the

classes of these plots are unknown. However, through photoint-

erpretation (PI) or satellite imagery, a forest/nonforest classifi-

cation is made. Satellite imagery will be used exclusively in the

future for the Phase I stratification, but PI provides a compari-

son. Some of the difficulties encountered in using old data

(1986 inventory) included having only the coordinate locations

for 948 of the original 1,177 plots, having PI information for

only 1,106 plots, and having only Landsat 7 satellite bands 2,

4, and 7.

The satellite imagery selected was a forest/nonforest map

acquired from a National Land Cover data set (formerly Multi-

Resolution Land Characteristics (MRLC)). This vegetation map

was made by the U.S. Geological Survey EROS Data Center

(Vogelman et al. 2001) and is based on 1992 Landsat 7

Thematic Mapper data and various other intermediate-scale

spatial data were used as ancillary data. 

For the forest/nonforest call, the MRLC was reclassified so

that the forest classes as well as woody wetland received a

value of 1 and other pixels received a value of 0. The plots were

overlaid on the reclassified image to obtain a forest/nonforest

call. The call for PI was based on the land-use classification

using photos. For these data, PI had an overall accuracy of 94.4

percent compared to field plots, whereas the satellite forest/non-

forest classification was only 80.17 percent as accurate as field

plots. These percentages are similar to other data sets and indi-

cate that PI is a more accurate forest/nonforest classifier. 

A “5x5 sum” filter was passed over the reclassified for-

est/nonforest MRLC image. In the resulting image, each pixel

represented the count of forested pixels inside a 5x5 window.

The plots were overlaid on the filtered image to obtain a forest-

ed pixel call for each plot. The forested pixel count ranged

from 0 to 25 and was divided into four classes (MRLC5 strata)

based on a study using Connecticut data (Hoppus et al. 2001).

The PI strata are the PI classifications. 

One of the imputation procedures substitutes the plot with

the nearest Euclidean or spectral distance. For the spectral data,

plots were overlaid on bands 2, 4, and 7 from a satellite image

created from early 1990s imagery that was composited and

radiance- and terrain-corrected by the Earthsat Corporation.

Earthsat distributed a band 7-4-2 subset of this original image

via the National Aeronautics and Space Administration. The

image was from Landsat 7 and had a resolution of 28.5 m. No

filter was applied to this image because the original image had

been geocorrected to an extremely high positional accuracy.

Imputation Techniques

1. Listwise Deletion: The 21 denied-access plots were dropped

and the stratum weights adjusted to reflect the reduced sam-

ple sizes in affected strata. The sample size is reduced by

the number of denied-access plots and the stratum weights

are adjusted to reflect the reduced number of plots in the

affected strata.

2. Group Mean Replacement: The denied-access plots were

replaced with the State, County, PI, or MRLC5 stratum aver-

age or the stratum classification average. The denied-access

plots were replaced with the group mean average for cubic-

and board-foot volume from their respective forest/nonforest

pool. The plot was assigned the forest/nonforest pool classi-

fication for both PI and satellite imagery. The sample size

was not altered.

3. Replaced with Euclidean (PI) or spectral distance (satellite):

On-the-ground classification for forest/nonforest, timber-

land, cubic-foot volume, and board-foot volume from the

nearest plot was substituted for the missing values on the

denied-access plot. Again, the sample size was not altered.

4. Statistical Multiple Imputation: The data have a monotone

missing pattern because all the plot attributes are either

present or missing. Consequently, either a parametric

regression procedure, which assumes normality, or a non-

parametric method, which uses propensity scores, is appro-

priate (Rubin 1987, SAS Institute Inc. 2001). The

regression approach produced lower sampling errors, so the

results for this procedure are reported. As with the group
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mean replacement, the plot was assigned the forest and

timberland value of the pool. The estimates were imputed

separately both by forest/nonforest and by cubic- and

board-foot volume. This allows maximum and minimum

parameters to be set more accurately in PROC MI (SAS

Institute Inc. 2001). The PI classes and the three satellite

bands also were used as imputation variables. The previous

methods are single-imputation procedures. In multiple

imputation, the missing data are filled in m times, generat-

ing m complete data sets. The m complete data sets are

evaluated by using standard statistical analysis and the m

complete data sets are combined to produce a final result.

Double Sampling for Stratification

The sampling design used in 1986 was double sampling for strati-

fication. There were four stratum classes in Maryland: forested

and nonforested plots inventoried in 1976, and first-time invento-

ried forested plots and nonforested plots in the 1986 inventory.

Each class had 18 land areas consisting of a county or a grouping

of adjacent counties. Thus, there were 36 forested and 36 non-

forested strata. The variable of interest is total or mean cubic-foot

volume, board-foot volume, or forestland area. The variance equa-

tion was equation 12.12 (from Cochran 1963).

Multiple Imputation Equations

After m multiple imputations or k simulated complete data sets

were generated and each was analyzed as if it were a complete

data set, means and variances were combined to form a single

estimate. The means can be averaged to form a single estimate

but the variances must account for both the within-imputation

variance (average of the complete data estimates) and between-

imputation variance (see Allison 2002, Gartner and Reams 2002,

Reams and McCollum 1998, and SAS Institute Inc. 2001).

Results

Similarity

One goal was to investigate whether denied-access plots differ

from those in the general population. Of 1,177 plots in the

1986 inventory, 21 were denied-access plots. The population is

59.98 percent forested and 66.67 percent (14 plots) of the

denied-access plots were forested. The denied-access plots are

distributed across Maryland rather than a particular region of

the State (fig. 1).

As mentioned earlier, different ownerships influence how

a forest is managed and grows so the estimates can be biased

when one group is overrepresented. With only 14 forested

denied-access plots and more than three categories, the mini-

mum cell count of five observations is not met and a Chi-

square goodness-of-fit test cannot be performed. Not all the

ownership categories are represented in the denied-access plots

(fig. 2a). The largest category, Other Private Individuals, is 61

percent of the population and 57 percent of the denied-access

sample; class percentages match closely given that there are

only 14 plots.

Not all forest types are represented in the denied-access

plots (fig. 2b), but the percentages are nearly identical because,

again, there are only 14 denied-access plots. For both cubic-

foot (fig. 2c) and board-foot (fig. 2d) volume, the extreme

classes are not represented in the denied-access plots. The per-

centages of denied-access plots are more similar to those of the

sample population for cubic-foot than for board-foot volume.

Consequently, greater bias would be expected in the estimates.

Actual Results for Denied-access Plots

Table 1 shows the State results for PI and MRLC satellite

imagery. Under the column for forest land, zero indicates the

Figure 1.—This map shows both the 21 denied- and all nonde-
nied-access plots in Maryland. The background is a forest/non-
forest map and the denied-access plots are in all parts of the
State on forest and nonforest land. The western portion of the
State is more mountainous, thus it has more plots and more
denied-access plots than the other regions.



158 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium

Figure 2.—Comparison of sampled and denied-access populations by (a) ownership, (b) forest type, (c) cubic-foot volume, and (d)
board-foot volume. The sampled population includes both denied and nondenied-access populations. The sampled and denied-
access populations are less similar for board-foot volume.
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results for nonforest land and one indicates results for forest

land. Euclidean or spectral distances replace the denied-access

plot with attributes from the nearest plot, increasing the likeli-

hood that the forest/nonforest classification is correct. A cor-

rect classification would result in zero cubic- and board-foot

volumes on nonforested land. The standard and sampling errors

are very close for both PI and MRLC satellite imagery. Except

for the Euclidean distance and regression imputation for estimat-

ing mean board-foot volume, mean volumes are close to the

mean volume for the complete data. There is no best procedure.

In the next step to determine the best procedure, root-mean

square errors (RMSE) were calculated for the 21 denied-access

plots by procedure. From table 2, the PI stratum average is the

best procedure for both cubic- and board-foot volume; there is

no superior procedure for the satellite imagery. The MRLC5

stratum average has the smallest RMSE, but the State, county,

and stratum classification averages are close. Euclidean or spec-

tral distance and regression imputation had the highest RMSE.

Results of Simulation Study

The next step was a simulation study to determine a winning

procedure at the 2-percent denial rate and whether that best

procedure might be different at higher rates. The denials were

determined randomly without considering maintaining a forest-

to-nonforest ratio of 60:40. Only plots with both coordinates

and satellite bands 2, 4, and 7 were used so that all procedures

at the same denial percentage eliminated the same plots. A dif-

ferent random number seed was used for each percentage for

100 simulations. The squared, absolute, and standard errors of

the forested estimates were calculated for each procedure and

then averaged by the stratum classification. For each stratum,

the averaged results were sorted in ascending order by proce-

dure. The procedure with the smallest comparison statistic was

assigned as the best procedure for that stratum. The tabulated

RMSE results for the PI and satellite-based simulation at dif-

ferent deletion percentages are shown in tables 3 and 4. For PI,

replacement by the PI stratum average was the best procedure.

For the satellite-based simulation, listwise deletion was the

PI cubic-foot volume Satellite cubic-foot volume PI board-foot volume Satellite board-foot volume
Procedure Forest Mean Standard Sampling Mean Standard Sampling Mean Standard Sampling Mean Standard Sampling

land volume error error volume error error volume error error volume error error
mean mean mean mean mean mean mean mean

volume volume volume volume volume volume volume volume

Complete 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
data 1 727.60 20.40 2.80 727.60 20.40 2.80 2181.68 82.80 3.80 2181.68 82.80 3.80

Listwise 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
deletion 1 726.62 20.47 2.82 726.62 20.47 2.82 2177.17 83.04 3.81 2177.17 83.04 3.81

State 0 0.07 0.04 55.19 1.25 0.64 50.7 20.21 0.12 55.19 3.69 1.87 50.72
average 1 728.08 20.41 2.80 725.26 20.43 2.82 2183.19 82.72 3.79 2173.64 82.72 3.81

County 0 0.01 0.01 67.11 1.23 0.76 61.76 0.05 0.031 67.11 3.40 2.18 64.24
average 1 727.54 20.42 2.81 726.03 20.43 2.81 2183.68 82.72 3.79 2176.38 82.70 3.80

PI or 
MRLC5 0 0.05 0.04 86.65 1.44 0.67 46.53 0.15 0.13 86.65 4.23 1.96 46.40
stratum 1 726.26 20.37 2.80 726.53 20.43 2.81 2175.72 82.62 3.80 2176.75 82.72 3.80
average

Stratum 
class- 0 0.04 0.02 67.11 1.65 1.52 91.89 0.12 0.08 67.11 5.26 4.83 91.75
ification 1 727.68 20.42 2.81 726.37 20.43 2.81 2179.74 82.69 3.79 2177.31 82.71 3.80
average

Euclidean 
or spectral

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

distance
1 727.60 20.40 2.80 727.79 20.49 2.82 2197.18 83.56 3.80 2180.16 82.91 3.80

Regression 0 0.02 0.13 81.68 0.17 0.17 102.92 0.37 0.28 76.43 0.35 0.42 120.04
imputatioin 1 729.84 20.54 2.82 726.38 20.54 2.83 2194.33 83.50 3.81 2184.45 82.94 3.80

Table 1.—State results for PI and MRLC satellite



160 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium

Plots Cubic-foot volume Board-foot volume
Procedure PI Satellite PI Satellite

State average 931.46 1054.73 3460.85 3845.50

County average 909.32 1052.48 3455.14 3835.21

PI or MRLC5 stratum average 609.32 1033.88 2745.57 3753.63

Stratum classification average 918.85 1065.12 3495.95 3948.84

Euclidean or spectral distance 1326.85 1241.91 5918.58 4479.65

Regression imputation 1056.59 1100.59 4149.88 3974.99

Table 2.—RMSE for 21 denied-access

Cubic-foot volume Board-foot volume

Procedure 2% 4% 6% 8% 10% 12% 2% 4% 6% 8% 10% 12%

Listwise 
deletion 8 6 7 3 8 7 6 6 8 4 6 6

State average 3 7 6 6 5 9 2 6 6 7 5 6

County average 2 3 2 4 3 1 4 5 4 3 3 3

PI stratum 
average 13 13 16 16 13 16 15 12 12 13 16 16

Stratum 
classification 4 4 3 2 1 2 4 2 2 2 2 2
average

Euclidean 
Distance 4 3 2 2 3 1 3 3 2 1 1 1

Regression 
Imputation 2 0 0 3 3 0 2 2 2 6 3 2

Table 3.—Number of times the RMSE for the PI-based simulation was best at different deletion percentages

Cubic-foot volume Board-foot volume

Procedure 2% 4% 6% 8% 10% 12% 2% 4% 6% 8% 10% 12%

Listwise 
deletion 20 21 22 21 21 23 20 20 23 24 24 21

State average 0 0 0 1 2 0 2 1 1 2 1 2

County average 6 4 5 5 4 4 5 6 4 2 3 3

PI stratum 
average 6 7 7 6 9 8 8 6 5 5 7 10

Stratum 
classification 0 1 1 1 0 1 1 1 2 2 0 0
average

Euclidean 
Distance 1 0 0 0 0 0 0 0 0 0 0 0

Regression 
Imputation 3 3 1 2 0 0 0 2 1 1 1 0

Table 4.— Number of times the RMSE for the satellite-based simulation was best at different deletion



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 161

best procedure with the lowest RMSE in more than 20 of the

36 strata. The best procedures were the same for the other two

comparison statistics: absolute and standard errors. 

Another comparison entails tabulating by imputation pro-

cedure the number of estimates for mean volume (of 3,600)

that exceed the 95-percent confidence interval of the mean vol-

ume of the total sample estimate. The results for PI and satel-

lite-based forest/nonforest classification are shown in tables 5

and 6. The best procedure has the lowest number of entries. For

PI, the best procedure is the PI strata average. However, list-

wise deletion gave the same results for board-foot volume.

Listwise deletion is the best procedure for satellite imagery.

Conclusion

The denied-access population in Maryland was similar to the

sample population in terms of the amount of forested land,

Cubic-foot volume Board-foot volume

Procedure 2% 4% 6% 8% 10% 12% 2% 4% 6% 8% 10% 12%

Listwise 
deletion 0 0 1 0 3 0 0 0 0 0 1 0

State average 0 0 0 1 0 4 0 0 0 1 1 1

County average 0 0 0 1 1 3 0 0 0 1 0 0

PI stratum 
average 0 0 0 0 0 2 0 0 0 0 1 0

Stratum 
classification 0 0 0 2 0 3 0 0 0 1 1 0
average

Euclidean 
Distance 1 5 11 12 8 14 0 1 7 6 10 17

Regression 
Imputation 0 1 1 3 1 6 0 1 0 5 3 4

Table 5.— Number of times an estimate from the simulation fell outside the 95-percent confidence interval for the PI-based simu-
lation at different deletion percentages; 180 estimates would be expected to fall outside the confidence interval

Cubic-foot volume Board-foot volume

Procedure 2% 4% 6% 8% 10% 12% 2% 4% 6% 8% 10% 12%

Listwise 
deletion 0 0 1 0 3 0 0 0 0 0 1 0

State average 1 6 7 16 28 36 0 0 1 4 8 6

County average 2 4 16 29 36 38 1 2 6 15 15 20

PI stratum 
average 0 1 1 7 10 15 0 0 0 1 3 2

Stratum 
classification 0 2 3 16 14 15 1 5 5 13 17 15
average

Euclidean 
Distance 22 46 61 104 124 164 20 37 53 82 109 131

Regression 
Imputation 3 13 26 41 44 51 2 6 11 21 29 40

Table 6.— Number of times an estimate from the simulation fell outside the 95-percent confidence interval for the satellite-based
simulation at different deletion percentages; 180 estimates would be expected to fall outside the confidence interval
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geography, ownership, forest type, and cubic-foot volume. The

two groups were less similar for board-foot volume. Results for

estimating forest land are not presented, but they were the least

biased since the denied-access forested vs. nonforested land

closely matched the sample population. 

The State results are inconclusive and the results must be ana-

lyzed at the stratum level or by examining the denied-access

plots to differentiate between procedures. PI-based forest/non-

forest classification is superior to satellite-based classification

as evidenced by lower standard and sampling errors as well as

lower RMSE. This is not surprising since PI-based forest/non-

forest classification more nearly agrees with plot-based esti-

mates than satellite-based classification.

Regression imputation and Euclidean or spectral distance

had the poorest performance. The effectiveness of regression

imputation depends on the relationship between the available

independent variables and the variable to be imputed. The PI

classes and satellite bands did not capture the relationship with

either cubic- or board-foot volume. The plots are 2.7 km apart

and land use and history between nearest neighbor plots can

vary greatly. As a result, the Euclidean distance technique was

ineffective. Surprisingly, the spectral distance also failed to

capture the relationship with cubic- or board-foot volume. Also,

the best procedure did not vary by deletion percentages but

depended on whether PI or satellite-based classification was

used to classify the forested/nonforested condition of the plots.

For PI-based stratification, the winning procedure is the group

mean replacement, PI stratum classification, whereas for satel-

lite-based stratification, the winning procedure is the listwise

deletion alternative with the adjustment of the stratum weights.
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Strategies for Preserving Owner Privacy in the
National Information Management System of
the USDA Forest Service’s Forest Inventory
and Analysis Unit

Andrew Lister, Charles Scott, Susan King, Michael Hoppus,

Brett Butler, and Douglas Griffith1

Abstract.—The Food Security Act of 1985 prohibits

the disclosure of any information collected by the

USDA Forest Service’s FIA program that would link

individual landowners to inventory plot information.

To address this, we developed a technique based on a

“swapping” procedure in which plots with similar

characteristics are exchanged, and on a “fuzzing” pro-

cedure in which the geographic locations of the plots

are randomly perturbed by 805 m. A simulation

experiment was performed to assess the effects of

fuzzing and swapping. Our results indicate the proce-

dures can provide meaningful information and com-

ply with the law. Further refinements of the technique

are ongoing.

The USDA Forest Service’s Forest Inventory and Analysis

(FIA) program is responsible for conducting a national forest

inventory (Gillespie 1999). FIA uses a network of tens of thou-

sands of ground plots to collect information on the quantity,

quality, composition, location, and other characteristics of the

forests and on land ownership and use on these plots. Many of

the forested plots are or soon will be georeferencedusing a

global positioning system (GPS), making the data in the FIA

database appealing to land managers and scientists interested in

using FIA data in a spatial context. Historically, FIA did not

divulge exact locations of ground plots to protect landowner

privacy and to protect the integrity of the sample. FIA attempt-

ed to accommodate data consumers and adhere to the existing

security policies by performing in-house analyses.

In 2000, the Department of the Interior and Related

Agencies Appropriations Act (H.R. 3423) amended the Food

Security Act of 1985 (H.R. 2100) to include FIA in a list of

activities that may not make data available to the public if the

owner of the land on which the data were collected can be

identified. Since the FIA data are referenced with GPS, and

ownership maps are freely available to the public in county tax

offices, making public the plot data with GPS or digitized loca-

tion is tantamount to revealing the owner’s name and thus vio-

lating the law. 

In addition to addressing legal concerns, maintaining pri-

vacy of the plot locations is essential to FIA’s mission. If the

plot location were freely available, individuals could either

intentionally or unintentionally alter the ecological conditions

on the plot, impacting the integrity of data that are collected the

next time the plot is measured (in 5 to 10 years). Furthermore,

the value of the data is degraded if it is felt that land managers

might intentionally alter land management around FIA plots to

affect (or avoid affecting) the survey.

Nonetheless, FIA wants to assist users in utilizing the spa-

tial nature of the FIA data while preserving privacy. To reach

this goal, we developed a technique whereby the plot coordi-

nate data are slightly altered (fuzzed) and some of the plot data

are exchanged (swapped). The purpose is to maintain the func-

tional value, or “ecological signal” of the data while introduc-

ing enough uncertainty to decouple the plot-landowner

relationship. We then tested the effects of this fuzzing and

swapping on the calculation of average board-foot volume

within circles of various sizes. The goal of the experiment was

to characterize the distribution of errors that data consumers

might get when using fuzzed and swapped data.

Methods

The geographic location data collected on 2,037 plots in Maine

between 1999 and 2001 were fuzzed using ArcView GIS soft-

ware (ESRI, Redlands, CA 92373) such that each “new” plot

1Forester, Project Leader, Operations Research Analyst, Research Forester, Supervisory Forester, and Forester, respectively, U.S. Department of Agriculture, Forest
Service, Northeastern Research Station, Newtown Square, PA 19073. Phone: 610–557–4038; e-mail: alister@fs.fed.us.
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site was located on land within the same county in a random

direction by up to 805 m from its original location. 

To perform the swap, forested plots on private land were

placed into groups based on ownership: forest industry, nonin-

dustrial corporate, other nonindustrial private, and nonindustrial

individual. If there were not at least three unique owners within

each group within a county, the groups were combined as fol-

lows: forest industry with nonindustrial corporate, and other

nonindustrial private with nonindustrial individual. If there

were still fewer than three owners, all categories were com-

bined into a single “private lands” category. If there were not at

least three owners in this private lands group, adjacent counties

were combined until all criteria were met.

From within these groups, 12.5 percent of the plots were

chosen for exchange with ecologically similar plots within the

same group to produce a 25-percent swap. The Euclidean dis-

tance-based similarity measure was calculated using the follow-

ing equation: 

Similarity Value = (northinga – northingb)
2 + (eastinga –

eastingb)
2 + (forest type groupa – forest type groupb)

2 + (pro-

ductivity classa – productivity classb)
2

where a is a plot in the group selected for exchange, and b is a

plot in the group not in the original selection but still in the

same group and county.

Smaller values indicate more similarity. The similarity-

defining variables for swapping were chosen because they are

static; it would be undesirable to swap plots based on charac-

teristics that would likely change between inventories. Northing

and easting are Albers Equal Area coordinates in meters, forest

type group is an FIA tree species group identification number

that ranges from mostly conifers at the low end to mostly

deciduous species at the high end, and productivity class is a

value measured in the field by FIA crews that is based on site

index, which is the relationship between a representative tree’s

height and its age.2

To test the results of this procedure, a simulation experi-

ment was performed. ArcView GIS software was used to create

1,000 randomly located circles with radii of 5, 10, and 20 km

in Maine. Within each circle, the average board-foot volume

(bfv) of the unperturbed plots and that of the fuzzed and

swapped plots was calculated by summing the bfv of each tree

located on each plot within the circle. For each circle, the

absolute difference (AD) between pre- and post-fuzzed and

swapped bfv averages was calculated, and histograms of ADs

were constructed. Scatterplots were created to visually assess the

relationship between unperturbed averages and fuzzed and

swapped averages, and simple linear regressions were calculated

for the data in these scatterplots to describe the relationships. 

Results and Discussion

The histograms of ADs from the 5-, 10-, and 20-km circles are

shown in figure 1. The means and coefficients of variation of

the ADs (in parentheses) for the 5-km, 10-km, and 20-km cir-

cles are, respectively, 877.3 (179 percent), 478.8 (102 percent),

and 207.0 (86 percent). The degree of skewness (ϒ) decreased

with increasing circle radius (ϒ5=3.2, ϒ10=1.4, ϒ20=1.3). 

There were about 30 plots in the 20-km circles, 8 in the

10-km circles, and 2 in the 5-km circles. The 5-km circles have

the largest percentage of ADs in the lowest error category and

the largest range, followed by the 10-km and then the 20-km

circles. This is because, for smaller circles, the bfv averages in

the tails of the unperturbed data’s distribution are very suscepti-

ble to either no change or extreme change after fuzzing and

swapping, leading to either very small or very large ADs. For

the larger circles, however, swapping more likely will occur

from within a circle than from without, and the smaller perime-

ter/area ratio lowers the chances of plots being fuzzed into or

out of a circle.

The scatterplots of the unperturbed versus the fuzzed and

swapped bfv averages are shown in figure 2. The confidence

intervals for the parameters of the regression lines whose equa-

tions are shown on figure 2 are shown in table 1. The slopes

and intercepts of all regression lines (fig. 2) indicate that the

bfv averages calculated from fuzzed and swapped plots are

overestimated for low bfv averages and underestimated for

high bfv averages. The y intercepts of the regression lines

2 USDA Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase 2 plots, version 1.4.
USDA Forest Service, internal report. On file at USDA Forest Service, Washington Office, Forest Inventory and Analysis, Washington, DC.
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5 kilometer 10 kilometer 20 kilometer

coeff lower upper coeff lower upper coeff lower upper

Slope 0.77 0.73 0.81 0.88 0.85 0.90 0.91 0.90 0.93

Intercept 669.4 514.2 824.5 412.0 314.0 509.8 260.0 202.4 317.5

Table 1.—Ninety-five-percent confidence intervals of the coefficients of the simple linear regression lines that describe the scatter-
plots of unperturbed vs. fuzzed-swapped plot data for three circle radii

Figure 1.—Histograms of absolute differences in board-foot
volume (bfv) (AD=abs(unperturbed average bfv – fuzzed and
swapped bfv)) obtained within circles of 20-, 10-, and 5-km
radius. These graphs represent the effects that the fuzzing and
swapping procedure had on data retrievals. N=1000.

Figure 2.—Scatterplots and simple linear regression lines and
equations of fuzzed and swapped bfv averages versus unper-
turbed bfv averages within circular areas of various radii.
N=1000.
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decrease with increasing circle radius (fig. 2); none of the 95-

percent confidence intervals for the intercept contain 0 (table

1). The smaller circles have a larger range of ADs (fig. 1); this

forces the y intercept of the regression lines away from zero for

the smaller circles. It is noteworthy that there are no zero val-

ues found in the scatterplots for the 10- or 20-km circles. There

are, however, 1,000 points defining the trajectory of the regres-

sion line, making us feel comfortable with our use of the y

intercept as a statistic that describes these scatterplots.

All of the 95-percent confidence intervals for the slopes of

the regression lines fall below 1 (table 1). The slopes and R2

values for the regression lines approach 1 with increasing circle

radius (fig. 2). This is because, for larger circles, the averaging

effects of the fuzzing and swapping tend to act uniformly

throughout the entire distribution of values, lowering the vari-

ance of the ADs and the deviation of the regression line from a

slope of 1. 

Across all circle sizes, the bfv averages in the tails of the

distribution will always tend toward the sample mean after

fuzzing and swapping occurs. In general, the bfv average of a

plot moving into a circle with a bfv average in one of the tails

of the distribution will be nearer to the sample mean value than

it will be to that of the other plots in that circle.

Our results might be difficult to generalize. For example,

there is no guarantee that other plot attributes will have the

same or less variability than average bfv. Larger data retrievals

will be less subject to large fluctuations in summary values

than will small ones because a smaller percentage of the total

number of plots will be affected by fuzzing. Likewise, data

retrievals within different shaped areas might affect summaries

more than circular retrievals due to the effects of the geometric

complexity of landscape patterns. However, we see no reason

to believe that the same principles that governed our current

results will not hold with other variables. 

In conclusion, the fuzzing and swapping technique out-

lined here shows great promise. It was conceived as a way to

provide useful data to interested parties outside of FIA without

violating the law, compromising the ecological integrity of the

plots, or introducing concerns about treatment bias. An effort to

maintain the functional value of the data is made by conducting

geographic fuzzing within a short distance and by swapping

plots with similar ecological conditions. The results of our sim-

ulation experiment suggest that for average bfv within user-

defined circular areas of various sizes, the functional value of

the data is kept relatively high, i.e., the fuzzing and swapping

technique does not change the fundamental quality of the data

dramatically. The functional value is highest for retrievals con-

taining more plots. The fuzzed and swapped data will be most

useful for consumers interested in creating summaries over large

areas, or for those interested in producing their own coarse-scale

graphical representations of the occurrence of FIA-measured

attributes. Furthermore, correlative studies with other spatial

layers also can be conducted as long as the analyst understands

the impact of the slight loss of the data’s functional value.
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COLE: A Web-based Tool for Interfacing with
Forest Inventory Data

Patrick Proctor1, Linda S. Heath2, Paul C. Van Deusen1,

Jeffrey H. Gove2, and James E. Smith2

Abstract.—We are developing an online computer

program to provide forest carbon related estimates for

the conterminous United States (COLE). Version 1.0

of the program features carbon estimates based on

data from the USDA Forest Service Eastwide Forest

Inventory database. The program allows the user to

designate an area of interest, and currently provides

area, growing-stock volume, and carbon pool esti-

mates for states east of the Great Plains. The COLE

program can be accessed at http://ncasi.uml.edu. 

The Forest Inventory and Analysis (FIADB) program of the

USDA Forest Service provides the most scientifically credible

and comprehensive data on the amount and condition of forest

resources in the United States. The Forest Inventory and

Analysis Database has the potential for a wide array of applica-

tions (Miles et al. 2001). High-quality tools for online access to

the FIADB will assure that this potential is realized. The goal

of the Carbon Online Estimation (COLE) project is to develop

an online tool to provide access to the FIADB using a versatile

user interface (UI) while maintaining a fast response time. With

minor revision, the code for COLE will also be useful for pro-

viding access to spatial databases and for analyzing the data.

In the first year of development, we have primarily focused

on creating an interface and backend that will embody the versa-

tility and speed described above. Additionally, we have created

sample queries that calculate carbon levels based on the

Eastwide Forest Inventory Database (EWDB) data. The interface

has been designed to make it easy to incorporate the FIADB

when it becomes available. Due to security concerns, version 1.0

of COLE is linked to a version of the EWDB, which is a fore-

runner of the FIADB (Hansen et al. 1992). We have augmented

the EWDB with estimates of carbon for forested plots. It is

anticipated that COLE version 2.0 will be linked directly to the

FIADB after security issues can be overcome.

Technologies

We want the tool to provide online access with a fast response

time while featuring an easy-to-use user interface. The merits

of a fast computation time are obvious and easy to quantify, but

the idea of a “versatile” UI is less so. UI’s are probably the

most difficult component of software development. They

require the users to familiarize themselves with how each new

program works, along with its particular idiosyncrasies. Users

can become productive more easily if they are not required to

learn a new interface for each piece of software they use. In

designing a tool to access the FIADB, it would be fruitful to

create a powerful interface that could be easily recycled for

various applications. This increases user familiarity and the

usefulness of the FIADB.

In approaching the COLE project, the first step was to

decide which technologies we would enlist. Our primary goals

were to minimize cost and assure operating-system portability.

To minimize the cost, the clear choice is open-source software.

In today’s market, open-source software is a stable and valid

option with no licensing cost. We also wanted operating-system

portable software that would work on the Windows, Linux, and

Macintosh platforms. The solution to this problem was to uti-

lize a cross-platform programming language that could be com-

piled and/or ported to all three systems.

Keeping these principles in mind, we chose a Linux plat-

form to run the COLE engine. The Linux operating system is a

free, stable, open-source platform that is widely recognized as

one of the preeminent alternatives to Microsoft Windows and

Macintosh. We also needed a database to run from our own
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local server. We chose MySQL because it is an open-source

database query engine compatible with SQL. Since MySQL

strictly adheres to the SQL standard, the database we use, and

any modifications made to it, can be easily ported to other SQL

compatible applications such as Oracle or Sybase.

After establishing our operating and database platforms,

we had to decide on a programming language to develop

COLE. We wanted a cross-platform language that could be

used on all three major operating systems. We also wanted the

language to be fast and Web accessible. The two available

options were an HTML/CGI/Perl system or a Java platform.

Perl offers less than Java in graphical client-side conveniences

that would lead to a familiar, easy-to-use interface. Therefore,

we selected Java with the accompanying applet/servlet technol-

ogy. Java is easily compiled on all three major platforms, offers

a wide array of UI design tools, and is built to handle Web

access. Having decided on a Java platform, we enlisted the

open-source Jakarta Tomcat Servlet engine (also available on

all platforms) to handle the client-server communications.

User Interaction

We had to select the most logical way for the user to interact

with the EWDB. Some existing technologies use drop-down

menus and other text-based input to define EWDB queries.

However, the EWDB is largely a geographical database, and it

would be both intuitive and logical for the users to begin their

query by selecting an area on a map. 

While the idea of a map-based selection tool was a good

one, it was also necessary to decide how such a tool would work.

To have a great deal of user power and flexibility, it was neces-

sary to use a map file-format that would allow the users to define

their own polygons or use predefined polygons. Furthermore, a

display of latitude and longitude would be needed such that the

user could easily define accurate and relevant shapes.

Users also want to modify their query with easy-to-use

text-based filters and sort variables. Inputs for these factors

could be easily designed using the EWDB’s predetermined

fields. Combining map-based area selection with text-based

query modifications provides the user with a powerful query-

building tool that is also easy to use.

Development

The first problem in developing COLE was how to make the

map interface accessible and dynamic. The obvious answer

was to utilize the ESRI Shapefile® format, since the format is

publicly available. This allowed us to read shapefiles direct-

ly with Java by using the specifications found in the ESRI

document. Additionally, the format is widely used and there

is a large library of available shape files that could be utilized

for COLE.

Once we had decided to use the ESRI shape format, we

had to make the format interact with Java. While there are

available commercial Java/ESRI tools, we decided instead to

design our own parser and use it in conjunction with the

Java2D Graphics. This would allow us to display the shapes on

a Java Canvas object in the interface and enable the user to

interact with the map using the properties inherent to Java2D

Shape objects. Using these methods, we created a working

Canvas-based Java class to facilitate our map display.

With the capacity to display our maps as desired using a

standard format, we moved on to defining filters and sorting

variables. While the actual sorting and filtering would take

place server-side, it was necessary to make a user-friendly rep-

resentation of those sort and filter variables such that the users

could successfully modify their query. To make COLE as flexi-

ble as possible, we decided to have the filters and sort variables

defined in regular text files. This would allow a COLE admin-

istrator to modify the text files and, in turn, modify COLE’s

capabilities easily. The text files contain both an SQL represen-

tation of variables and an English representation. This allows

for a link between the user interface and SQL database when

submitting a query.

The client side of the program allows the user to pick an

area of interest on a map and then submit a query. It is then

necessary to develop the server-side mechanism to handle the

computations. For our purposes, we created a Java servlet that

submits queries to the database, analyzes them for spatial rele-

vance, applies computational algorithms, and returns a data

table to the user. By modifying this servlet, one could potential-

ly add more computational functions and increase the number

of data formats for the return table.

In completing this server-side functionality, the two primary

tasks of the COLE engine are defined. What remains is to build a
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user interface that could leverage these functional technologies

and present them to the user in a simple graphical interface.

The COLE Interface

The COLE interface has now reached a reasonably stable and

usable layout. The interface enlists the use of Java “tabbed”

panes (fig. 1). This allows the user to easily separate submitting

a query to COLE into a series of distinct tasks, which combine

to generate a dynamic query. COLE currently utilizes a four-

tabbed system that addresses the following query-building

steps: map-based area selection, data filters, output formatting,

and complete query.

The first COLE tab (fig. 1) allows users to select the area

relevant to their query. There are several different ways to do

this in the interface. First, the user can create a polygon based

on coordinate points selected with the user’s mouse. Second,

the user can create a circle based on a center and a radius.

Third, the user can select areas based on predefined polygons

imported from a shape file. This selection currently includes

counties, watersheds, U.S. Congressional districts, and State

boundaries. Finally, the user can select line-based shape files

and run a buffering query. The buffering distance is defined on

the final tab. Automatically importing a customized shape file

from the user is not supported currently; however, users defin-

ing their own polygon serves a similar purpose. Following the

area selection, the user can then move to the second tab.

The second COLE tab contains the filters defined in a

server-side text file. Currently, the interface accommodates up

to nine filters. To select a filter, the user must check the check-

box. Once this has been done, the user can select one or many

filters from the given filter category. The data will then be fil-

tered in accordance with the user selection.

The third COLE tab allows the user to modify the format-

ting and data retrieval parts of the query. This includes choos-

ing sort variables (which define table rows and columns), units,

query variable, buffering distance, and analysis function to be

applied to these data, such as sum and mean. Sort variables, as

mentioned above, are based on a server-side text file. Next are

the formatting and unit fields. Units currently returned include

English and metric. Table formatting and units are both done

server-side and require manipulating the servlet to enact further

standards. Data computations also are defined server-side.

Currently, one can summarize data using sum, average, medi-

an, standard error, standard deviation, or sample size (plots or

trees). Finally, if users choose to use the buffering feature, they

can select the buffering distance on this tab. 

Figure 1.— The tabbed interface of COLE. 
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On the fourth and final COLE tab, the user can select the

format to receive the retrieved data. Currently the options

include four types of tables (Jtable, HTML, Spreadsheet, and

Tab Delimited) and the graph option. If the users select the

graph option, they must then select which type of graphs to

retrieve. By checking any combination of the three graph

checkboxes, the users can obtain scatter, bar, or pie charts of

their data. Once all of these variables have been selected, the

user is ready to submit a query. This can be done by selecting

the “submit query” button at the base of the fourth tab.

Using the 4-tab interface COLE offers an easy-to-use, pro-

gressive interface for accessing a spatial database. The interface

has the advantage of being customizable without actually

changing compiled code. Furthermore, the types of queries and

databases are highly generalized, allowing for later expansion

of COLE capabilities.

Carbon Estimates

The carbon estimates in COLE are pre-computed values based

on inventory data from the EWDB. Carbon pools are estimated

from plot data, such as growing-stock volume and forest type.

Aboveground and belowground tree carbon is estimated using

the equations presented in Smith et al. (2003). The equations

for estimating forest floor carbon based on plot data are taken

from Smith and Heath (2002). The down dead wood carbon

pool is based on an approach similar to that described in

Chojnacky and Heath (2002). Forest soil carbon is determined

only by forest type and region and is based on estimates in

Johnson and Kern (2003). That is, we are using an estimate of

soil carbon based on broad regions and forest types of average

conditions; previous land use and management were assumed

to not affect soil carbon. This approach to estimating carbon is

also discussed further in Heath et al. (2003).

Data Visualization Tools

The tabular and spreadsheet data retrieval options described

above are useful, but COLE provides other options for viewing

the data as well. A graphing option allows the user to display

results as graphs. A separate, but similar, interface is available

to display estimates as maps. 

Graphs

By offering graphing options to the user, COLE allows for

visual representation of the data. The scatter plot gives details

about individual records without revealing what might be con-

sidered sensitive information, such as plot location or estimates

on land of a specific owner (see fig. 2). The bar and pie options

offer a different perspective of the data by giving an easy-to-

read relationship between the totals and their sort categories.

When selecting the graphing option, the COLE engine cre-

ates graphs based on the user-selected sort variables. The

graphs are dynamically built and labeled based on those sort

variables, and then returned to the user. This dynamic graph-

building ability means that COLE can offer the users a poten-

tially endless selection of sorted graphs based on their

area-based query.

In addition to providing a different perspective on the

retrieved data, COLE’s graphing option also increases its func-

tionality and usefulness as a data-reporting tool. The graphs are

returned in the standard JPEG file format and can be easily

saved or cut and pasted in any PC. The resulting files can then

be used in presentations, papers, or other media-based interpre-

tations of COLE related data.

COLE-Map

COLE presents a map that defines an area for which data are

retrieved, but users also want a tool that would create a map

using the retrieved data. This could easily be done with off-the-

shelf GIS software but requires more access to the data than

most users would be allowed. Adding an online mapmaking

capability was the primary goal behind the creation of the

COLE-Map as an applet to accompany COLE.

Because COLE was designed as a dynamic toolset, COLE-

Map is able to leverage a great many of the technologies used in

COLE. COLE-Map utilizes the same tabbed interface as COLE

as well as many of the same query-building and submittal class-

es. The primary differences in COLE-Map occur server-side, and

in the absence of any actual map in the user interface.
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The first difference is largely self-evident. The servlet for

COLE-Map performs a different task than that in COLE, and

therefore had to be modified. COLE retrieves the data, sorts

them, and builds a corresponding table. By contrast COLE-

Map retrieves data, sorts them, and then creates and colors a

map based on an ESRI shape file. The second difference is also

clear: if COLE-Map is making a map, there is no reason for the

user to view a map in the interface. Therefore, the map compo-

nent is removed and replaced with a customizable color palette

for the output map. Other than these two minor differences,

COLE-Map implements the COLE operations precisely. 

Conclusions

In the first year of development, the joint NCASI/USDA Forest

Service team has created a powerful and dynamic tool for

accessing a version of the EWDB. We have met our initial goal

of developing a highly extensible user interface with which to

access the EWDB. We have leveraged this user interface to cre-

ate two separate applications, both of which rely on the exten-

sive data of the EWDB to answer user queries. 

This proof-of-concept has opened the door for creating

any number of applications of the COLE interface. Other

graphical and statistical analysis could be added along with a

greater number of GIS-related tools. COLE can readily be

linked to additional spatial databases, including the FIADB,

with estimation performed on-the-fly. Additional variables,

such as the down woody material data from Phase 3 plots, can

also be included in linked databases. The usefulness of this tool

will only increase as more features are included.

Figure 2.— Example scattergraph output from COLE.
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The Sensitivity of Derived Estimates to the
Measurement Quality Objectives for
Independent Variables

Francis A. Roesch1

Abstract.— The effect of varying the allowed meas-

urement error for individual tree variables upon coun-

ty estimates of gross cubic-foot volume was

examined. Measurement Quality Objectives (MQOs)

for three forest tree variables (biological identity,

diameter, and height) used in individual tree gross

cubic-foot volume equations were varied from the

current USDA Forest Service Forest Inventory and

Analysis specifications in a simulation under alterna-

tive error models. Assuming unbiased errors may lead

to a different control strategy than assuming unbiased

errors. Strengthening the MQO for diameter was

shown to help reduce the overall variance of volume

estimates if diameter errors are slightly biased. Height

errors responded favorably to increased control under

both the biased and unbiased models. County volume

estimates are somewhat robust to the MQOs for bio-

logical identity. However, increased control of biolog-

ical identity did play a more important role when the

underlying distributions for diameter and height were

assumed to be biased than when these errors were

assumed to be unbiased.

The five USDA Forest Service Forest Inventory and Analysis

units (FIA) have adopted a common forest inventory design,

including core variables, analysis procedures, and quality stan-

dards (USDA 2002). An important part of this national effort

has been defining Measurement Quality Objectives (MQOs)

including acceptable measurement error (or tolerances) for data

collected on field plots. Little or no hard data were available to

support the initial development of most of these MQOs. So

rather than defining the MQOs to achieve a specified maxi-

mum variance due to measurement error, they were defined as

the best guess as to what might be the specifications achievable

by a well-trained observer.

Derived estimates are often the most important factors in

considering the utility and applicability of inventory results for

a particular purpose. If we wish to control the quality of

derived estimates in forest inventories, we must do so by defin-

ing measurement quality objectives (MQOs) for those meas-

ured variables that contribute information to the derived

estimate. To do this, we need to understand the relationships of

the error distributions of the measured variables to the error

distribution of the derived estimates, and these relationships are

typically complex. This paper shows how one may use a simu-

lation to evaluate the contribution to the mean squared error of

a derived variable by the allowed error in measured independ-

ent variables. In an example, the measurement error allowed by

the FIA’s existing Measurement Quality Objectives (MQO) for

three forest tree variables (species, diameter, and height) used

in individual tree gross cubic-foot volume equations were var-

ied in a simulation to examine the effects of the MQOs upon

county estimates of gross cubic-foot volume. The simulations

were run under two sets of assumptions for two of the vari-

ables, height and diameter. I first assumed that the true under-

lying error distribution was unbiased for each of these variables

and subsequently assumed that the true underlying distributions

for height and diameter were both biased and skewed.

Assume we are interested in a county attribute mean per

acre for county j: 

where: Nj equals the number of trees within county j, Lj equals

the land area in acres within county j, and yi equals the value

of an attribute of tree i. N is uniquely partitioned into NG

groups, g = 1,…,NG. For each group there is a unique function

of an easily measured variable vector x to y:

1 Mathematical Statistician, U.S. Department of Agriculture, Forest Service, Southern Research Station, P.O. Box 2680, Asheville, NC 28802–2680. 

E-mail: froesch@fs.fed.us.
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Assume further that our variable of interest is gross cubic-

foot volume (gcv) because it is a pivotal quantity at the FIA

unit in the Southern Research Station (SRS), as it enters into

equations for most other volume estimates. The gcv equations

for trees by species group are linear functions of the form: 

vi(g) = ag + bgd
2
i(g)hi(g)

where: vi(g) = gcv for tree i in species group g,

di(g) = diameter of tree i in species group g at 4.5’

above the ground (d.b.h.),

hi(g) = total height of tree i in species group g, and

ag, and bg are regression coefficients for species group g.

Note that the functional form of volume equations is one

aspect of inventory that is not yet standardized nationally.

Therefore, the results of this investigation are directly applica-

ble to equations currently used in the southern United States.

However, many volume equations used today contain the

Schumacher factor: b1d
b2hb3 where b2 is a parameter usually

close to 2.0 and b3 is a parameter usually close to 1.0. Because

the Schumacher factor often has an overriding influence in the

equation, it is reasonable to expect similar results if we con-

ducted the same studies using the existing equations at other

FIA units. For our purposes, we will assume that the functional

relationship is known without error. Therefore, if species is cor-

rect, as well as diameter and height, the volume is correct.

Methods

Currently, the MQOs require the data collectors to correctly

identify the species of all trees 95 percent of the time, and iden-

tify the genera of all trees 99 percent of the time. Note that the

biological grouping of species into genera does not exactly

match the empirical grouping of species referred to above.

Depending on how species are grouped, a biological identity

error may or may not affect the volume estimate. In addition, it

is required that diameter at breast height be measured to within

+/- 0.1 inch per 20 inches of diameter 95 percent of the time.

Total tree height must be measured to within +/-10 percent of

the true height 90 percent of the time (USDA 2001). 

The Simulation

A simulation was used to examine the effects of measurement

error allowed by the current as well as alternative MQOs upon

county estimates of gross cubic-foot volume per acre (GCV).

Data from the most recent cycle of the FIA survey measured in

South Carolina were used which consisted of five consecutive-

ly measured panels. Each panel covered the entire State, and all

five panels were measured over a period spanning slightly

more than 3 years (1998 to 2001). Assuming the data were

measured without error, the “true” GCV was calculated for each

county j (GCVj). For each set of MQOs, biological identity,

diameter and height were randomly perturbed within the

defined MQOs and error distribution assumptions. Error was

randomly applied to the three volume equation variables (bio-

logical identity, diameter, and height) for each tree measured in

the survey within the defined MQOs and error distribution

assumptions. A small quality assurance (QA) data set from the

2000/2001 Forest Health Monitoring (FHM) field season was

used to classify the error distributions under the unbiased and

biased assumptions for the error distributions. The gcv was cal-

culated from these realizations, and the mean gross cubic-foot

volume per acre (        ) was calculated for each county in the

State. This was done using the current MQOs, and the alterna-

tive MQOs described in table 1. The specifications for each of

the three variables were varied while the current specifications

of the other two variables were maintained for comparison. The

mean difference (MD), mean absolute difference (MAD), and

mean squared differences (MSD) from the county results based

on the original “true” data were calculated after 1,000 itera-

tions. Specifically, for the error in each estimator of the county

mean: , let C equal the

number of counties in the State, and form three statistics based

on 1,000 iterations:

and

Observations in earlier work (Roesch, in review) and in

the 2000/2001 FHM QA data set showed that the error distribu-

tions for diameter and height were well behaved in the “in-con-
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Figure 1.—The error distributions observed in the 2000/2001 FHM QA data for diameter (A), and height (B), followed by the sim-
ulated distributions for the unbiased model for diameter (C), and height (D). The distribution tails of (C) are rescaled for clarity
and plotted in (E). Likewise the tails of plot D are rescaled and plotted in (F). The tails of the simulated distributions for the tail-
biased model for diameter are plotted in (G), while the corresponding tails for height are plotted in (H).
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trol” region, and poorly behaved in the “out-of-control” region.

So this simulation concentrated on secondary criteria applied to

the formally uncontrolled areas of the error distributions.

Species Identity

To vary the species identity determination, a random variate ui

was drawn from a uniform distribution (U(0,1)) for each tree i.

Let p1 be the proportion of time that the protocol requires identi-

fication of the correct species, and p2 be the proportion of time

that the protocol requires identification of the correct genus, 0 <

p1 < p2 < 1. The simulated species determination for tree i, Si *,

was calculated by sampling the following distribution:

where:
Si = the true species of tree i,

rs (GSi
) = a random selection from all observed species of 

the same genus as tree i, except for the species of tree 

i, unless Si is the sole species within the genus,

rs (FSi
) = a random selection from all species in the species

list belonging to the same family as tree i, minus 

those species in the genus of tree i,

rs (A) = a random species selection from the entire species

list minus those species in the family of tree i, and

r = the proportion of time that out of genus errors are 

assumed to be within the family of tree i.

Note that under this distribution, the expected value of a

correct species call is actually higher than the protocol requires

for sole-species genera. This is necessary to meet the within-

genus criterion for sole-species genera. The FHM QA data

showed that 70 percent of the time when a species identity

error fell outside of the correct genus under the current QA

specifications, it fell within the correct family. This proportion

was used for r in the straw man distribution (S0 in table 1) that

is based on the current MQOs. The alternative MQOs for

species identity investigated in this study also appear in table 1

(S1, S2, S3, and S4) and involve increases in p1, p2 and 

p3 = p2 + r(1 - p2).

Diameter 

Recall that the current specifications require that diameter at

breast height is measured to within +/- 0.1 inch per 20 inches

of diameter 95 percent of the time. Four alternative specifica-

tions (D1, D2, D3, and D4 in table 1) are compared to two

straw man distributions based on the current MQOs (D0 in

table 1). The first straw man distribution for diameter error is

created by splining overlapping unbiased normal distributions,

scaled by p1, t1, p2, t2 and dcat. The unbiased straw man distri-

Alternative Specification t P

Current Species, genus
criteria 0, 0 0.95, 0.99

Height 0.1 0.90

Diameter 0.1 0.95

S0 Species, genus, 
family 0, 0, 0 0.95, 0.99, 0.997

S1 Species, genus, 
family 0, 0, 0 0.975, 0.99, 0.997

S2 Species, genus, 
family 0, 0, 0 0.975, 0.995, 0.9985

S3 Species, genus, 
family 0, 0, 0 0.975, 0.995, 0.999

S4 Species, genus, 
family 0, 0, 0 0.975, 0.995, 0.9995

H0 Height 0.1, 0.5 0.90, 0.99

H1 Height 0.1, 0.2 0.90, 0.95

H2 Height 0.1, 0.3 0.90, 0.95

H3 Height 0.1, 0.2 0.90, 0.98

H4 Height 0.1, 0.3 0.90, 0.99

D0 Diameter 0.1, 1.0 0.95, 0.99

D1 Diameter 0.1, 0.2 0.95, 0.98

D2 Diameter 0.1, 0.3 0.95, 0.98

D3 Diameter 0.1, 0.3 0.95, 0.99

Table 1.—Alternative additional measurement quality objec-

tives; the units for tolerance (t) are as follows: (1) for species

and genus - deviation from true biological identity, (2) for

height - the percent deviation from the true height, and (3) for

diameter – inches per 20 inches of true diameter. p is the per-

centage of observations that are required to be correct. The set

of alternatives (S0,H0,D0), derived from the original specifica-

tions and the 2000/2001 FHM data, form the assumed baseline

in table 2.
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bution assumes that the small bias observed in the 2000/2001

FHM data is an anomaly of that particular data set and is ignor-

able. An assumption that diameter measurements are unbiased

is supported by the findings of Pollard and Smith (2001). We

will use this FHM QA data (plotted in figure 1(A)) to classify

the tails of the distribution. The error distributions of this data

set might differ from the true underlying distribution because

the data are weighted toward inexperienced observers, and they

measure observer-to-observer error rather than observer-to-

truth error. Let:

zi = a random variate from a (N(0,1)) for tree i,

p1= proportion of time the measurement must be within a 

tolerance t1, of true diameter (di ), in tenths of an inch

per 20 inches of diameter, 0 < p1 < p2 <1,

p2 = 0.99, the proportion of time the 2000/2001 FHM data 

fell within 1.0” (t2) of the true diameter.

The distributions we used to compare increased tolerance

specifications to the straw man differ from the straw man only

in the definitions of p2 and t2 and inferences about them. Here

t2 is a required tolerance to be met a proportion p2 of the time,

rather than an assumed parameter of the underlying distribu-

tion. That is, we are enforcing a second tier of control, which is

more restrictive than the underlying error distribution that aris-

es from the original level of control. Therefore, the error distri-

butions for the alternative distributions are the same as the

straw man error distribution, save for the definition and inter-

pretation of p2 and t2. Now:

p2 = the proportion of time the measurement must be with-

in a tolerance t2 , of true diameter (di), in tenths of an 

inch per 20 inches of diameter, 0 < p1 < p2 < 1.

The error distributions for diameter resulting from apply-

ing the unbiased error distribution 8.5x106 times under the vari-

ous sets of MQOs for diameter are seen in figure 1(C), while

the tails of the distributions are rescaled for clarity in figure

1(E). Note that the long tails observed in the FHM QA data

have been retained in the straw man distribution, but they are

reduced as control due to the MQOs increases.

An alternative Straw Man distribution would arise if we

thought that the previously ignored bias in the 2000/2001 FHM

data indicated the true underlying distribution. To model the

slight bias and skewness, we would alter our original straw

man by applying all of the observed bias to the right tail.

Therefore, the second straw man distribution for diameter error

is identical to the first except that the bias observed in the

2000/2001 FHM data is added to the right tail of the distribu-

tion to approximate both the observed bias and skewness. Let:

bi = 0.031dcat (2/(1 – p1))

Then:

For the alternative distributions, we assume that bias can

be eliminated from the “ in-control” region of the distributions

when the second level of control is applied. Therefore, the

alternative error distributions are identical to the biased straw

man error distribution shown above except that they do not

include the bias term in the third line on the right hand side of

the equation.

The tails of the error distributions for diameter resulting

from sampling the biased error distribution 8.5x106 times under

the various sets of MQO’s for diameter are seen in figure 1(G).

That graph shows that the bias, skewness, and influence of the

tails are all reduced as the MQOs are increased.

Diameter entries, regardless of error are always interpreted

as recorded to the measurement interval of 0.1 inch, and are

never negative. Therefore, let round() be an operation that



178 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium

rounds to whole integers. Then all of the diameter error distri-

butions are made discrete to the measurement interval, and neg-

ative diameters at set equal to zero:

The bias to gcv estimates added by truncation of diameters at

zero is extremely small, since the gcv of trees less than 5.0 inches

in diameter is zero. Therefore, we will note but otherwise ignore

this small amount of bias added to the perturbed diameters.

Height

Because the proportion of height error data from the FHM QA

data set showed roughly the same properties as the diameter

error data, I used the same approach to simulating height error

as I did for diameter error. First, I assumed that the observed

bias and skewness are simply anomalies found in that data set

rather than indicating the true underlying distribution for FIA

proportion of height error. Then, in a second straw man distri-

bution I assumed that the observed bias and skewness truly

indicates the underlying distribution. The unbiased model was

formed the same way as the unbiased model for diameter. That

is by using a spline of overlapping normal distributions, the

first scaled by p1, t1, and true height and the second scaled by

p2, t2 and true height. Let:

zi = a random variate from a (N(0,1)) for tree i,

p1 = the proportion of time the measurement must be 

within a tolerance t1, of true height, 0 < p1 < p2 < 1,

p2 = 0.99, the proportion of time the FHM data fell with

in 0.5 t2 of the true height.

As in the case of diameter, the distribution that we used to

compare increased tolerance specifications to the straw man

differ from the distribution for the straw man only in the defini-

tions of p2 and t2 and inferences about them. Here t2 is a

required tolerance to be met a proportion p2 of the time, rather

than an assumed parameter of the underlying distribution. That

is, in the alternative MQO specifications (H1, H2, H3, and H4)

we are enforcing a second tier of control that is more restrictive

than the underlying error distribution that arises from the origi-

nal level of control (H0). Therefore, the error distributions

assuming no bias are the same as the straw man error distribu-

tion, save for the definition and interpretation of p2 and t2:

p2 = the proportion of time the measurement must be within a

tolerance t2hi, of true height (hi ), 0 < p1 < p2 < 1.

The error distributions for proportion of height resulting from

sampling the unbiased error distribution 8.5x106 times under the

various sets of MQOs for height are seen in figure 1(D). The tails

of that graph are rescaled for clarity and plotted in figure 1(F). As

with the unbiased diameter error distributions, the tails are drawn

toward the center as MQOs are increased.

Again, an alternative straw man distribution would arise if

we thought that the previously ignored bias and skewness in

the 2000/2001 FHM data was somewhat indicative of the true

underlying distribution. The second straw man distribution for

proportion of height error is identical to the first, except that

the small amount of bias observed in the 2000/2001 FHM data

is added to the right tail of the distribution to approximate both

the bias and skewness seen in that data:

As with diameter, we assume that bias can be eliminated

from the “in-control” region of the distributions when the sec-

ond level of control is applied. Therefore, the distributions aris-

ing under the alternative MQO specifications (H1, H2, H3, and

H4) are identical to the error distribution above, except that

they do not include the bias term in the third line on the right

hand side of the equation.
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The tails of the error distributions for proportion of height

resulting from applying the biased error distribution 8.5x106

times under the various sets of MQOs for height are seen in

figure 1(H). Again, the bias, skewness, and influence of the

tails are all reduced as the MQOs are increased. We assume

that height errors are also discrete and not negative. Therefore

our simulated heights are calculated as:

. 

Results and Conclusions

Table 2 gives the mean difference (MD), the mean absolute dif-

ference (MAD), and the mean squared difference (MSD) for

each MQO specification in table 1, after 1,000 iterations. The

results show that assuming unbiased errors may lead to a dif-

ferent control strategy than assuming bias in the “out-of-con-

trol” region. Strengthening the MQO for diameter will help

reduce the overall variance of volume estimates if diameter

errors are slightly biased in this out-of-control region. Height

errors responded favorably to increased control in the current

out-of-control region under both the biased and unbiased models.

Volume estimates at the county level are somewhat robust

to the MQOs for species identity. However, more accurate

species identity did play a more important role when the under-

lying distributions for diameter and height were assumed to be

biased than when they were assumed to be unbiased.

Simulation is useful for investigating the effect of MQOs

for independent variables on aggregated dependent variable

estimates if reasonable error models can be postulated for the

measurement errors of the independent variables. In this case, a

small amount of QA data was available that is most likely

drawn from a population different from the population of inter-

est. Rather than defining a single distribution for height and

diameter errors, intended to represent the underlying population

of interest, we defined two for each of these variables that are

intended to represent the extremes of the true underlying distri-

butions. Any conclusions that could be drawn from both straw

man distributions for a particular variable could be considered

robust. However, any conclusion that would only be drawn

under one of the straw man distributions should probably be

applied more cautiously. 

Errors in county estimates of gross cubic-foot volume per acre.

MQO Unbiased model Tail-biased model

alternative MD MAD MSD MD MAD MSD

S0,H0,D0 1.414 8.221 116.404 30.170 30.305 1124.661

S1 0.091 8.063 112.607 28.833 28.997 1043.066

S2 0.444 8.057 112.363 29.204 29.357 1065.213

S3 0.471 8.070 112.606 29.223 29.374 1066.557

S4 0.498 8.063 112.459 29.264 29.414 1068.781

H1 1.374 6.384 69.311 21.958 22.109 610.693

H2 1.406 8.001 109.687 21.965 22.391 659.834

H3 1.328 5.782 56.696 17.014 17.235 381.091

H4 1.394 6.351 68.007 15.427 15.859 336.589

D1 1.237 8.011 110.849 22.229 22.636 676.282

D2 1.222 8.020 110.970 22.270 22.673 678.043

D3 1.242 8.022 111.054 19.881 20.466 571.266

Table 2.—The mean difference (MD), mean absolute difference (MAD), and mean squared difference (MSD) for each alternative
MQO specification in table 1, after 1,000 iterations, under the assumptions of the unbiased and biased straw man error distribu-
tions. MD and MAD are in ft3/acre. MSD is in (ft3/acre)2
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The extension of the methodology used in this paper to

other measured and derived variables is straightforward. One

simply needs to posit reasonable error models for the measured

variables and then simulate attribute variance with those mod-

els while observing the effect upon the summary statistics of

the derived variables. As applicable quality assurance data

becomes more available, they will support a decision to main-

tain, replace, or refine the error models and MQOs.
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Modeling Missing Remeasurement Tree
Heights in Forest Inventory Data

Raymond M. Sheffield and Callie J. Schweitzer1

Abstract.—Missing tree heights are often problematic

in compiling forest inventory remeasurement data.

Heights for cut and mortality trees are usually not avail-

able; calculations of removal or mortality volumes must

utilize either a modeled height at the time of tree death

or the height assigned to the tree at a previous remea-

surement. Less often, tree heights are not available for

trees that were determined to be missed tally trees in an

initial inventory. In these cases, a height is available for

the current measurement, but the initial tree height must

be modeled or estimated. In this paper, we present a

procedure for predicting either a time 1 or time 2

height. The procedure uses actual tree height informa-

tion for a tree collected at time 1 or time 2 if available.

Incorporating the relationship between actual tree

height to predicted height provides for an adjustment to

height equations that do not incorporate site quality and

stand parameters.

Missing tree heights are a common occurrence in broad forest

inventories. They are relatively rare in an initial installation of

inventory plots. Most missing tree heights are encountered dur-

ing the remeasurement of a previously installed plot where ini-

tial inventory (time 1) tree heights are recorded. During the

remeasurement of inventory plots, the need to supply a value

for a missing tree height arises primarily from the following

situations.

1. A previously measured tree is missing at time 2 due to nat-

ural mortality or cutting; a height at the time of tree death

is needed to compute the tree’s volume, which is assigned

to mortality or removals.

2. A previously measured tree grows across a merchantability

threshold for volume calculation; a height for the tree at

the threshold diameter at breast height (d.b.h.) is needed to

accurately calculate ingrowth volume.

3. A time 2 inventory tree is determined to have been missed

by the previous field crew or the previous height is known

to be an error; a time 1 tree height is needed to compute

the tree’s time 1 volume.

To illustrate the above examples, Forest Inventory and

Analysis (FIA) data from a recent inventory in South Carolina

were examined. Out of more than 111,000 trees tallied for cur-

rent inventory estimates, far less than 1 percent required a

modeled height. Data recorder software and editing procedures

eliminated almost all missing or invalid heights. However,

nearly one out of three trees in the remeasurement sample

(trees measured 8 years earlier) required a modeled height.

Fifteen percent of the trees were cut, 4 percent died from natu-

ral causes, 9 percent grew across the growing-stock or sawtim-

ber volume threshold, and 2 percent were survivor or missed

trees that required a modeled height at time 1 for various rea-

sons. These examples illustrate that tree heights must be mod-

eled often in operational inventories. The procedures utilized in

dealing with missing tree heights must accurately account for a

wide range of site and stand parameters. The values used for

missing heights in a remeasurement inventory can have a major

impact on growth, removal, and mortality volume calculations. 

The FIA program is currently developing nationally con-

sistent procedures for collecting and compiling inventory data.

While initial compilation efforts have focused on current inven-

tory procedures, the development of remeasurement procedures

is underway. Accurate estimates of change (growth, removals,

and mortality) will require viable, consistent procedures for

dealing with missing tree heights in remeasurement settings.

Large changes in tree heights from time 1 to time 2 in remea-

surement settings can have severe adverse effects on compo-

nents of change estimates. In this paper, we present a procedure

for dealing with missing tree heights that is simple, allows the

use of any tree height model, and produces a modeled tree

height in remeasurement settings that is relatively stable relative

to the actual measured height of the tree at time 1 or time 2.

1 Supervisory Research Forester, U.S. Department of Agriculture, Forest Service, Southern Research Station, P.O. Box 2680, Asheville, NC 28802; Research
Forester, U.S. Department of Agriculture, Forest Service, Southern Research Station, P.O. Box 1387, Normal, AL 35762.
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Methods

The procedures selected for use in FIA inventory computations

cannot possibly address all stand, site, and tree parameters

because of the diversity encountered across large regions and

the Nation. There are many different methodologies utilized by

the regional FIA units to model tree heights. We have not

assembled a list of those procedures here because no single

total height equation or set of equations exists that will perform

optimally across all regions. Therefore, the retention of regional

FIA methodologies for many computations, including tree

height models, is necessary for the immediate future. However,

we can implement procedures that improve upon the raw, initial

tree heights produced by these equations. 

In remeasurement situations, as documented above, we

always have some information about each tree that can improve

our ability to accurately predict an unknown height. We usually

have knowledge of the tree’s species, d.b.h. and height, either

merchantable length or total height. This information is avail-

able for the time 1 inventory or for the time 2 inventory. We

can obtain a predicted tree height from a model or equation and

use this value unaltered for computations of tree volume and

growth. However, unless the model incorporates all site and

stand parameters that may impact tree height relationships,

abnormal changes in tree height can result. These changes will

impact volume and growth computations. One can produce a

modeled height that is harmonized with an actual measured

height for the tree using the following equation.

(1)

Where

Hm = final modeled total height

Ka = actual (measured) height

Km = predicted height for tree with known height

Um = predicted height for tree with unknown height

This equation may be used to predict a missing tree height

at time 2 (cut or mortality tree) or a missing tree height at time

1 (missed tree or erroneous initial tree height). The procedure

makes adjustments to raw predicted height values from any

equation. The adjustments account for site and stand parame-

ters that have influenced the height development of each indi-

vidual tree. While stand composition and structural characteristics

change due to increasing age and disturbances, the relationship

between actual height and modeled height should remain viable

for relatively short remeasurement periods of 10 years or less.

Examples

The following examples illustrate the calculation of missing

height values for some of the situations described earlier. The

examples use data and height equations from the FIA unit at

the Southern Research Station (SRS-FIA) to illustrate the effect

of the harmonic proportioning equation. D.b.h. and bole length

(BL) are the two independent variables in the equations used to

derive the initial estimate for a missing height. 

(2)

Trees 1.0 to 4.9 inches d.b.h.

Where

Y = predicted height

d.b.h. = diameter at breast height

a and b are species specific coefficients

(3) 

Trees 5.0 inches d.b.h. and larger.

Where

BL = predicted length from 1.0-foot stump to 4.0-inch top 

diameter (outside bark)

d.b.h. = diameter at breast height

a and b are species specific coefficients (table 1)

(4) 

Trees 5.0 inches d.b.h. and larger.

Where:

Y = predicted height

BL = bole length 

d.b.h. = diameter at breast height

a, b and c species specific total height coefficients (table 2)
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Species code a b Species code a b

131 -156.117206 202.750877 920 -142.109331 185.613178

121 -119.432082 164.99968 621 -148.831031 197.806215

126 -115.074602 152.443899 540 -131.365123 175.827063

128 -124.280736 167.685111 531 -115.243339 151.094033

107 -106.238568 149.364954 370 -85.02753 125.664258

110 -126.330994 169.14767 901 -114.378044 154.378556

111 -152.035297 199.471982 602 -121.652618 161.466442

115 -184.413794 235.884113 491 -26.361267 43.854679

123 -69.543987 109.868908 311 -121.652618 161.466442

132 -106.752125 149.936213 400 -138.431526 179.440462

43 -107.286838 152.696925 591 -89.551605 119.184132

221 -142.478002 186.508392 552 -121.652618 161.466442

10 -130.645957 170.109525 680 -121.652618 161.466442

260 -138.143903 176.104811 521 -121.652618 161.466442

241 -130.645957 170.109525 318 -91.686932 129.421189

222 -134.419057 177.021729 371 -121.652618 161.466442

60 -79.746545 108.851764 837 -121.372298 160.784296

90 -130.645957 170.109525 823 -110.09781 148.608204

129 -135.566314 178.054737 813 -117.535853 162.387287

950 -132.8382 180.305149 832 -94.85546 133.493232

762 -102.309572 139.853199 826 -110.09781 148.608204

694 -150.63215 191.725286 820 -105.69823 143.674925

693 -115.928799 151.979406 838 -107.606289 137.883848

313 -142.109331 185.613178 822 -110.09781 148.608204

330 -142.109331 185.613178 830 -110.09781 148.608204

601 -142.109331 185.613178 835 -95.975318 129.925601

740 -142.109331 185.613178 833 -97.402948 138.559456

651 -96.901447 137.060551 806 -105.862725 146.021142

970 -120.048309 157.758605 817 -110.09781 148.608204

460 -112.391322 149.469203 834 -110.09781 148.608204

555 -108.60678 148.214521 812 -112.741267 149.053737

652 -96.901447 137.060551 825 -116.559834 156.184096

316 -99.705783 137.125344 804 -110.09781 148.608204

580 -142.109331 185.613178 827 -104.639214 143.375171

317 -142.109331 185.613178 802 -109.493036 148.982715

653 -95.979778 136.357591 831 -150.949932 191.23914

611 -161.172361 206.724378 899 -76.443709 103.644195

731 -113.031851 158.006557 999 -87.990247 119.886332

691 -147.46436 193.31287

Table 1.—Coefficients for bole length equation by FIA species code
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The equations use coefficients for 77 species or species-

groups in the South. Whereas total stem length is the height

value utilized in current volume prediction equations, many of

the previous inventories in the South measured merchantable

height and modeled total height values from the bole length.

Thus, equations are still needed to predict bole length as well

as a total height equation utilizing bole length as an independ-

ent variable. With total height as the only measured height vari-

able involved in remeasurement plots, a single equation similar

to equation (1) can be used to model total heights of trees 5.0

inches and larger.

It should also be noted that d.b.h. is often missing when

tree height is missing. For example, both d.b.h. and height are

unknown for a tree at the time it was cut. The following exam-

ples use modeled d.b.h. values in such instances.

Example 1: Missing Time 1 Tree Height (Missed Tree At

Time 1)

Species: chestnut oak (Quercus prinus—species code 832)

Time 1 d.b.h.: 19.8 inches (modeled)

Time 2 d.b.h.: 22.0 inches (measured) 

Time 2 total height: 72 feet (measured)

Step one: Calculate modeled time 2 bole length (equation 3)

BL = A + B*SQRT (log10 (d.b.h.))

BL= -94.85546 + 133.493232*SQRT (log10(22.0))

BL= 59.813755

Step two: Calculate modeled time 2 total length (equation 4)

Y= A + B (BL) +C (1/(d.b.h.)2)

Y= 21.244492 + 0.907202(59.813755) +

141.15111(1/(22.0)2)

Y= 75.799285 

Step three: Calculate modeled time 1 bole length (equation 3)

BL = A + B*SQRT (log10 (d.b.h.))

BL= -94.85546 + 133.493232*SQRT (log10 (19.8))

BL= 57.154893

Step four: Calculate modeled time 1 total length (equation 4)

Y= A + B (BL) + C (l/(d.b.h.)2)

Y= 21.244492 + 0.907202(57.154893) +

141.15111(1/(19.8)2)

Y= 73.455568 

Step five: Calculate harmonically proportioned total length for

time 1 (equation 1)

Hm = (Ka/Km)*Um

Hm = (72.0/75.799285) * 73.455568

Hm = 69.8 (final estimate for initial tree height)

In this example, the first estimate of time 1 total height

was 73 feet, which was greater than the measured value for the

tree at time 2. The proportioning procedure results in a more

realistic value that is consistent with d.b.h. change.

Example 2: Missing Time 2 Tree Height (Cut Tree)

Species: longleaf pine (Pinus palustris—species code 121)

Time 1 d.b.h.: 6.0 inches (measured)

Time 2 d.b.h.: 8.0 inches (modeled) 

Time 1 total height: 54 feet (measured)

Step one: Calculate modeled time 1 bole length (equation 3)

BL = A + B * SQRT (log10 (d.b.h.))

BL = -119.432082 + 164.99968*SQRT (log10 (6.0))

BL = 26.118891

Step two: Calculate modeled time 1 total length (equation 4)

Y = A + B (BL) + C (1/(d.b.h.)2)

Y = 7.729578 + 1.038906 (26.118891) +

460.44451(1/(6.0)2)

Y = 47.65478 

Step three: Calculate modeled time 2 bole length (equation 3)

BL = A + B*SQRT (log10 (d.b.h.))

BL = -119.432082 + 164.99968*SQRT (log10 (8.0))

BL = 37.368841

Step four: Calculate modeled time 2 total length (equation 4)

Y = A + B (BL) + C (l/(d.b.h.)2)

Y = 7.729578 + 1.038906 (37.368841) +

460.44451(1/(8.0)2)

Y = 53.74674 
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Species code a b c Species code a b c

131 11.63601 1.002513 347.272658 920 18.718746 0.973277 237.046549

121 7.729578 1.038906 460.44451 621 20.671028 0.956696 219.505156

126 12.235965 0.949229 110.433871 540 20.026148 0.955226 257.081973

128 9.785433 0.99598 265.638401 531 33.050946 0.781059 -203.793929

107 12.138889 0.976357 255.670995 370 26.749454 0.875348 53.60581

110 8.227609 1.036995 345.204061 901 24.201253 0.890276 45.69745

111 7.627238 1.046602 429.084288 602 21.840821 0.899214 166.601854

115 11.612768 0.998582 340.837362 491 15.84294 0.996554 81.45163

123 3.433555 1.062757 308.1748 311 20.91845 0.967155 143.329004

132 11.719363 0.993829 289.806791 400 20.279042 0.978179 232.507527

43 11.865871 1.000782 235.023676 591 15.702126 0.930761 35.053649

221 20.131836 0.9007 201.316112 552 20.91845 0.967155 143.329004

10 14.527042 0.978106 162.61837 680 22.055232 0.86043 -19.111068

260 20.872663 0.905741 7.644922 521 9.245754 1.051793 407.441276

241 14.527042 0.97816 162.61837 318 16.476717 1.03106 307.64589

222 7.987471 1.02906 497.921189 371 24.394062 0.945372 91.247826

60 14.032483 1.003766 122.450047 837 21.297146 0.952646 226.151486

90 14.527042 0.978106 162.61837 823 17.367545 1.006456 197.818822

129 15.330778 0.95947 219.242547 813 16.436721 1.040216 209.859337

950 24.914346 0.89236 38.929822 832 21.244492 0.907202 141.15111

762 15.738263 0.996829 308.494651 826 21.589084 0.933223 -123.979563

694 15.403016 0.998625 246.855337 820 16.78362 0.985803 238.462787

693 16.746882 0.963007 146.246985 838 17.42442 0.903906 116.917948

313 18.718746 0.973277 237.046549 822 17.367545 1.006456 197.818822

330 9.731165 1.146179 401.643379 830 17.367545 1.006456 197.818822

601 18,718746 0.973277 237.046549 835 20.755906 0.924214 64.282713

740 18.718746 0.973277 237.046549 833 17.354367 1.023787 244.745485

651 16.866377 1.009975 299.861067 806 20.636356 0.964852 128.255717

970 26.041732 0.872665 -6.198928 817 17.367545 1.006456 197.818822

460 31.13191 0.810872 -188.932025 834 17.367545 1.006456 197.818822

555 14.664977 0.990312 242.687846 812 17.40684 0.993855 236.337343

652 13.031815 0.990918 475.180647 825 24.489813 0.891002 10.363523

316 23.972077 0.882021 129.85142 804 17.367545 1.006456 197.818822

580 18.718746 0.973277 237.046549 827 20.649189 0.947504 139.682441

317 18.718746 0.973277 237.046549 802 20.445897 0.961278 148.494802

653 17.455189 0.927531 240.838341 831 19.57347 0.992177 207.241184

611 20.336715 0.950014 235.637303 899 12.147201 1.015202 122.112775

731 25.513236 0.894188 107.211601 999 18.951285 0.920112 122.341224

691 19.550482 0.951712 363.668158

Table 2.—Coefficients for total tree height equation by FIA species code
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Step five: Calculate harmonically proportioned total length for

time 1 (equation 1)

Hm = (Ka/Km)*Um

Hm = (54.0 / 47.65478) * 53.74674

Hm = 60.9 (final estimate for terminal tree height)

This example illustrates the value of using the harmonic

proportioning procedure to adjust initial predicted values for

site and stand conditions. The first estimate of total height at

time of cutting was 54 feet, an average value for the species

and d.b.h. If we used this value, there would be no height

growth recorded for the tree. However, the relationship

between actual height and predicted height at time 1 provides a

site- and stand-specific ratio to use in producing a more likely

height value of 61 feet.

Example: Calculate Probable Height at Time of Ingrowth

Species: yellow-poplar (Liriodendron tulipifera—species code

621)

Time 1 d.b.h.: 2.5 inches (measured)

Time 2 d.b.h.: 6.8 inches (measured) 

Time 1 total height: 24 feet (measured)

Time 2 total height: 49 feet (measured)

In this example, we have a known d.b.h. and total height at

both time 1 and time 2; we want to obtain a height when the

tree crossed the merchantability threshold for volume calcula-

tion, which is 5.0 inches d.b.h. We could use the time 1 or time

2 actual values in the calculation of the proportion—we use

time 2 values here.

Step one: Calculate modeled time 2 bole length (equation 3)

BL = A + B * SQRT (log10 (d.b.h.))

BL = -148.831031 + 197.806215*SQRT (log10 (6.8))

BL = 31.651170

Step two: Calculate modeled time 2 total length (equation 4)

Y = A + B (BL) + C (1/(d.b.h.)2)

Y = 20.671028 + 0.956696 (31.651170) + 219.505156

(1/(6.8)2)

Y = 55.69866

Step three: Calculate modeled bole length at ingrowth d.b.h.

(equation 3)

BL = A + B*SQRT (log10 (d.b.h.))

BL = -148.831031 + 197.806215*SQRT (log10 (5.0))

BL = 16.543720

Step four: Calculate modeled total length at ingrowth d.b.h.

(equation 4)

Y = A + B (BL) + C (l/(d.b.h.)2)

Y = 20.671028 + 0.956696 (16.543720) + 219.505156 

(1/(5.0)2)

Y = 45.27854 

Step five: Calculate harmonically proportioned total length at

ingrowth d.b.h. (equation 1)

Hm = (Ka/Km)*Um

Hm = (49.0 / 55.69866) * 45.27854 

Hm = 39.8 (final estimate for tree height at ingrowth d.b.h.)

The tree in this example has achieved height growth well

less than average based upon the relationship of predicted ver-

sus actual height at time 2. As a result, the modeled height val-

ues at the time of ingrowth into the merchantable volume

category are adjusted downward accordingly.

Discussion

The harmonic proportioning procedure presented above has

been operational in remeasurement inventory processing proce-

dures at SRS-FIA for several years. It is effective in preventing

unnecessary fluctuations in modeled tree heights and resulting

volumes. The procedure is easily incorporated into existing

height calculations and works with any equation or model that

provides an initial estimate for a missing height. It effectively

accounts for much of the influence that site and stand condi-

tions have on tree height if remeasurement cycles are not

excessively long. 
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An Alternative View of Some FIA Sample
Design and Analysis Issues

Paul C. Van Deusen1

Abstract.—Sample design and analysis decisions are

the result of compromises and inputs from many

sources. The end result would likely change if different

individuals or groups were involved in the planning

process. Discussed here are some alternatives to the

procedures that are currently being used for the annual

inventory. The purpose is to indicate that alternatives

exist and that reasonable people might prefer approach-

es that differ from the ones selected for the annual

inventory. The topics covered include panel creep,

mapping, the moving average, and data security issues.

The Forest Inventory and Analysis (FIA) program of the USDA

Forest Service is implementing an annual forest inventory

(USDA Forest Service 1999) where a percentage of the plots are

measured each year. Before the 1998 Farm Bill that mandated

the annual inventory, FIA was conducting periodic surveys in

each State. Each survey took 1–4 years, and then the State was

revisited every 10–18 years. The 1998 Farm Bill followed two

Blue Ribbon Panel reports, BRP I and BRP II (American Forest

Council 1992, American Forest and Paper Association 1998).

BRP I called for shortening the period between surveys from 10

to 5 years. This goal was never achieved, and cycles averaged 10

years or more when BRP II convened in 1997. The BRP II

request for more timely data motivated the 1998 Farm Bill leg-

islative mandate for an annual survey. The Farm Bill mandate

implies that it is important to have annual updates and continu-

ous data collection underway in all States. It remains to be seen

whether this goal will be achieved.

Panel Creep

The interpenetrating panel design was selected because it

seemed to best facilitate the intent of the Farm Bill, which was

to have a regular proportion of the plots measured each year.

The Farm Bill also intended that annual updates should be pos-

sible. Presumably, the purpose of annual data collection is to

provide annual estimates. Hence, the original plan was to

measure one panel each year. A panel consists of plots that sys-

tematically cover the State. This means that unbiased estimates

of any quantity are possible from a single panel or from combi-

nations of panels. There are also secondary benefits of the

panel design, such as maintaining equal annual budgets and

work loads.

The initial plan was to create 5 panels in Eastern States and

10 panels in the West. Unfortunately, resources are not available

to measure one panel per year in all States. This leads to panel

creep. Panel creep occurs when a panel has been only partially

measured at the end of the field season. One could differentiate

between planned and unplanned panel creep, but the end result is

the same. A panel can’t be used for a statewide update until all

plots have been measured. One way to avoid panel creep is to

create subpanels, which amounts to dividing a main panel into

smaller panels that each systematically covers the State. The 10

panels out west could be viewed as a 5-panel system with sub-

paneling. A 5-panel system has 20 percent of the plots in each

panel, while a 10-panel system has 10 percent of the plots per

panel. Therefore, panel creep in a 10-panel system results in

fewer plots being unavailable than in a 5-panel system.

A 20-subpanel design seems like a reasonable compro-

mise. Each panel contains 5 percent of the plots, so leaving a

panel uncompleted at the end of the field season is less damag-

ing. At the beginning of the season, the crews could begin

measuring as many panels as they expect to complete, say four.

It might become clear that only three panels can be finished as

the season progresses. A solution is to stop work on one panel

so that three full panels are completed. A 20-subpanel design

works well when the real goal is to measure either 5 or 10 per-

cent of the plots each year. The current plan to complete a State

in 7 years in the East doesn’t fit a 20-subpanel design perfectly,

but it is close. Measuring 3 subpanels out of 20 each year

would be a good approximation.

1National Council for Air and Stream Improvement, 600 Suffolk Street, Fifth Floor, Lowell, MA 01854. E-mail: Pvandeusen@ncasi.org.
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Mapping Versus Fuzzing

FIA sample plots will not always fall into a uniform forest condi-

tion and may straddle multiple conditions. At one time, FIA rotat-

ed “straddler” subplots into a uniform forest condition. This

created a bias against forest conditions that were long and narrow,

and procedures to replace plot rotation were developed (Birdsey

et al. 1995). The procedure that FIA has officially adopted is

referred to as “mapping.” This involves mapping the boundary of

each distinct condition class that occurs on a subplot, subject to

certain limitations. An alternative approach, called fuzzing, is to

assign each subplot to a single condition class. 

An FIA plot consists of four 1/24-acre subplots in a fixed

configuration, and there is one plot for every 6,000 acres. The

official justification seems to be that mapping subplots results

in the least amount of bias and variance for estimates of condi-

tion class volume and area, and this may be true when condi-

tion boundaries are well defined. The fuzz method involves

classifying each subplot into a single condition class. There are

advantages and disadvantages of fuzzing versus mapping

(Hahn et al. 1995). A major advantage is that field procedures

are simple for fuzzing, because no decisions about type bound-

aries are required. 

With fuzzing, a subplot is classified into whatever catego-

ry occupies the largest proportion of the subplot. Usually, there

are no more than two classes per subplot. Suppose we are deal-

ing with pine and hardwood classes and there are several sub-

plots that are 50 percent in each class. Presumably, the field

crews would on average call half of these subplots pine and the

other half hardwood, which means the end result is unbiased.

In any event, a subplot is only 1/24 of an acre, and it seems that

splitting it into smaller areas via mapping is unnecessary. The

tradeoff in precision may be worth the savings in field-work

time, and complexity. This could be formally evaluated with

existing mapped data, because the corresponding fuzzed results

can be determined from the more detailed mapped data. Such

an evaluation would require assuming that the mapped bound-

aries are distinct and correctly mapped.

The Moving Average

The data from an interpenetrating panel design can be analyzed

in many ways, which is a strength of the design. FIA has cho-

sen the 5-year moving average (MA) as the default procedure.

A comparison among the MA, a one-panel mean and a mixed

estimator (Van Deusen 2002) indicates that the MA works well

when there is no trend in the data, but can show significant bias

in the presence of a trend. 

A brief review of the 5-year moving average will help

clarify the problem with bias. The MA, as envisioned for use

by FIA, is equivalent to averaging all plot measurements from

the last 5 years in a State. For years t-4 through t, this can be

written as:

where [      ]2 is the average of all plot values measured in year

j, and wj is a weight such that [                   ]3 . The weight, wj,

ensures that each panel is weighted according to the proportion

of the total plots it contains. With an exact 20 percent sample,

[wj=0.2.] When [      ]4 represents a single panel mean for year

t, it is unbiased for the true underlying value, [       ]5 , and we

can write   [                               ]6

where et is a random error term. It follows that the expected

value of the moving average is

Therefore, [MAt-4,t ] estimates the true average over the last 5

years and is a biased estimate of the current value, [       ]8. If a

user wants to estimate the midpoint of a 5-year period, the bias

of the MA would generally be less. Most users likely want to be

able to associate estimates with particular years, which is the rea-

son an annual inventory received so much support from users. 

A comparison using simulated data described elsewhere

(Van Deusen 2002) shows the one-panel mean (M1) and the

MA (fig. 1) for flat, linear and quadratic trends. The figure dis-

plays results from 100 simulations for years 1 through 10. The

MA results can be shown only for years 5 through 10, since
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they require 5 years of data. The MA is clearly superior when

there is no trend. However, it’s not clear that the MA is superi-

or for the linear trend since the bias is so large. The quadratic

trend shows that the sign of the bias of the MA changes after

the trend changes direction. 

It is clear that the moving average can show significant

bias. Other estimators that can follow trends and yield less bias

could be implemented by FIA. The MA also has some weak-

nesses for estimating change. The bias in a linear trend would

be subtracted out when estimating change, but the bias in a

quadratic trend would be amplified. Research exists on alterna-

tive model-based methods and imputation procedures

(McRoberts 2001, Reams and Van Deusen 1999, Roesch and

Reams 1999, Rubin 1987), but this is an area where more

research may be justified. 

Data Security Issues

There is an inherent conflict between making FIA data avail-

able to users and maintaining data confidentiality. Data security

places limits on the use of FIA data that can diminish its value,

but also prevents potential abuses. FIA must consider private

property owners’ concerns about these data. To obtain the data,

FIA field crews must have permission from landowners to

access private land where most FIA plots are located. These

private owners are not obligated to grant access, and in most

cases derive little direct benefit from FIA activities. Owners are

concerned about how the information being collected on their

land is being used and who has access to it. 

The long-term viability of the FIA program depends on

striking a balance between adequate security and providing

access to users. FIA access refusal rates are somewhat less than

2 percent nationally. If owners lose confidence in FIA data

security, refusal rates will go up. At worst, the FIA program

could become ineffective. Likewise, FIA will lose political sup-

port if users have too little access to the data.

Data security issues were less important before data

became easily accessible in digital form. This situation has

changed dramatically over the past two decades with the rise of

personal computers and the Internet. The first official indica-

tion of this trend may have been in section 1770 of the 1985

Food Security Act (FSA), which creates a legal mandate for

USDA employees to protect the identity of individuals who

provide data. The 1985 FSA had no immediate impact on FIA

data confidentiality procedures, but in 1989 FIA made it a poli-

cy to release only fuzzed coordinates to the general public. The

fuzzed coordinates were adjusted to be within ±1 mile of the

true location. The 1985 FSA became applicable to FIA data fol-

lowing a 1999 amendment (H.R. 3423) that inserted a new

paragraph including the Forest and Rangeland Renewable

Resources Act.

The 1989 system of fuzzed coordinates was deemed to be

inadequate in 2001 due to H.R. 3423, and FIA stopped releas-

ing coordinates to the public. Before this, there were publicly

available Eastwide and Westwide databases containing fuzzed

coordinates. In the future, data released to the public will be

aggregated, fuzzed, or rearranged so that it will not be possible

to determine who owns the land that contains a particular plot

Figure 1.—Comparison of the one-panel mean and the 5-year
moving average with three trends. Estimates made with simu-
lated data and 100 repetitions are shown for years 1-10 for the
one-panel mean and years 5-10 for the moving average. The
trends are (A) flat, ( B) linear, (C) quadratic. 
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or group of plots. These new restrictions may hinder some tra-

ditional industry uses of the data, such as mill supply or loca-

tion surveys. They will certainly hinder research uses of FIA

data that require owner and land use information. FIA needs to

develop a policy that will protect private owners’ rights while

not alienating traditional users by unnecessarily limiting access

to the data. It remains to be seen if FIA can accomplish such a

difficult compromise.

Summary

FIA is still in the process of replacing the periodic inventory

with an annual inventory, and many decisions must be made

regarding implementation details. It is often true that an organi-

zational decision involves considering competing options with

no clearly superior choice. Regardless, the attributes of each

option are weighed and a decision is made. It is clear that

another group or decisionmaker might have reached a different

conclusion. This paper is written in the spirit of acknowledging

that reasonable people can reach different conclusions.

Likewise, some of the initial decisions made when implement-

ing the annual inventory could change as new information and

viewpoints become available. The issues discussed here were

panel creep, mapping versus fuzzing, the moving average, and

FIA data security.

Panel creep will almost certainly occur within the annual

inventory system. The discussion of panel creep should be

about minimizing the impact of not being able to use plot data

until a panel is completed. FIA chose to implement 5 panels in

the East and 10 in the West, even though few Eastern States

would be able to measure 1 panel per year. This ensures that up

to 20 percent of already measured plots may be unavailable in

the current year. One solution would be to create additional

subpanels to decrease the number of unusable, measured plots.

Mapping is a fix for the bias caused by plot rotation. The

issue here is that mapping might be unnecessarily detailed and

time consuming and that a method known as fuzzing could be

sufficient. Fuzzing might result in more bias than mapping, but

it would simplify field work and analysis.

The moving average was chosen as the default estimator

because it is easy to use. The issue here is that ease of use

comes at the expense of bias. In this case, we see FIA accept-

ing bias as a tradeoff for ease of use, whereas bias associated

with fuzzing was not accepted. This seems to demonstrate the

contention that different groups can reach different conclusions.

The final decisions related to the issue of data security had

not been made as this paper was being written. Whatever they

turn out to be, there is little doubt that reasonable people will

disagree about them. Some will feel they went too far and pre-

vented legitimate uses of the data and others will feel they were

too lenient. 
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Sensitivity of FIA Volume Estimates to
Changes in Stratum Weights and Number of
Strata

James A. Westfall and Michael Hoppus1

Abstract.—In the Northeast region, the USDA Forest

Service Forest Inventory and Analysis (FIA) program

utilizes stratified sampling techniques to improve the

precision of population estimates. Recently, interpre-

tation of aerial photographs was replaced with classi-

fied remotely sensed imagery to determine stratum

weights and plot stratum assignments. However, stra-

tum weights based on remotely sensed data depend on

many factors, such as classification algorithm and

image selection. County volume estimates and associ-

ated variances were calculated over a range of stratum

weight scenarios and for various number of strata.

Rates of change in estimated values and variances,

and their effects on percent sampling error, were

examined in relation to different strata configurations.

Historically, the USDA Forest Service Forest Inventory and

Analysis (FIA) program has used stratified estimation techniques

to increase the precision of estimates of forest population param-

eters. Stratifying the population has traditionally been done by

interpreting aerial photography. However, advances in technolo-

gy now favor the use of satellite imagery for many of the region-

al FIA units. In the Northeast (NE) region, stratification is

performed with data from the Landsat 7 sensor platform. Each

pixel in an image is classified and the resulting classes are col-

lapsed into groups that represent different strata. Information on

sample-plot location is used to assign plots to strata, and stratum

weights are determined by stratum size in relation to total area.

The computed stratum weights depend on several factors.

Images of the same land area taken at different times produce

different stratification results. Also, many algorithms can be used

to classify an image. Each algorithm produces different classifi-

cation results, which affect the stratification outcome. As stratifi-

cation results are utilized in the estimation process, it is of

interest to investigate the degree to which different results might

affect estimated values. In our study, we examined the extent to

which changes in stratum weights and number of strata affect

estimates of merchantable (4-inch top limit) cubic-foot volume

and associated sampling errors.

Data

Data for this study are from a new FIA annual inventory sys-

tem (USDA Forest Service 2002) in Maine, where data exist

for about 60 percent of the sample plots. Each plot consists of

four circular subplots, each with a radius of 24 feet (7.3 m).

Sample plots were mapped in detail by land condition, allow-

ing for an estimate of the area for each condition. Different

conditions were delineated among forest, nonforest, water, and

other variables, and boundaries were established within forest-

ed conditions for other types of changes, such as forest type,

stand size, and tree density. Information collected included tree

location, diameter at breast height, total and merchantable

heights, percent of cull, and type and location of tree damage.

Gross cubic-foot volumes to a 4-inch (10.2 cm) top limit for

individual trees were computed with equations developed by

Scott (1981). The volume of cull is subtracted from the predict-

ed gross volume to obtain net volume. Net plot volumes were

obtained by summing volumes of individual trees.

Methods

To estimate total cubic-foot volume for a county, weights for

each stratum must be determined. This was done by reclassify-

ing a Landsat TM-based forest/nonforest cover map

(Vogelmann et al. 1998) using a 5 x 5 moving-window summa-

rization. This placed each pixel into one of 26 classes (0 to 25

forested pixels in the surrounding 5 x 5 pixel box). These class-

1 Research Forester and Supervisory Forester, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA 19073. Phone:
610–557–4043; fax: 610–557–4250; e-mail: jameswestfall@fs.fed.us.
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es were then collapsed into strata and stratum weights by coun-

ty were computed from map pixel counts and census-derived

county boundary information (U.S. Census Bureau 2001).

Using the stratum weights derived from the satellite-image

analysis, we calculated net cubic-foot volume estimates and

variances by county. The estimation procedures were based on

methodology described by Cochran (1977) for stratified ran-

dom sampling. These estimators utilize the stratum weights to

reflect the relative influence of each stratum. Having obtained

the estimate and associated variance of the estimate, one can

compute the percentage sampling error for the estimate of 

total volume:

(1)

where:

= variance of the estimate of total cubic-foot volume

= estimate of total net cubic-foot volume

To assess how different stratum weights may affect county

estimates, estimates and sampling errors for total cubic-foot

volume were computed over a range of stratum weights. For

each stratum, weights were systematically altered to ±0.25 of

the original value in increments of 0.01. Weights of the remain-

ing strata were increased or reduced proportional to their size

to maintain the requirement that the sum of all stratum weights

equals 1. For example, if the original weight of stratum 1 was

0.30, then the range of stratum 1 weighting scenarios covered

0.05 through 0.55 in increments of 0.01. The ±0.25 range was

not fully realized for strata with original weight values less

than 0.25 or greater than 0.75, as this would produce weights

less than 0 or greater than 1.

Different numbers of strata were created by altering the

four original strata. When the number of strata was to be

reduced, strata were combined. For this analysis, strata 3 and

4 had similar attributes and were combined to reduce the

number of strata to three. To increase the number of strata, an

existing stratum was divided into two parts. Because stratum

4 was nearly twice the size of the other strata, this stratum

was divided into two equal parts. Half of the plots from the

original stratum 4 having the smallest plot volumes were

retained as stratum 4, and stratum 5 was created with the

remaining plots. Interestingly, this division created five strata

with nearly equal weights.

Analysis

The analysis was conducted for Androscoggin County in

Maine, a small county (~318,000 ac) that is about 70 percent

forested. The cubic-foot volumes and stratum weights used in

this analysis are given in table 1. For the original configuration

of four strata, the effects of changing weights of various strata

on the estimate of volume are depicted in figure 1. The esti-

mates are most sensitive to weight changes for stratum 1,

where a 0.01 increase in weight decreased the estimated value

roughly 1 percent. Stratum 2 is largely insensitive to changes in

stratum weight. Strata 3 and 4 behave similarly, where increas-

es in the estimated volume are nearly 0.5 percent for every 0.01

unit of change in weight. Similar trends are noted for changes

in the variance of the estimate (fig. 2), although the magnitude

of change is less. The exception is stratum 2, where, unlike the

negligible change in the estimate, a notable trend in variance is

Mean plot Variance of Stratum
3 Strata volume (ft3) mean plot weight

volume

1 24.1 442.4 0.226

2 149.2 1,060.3 .180

3 217.2 1,096.0 .594

4 Strata

1 24.1 442.4 .226

2 149.2 1,060.3 .180

3 233.0 2,927.1 .228

4 204.5 1,864.9 .366

5 Strata

1 24.1 442.4 .226

2 149.2 1,060.3 .180

3 233.0 2,927.1 .228

4 87.0 719.5 .183

5 321.9 776.3 .183

Table 1.—Summary of stratum attributes for Androscoggin
County, Maine
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associated with the weight changes. These changes in volume

estimates and variances affect the percent sampling error

(%SE). For example, figure 3 shows how the reduction in vari-

ance associated with decreasing weight for stratum 1 is exceed-

ed by the accompanying decrease in the estimate with a net

result of a smaller %SE. Strata 2 through 4 show surprisingly

similar change in %SE trends. For these strata, a decrease in

weight increases the %SE, as the increase in variance exceeds

that of the estimate. When weight is added to these strata, the

reduction in variance occurs more rapidly than the change in

the estimate and %SE decreases.

Determining the number of strata also can be affected by

classification algorithm, image selection, and other factors. For

FIA purposes, Androscoggin County was divided into four stra-

ta (see table 1). For this study, the number of strata was altered

to determine how different numbers of strata might affect esti-

mates of volume. Where four strata were reduced to three,

changes in estimates and sampling errors were similar to the

four-strata configuration. However, the sampling error was

reduced from 13.8 percent to 13.2 percent (when the original

set of stratum weights was used). This was due to a slight

increase (0.6 percent) in the estimate and a decrease (7.6 per-

cent) in the variance. The reduction in variance was unexpect-

ed, as reducing the number of strata generally increases

variance (Cochran 1977). The result presented here occurred

for several reasons. First, the two strata that were combined

had similar means, which leads to the combined data providing

additional observations that clustered about a similar value.

Additionally, these strata have relatively few observations due

to the small county size. The combination of strata increases

Figure 1.—Percent change in estimate of total volume when
stratum weights are changed for four strata in Androscoggin
County, Maine.

Figure 2.—Percent change in variance of estimate of total vol-
ume when stratum weights are changed for four strata in
Androscoggin County, Maine.

Figure 3.—Change in percent sampling error for total volume
when stratum weights are changed for four strata in
Androscoggin County, Maine.

Figure 4.—Change in percent sampling error for total volume
when stratum weights are changed for five strata in
Androscoggin County, Maine.
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sample size, which has a notable effect on the variance. This

phenomenon would likely not be observed when computing

estimates for larger areas or where sampling intensity is higher.

When the number of strata was increased to five, the

changes in estimates of volume for a given change in stratum

weight were similar in magnitude to those for the three- and

four-strata analyses. However, the relationship between the

rates of change differed. This is apparent in the trends for

change in %SE (fig. 4), where decreases are now evident when

weight is decreased for strata 3 and 4. Altering of weights in

the newly created stratum 5 has the greatest effect on %SE. For

this stratum, decreases in weight result in increases in %SE.

The %SE based on original weights for the five-strata analysis

was much lower (11.0 percent) than the %SE for the original

four strata (13.8 percent). The improved sampling error resulted

from the decrease in variance of 37.1 percent, which resulted

from creating the addition stratum.

In each of the analyses presented, differences between the

original estimate and those where stratum weights were altered

were not significantly different at the 95-percent confidence

level for stratum weight changes less than 0.20. Where the

change in stratum weight exceeded 0.20, differences between

estimates were significant in some cases.

Discussion

We can determine mathematically the magnitude and direction

of change in volume estimates given a particular re-weighting

of strata if the mean plot volumes of the strata are known. For

example, when changes in stratum weights are between only

two strata, the change in the estimate is proportional to the

difference between the mean plot volumes of these strata.

However, when weights are altered in more than two strata,

the distribution of the change in weights also affects the out-

come. Rates of change are determined by how far the stratum

mean deviates from the overall sample mean. The further the

stratum mean is from the sample mean, the greater the rate of

change. The direction of change depends on whether the stra-

tum mean is smaller or larger than the sample mean. The esti-

mate of volume decreases when weight is added to strata

whose mean is smaller than the overall mean. Similarly, the

estimate increases as weight increases for strata with means

greater than the overall mean.

It is not as clear how changing stratum weights alters vari-

ance estimates as strata usually have different mean volume

estimates, while the number of plots and variances across strata

may or may not be similar. The amount and direction of change

in variance depends on the magnitude of differences in the vari-

ances of the individual strata. More importantly, changes in

both the estimate and the variance can have a notable effect on

the %SE. In instances where the mean plot volume for the stra-

ta is close to the overall mean, the change in variance drives

the change in %SE. For strata with means that differ greatly

from the overall mean, the change in the volume estimate is

more influential.

As was illustrated for the five-strata analysis, a notable

reduction in %SE is attainable. Although this reduction was

essentially manufactured by the method by which the stratum

was separated, it does show that certain relationships among

the strata can help reduce sampling error. This does not mean

that having more strata is always better as %SE also was

reduced when changing from four strata to three. The key is to

minimize the variances of the individual strata to the extent

possible. Thus, if the merging of two strata results in a variance

that is less than the sum of the original two strata, %SE will

decrease. Likewise, breaking a single stratum into smaller stra-

ta can be beneficial if the sums of the variances for the smaller

strata are less than the variance of the single stratum. The abili-

ty to reduce these variances will depend on both the spread of

the data and number of observations. In this exercise, we used

the plot data to increase the number of strata and minimize the

variance within each stratum. In practice, this would not be

possible as the 5 x 5 moving window summary does not give

actual values for sample-plot data. Research is needed to create

methodologies that provide classifications that are highly corre-

lated with sample-plot data. 

Conclusion

Stratification is an effective tool for improving the precision of

FIA volume estimates. In many instances, stratified estimation

procedures produce sampling errors that meet or exceed guidelines
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for estimates of area and volume. However, in some situations it is

difficult to obtain sufficiently low sampling errors (e.g., estimation

for small areas). This may preclude drawing meaningful conclu-

sions. Our research has shown that it is possible to improve sam-

pling errors by refining stratification techniques. A stratification

method that optimizes the number of strata and associated vari-

ances might be an efficient and effective way to obtain meaningful

estimates where the number of measurement plots is small. This

approach would likely be far less expensive and time consuming

than increasing sampling intensity. 
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Sensitivity Analysis of Down Woody Material
Data Processing Routines

Christopher W. Woodall1 and Duncan C. Lutes2

Abstract.—Weight per unit area (load) estimates of

Down Woody Material (DWM) are the most common

requests by users of the USDA Forest Service’s Forest

Inventory and Analysis (FIA) program’s DWM inven-

tory. Estimating of DWM loads requires the uniform

compilation of DWM transect data for the entire

United States. DWM weights may vary by species,

level of decay, woody material type, and size.

Additionally, weight estimates may vary by compila-

tion constants and methods. To better facilitate DWM

compilation routines, the effect of the variation in fuel

processing routine constants and measurement error

of variables on the resulting DWM load estimates was

examined. Sensitivity analysis indicated that some

compilation constants and measurement variables dis-

proportionately influenced load estimates of DWM.

More accurate and efficient estimates of DWM com-

ponents may be acquired by identifying compilation

constants and measurement variables that are the

largest sources of variation in weight estimates.

Down woody material (DWM) is the dead material on the forest

floor in various stages of decay. Down woody components esti-

mated by the Forest Inventory and Analysis (FIA) program are

coarse woody, fine woody, litter, herb/shrubs, slash, duff, and

fuelbed depth. As defined by the FIA program, coarse woody

debris (CWD) is down logs ≥ 3 inches in transect diameter and ≥

3-feet long. Transect diameter is the diameter of a down woody

piece at the point of intersection with a sampling transect. Fine

woody debris (FWD) is down woody materials with a transect

diameter less than 3 inches. Slash piles are collections of down

coarse woody debris, whether from logging or natural distur-

bances. Shrubs are defined as non-tree woody vegetation. Herbs

are non-woody herbaceous plants, but also include ferns, moss,

lichens, sedges, and grasses. Litter is dead plant material on the

forest floor excluding CWD, FWD, and duff. Duff is decom-

posed plant material beneath the litter layer with no identifiable

plant parts (i.e., stems and leaves) included.

DWM is sampled during a specific phase of FIA’s multi-

scale inventory sampling design. The FIA sampling design con-

sists of three phases. The first phase superimposes a hexagonal

grid across forest/nonforest maps of the United States. Each

hexagon (approximately 6,000 acres in area) contains one sam-

ple point. If the sample point falls on a forested area, a field

crew will visit the location and establish a permanent sample

plot (a phase 2 plot). All phase 2 plots are measured for tree

and site attributes. Phase 2 plots are subsampled (phase 3)

(approximately 1/16 of all phase 2 plots, 96,000 acres) for indi-

cators of forest health such as DWM. Due to the low sampling

intensity and application of data to address multitudes of

regional issues, the DWM inventory is appropriately termed the

DWM Indicator.

The sampling design of the DWM Indicator is a combina-

tion of planar intersect, point, and microplot sampling (U.S.

Department of Agriculture, Forest Service 2002) (fig. 1). CWD

1 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108; Phone: 651–649–5141; 
e-mail: cwoodall@fs.fed.us.
2 Research Forester, Systems for Environmental Management, P.O. Box 8868, Missoula, MT 59807.

Figure 1.—The Forest Inventory and Analysis Program’s (USDA
Forest Service) Down Woody Materials sampling design.
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and FWD are sampled on transects radiating from each FIA

subplot center. Information collected for every CWD piece

intersected on each of three, 24-foot transects on each FIA sub-

plot is transect diameter, length, small-end diameter, large-end

diameter, decay class, species, evidence of fire, and presence of

cavities (fig. 1). FWD with a transect diameter of 0 to 0.99

inches (1-hr and 10-hr) is tallied on a 6-foot slope-distance

transect (one transect per FIA subplot) (fig. 1). FWD with a

transect diameter of 1.00 to 2.99 inches is tallied on a 10-foot

slope-distance transect (one transect per FIA subplot) (fig. 1).

The duff and litter are sampled using a point estimate of depth

at a 24-foot slope-distance along each CWD transect (for a

total of 12 sample points). The shrub and herb fuel complex is

sampled on the phase 2 microplot (6.8-foot radius) (fig. 1). The

percentage cover (10 percent classes) and total height of dead

and live shrubs/herbs (including grasses) is estimated. Slash

piles with centers that are within 24 feet of any subplot center

are sampled, using methodology developed by Hardy (1996).

The shape of each slash pile is classified into four slash pile

shapes. Based on the pile shape classification, appropriate

dimensions of the slash pile are measured along with an esti-

mate of pile density. 

DWM inventory field data are organized into seven data-

base tables reflecting the various components estimated by the

DWM sampling design: CWD, FWD, microplot, transect infor-

mation, plot information, duff/litter, and slash piles. Although

invaluable to numerous research initiatives, the seven tables of

DWM data need to be processed to produce plot estimates of

DWM components. Just as basal area/acre estimates are deter-

mined for phase 2 plots, users of FIA data desire weight per

unit area (load) estimates of DWM. The seven tables of DWM

data may be processed in many ways to obtain per acre esti-

mates of DWM components. For a more complete guide to

FIA’s DWM sampling design, please refer to U.S. Department

of Agriculture, Forest Service (2002) or field guides from any

of the other regional FIA units.

The goal of our study was to ascertain through sensitivity

analysis the impact of variations in data processing techniques

and measurement errors on the final load estimates of DWM

components. Sensitivity analysis results were used both to iden-

tify critical parts of DWM data processing algorithms and to

manage the quality analysis and control of the DWM inventory.

Processing Algorithms

Brown (1974) originally summarized many of the sampling

protocols adopted by the DWM Indicator. In addition to the

sampling design, Brown (1974) provided numerous load-pro-

cessing models for DWM components. Although numerous

DWM data processing algorithms are possible, the basic mod-

els of Brown (1974) and slash pile models by Hardy (1996)

were used in the sensitivity analysis. 

FWD data were processed using the following constants

and measurement variables: unit’s conversion constant (convert

sampling measurement units to tons/acre), number of tallied

FWD pieces, quadratic mean diameter (QMD) of the appropri-

ate FWD size class, specific gravity, non-horizontal angle cor-

rection factor (corrects for DWM pieces nonperpendicular to

transect line), slope, and transect total length (Brown 1974).

CWD data were processed using the following constants and

measurement variables: unit’s conversion constant, sum

squared CWD transect diameters, specific gravity, nonhorizon-

tal angle correction, slope, and total transect length (Brown

1974). Litter and duff data were processed using mean depths,

specific gravity, and a unit’s conversion constant (Brown

1974). Slash pile data were processed using pile volume based

on pile shape equations (Hardy 1996), specific gravity, and

slash packing ratio (amount of wood occupying volume defined

by pile dimensions). 

Methods

The DWM inventory data from its first year of implementation,

2001, were used in this study. Over 900 plots were used in the

analysis from 32 States distributed across the U.S.

The effect of the variation in DWM processing routine

constants and the measurement error of variables on the result-

ing DWM load estimates was examined using sensitivity analy-

sis. The effect of 5-, 10-, and 15-percent variation in various

selected DWM measurement variables and processing con-

stants was evaluated in terms of final load estimates. Constants

used in the sensitivity analysis include CWD specific gravity,

CWD decay rate, litter specific gravity, FWD QMD, duff spe-

cific gravity. Measurement variables used in sensitivity analysis
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include FWD 0-0.25 inch tally counts, litter depth, CWD tran-

sect lengths, FWD transect lengths, slash pile heights, slash

pile packing ratio, CWD transect diameter, and duff depth.

Results/Discussion

Sensitivity analysis of DWM processing constants indicated

that variation in constant values had disproportionate effects on

total load estimates (fig. 2). A 5 percent increase in the specific

gravity of a plot’s CWD pieces resulted in approximately a 1

percent increase in the plot’s total DWM load estimate, where-

as a 5 percent increase in the specific gravity of duff resulted in

nearly a 2.5 percent increase in the plot’s DWM load estimate.

Obvious from sensitivity analysis, constants such as the specif-

ic gravity of duff and the QMD of FWD may have the greatest

effect on resulting determinations of plot DWM load estimates

(fig. 2). Because duff usually has a far greater specific gravity

than litter, variations in its estimate can greatly impact on the

total plot DWM load estimate. When processing DWM inven-

tory data, special attention should be given to selecting con-

stants that influence total DWM loading estimates the most.

Sensitivity analysis of DWM measurement variables

essentially is a review of the effect of measurement error on

total DWM plot load estimates. Our analysis showed a dispro-

portionate effect of variation in certain measurements on result-

ing variation in plot estimates. FWD tally counts, litter depth,

and CWD transect lengths had a minor impact on plot totals: a

15 percent increase in their values resulted in less than a 3 per-

cent variation in DWM plot estimates (fig. 3). For variables

such as slash packing ratio, CWD transect diameter, and duff

depth, a 15 percent increase in their associated values resulted

in a greater than 5 percent variation in DWM plot estimate (fig.

3). Since duff and CWD components typically contain substan-

tial tonnage, variations in their processing routines and/or

measurement errors may have the greatest effect on resultant

plot DWM estimates. Obviously, these sensitivity analysis

results would not necessarily apply to individual DWM compo-

nents such as FWD. 

Sensitivity analysis results indicate that the selection of

any DWM processing routine may initially hinge on which

DWM components contribute the most to overall DWM plot

estimates. Since constants used to determine CWD and duff

tonnage estimates might greatly affect output, those processing

routines should be scrutinized first. For instance, DWM ana-

lysts should concentrate more effort on which duff specific

gravity is selected for a plot than on what CWD specific gravi-

ty is selected for a certain CWD piece on a plot. Results from

the sensitivity analysis of DWM variables (i.e., analysis of

measurement error) have implications for DWM data quality

assessment/quality control (QA/QC). Currently the QA/QC tol-

erance for measurement of duff depth is ± 0.5 inches. For the

2001 field season a 0.5-inch variation in duff depth would on

average be a 20 percent measurement error. Based on this

study’s sensitivity analysis, 20 percent measurement error in

duff depth would result in a 9 percent error in plot DWM esti-

Figure 2.—Effect of 5, 10, 15% variation in various down woody
material processing constants on total per acre tonnage estimates.

Figure 3.—Effect of 5, 10, 15% variation in down woody mate-
rial measurement variables on total per acre tonnage estimates.
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mates of total load. The QA/QC tolerance of FWD 0-0.25-inch-

class tally counts is ± 20 percent. Based on sensitivity analysis,

a 20 percent measurement error of this FWD component will

typically result in a 0.5 percent error in plot level estimates of

total load. If users of FIA data are more interested in plot esti-

mates of DWM components, QA/QC efforts might be better

derived from a “top down” approach where plot estimate varia-

tion drives measurement error tolerances. If FIA customers

desire total tonnage/acre estimates, reductions in measurement

errors that greatly affect those load estimates should be undertak-

en rather than arbitrarily setting measurement error tolerances. 

Conclusions

The DWM Indicator of the FIA program provides the first

nationally consistent inventory of DWM components. The

DWM data sets quantify a structurally diverse component of

forest ecosystems. Although FIA data are invaluable as a

research database in its “unprocessed” form, numerous users

desire plot estimates of DWM. These estimates fulfill data

requirements of numerous forest research initiatives ranging

from the fire sciences to carbon budget accounting. There are

many methods for processing DWM data and many sources of

measurement error. The sensitivity results of this study may

help refine the debate among those that process DWM data and

those that manage the quality of the DWM data. Some process-

ing constants and measurement variables (duff depths, specific

gravity, CWD diameters, and slash pile dimensions) had dis-

proportionately greater effect on total plot load estimates than

other variables (CWD decay rates/classes/transect lengths, litter

depth/specific gravity, and FWD counts), which had a minimal

effect. The processing and QA/QC of the DWM Indicator may

be further refined with a better understanding of data outputs

desired by FIA constituencies, more holistic comprehension of

how all DWM components interact during data processing, and

QA/QC guidelines determined by analysis of actual field data. 
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Simulating Silvicultural Treatments Using
FIA Data

Christopher W. Woodall1 and Carl E. Fiedler2

Abstract.—Potential uses of the Forest Inventory and

Analysis Database (FIADB) extend far beyond

descriptions and summaries of current forest

resources. Silvicultural treatments, although typically

conducted at the stand level, may be simulated using

the FIADB for predicting future forest conditions and

resources at broader scales. In this study, silvicultural

prescription methodologies were simulated using FIA

inventory plots from Montana that rated high for fire

hazard. Database operations were used to couple the

FIADB with the silvicultural prescriptions process,

allowing successful simulation of silvicultural treat-

ments. Cut- and leave-tree tables were created for

each FIA sample plot using computer “marking” algo-

rithms, allowing estimation of current and future for-

est attributes (volume, growth, wildfire hazard, and

treatment costs). Simple database operations can be

used to mimic complex silvicultural prescriptions

using FIA inventory data from major ownerships,

States, or regions, allowing evaluation of treatment

effects and future forest conditions.

Forest Inventory and Analysis (FIA) data have traditionally

been used to summarize current forest conditions. Forest

resource assessments for States and regions, for example, have

been invaluable sources of information for forest managers and

decisionmakers alike. However, there is a growing need not

only for current forest assessments, but also for evaluation of

various management alternatives. In other words, given the

current status of forests as inventoried by FIA, what would be

the effect of a specific management action applied to said for-

est acreage? 

Given the technological advances in database management

and forest ecosystem modeling, a large portion of FIA analysis

and reporting in the future may involve simulating manage-

ment actions on current forest conditions. Just as FIA was

founded over 75 years ago to answer the question, “how much

forest,” more timely and complex questions now arise, such as

“given current forest conditions, what might be the effect of

specific management treatments?”

One of the most immediate and controversial forest man-

agement issues nationally involves the fire hazard problem in

the West, and the kinds and costs of treatments being proposed

to address it. For example, what forest types are most vulnera-

ble to crown fires? What silvicultural treatments are most

effective for reducing stand-level fire hazard, and how much do

they cost? At a statewide or regional level, what is the potential

contribution of a strategic hazard reduction program to the

Nation’s wood supply, and how much might it cost? The con-

sistent and comprehensive data collected by the FIA inventory

provide a uniform and objective basis for addressing these

questions. Toward this end, we developed a methodology for

simulating silvicultural treatments in the FIADB environment

and evaluating their effectiveness for reducing hazard in the

dry, low elevation forests of Montana.

Silvicultural Prescription Process

To mimic hazard reduction treatments using the FIADB, the

silvicultural treatment process needs to be reduced to its ele-

mental steps and incorporated into database logic. The silvicul-

tural prescription process involves five distinct steps: inventory

assessment, diagnosis, prescription development, prescription

implementation, and evaluation/monitoring. 

Inventory Assessment.—Inventory is quantified or translated

in terms of stand density, structure, and species composition for

use in the silvicultural prescription process. Density is

expressed in terms of trees per acre, basal area per acre, or

1 Research Forester, U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN 55108; Phone: 651–649–5141; e-mail:
cwoodall@fs.fed.us.
2 Associate Professor, School of Forestry, University of Montana, MT 59802.
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Stand Density Index (SDI) (Reineke 1933), with location, site,

and species used to determine break points between high-,

medium-, and low-density classes. Structure is described in

terms of trees, basal area, or SDI per acre by diameter class,

with species and site criteria used to classify conditions into

one-, two-, or multi-storied structures. Species composition is

typically expressed in terms of percent basal area representa-

tion by species, which is used in conjunction with habitat type

criteria (Pfister et al. 1977) to classify forest types. The FIADB

is a robust source for all of these data, providing the necessary

inputs for the silvicultural prescription process. 

Diagnosis.—The diagnosis of individual forest stands is based

on the inventory. Inventory data are interpreted in terms of

location and ecological context to assess current conditions ver-

sus those desired to achieve the management objective. For the

Montana FIA inventory, each plot may be treated as an individ-

ual stand, where its current stand density, structure, and species

composition can be used to diagnose fire hazard and priority

for fuel-reduction treatment.

Prescription Development.—For every stand evaluated in the

prescription process, a target future stand condition is devel-

oped. A “target” stand specifies the density, structure, and

species composition that best contribute to meeting the man-

agement objectives. In this study, for example, target conditions

to achieve low fire hazard would include low to moderate stand

density, one-, two-, or multi-storied structures dominated by

large trees, predominantly ponderosa pine. Current conditions

are diagnosed from the inventory, and compared to the target

conditions. To the extent that existing conditions differ from

and are not trending toward the target conditions over time,

some form of management intervention is indicated. This leads

to the third step in the process – prescription development. In

this step, one or more treatments are designed or selected for

manipulating existing forest conditions to create the desired

conditions, either immediately or over time. 

Implementation.—The fourth step of the prescription process

is implementation, which involves on-the-ground management

activities ranging from silvicultural cutting to treatment or

removal of activity fuels. If silvicultural treatments are simulat-

ed for FIA inventoried forest acreage, then implementation

involves database manipulation of tree records in accordance

with prescription guidelines.

Evaluation/Monitoring.—The final stage of the prescription

process involves evaluation and monitoring of stand conditions

following prescription implementation. Post-treatment stand

conditions are typically assessed to determine if the prescribed

treatments had the desired effects. In an FIA inventory context,

this step in the prescription process involves modeling and esti-

mating stand attributes such as fire hazard, treatment costs/rev-

enues, and future growth responses.

Simulating the Prescription Process

The 1999–2000 periodic FIA inventory for Montana (USDA

INT 1999a, 1999b) was used in this simulation of silvicultural

treatments to reduce crown fire hazard. Only dry, low- to mid-

elevation forests were included because these forests show the

greatest departure from historically sustainable conditions

(Fiedler et al. 2003). All silvicultural prescription process steps

were followed to simulate treatments within the FIADB:

1. Inventory.—All FIADB inventory plots were screened to

select those that qualified as ponderosa pine, Douglas-fir,

or dry lower mixed conifer forest types, based on species

composition and habitat type.

2. Diagnosis.—Conditions that contribute to high fire hazard

(high stand density, complex structure, composition of

late-seral species) were identified.

3. Prescription development.—Characteristics of a target

stand with low fire hazard (i.e., low to moderate density,

structure predominated by large ponderosa pine) were

incorporated into the comprehensive prescription.

4. Prescription implementation.—Two prescriptions (thin-

from-below and comprehensive) were proposed to reduce

fire hazard in subject FIA plots (stands).

5. Evaluation and monitoring.—Stands (pre- and post-treat-

ment) were evaluated for crown fire hazard using the Fuel

and Fire Extension (Scott and Reinhardt 2001) of the

Forest Vegetation Simulator (Beukema et al. 2000,

Crookston and Havis 2002, Wykoff et al. 1982). Harvest
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costs, product values, and slash treatment costs were esti-

mated using harvest cost models (Keegan et al. 2001),

databases (Bureau of Business and Economic Research

2001), and data collected from land management agencies

and the private sector, respectively.

The thin-from-below prescription (TB) removes all trees

up to 9 inches diameter, followed by treatment of activity fuels.

The comprehensive prescription (COMP) marks 40-50 square

feet per acre of mostly large serals to leave. Then it uses low

thinning to greatly reduce ladder fuels, and improvement/selec-

tion cutting to reduce density and remove undesirable trees in

the mid/upper canopy, followed by treatment of activity fuels

(Fiedler 2000; Fiedler et al. 1999, 2001). 

The two treatment prescriptions were applied to selected

FIA plots through development of a “marking” algorithm. The

algorithm feeds the inventory database table through a decision

matrix (silvicultural prescription logic) where each individual

tree record is sent either to a leave table or cut table, depending

on the tree’s size and species and on characteristics of other

trees in the stand. Leave tables are used to summarize post-

treatment stand conditions and model fire hazard. Cut tables

are used to determine the cost/revenue of implementing the sil-

vicultural cuttings and treating the slash.

The marking algorithm decision matrix varies by prescrip-

tion. For the TB prescription, trees sorted to the leave table

were greater than or equal to 9 inches in d.b.h. without consid-

ering residual stand density, structure, or species composition.

For the COMP prescription, trees sorted to the leave table were

based on an iterative process of selection preferences based on

density, structure, and species composition. Density of the

reserve stand was set at 45 square feet per acre for this simula-

tion. Species preference was set in order of ponderosa pine,

western larch, lodgepole pine, and Douglas-fir. Desired stand

structure was set on the basis of a target basal area per acre by

4-inch diameter classes: >20” (20 ft2/ac); 16-20” (10 ft2/ac); 12-

16” (7 ft2/ac); 8-12” (5 ft2/ac); 4-8” (2.5 ft2/ac); and <4.0” (0.5

ft2/ac). If insufficient basal area density was present in any

given diameter class, a second set of logic rules was used to

“borrow” basal area from other d.b.h. classes as needed to

reach the density target of 45 square feet per acre, while still

approximating the desired structure.

Simulation Output

The methods used in this study successfully simulated the silvi-

cultural prescription process, even the complex comprehensive

prescription that integrated several silvicultural cutting treat-

ments. Using each FIADB plot as an individual stand unit and

corresponding tree records as constituents of a hypothetical

“stand table,” allowed simulation of forest management activi-

ties at a statewide scale. Sorting the FIADB tree records

through a “marking” algorithm into cut and leave tables

enabled modeling post-treatment stand conditions and crown

fire hazard (fig. 1), as well as net revenues/costs associated

with alternative hazard reduction prescriptions (figs. 2 and 3).

Output of the treatment simulations showed that the

COMP treatment reduced fire hazard for most treated stands.

Crowning index, which is the windspeed necessary to maintain

Figure 2.—Distribution of acres by net revenue for the compre-
hensive restoration treatment (adapted from Fiedler et al. 2004).

Figure 1.—Distribution of acres by crowning index for existing
high-hazard forest conditions, and after thin-from-below and
comprehensive restoration treatments (adapted from Fiedler et
al. 2004).
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a crown fire once it has reached the main canopy, increased

dramatically following application of this treatment (fig. 1). In

contrast, TB treatment had only a slight effect on crown fire

hazard, with little change in crowning index from pre-treatment

levels (fig. 1). By using the cut-tree stand table to determine

treatment costs/revenues, it was evident that a large portion

(approximately half) of the stands receiving the COMP treat-

ment produced net revenues (fig. 2), while all stands receiving

the TB treatment required out-of-pocket expenditures (fig. 3). A

complete account of simulation results is presented in Fiedler et

al. (2004).

Conclusions

Silvicultural prescriptions can be simulated for large areas (e.g.,

major ownerships, States) by using basic database management

procedures to manipulate tree records in the FIADB. The data-

base procedures involve use of a marking algorithm to sort

individual tree records into separate leave and cut database

tables. These leave- and cut-tree tables allow modeling of post-

treatment fire hazard and the revenues/costs associated with

treatment activities. This approach also allows managers to

design hazard reduction treatments that are both effective and

cost-efficient. In addition, it can help policymakers evaluate

hazard reduction treatments for our Nation’s forests before they

are ever implemented on the ground. 
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Spatial Information Needs on the Fishlake
National Forest: Can FIA Help?

Robert B. Campbell, Jr.1, and Renee A. O’Brien2

Abstract.—National forest staff members are fre-

quently challenged to make assessments with existing

information. They rarely have the time or resources to

go to the field to gather new data specific to the ques-

tion at hand. Forest Inventory and Analysis (FIA) data

have proved useful in the past, but there is an increas-

ing need for spatial depictions of forest resources to

address management and planning issues. For exam-

ple, maps are needed to assess healthy stands, suitable

wildlife habitat, marketable harvest areas, desired

future conditions, and historical distribution of forest

types. The success of FIA-generated map products

hinges on good communication with map users

throughout the mapmaking process, adequate devel-

opment and accuracy assessment, ecological integra-

tion, and rigorous field testing.

This paper introduces the Fishlake National Forest (FNF) and

describes the collaboration that occurs between the Rocky

Mountain Research Station’s (RMRS) Interior West Forest

Inventory and Analysis (IWFIA) unit in Ogden, Utah, and FNF.

This paper also provides the contextual backdrop for multiple

papers presented at this conference that report various projects

underway on the FNF (Edwards et al. 2004, Frescino and

Moisen 2004, Schultz, R.J. 2004, Terletzky and Frescino 2004).

The FNF benefited immensely from interactions with the

RMRS-IWFIA staff in Ogden.

The Forest needs mapped information, and FIA products

that spatially refine data would benefit the FNF. This paper

presents a background discussion on the goals of the Forest to

sustain biodiversity and maintain properly functioning ecosys-

tems. It follows with a brief historical background of the utility

of past IWFIA products and the coordination between the

Forest and IWFIA for meeting the needs of the Forest. It ends

with a discussion of the current situation in the Forest, and

again, the need and desire for IWFIA spatial products. The

paper is as much about the process as it is about the products.

Thus, this paper describes the synergy that results from the col-

laboration of Forest managers and specialists with Station sci-

entists and researchers. 

The FNF occupies about 1.5 million acres in south-central

Utah (fig. 1). The Supervisor’s office is in Richfield on I-70, 40

miles east of the western terminus of I-70 with I-15. The Forest

features incredible landscape and biological diversity.

Elevations range from 5,000 feet to over 12,000 feet. The high-

est point lies in the southwestern part of the Forest; Delano

Peak in the Tushar Mountains stands at 12,169 feet. In addition

to ragged peaks, sweeping high elevation plateaus are blanket-

ed with mixed-conifer and aspen forests. The Forest’s eastern

edge is bounded by the arid, rugged terrain of Capitol Reef

1 Ecologist, U.S. Department of Agriculture, Forest Service, Fishlake National Forest, 115 East 900 North, Richfield, UT 84701.
2 Lead Ecologist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 507 25th St., Ogden, UT 84401–2394.

Figure 1.—Vicinity map of Utah and the Fishlake National Forest.
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National Park and the San Rafael Swell. Annual precipitation

on the Forest varies from less than 8 inches to more than 40

inches. Recent assessments focused on Monroe Mountain, the

Beaver River Watershed, and the Fishlake Basin/Sevenmile

Creek in the upper Fremont River drainage. Fish Lake, at 8,800

feet and about 5 miles long by 1 mile wide, is deep, cold, and

considered by many to be Utah’s “crown jewel.” Wilderness

areas, either existing or proposed, do not occur on the Forest.

Resource themes important to the Forest’s landscapes include

fuels, timber, and wildlife. Also, the FNF is in the initial revi-

sion phase of land and resource management planning.

Definitions and Concepts

Biodiversity and Properly Functioning Condition

Biological diversity is often described in terms of composition,

structure, and function. Composition is described by the num-

bers and kinds of plants and animals. Structure relates to the

sizes, shapes, and/or ages of the plants and animals. Function

(or process) has to do with what happens in the ecosystem. For

example, disturbance regimes like fire, flood, or windthrow are

all types of functions and ecosystem processes. Also, function

includes the contribution each plant and animal species pro-

vides to the ecosystem.

The Forest Service’s Intermountain Region began a

process in 1996 that expanded the Bureau of Land

Management’s concept of proper function condition in riparian

areas to the properly functioning condition (PFC) of the major

upland vegetation cover types (USDA Forest Service 1998,

2000a). This PFC approach provided an ecological basis for the

rapid assessment of general conditions of sustainability on large

landscapes. Properly functioning condition is defined with this

statement (USDA Forest Service 1998, 2000a, 2000b):

Ecosystems at any temporal or spatial scale are in prop-

erly functioning condition when they are dynamic and

resilient to perturbations to structure, composition, and

processes of their biological or physical components.

Because that definition is fairly technical, Campbell and Bartos

(2001) suggest another definition for use with general audi-

ences (e.g., school classes or public meetings) that is less tech-

nical, yet attempts to convey the same meaning:

Properly functioning condition exists when soil and water

are conserved, and plants and animals can grow and

reproduce and respond favorably to periodic disturbance.

PFC is not a single state in space or time. PFC includes a range of

situations and conditions that allow for the full variation of com-

position and structure within the processes of sustainable function-

ing ecosystems for that specific major vegetative cover type.

Often our stakeholders, both internal and external, Forest

employees, county commissioners and city leaders, Forest users

(permittees, recreationists, loggers, summer home owners, etc.)

and students (younger or older) really do not care what the sta-

tistical difference or R2 is if they can not see the difference on

the ground. Maps that display the elements of biodiversity, par-

ticularly composition and structure, would be useful to describe

and explain concepts of biodiversity. 

Major Vegetation Communities and Biodiversity Loss

Major vegetation cover types on the FNF include spruce/fir,

aspen, mixed-conifer/aspen, ponderosa pine, curl-leaf mountain

mahogany, Gambel oak, pinyon/juniper, and

sagebrush/grass/forb. These cover types are fire adapted and

have many traits that allow periodic fire to be a stimulant and a

healthy process to sustain them.

Periodic fires maintain structural diversity within vegetation

cover types. Cover type conversions, in the absence of fire, result

in a loss of compositional biodiversity. The FNF now has an

absence of historical fire regimes combined with substantial

increases in ungulate use, both domestic and wildlife. With these

changes in disturbance patterns, aspen is being replaced by

spruce/fir; aspen is being replaced by sagebrush/grass/forb; and

sagebrush grass forb is being replaced by pinyon/juniper. This

results in loss of ecosystem function; biodiversity and sustain-

ability are compromised. Maps of the structure and composition

of major vegetation cover types would be especially useful to

forest managers to demonstrate potential loss of function.
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History, Applications, and Use of IWFIA
Products

Second Generation Use of Data and Synergy

Forest specialists are often challenged to complete assessments

with existing information. The second generation use of data is

simply this: use previously gathered data to answer questions

that were not conceived at the time the original data were col-

lected. This results from collaboration that leads to synergy.

A landmark meeting involving IWFIA researchers and

Intermountain Region employees was held in Ogden, Utah, in

November 1995. Most of the six national forests in Utah were

represented, and scientists from other Station research work

units attended. The standard IWFIA products were displayed

and discussed. Then the question was posed, what other prod-

ucts would be useful? It would be difficult to overstate the

value of the synergy that began at that one meeting!

Resource Reports for Utah Forests

One idea expressed at the November 1995 meeting was the desire

to have a brief report of the forest resources. The outgrowth of

that idea expanded to a glossy, forest report for each of the six

forests in Utah (O’Brien and Brown 1998, O’Brien and Collins

1997, O’Brien and Pope 1997, O’Brien and Tymcio 1997,

O’Brien and Waters 1998, O’Brien and Woudenberg 1998).

Ron Sanden, FNF Forest Silviculturist (retired), described

his experiences with and the value of the Forest Resources of

the Fishlake National Forest (O’Brien and Waters 1998) (per-

sonal communication):

I took copies of the Fishlake report to all of the meetings

that I attended that first year or two. I love the report. It

is the most valuable handout or pamphlet that I have

used to explain the Fishlake’s forest resources. 

The collaboration and synergy continued as these reports were

prepared. Additional input from FNF employees led to the

development of a bar chart in the Fishlake report that displayed

acres by age class for each of the forest types. Actually, the bar

chart displayed the magnitude of structural diversity within

each forest type. The information proved quite useful during

various assessments completed on the FNF. Now we need this

kind of information on structural diversity mapped and dis-

played spatially.

Initial Use of IWFIA Data

Another outgrowth of the November 1995 meeting was to

query the IWFIA database in ways that demonstrated the mag-

nitude of aspen decline in Utah. Aspen decline occurs when

landscapes with aspen are outside of properly functioning con-

dition. The results of these refined queries of the IWFIA data-

base showed that the six forests in Utah have had nearly a

60-percent decline in aspen forest types from nearly 2.1 million

acres to less than 0.9 million acres (Bartos and Campbell

1998a, 1998b). Again, managers would benefit greatly if this

information were mapped.

The FNF completed a forestwide assessment of historical,

existing, and desired vegetation conditions during 1997 and 1998

as a part of its Prescribed Natural Fire Plan (Jackson et al. 1998).

(The current terminology is now Wildland Fire Use Plan.) The

IWFIA data were extremely useful in developing the assumptions

used to determine what the historical abundance of the major veg-

etation cover types had been. Forest Supervisor Rob Mrowka

awarded Renee O’Brien a Certificate of Merit for special effort in

collaboration and for displaying forest resources data that allowed

interpretation of historical vegetation cover for the Fishlake

National Forest’s Prescribed Natural Fire Plan.

IWFIA data are also used to help people understand how

much the Forest’s landscapes have changed in the past 200 years.

A table of acres in each stand-age class by forest type (O’Brien

1999) was derived from a consistent, uniform, FIA data set for all

of Utah. The 50-year stand-age classes included nearly 15 million

acres of forests and woodlands for all ownerships in the State.

Again, however useful this information is now, it would be highly

desirable to have this structural diversity mapped.

Use of the 4 C’s to Determine Desired Conditions

Campbell and Bartos (2001) describe 4 C’s used to determine

desired conditions. 

Commitment—devote the time and resources to allow the 

process to occur and mature. 

Communication—talk and interact willingly and openly 

with each other. 

Collaboration—promote intense and enthusiastic sharing 

of information.

Cooperation—work together; walk the talk; make it happen!
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These concepts certainly apply to determining the use of

IWFIA map data as well. The RMRS-Ogden IWFIA group con-

tinues to promote these 4 C’s. During the past 3 years, Renee

O’Brien (RMRS), Gretchen Moisen (RMRS), Tracey Frescino

(RMRS), and Tom Edwards (Associate Professor, Utah State

University) made three trips to the FNF Supervisor’s Office in

Richfield. A variety of different mapping projects were dis-

cussed and planned for the FNF. These efforts also led to

Randy Schultz (USU graduate student) spending two summers

on the Fishlake gathering wildlife habitat data for his project.

Ogden-IWFIA researchers interacted on numerous occasions

with more than a dozen Forest specialists. The FNF benefited

from these associations and the resulting synergy with the

IWFIA researchers. Forest specialists could not have completed

various assessments without the IWFIA products.

Current Situation

Studies in the Beaver River Watershed

The FNF is fortunate to have several studies completed, ongo-

ing, or proposed in the Beaver River watershed with about

123,000 acres administered by the Forest Service. Researchers

from six units of RMRS and Utah State University have visited

this watershed. The Beaver River drainage was the FNF’s flag-

ship watershed assessment for 2002. As a result of that assess-

ment, nearly 20 projects were identified as ways to restore and

sustain properly functioning conditions. The IWFIA group is

working on structural diversity and wildlife habitat maps, as

well as projects with ultra-low-level aerial photography and

high resolution mapping from satellite images. The watershed

is a focus area for a large fuels modeling project in addition to

a tree-ring analysis of fire history. RMRS scientists also desire

to study treatments in the pinyon/juniper type and forage reduc-

tion associated with decline of the aspen cover type.

Was it coincidence that all of these studies included portions

of the Beaver River drainage? No, it did not just happen. The

FNF began to focus attention on the drainage a few years ago.

Since the FNF is considered by many to be a research-friendly

study area, when RMRS scientists and university professors

asked if there were any areas where a particular study might

occur, the response from Richfield was usually the Beaver River

watershed. And some of the studies are there because of

serendipity. Whatever the reason, the result is that the FNF is

amassing a substantial database about this biologically diverse as

well as socially and economically important watershed.

Mapping of Spatially Explicit Information

We tie back to the elements of biodiversity and consider com-

position and structure again. Most forests have compositional

diversity data mapped to some extent. However, many forests

do not have forestwide maps more refined than for land type

associations. The FNF and most other forests lack maps of

structural diversity. However, an exception to this would be

forests with predominantly timber resources.

The FNF is beginning the forest plan revision process.

IWFIA products would be useful at many stages of the revision

process. Such products will provide credible scientific under-

pinnings for the analyses that will lead to a revised land and

resource management plan. Current needs for specific informa-

tion include hazardous fuels treatments, fuel loadings, timber

harvests linked to spruce beetle epidemics, and wildlife man-

agement indicator species (e.g., goshawk, cavity nesters, sage-

brush guild, deer, and elk).

Resource Questions and Application Needs
for IWFIA Products

Display Spatially Explicit Information for Structural

Diversity

Vegetation cover is mapped for the entire Forest based on soils

maps scaled at 1:24,000. The IWFIA data corroborated FNF Soil

Scientist Mike Smith’s forestwide existing vegetation/soils map

done at a scale of 1:24,000 based on the documentation collected

from various soil polygons. These vegetation/soils maps are used

regularly for project evaluation and implementation. IWFIA

researchers place high value on and have great interest in these

soils maps. New IWFIA products might further corroborate these

data layers and reinforce the concept of compositional diversity.

Mapping of structural diversity is key! Specific examples are dis-

tribution of age classes by cover type for all vegetation types

including the non-forest types and structure of shrub communities

and woody understories. Possibly maps of historical fire patterns
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and other disturbances could be derived which would allow func-

tion and process to be addressed.

Recently, IWFIA maps were used to stratify sample points

for a new stand exam contract for the FNF. Forest specialists

realize that not all IWFIA layers are equally useful. Some

IWFIA layers appear linked in theme, concept, and display.

Maps of biomass, volume, basal area, and density may be cor-

related and show essentially all the same. Some questions may

require additional field investigation. For example, does the

IWFIA volume layer equate to biomass or fuel loading as

defined by fuels specialists?

Scientific Underpinnings for Forest Plan Revision

Forest planning and resource specialists anticipate that IWFIA

maps and other products will provide scientific underpinnings

for the forest plan revision process. For management indicator

species (MIS), the measure is status and/or trends in popula-

tions, habitats, and ecological conditions (USDA Forest Service

2000b). “Selected species populations and habitats representing

land and resource management plan objectives that will be

tracked to measure progress toward the (2006) milestone” for

the area that contains the FNF include aspen and sage grouse in

the sagebrush-steppe habitats. Spatially explicit information

would be valuable to help meet these MIS monitoring meas-

ures and milestones.

IWFIA maps that display information spatially will:

1. enhance our understanding of properly functioning condi-

tion and desired conditions

2. tie directly to aspects of fire, fuels, timber, and wildlife

management

3. support the forest plan revision process

Summary

In addition to knowing what resources the FNF has, spatially

explicit displays of where those resources occur will be benefi-

cial for multiple issues. To the extent that such maps address

structure, composition, and function, these products will link to

discussions of biodiversity and sustainability within the frame-

work of properly functioning condition. Such IWFIA products

would relate to the resource questions and application needs

that exist on the FNF. It will be important to continue to seek

opportunities to promote synergy in the development and use

of the new IWFIA spatial products that are becoming available.
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Predictive Mapping of Forest Attributes on
the Fishlake National Forest

Tracey S. Frescino and Gretchen G. Moisen1

Abstract.—Forest land managers increasingly need

maps of forest characteristics to aid in planning and

management. A set of 30-m resolution maps was pre-

pared for the Fishlake National Forest by modeling

FIA plot variables as nonparametric functions of

ancillary digital data. The set includes maps of vol-

ume, biomass, growth, stand age, size, crown cover,

and various aspen characteristics. Ancillary data lay-

ers included pre-classified TM data, raw TM bands,

and topographic variables. Predictive models were

built using automated multivariate adaptive regression

splines (MARS), and refined using local knowledge

and digital orthoquads (DOQs). Validation and appli-

cation issues are discussed.

National forest planners must frequently make decisions using

existing information (Campbell and O’Brien 2004). There is

rarely time or resources to collect new data specific to each

question encountered. Tabular summaries and analytical reports

prepared by the Forest Inventory and Analysis program (FIA)

have proven useful for past assessments, but there is an

increasing need for spatially explicit delineations of forest data.

For example, maps are needed to assess suitable wildlife habi-

tat, marketable harvest areas, desired future conditions, and his-

torical distributions of forest cover types. 

Our study demonstrates a method for generating spatially

explicit maps of various forest attributes for use on national

forests. The overall objective was to generate a series of maps

to facilitate national forest management planning and to assist

with a wildlife modeling study of cavity-nesting birds in aspen

stands (Schultz 2002; Schultz et al. 2004; Edwards et al. 2002,

2004). Specifically, our objectives were to (1) build predictive

models integrating FIA plot data with 30-m resolution digital

data using multivariate adaptive regression splines (MARS)

and geographical information systems (GIS) techniques; (2)

refine and validate the models with statistical and visual error

estimates; and (3) generate 30-m resolution maps of various

FIA variables.

Methods

Study Area

The Fishlake National Forest comprises approximately

1,434,500 acres of land located in central Utah (fig. 1). It is a

diverse forest with elevations ranging from less than 5,000 feet

to over 12,000 feet. The forest supports a variety of vegetative

cover types and forest resources. Pinyon-juniper cover types

occur at low elevations and provide valuable habitat for deer,

elk, and various small mammals and songbirds. Ponderosa pine

and aspen cover types appear at higher elevations. Ponderosa

pine provides valuable wildlife cover and is a valuable com-

1 Interior West Forest Inventory and Analysis, Rocky Mountain Research Station, U.S. Department of Agriculture, Forest Service, 507 25th Street, Ogden, UT 84401.

Figure 1.—Training data extents: Fishlake National Forest
boundary and the Nevada-Utah Mountain ecoregion boundary.
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mercial tree species. Aspen is widely known to be prime

wildlife habitat, affording beneficial cover, water, and food for

a variety of wildlife species. Aspen cover types are being

threatened by successional climax species, such as subalpine

fir, white fir, and spruce, which are crowding out the aspen and

diminishing the benefits to wildlife. Spruce-fir cover types

occur at the higher elevations. 

The Forest falls almost entirely within Bailey’s (1980)

Nevada-Utah Mountain ecoregion province, revised by Homer

et al. (1997) (F-1). FIA data were available throughout this

ecoregion. Because this ecoregion is ecologically similar to the

Fishlake National Forest, we considered modeling forest char-

acteristics for both areas.

Data

There were 836 forested locations within the Nevada-Utah

Mountain ecoregion and 231 forested FIA locations within the

Fishlake National Forest. We identified a set of eight FIA forest

attributes to assist with management planning (tree basal area,

tree volume, tree biomass, tree crown cover, trees per acre,

quadratic mean diameter, stand age, and net annual growth),

and a set of six additional variables needed for modeling aspen

habitats for cavity-nesting birds (aspen presence, aspen basal

area, percent aspen basal area, average tree height, snag densi-

ty, and aspen rot presence). We used data collected on the FIA

plots to compile individual tree measurements and combined

them with stand variables to produce location-level summaries

of all variables (table 1). 

Data extraction and mining routines were performed with-

in a GIS environment. We acquired a set of twelve 30-m reso-

lution digital layers that would be appropriate for predicting

forest attributes (table 2). Seven of these layers were based on

30-m resolution Enhanced Thematic Mapper (ETM) satellite

data obtained through the Multi-Resolution Land Characteris-

tics (MRLC) consortium. Three were raw spectral bands, one

was a normalized difference vegetation index (NDVI) derived

from the raw spectral bands, and the remaining three were clas-

sified ETM products generated by the Land Cover

Characterization (LCC) program of the U.S. Geological Survey

(USGS) Earth Resources Observation Systems (EROS) Data

Forest Attribute (Alias) Units Description

Tree basal area (BALIVE) Sq. ft./acre Basal area of live trees 1 inch diameter and greater

Tree volume (NVOLTOT) Cu. ft./acre Net volume of live trees 5 inches diameter and greater

Tree biomass (BIOMASS) Tons/acre Woody biomass per acre of live trees 1 inch diameter and greater

Tree crown cover (CRCOV) % Crown cover of live trees 1 inch diameter and greater

Trees per acre (TPA) # Trees Trees per acre of live trees 1 inch diameter and greater

Stand age (STAGE) Years Weighted average age of the stand

Tree diameter based on the weighted average basal area of live timber  
Quadratic mean diameter (QMD) Inches trees 1 inch diameter and greater and live woodland trees 3 inches 

diameter and greater

Annual net volume growth per acre of live growing-stock timber trees 5 
Net annual growth (NGRWCF) Cu. ft./acre inches diameter and greater and woodland trees 3 inches diameter 

and greater

Aspen presence (ASP) Yes/no Presence of aspen trees 1 inch diameter or greater

Aspen basal area (ASPBA) Sq. ft./acre Basal area of live aspen trees 1 inch diameter and greater

Percent aspen basal area % Percent basal area of live aspen trees 1 inch diameter and greater

Average tree height (TRHTAVG) Feet Average height of dominant or codominant trees

Snag density (SNAGNUM) # Snags Snags per acre of standing dead trees 5 inches diameter and greater

Aspen rot presence (ASPROT) Yes/no Presence of aspen disease

Table 1.—FIA forest attributes, including units and description
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Center (EDC) (Huang et al., in press). The other five predictor

variables were derived from 30-m resolution National Elevation

Dataset (NED) digital elevation models (DEMs), including eleva-

tion, aspect, slope, hillshade, and topographic class. Elevation

was extracted directly from the DEMs while aspect, slope, and

hillshade were derived from the DEM using functions from the

GRID module in ArcInfo GIS (ESRI Inc., Redlands, CA). The

topographic class variable was derived from the DEM using a

customized arc macro language AML (Zimmerman, unpublished

data). The aspect variable was transformed from degrees to a

symmetric radiation wetness index, calculated using the follow-

ing formula (Roberts and Cooper 1989):

Aspect = 1 – cos(aspect – 30)

2

This transformation assigns the highest values to land oriented

in a north-northeast direction, the coolest and wettest orienta-

tion in Utah. The hillshade variable was derived using an illu-

mination angle of 225 degrees. 

Models

Predictive models of various forest attributes were generated

using Multivariate Adaptive Regression Splines (MARS)

(Friedman 1991, Prasad and Iverson 2002, Steinberg et al.

1999). MARS is a flexible, nonparametric regression modeling

tool that automatically finds the complex relationships between

a response variable and a set of continuous and discrete predic-

tors. MARS builds models by fitting numerous piecewise linear

regressions, and approximates nonlinearity by allowing the

slope of the regression lines to change over different intervals

of the predictor space. These intervals are defined by basis

functions, which are the building blocks of a MARS model.

MARS starts by building a large and overly complex model

with many basis functions. An optimal model is then found by

deleting basis functions in order of least contribution to model

performance. This prevents over-fitting and ensures that the

mode will stand up to new data for prediction applications such

as mapping. Features of MARS that make it particularly well

suited to mapping forest attributes are that it handles both cate-

gorical and continuous variables, selects the relevant predictor

Forest Attribute (Alias) Units Description

ETM Band 3 (ETMB3) Brightness value 
(0-255) Red (0.63 - 0.69 micrometers); June 2000–leaf on

ETM Band 4 (ETMB4) Brightness value 
(0-255) Near-infrared (0.76 - 0.90 micrometers); June 2000–leaf on

ETM Band 5 (ETMB5) Brightness value 
(0-255) Mid-infrared (1.55 – 1.75 micrometers); June 2000–leaf on

ETM NDVI (ETMVI) 0.0 – 1.0 Normalized Difference Vegetation Index; June 2000–leaf on

2:Nonforest; 10:Pinyon/juniper;15:Douglas-fir; 20:Ponderosa pine; 

Classified ETM (LCC10) 10 classes 30:Spruce/fir; 35:Lodgepole; 50:Other western softwoods; 
75:Aspen/birch; 85:Western oak; 90:Other western hardwoods (based 
on June 2000–leaf on ETM)

Classified ETM (LCC4) 4 classes 2:Nonforest; 41:Deciduous; 42:Evergreen; 43:Mixed (based on June 
2000–leaf on ETM)

Classified ETM (LCC2) 2 classes 1:Forest; 2:Nonforest (based on June 2000–leaf on ETM)

Elevation (ELEV) Meters Elevation from mean sea level

Aspect (TRASP) 0 to 1 Transformed index representing radiation and wetness 

Slope (SLP) % The rate of change from one cell to the next

Hillshade (HLSHD) Brightness value Shaded relief considering shadows and an illumination angle of 225 
(0-255) degrees

Topoclass  (TOPOCL) 4 classes Classified to identify topographic features (1:Ridge;, 2:Slope; 3:Toe 
slope; 4:Valley bottom)

Table 2.—Ancillary data predictor variables, including units and description
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variables and specifies their relationship with the response

automatically, determines the level and nature of interactions as

well as transformations, handles missing values, protects

against over-fitting, and is fast and efficient for large data sets.

We examined the effect of using training data from the two

different data extents, the Fishlake National Forest and the

Nevada-Utah Mountain ecoregion. In all cases, we ran the

models with a maximum of 100 basis functions, specified ten-

fold cross-validation to select model degrees of freedom and

prevent over-fitting, and allowed second-order interactions

between predictor variables. Model performance was evaluated

and refined by looking at R2 and mean square error measures

generated by MARS on a subset of the forest variables. We also

visually assessed the model predictions using parallel screen

displays of digital orthoquads (DOQs) and the output maps. 

Maps

Maps were generated within a GIS environment. MARS output

was converted to Arc Macro Language (AML) using Visual

Basic (J. Nelson, unpublished data) and then run in Arc GRID.

Thirty-meter resolution, spatially explicit maps were output for

each FIA attribute. The nonforest class from the LCD classi-

fied-ETM product was used to mask the nonforest areas on the

ground. Alternative approaches to applying MARS models to

large geographic areas using Iterative Data Language are dis-

cussed in Terletzky and Frescino (2004).

Results

The models using the 836 training locations within the Nevada-

Utah Mountain ecoregion performed better than the models

using 231 training locations within the Fishlake National Forest

in most cases. Table 3 shows the R2 and MSE results from

MARS for eight different FIA attributes, comparing the models

built using different training data sets. The numbers in bold

represent higher R2 and lower MSE values, indicating better

model fits. For five of the eight attributes, the R2 values were

higher when using the Nevada-Utah Mountain ecoregion data

set. MSE values were lower when using the Nevada-Utah

Mountain ecoregion data set for seven of the eight attributes. 

Figure 2 shows an example of the visual assessment for mod-

els predicting aspen presence, comparing prediction results with

what is displayed from a DOQ. The visual assessments of the pre-

dictions from the models built from the Nevada-Utah Mountain

ecoregion data set appeared better than the predictions from the

models built using the Fishlake National Forest data set. 

Discussion and Conclusions

Predictive modeling is not an exact science. Many factors influ-

ence model performance. One is the extent of the training data

set. With several examples and evaluation procedures, we

Figure 2.—Visual assessment of aspen presence predictions compared to a DOQ. a. DOQ without predictions. b. Predictions
based on a model built using the Nevada-Utah Mountain ecoregion data set; c. Predictions based on a model built using the
Fishlake National Forest boundary data set. White represents the predicted aspen presence.
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determined that the models performed “better” when using a

larger data set. Although many of the data were outside the

area of interest, the data were ecologically similar and signifi-

cantly helped to establish functional relationships between the

forest attributes and the ancillary data products. 

What does “better” mean? Although we were able to

objectively compare model performance using R2 and MSE

measures, further analysis is needed to validate the model pre-

dictions using independent data and true tenfold cross-valida-

tion procedures. More importantly, global measures of map

accuracy often cannot capture what is obvious to a forest land

manager wanting to use predictive maps in real-world applica-

tions. Further investigation is needed to build measures of utili-

ty into the picture.

As mentioned previously, one of the features of MARS is

that it selects the relevant predictor variables. This allows us to

see which predictor variables most influence the occurrence of

the different forest attributes. Table 4 shows the predictor vari-

ables that were used to build the final models for eight forest

attributes. The order of the variables corresponds to the relative

importance of each in the model, or the amount of variance

reduced by each. In general, the variables that seemed to have

the most influence were the ETM raw spectral bands 5 and 3,

elevation, the classified-ETM 10 and 4 classes, and the topo-

graphic class. This makes sense since band 5 (mid-infrared)

characteristically indicates vegetation moisture and band 3

(red) responds to chlorophyll absorption. Elevation is a surro-

gate for temperature and moisture as well as the topographic

class that distinguishes ridges from slopes from valley bottoms.

The classified-ETM products would help distinguish differ-

ences between different forest classes, removing shadows and

other features that the raw imagery may confuse. 

Modeling forest attributes is an attempt to delineate char-

acteristics in the landscape using available field data and ancil-

lary resources, such as satellite imagery and topographic data.

We assume there are significant relationships between these

attributes and ancillary resources. Further research is needed to

refine these relationships and obtain new ancillary products to

build more accurate models. 

Attribute Training 
data set R2 MSE

BALIVE Fnf 0.053 4,575.91

Uteco 0.284 3,012.26

NVOLTOT Fnf 0.419 1,255,907.10

Uteco 0.525 1,110,762.60

BIOMASS Fnf 0.348 372.43

Uteco 0.476 330.91

CRCOV Fnf 0.438 290.15

Uteco 0.385 295.51

TPA Fnf 0.335 110,635.50

Uteco 0.349 96,821.37

Stage Fnf 0.046 4,419.27

Uteco 0.114 3,335.20

Trhtavg Fnf 0.739 308.74

Uteco 0.554 195.20

Aspba Fnf 0.478 2,110.66

Uteco 0.396 1,956.01

Table 3.—R2 and MSE results from MARS for models built

using the Fishlake National Forest (Fnf) data set and Nevada-

Utah Mountain ecoregion (Uteco) data set (numbers in bold

represent the best-fit model)

Forest attribute Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7

BALIVE ETMB5 ELEV LCD10 LCD2 TOPOCL

NVOLTOT ELEV ETMb3 ETMB5 LCD4 TOPOCL LCD10 ETMB4

BIOMASS ETMB5 ELEV LCD10 TOPOCL

CRCOV ETMB3 LCD4

TPA LCD4 ELEV ETMB5

STAGE LCD4 ELEV ETMB5

TRHTAVGN LCD10 ETMB3 ELEV TOPOCL

ASPBA LCD4 LCD10 ETMb3 ETMb5 ELEV SLP

Table 4.—Relevant variables contributing to model variance reduction
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National forest planners are enthusiastic about incorporat-

ing these spatially explicit products into their planning proce-

dures and integrating them with other digital data to help

understand the spatial diversity in the landscape and make deci-

sions related to wildlife habitat, marketable harvest areas,

desired future conditions, and so on. Wildlife modelers are also

enthusiastic about adding spatially explicit maps of specific

attributes into their models. These maps will provide valuable

information about structural components of the forest and allow

predictions of wildlife species, spatially across the landscape. 
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TIGER 2000 and FIA

Joseph McCollum and Dennis Jacobs1

Abstract.—The legal foundations of the FIA (Forest

Inventory and Analysis) program are laid out. Upon

those foundations are built a geographical definition of

the United States and its components, and how apply-

ing that definition might change from decade to

decade. Along the way, the American system of

weights and measures as well as the unusual geography

of the Commonwealth of Virginia are explained. Some

recommendations are offered for the FIA program.

This paper is primarily about the geography of the United

States as it pertains to the FIA program. Some of the details

discussed may seem unimportant but are included in the inter-

est of thoroughness. 

Several maps (U.S. Census Bureau 2000a) appear throughout

the paper. To conserve space, figure 1 serves as a common key. 

Legal Foundations

The Agricultural Research, Extension, and Education Reform Act

of 1998, Public Law 105-185, was integrated into the United

States Code as 16 U.S.C. 1642(e). The expanded citation is Title

16, Chapter 36, Subchapter II, Section 1642, Subsection (e). That

law mandates the FIA program to survey the forest resources of

the United States. Later in the same subchapter, 16 U.S.C.

1645(f) (Office of the Law Revision Counsel 2000) defines what

the United States is:

For the purposes of this subchapter, the terms “United

States” and “State” shall include each of the several

States, the District of Columbia, the Commonwealth of

Puerto Rico, the Virgin Islands of the United States, the

Commonwealth of the Northern Mariana Islands, the

Trust Territory of the Pacific Islands, and the territories

and possessions of the United States.

This provision was part of the Forest and Rangeland

Renewable Resources Research Act of 1978 (Public Law 95-

307), which became law on June 30, 1978. 

The TTPI (Trust Territory of the Pacific Islands), entrusted

to the United States by the United Nations in 1947, no longer

exists. It consisted of what is now the NMI (Northern Mariana

Islands), the RMI (Republic of the Marshall Islands), the FSM

(Federated States of Micronesia), and Palau (The Republic of

Palau). The NMI became a commonwealth of the United States

in January 1978. The FIA program has announced its intention

to survey the TTPI as it was defined at the time of the passage

of Public Law 95-307 (USDA 1999). 

The territories and possessions referenced in 16 U.S.C.

1645(f) are listed in table 1 (Bureau of the Census 1994,

Central Intelligence Agency 2002). They are all in the Pacific

Ocean except for Navassa Island in the Caribbean Sea. Also

listed are the land and water area of each in mi2 (square miles)

and km2 (square kilometers). Surface water estimates for the

smaller possessions are not available, but maps and tables

(Central Intelligence Agency 2002) show no inland water. 

The Census Bureau (Bureau of the Census 1971) pub-

lished the area of the Trust Territory at 717 mi2 of land and

7,772 mi2 of water. Data from Bryan (1971) suggest this esti-

mate was primarily coastal water and did not include territorial

sea. After the NMI became a commonwealth, land estimates

were revised to 533 mi2 for the TTPI and 184 mi2 for the NMI

1 Computer Specialist and Research Forester, U.S. Department of Agriculture, Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN
37919 and 201 Lincoln Green, Starkville, MS 39759, respectively.

Figure 1.—Key for maps.
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(Bureau of the Census 1981). They did not issue surface water

estimates, but maps (Bureau of the Census 1982) indicate little

inland water, if any. In 1986, the RMI and the FSM gained

independence. In the next decade, the Census Bureau’s estimate

for Palau was 177.3 mi2 of land and 452.6 mi2 of water (Bureau

of the Census 1994), including 40.1 mi2 of inland water. The

estimates for the NMI were revised to 179.0 mi2 of land and

1,770.9 mi2 of water, including 2.2 mi2 of inland water. In 1994,

Palau gained independence. 

The latest estimates from the CIA (Central Intelligence

Agency) report the RMI at 181.3 km2 (70.0 mi2) of land, the

FSM at 702 km2 (271 mi2), and Palau at 458 km2 (177 mi2) of

land (CIA 2002). The same source reports no inland water. 

TIGER

TIGER files (Topologically Integrated Geographic Encoding

and Referencing files) are the long-awaited precise digitized

boundaries of census land and census water, first released in

1992. Upon that version of TIGER was laid the hexagon grid

used for placing FIA plots. A hex center was assigned to a state

if it landed in that state according to TIGER 1992. 

The data are hierarchical, with States and State-equivalents

at the top of the hierarchy. County-equivalents are one level

below. In the several States, county-equivalents are counties, but

also independent cities in Maryland, Missouri, Nevada, and

Virginia, as well as parishes in Louisiana, and boroughs, census

divisions, and the Municipality of Anchorage in Alaska. The

District of Columbia is not divided into county-equivalents. In

the territories, county-equivalents are municipios in Puerto Rico,

islands in the Virgin Islands, municipalities in the NMI, and

islands and districts in American Samoa. The Census of

Agriculture (NASS 1996) reports Guam by election districts,

although TIGER views such districts as minor civil divisions and

all of Guam as one county-equivalent. To date, the only posses-

sion smaller than American Samoa for which TIGER files are

produced is the Midway Islands, in one county-equivalent. 

Several levels below the county-equivalent level are census

tracts and beneath that level are census block groups and census

blocks. Further details may be found in the Census 2000

TIGER/Line Technical Documentation (U.S. Census Bureau

2000b).

According to the Geographic Areas Reference Manual (U.S.

Census Bureau 1994), area estimates were calculated from

TIGER, but no further details were given, such as projection

information. Raw TIGER data are in latitude and longitude. To

calculate acres, one must project the data, at least indirectly. 

There are many different projections. Since the users are

interested in total surface area, it makes sense to use an equal-

area projection. The Cylindrical Equal Area projection pre-

serves cardinal directions in its equatorial aspect.

The Lambert Azimuthal Equal Area projection, based on a

plane, preserves area and distance from the projection origin.

Far away from the origin, the projection starts to bend back on

itself and thus should not be used for an area much larger than

a continent. The Albers Equal Area projection is based on a

cone. It appears that for many counties in the conterminous

United States, the Albers Equal Area projection, North

American Datum of 1983, GRS (Geodetic Reference System)

1980 Spheroid, standard parallels of 45º 30’ N. and 29º 30’ N.,

with projection origin at 96º W. and 23º N., gives results that

are nearly equal to those in the gazetteer.

Other choices are available. Although it is not quite equal

area, State Plane is popular in the land surveying community.

One caveat is that in South Carolina, “State Plane Feet” means

International Feet, although acres are still in U.S. Survey units.

As with UTM (Universal Transverse Mercator), the zones do

not stitch together.

Although the exact amount of surface area varies some-

what with the choice of projection, TIGER files confirm 2.5

mi2 (6.4 km2) of land, no inland water, and estimate about 140

mi2 (360 km2) of coastal water and territorial sea for the Midway

Figure 2.—Suggested Metric Equivalents table.
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Islands. The other small possessions of the United States are

about as compact as the Midway Islands; for them, one would

expect a similar amount of coastal water and territorial sea.

One might think that the various equal-area projections

might give identical answers, at least for identical spheroids.

They would for sufficiently densified arcs, but GIS

(Geographic Information Systems) programs assume a straight

line between the points of a polygon in the current projection. 

Area Measurement

Since one can get different answers depending on choice of pro-

jection as well as choice of software and computer platform, it

might be best to see what areas the Census Bureau has published.

The Area Measurement Reports (Bureau of the Census

1970) listed land and inland water for each county-equivalent

to a 10th of a square mile, as well as the number of square

miles of offshore water (coastal water, territorial sea, and Great

Lakes water) for each state. 

The Census of Agriculture (e.g., NASS 1999a) publishes

estimates of land in a county-equivalent to the nearest U.S. sur-

vey acre for most county-equivalents. Many independent cities

in Virginia are not listed. 

The Population and Housing Unit Counts, CPH-2 (Bureau

of the Census 1990) included land estimates to the nearest 10th

of a square mile and 10th of a square kilometer for each coun-

ty-equivalent in the 50 States, the District of Columbia, Puerto

Rico, as well as the total for other territories and possessions.

The data were published electronically at the census tract level

(CPH-3) wherein land estimates were published to the nearest

100th of a square mile for each census tract. 

However, the Census Bureau (U.S. Census Bureau 2001a,

b) now publishes estimates of land and water to the nearest

square meter in Summary Files 1 and 2. In the previous

decade, such estimates were published to the nearest thousand

square meters. A simplified version of this database, with the

areas of county-equivalents reported in square meters and

square International Miles, may be found on the Census

Bureau’s Web site, at

www.census.gov/geo/www/gazetteer/places2k.html. 

During the 1990s, FIA used an internal database. It closely

followed but did not necessarily match the gazetteer or the

Census of Agriculture. 

The most precise units for area are in the gazetteer. It is in

square meters, and converting it to acres is more difficult than

it first appears to be.

Years before there was a National Biological Survey, there

was the National Bureau of Standards. In 1988, it became the

National Institute of Standards and Technology, or NIST. The

agency is responsible for governing the weights and measures

in the United States. In 1959, it offered refined values for the

yard and the pound (National Bureau of Standards 1959). It

defined the foot to be 0.3048 of a meter. Previously, it had been

defined as 1200/3937 of a meter. The new unit was named the

“International Foot” and the old unit would be called the “U.S.

Survey Foot.” Similarly, 1 International Yard was 3

International Feet, and 1 U.S. Survey Yard was 3 U.S. Survey

Feet. Most measurements were to be made with International

units, but geodetic measurements were to be made in Survey

units. The 1959 memo envisioned retirement of the U.S.

Survey units, but even now, the NIST Handbook 44 recognizes

an acre in the U.S. Survey system but not in the International

(Butcher et al. 2001). 

The acre based on the International Foot is exactly

4,046.856 4224 m2 but is often reported to two or three signifi-

cant digits beyond the decimal point. It is recognized by sever-

al standards boards around the world, including the Land

Territory Land area Water area
km2 mi2 km2 mi2

Guam 543.5 209.8 934.4 360.8

American 
Samoa 200.3 77.3 1310.4 505.9

Palmyra Atoll 11.9 4.6 (NA) (NA)

Wake Island 6.5 2.5 (NA) (NA)

Midway Islands 6.4 2.5 (NA) (NA)

Navassa Island 5.2 2.0 (NA) (NA)

Jarvis Island 4.5 — (NA) (NA)

Johnston Atoll 2.8 1.1 (NA) (NA)

Howland Island 1.6 — (NA) (NA)

Baker Island 1.4 — (NA) (NA)

Kingman Reef 1.0 0.4 (NA) (NA)

(NA) not available

Table 1.—Territories and possessions of the United States
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Information New Zealand (www.linz.govt.nz/staticpages/

dcdb/dataquality.htm), Measurements Canada, and the United

Kingdom’s National Weights and Measures Laboratory

(www.nwml.gov.uk/consumer/units.asp). However, this acre is

sometimes cited in American sources such as the CRC Press

(Beyer 1978), the Army Corps of Engineers (Perrier et al. 1980),

and even FIA (e.g., Smith et al. 2002). On the other hand, such

sources as The World Almanac (Famighetti 1997) explain the dif-

ference between International and U.S. Survey units.

Breast height is 4.5 International Feet, exactly 1.3716

meters. While this number does round to 1.4 meters, breast

height should be reported to at least three significant digits to

reflect the precision with which the measurement is taken.

Figure 2 shows a Metric Equivalents table that incorporates the

preceding recommendations, with decimals formatted accord-

ing to the guidelines of the U.S. Government Printing Office

Style Manual (U.S. Government Printing Office 2000). 

Virginia

Although it refers to itself as the “Commonwealth of Virginia,”

Virginia is one of the several States and not a Commonwealth

in the sense that Puerto Rico and the NMI are. 

FIA prefers to report county acreages along traditional

county-equivalent lines rather than legal ones, as shown in fig-

ure 3. This convention is not purely an invention of the FIA

program; a similar map may be found on the Official

Commonwealth of Virginia Home Page site, at

www.vipnet.org/portal/images/vamap.jpg. Some independent

cities are retained; most others are dissolved into surrounding

counties or independent cities. There are three exceptions: the

cities of Galax, Richmond, and Petersburg. These cities are

each split between two legal counties. The distribution of land

and water in square meters is shown in table 2. 

One interesting result in this table is that GIS shows a dis-

proportionately higher amount of census water in the western

part of Petersburg than in the eastern part. It also shows the

proportion of census water in the northern part of Richmond

approximately equal to that in the southern part. The GIS tech-

nique is better than those used in the 1992 survey, where nomi-

Figure 3.—Virginia.

Census Census
Land Water

m2 m2

Carroll 12,020,499 —

Grayson 9,290,641 —

Galax 21,311,140 —

Dinwiddie 24,176,386 565,298

Prince George 35,084,580 224,164

Petersburg 59,260,966 789,462

Chesterfield 87,962,551 3,692,453

Henrico 67,618,812 2,725,776

Richmond 155,581,363 6,418,229

Table 2.—Split independent cities
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nal proportions were calculated from unrectified maps and pho-

tos and also nominal proportions were applied to census land

and census water without regard to which part of the independ-

ent city they were in. Direct calculation in GIS clearly gives

more accurate results. 

Detailed maps of Galax, Petersburg, and Richmond are

shown in figures 4, 5, and 6, respectively. Census blocks were

assigned to FIA counties based on which side of the historical

line the centroid was. In the case of Galax, the historical line is

the line between Carroll County and Grayson County extended

linearly. Census blocks whose centroids were west of this line

are to be tabulated with Grayson County while those east of the

line are to be tabulated with Carroll County. In the case of

Petersburg, the historical line is more obscure, but it runs

approximately north from the point of intersection between

Petersburg, Dinwiddie County, and Prince George County.

Census blocks whose centroids fall east of this line are tabulat-

ed with Prince George County while those whose centroids fall

west of the line are tabulated with Dinwiddie County. In the

case of Richmond, the historical line was maintained in mod-

ern-day TIGER, along census tract rather than just census

block lines. The line is the James River, which is not a line, but

a double-line stream. Census tracts south of this line are tabu-

lated with Chesterfield County, while those north of the line are

tabulated with Henrico County. 

Another point is that Census Water polygons can be small-

er than 4.5 acres, a fact that conflicts with the FIA national core

field guide (USDA 2002). Among the original sources of

TIGER data were 1:100,000 Digital Line Graphs of the USGS

(United States Geological Survey). The standards for those data

did allude to 4.5 acres as a minimum size for a water polygon,

but they also said, “In arid and semiarid areas, the presence and

location of water is important as a means of orientation. In

these areas, as many hydrographic features as possible should

be shown” (USGS 1991). While that source supports 200 feet

as the minimum width of a double-line stream, the Census

Bureau used other sources of data (most notably their own

Metropolitan Map Series) in constructing TIGER files. These

data did not necessarily adhere to the lower bound for water

polygons of 4.5 acres nor to the lower bound of double-line

streams of 200 feet.

TIGER 1992 vs. TIGER 2000

Apart from Virginia, three other States (Alaska, Maryland, and

Montana) had jurisdictional changes at the county-equivalent

level during the 1990s. However, there were many changes to

the TIGER database between 1992 and 2000. These changes

appear to have been digitizing errors being corrected. Luckily,

no hex centers in the Southern Station switched States. A few

hex centers went from territorial sea to international water.

Figure 7 indicates two possible sites in Wise County, Virginia,

that changed counties during the 1990s due to changes in the

Figure 4.—Galax. Figure 5.—Petersburg.
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TIGER database. Nationwide, there are hundreds, if not thou-

sands, of such sliver polygons. Tracking them would be a mon-

umental task.

Summary and Recommendations

First, logistical difficulties may make areas such as Navassa

inaccessible. In such areas, photointerpretation should be done

by remote sensing. A site visit to Navassa could be reconsid-

ered if its spectral signatures were significantly different from

accessible areas of Puerto Rico and the U.S. Virgin Islands. 

Second, a Metric Equivalents table such as in figure 1

should be adopted.

Third, the program should adopt the most precise estimates

of Census Area available. Specifically, those are the gazetteer

and Summary Files for the several States, the District of

Columbia, and Puerto Rico; Summary Files only for the U.S.

Virgin Islands, American Samoa, Guam, and the NMI. The CIA

World Factbook is a possible source for current area estimates

of other possessions and freely associated nations. 

Fourth, Virginia’s FIA county delineations should be as

outlined in this paper. 

Fifth, a policy should be constructed governing what happens

if an FIA plot switches counties. This change may happen for sev-

eral reasons: 1. the Census Bureau may correct the TIGER line, 2.

the GIS analyst may have generated a plot coordinate based on a

faulty algorithm, 3. the GIS analyst may have relied on coordi-

nates that were inaccurate, 4. the GIS technician may have used a

faulty base map or lost his or her place while digitizing, 5. coordi-

nates from GPS (Global Positioning System) units may have been

collected or transcribed incorrectly, 6. finally, the field crew may

notice that the plot is in the incorrect county. 
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Regression and Geostatistical Techniques:
Considerations and Observations from
Experiences in NE-FIA

Rachel Riemann1 and Andrew Lister2

Abstract.—Maps of forest variables improve our

understanding of the forest resource by allowing us to

view and analyze it spatially. The USDA Forest

Service’s Northeastern Forest Inventory and Analysis

unit (NE-FIA) has used geostatistical techniques, par-

ticularly stochastic simulation, to produce maps and

spatial data sets of FIA variables. That work under-

scores the importance of generating uncertainty infor-

mation along with the modeled estimates, the value of

incorporating additional satellite and other data into

the modeling, and the need to understand the charac-

teristics of the output data set. In our study, we inves-

tigated three questions: Does spatial structure matter

when satellite-derived and ancillary spatial data sets

are incorporated into the modeling of forest attrib-

utes? If we use a modeling technique such as multiple

linear regression, how do we calculate or estimate the

uncertainty? And what are the characteristics of the

output data set with respect to the original sample

data and the ancillary data used?

Background

Spatial depictions of forest variables improve our understand-

ing of the forest resource by allowing us to view and analyze it

spatially and ask questions such as: How are things distributed

spatially, and how are they related to other social, environmen-

tal, and historical patterns? Estimates in small areas may be

improved because additional, relevant information is incorpo-

rated into the modeling and estimation. Two extremely valu-

able data sources for mapping forest attributes are the Forest

Inventory and Analysis (FIA) plot data and satellite-derived

imagery. FIA data contain an enormous amount of information

on a large number of sample plots collected in an unbiased

manner and spread relatively uniformly across nearly the entire

United States. Many ecosystems, small and large, and much of

the variation within them are captured. In addition, satellite

sensors capture data at every location (at various resolutions),

and the resulting imagery often is strongly related to many of

the forest variables we are interested in. For example, in a New

Jersey study, we found that the correlation between basal area

and several imagery-based satellite layers is high (table 1). In

this paper we review the lessons learned from using the geosta-

tistical technique sequential Gaussian conditional simulation

(SGCS) to model the relative basal area of individual tree

species, and investigate the use of multiple linear regression to

model similar variables using satellite-based data sets and other

available spatial layers. 

Geostatistical Techniques

Much of the spatial modeling work in NE-FIA has been con-

ducted with plot data and geostatistical techniques. For exam-

1 Research Forester/Geographer, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, c/o USGS, 425 Jordan Road, Troy, NY 12180.
2 Forester, U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 11 Campus Blvd., Newtown Square, PA 19073.

Total 
Item Pitch pine Red maple coniferous 

basal area

Spring_bright 0.26 -0.17 -0.43

Spring_green 0.49 -0.23 0.61

Spring_wet 0.39 — 0.60

Summer_bright -0.57 0.30 -0.67

Summer_green -0.63 0.34 -0.58

Fall_bright -0.56 0.19 -0.71

Fall_green -0.54 0.21 -0.53

Table 1.—Pearson’s Correlation Coefficients between three
tassel cap bands for each of three seasons (2000 data) and
normal–score transformed relative basal-area values for each
of three species variables being modeled (1996 data; all val-
ues are significant (p< 0.05), and bold values are more highly
significant (p<0.005)
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Figure 1.—Like kriging, sequential Gaussian conditional simulation (SGCS) uses a model of the spatial structure present to esti-
mate values at unknown locations: a) original plots (darker red are increasing values of %ba of hemlock); b) correlogram calcu-
lated from the sample plot data; c) model used to describe the structure depicted in the correlogram; d) a resulting output map of
modeled values (darker green are increasing values of %ba of hemlock).

Figure 2.—SGCS creates a distribution of possible values for each pixel (one generated with each simulation) from which the user
can easily extract a clear measure of the uncertainty of each local estimate. a) the distribution of values at a single, randomly
chosen cell; b) the modeled estimate where the value at the 65% percentile was chosen for each pixel (with nonforest areas
masked out); and c) the value of the interquartile range (iqr) at each pixel, representing the range of uncertainty associated with
each modeled value.
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ple, species distribution maps were created using SGCS

(Riemann et al. 1997, Riemann and Lister,3 http://www.fs.fed.

us/ne/fia/spatial/specdist/species_dist.html). Like kriging,

SGCS uses a model of the spatial structure present to estimate

values at unknown locations (fig. 1). However SGCS differs in

that it is a stochastic simulation technique that uses a random

function to incorporate uncertainty into the model (Rossi et al.

1993). This creates a distribution of possible values for each

pixel (one generated with each simulation) from which the user

can easily extract a clear measure of the uncertainty of each

local estimate (fig. 2). In addition, depending on the summary

statistic chosen as the estimate (e.g., mean, median, or another

percentile) this technique provides spatial output with a more

realistic depiction of heterogeneity and is more effective than

kriging in retaining original data characteristics. 

Advantages and Limitations of SGCS

The use of SGCS offers several advantages. First is the way

Monte Carlo techniques offer a clear depiction of the model

uncertainty, which reflects both sample intensity and variation

in the available data. This feature is valuable because some

uncertainty is inevitable in all modeled output, and the magni-

tude and direction of uncertainty are important aspects of any

modeled map created. In addition, since there is a probability

distribution built for each location of the map, the user can

depict the error in different ways based on her/his goals and

choice of risk (e.g., of overestimating or underestimating). For

example, if in a study of the hemlock woolly adelgid (an insect

associated with hemlock mortality), the cost of sending crews

to a site with an insufficient amount of hemlock is greater than

missing a site that might have sufficient hemlock to complete

the study, i.e., the cost of overestimation is greater than that of

underestimation. The user would thus want to choose a depic-

tion of error that reflects the wish to avoid wasting field crew

resources—one that reduces the risk of overestimation. 

Like all techniques, however, there are also limitations to

SGCS that make us want to pursue additional approaches.

First, not all variables of interest have a strong spatial structure

that can be modeled and used in SGCS to improve estimates.

Second, satellite data and other relevant spatial data layers

(e.g., topographic information, climatic information, soils infor-

mation), are becoming increasingly available and affordable

and are of increasing quality. Also, our technical ability to dis-

play and manipulate these data is continually improving.

Finally, because of the sampling intensity of FIA data and the

level of unexplained variation typically remaining, using only

FIA data in the modeling limits the spatial resolution and levels

of uncertainty in the final output. 

To address the shortcomings of univariate geostatistical

methods, we are incorporating this increasing wealth of addi-

tional ancillary environmental information into the modeling

process. Many multivariate modeling techniques are available

for this, each of which utilizes and maintains different charac-

teristics of the sample data, has different output characteristics,

and makes different assumptions. Many of these methods are

being investigated throughout FIA (e.g., Lister and Hoppus

2002; McRoberts et al. 2002; Moeur and Riemann 1999;

Moisen and Frescino 2002; Ohmann and Gregory 2002). The

goal of our study was to investigate the use of multiple linear

regression to make predictions of FIA attributes by answering

the following questions: 

• Does spatial structure matter when satellite-derived and

ancillary spatial data are incorporated into the modeling of

forest attributes? 

• If we use a modeling technique such as multiple linear

regression, how do we calculate or estimate the uncertainty? 

• Using this technique, what are the characteristics of the

output data set based on the original sample data and the

ancillary data used?

Methods

Data.—In all, 141 100-percent forested FIA plots from the 1998

inventory were used from the study area in central and southern

New Jersey. FIA defines a forested plot as being at least 1 acre in

area and 120 feet wide, having a minimum of 10-percent stocking,

and an undisturbed understory.4 Variables calculated from plot data

and chosen for modeling were: the relative basal area of pitch pine

(pp%ba), relative basal area of red maple (rm%ba), and total

3 Riemann, R. and Lister, A.J. Stochastic simulation for mapping ground inventory variables: Creating and using the species distribution maps. Unpublished report
on file at USDA FS NE-FIA, 11 Campus Blvd., Newtown Square, PA 19073.
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coniferous basal area on a plot (conifba). Because of their skewed

distributions, all three variables were normal–score transformed

before all analyses—a 1-1 linear transform to a perfectly normal

distribution (Deutsch and Journel 1998).

Only forested plots were used because we wanted to

model the characteristics of forest land rather than the distinc-

tion between forest and nonforest land. Nonforest land was

applied afterward as a mask on the modeled output, using data

derived from a classification dedicated to accurately identifying

those classes (Zhu and Evans 1994). Separating these two tasks

and focusing on modeling only the forested population was

considered a valuable part of the modeling exercise. Mixed

plots, those partly on forest land and partly on nonforest land,

add an additional complication when attempting to match plot

data with the 30-m pixel of Landsat Thematic Mapper (TM)-

derived layers. With mixed plots, being off by even a half pixel

in co-registration of the data sets can place the plot in an entire-

ly different land use class, which is well below the georeferenc-

ing accuracies currently achievable. This did reduce the usable

number of plots available (from 206 forested and mixed plots

to the 141 completely forested plots). Future studies should

explore ways to address this uncertainty and use this plot infor-

mation, but in this study mixed plots were simply removed. 

The following predictor variables were used: 

• Spectral information derived from Landsat ETM+ (USGS

Eros Data Center 2002): three tassel cap bands each from

three seasons (spring, summer-leaf on, fall-leaf off), image

dates: approx. 2000 (range: 1-255).

• Topographic variables derived from the 30-m digital eleva-

tion model (DEM): elevation, slope, aspect, position indi-

cator (range: 0-100, representing location between the

valley (0) and the ridgetop (100)).

• Soils variables derived from STATSGO (USDA 1993): soil

quality, soil carbon, available water content (soil_awc)

(range: 1-255).

• Spatial information – X, Y (converted to a range of 1-255). 

Modeling Approach.—Descriptive statistics were calculated

and plotted to assess the characteristics of the dependent vari-

ables, and the data were normal-score transformed (a 1-1 linear

transform of the data to a perfectly normal distribution) before

further analysis. Variography was performed and variogram

descriptive statistics were calculated to assess the degree of

spatial continuity of each of the dependent variables.

Scatterplots were constructed and correlation statistics were

produced to assess the degree of correlation with predictor data

and eliminate predictor data layers that were not linearly relat-

ed to the dependent data layers. Data redundancy was reduced

by removing one variable from pairs of predictor variables that

were collinear. We performed stepwise linear regression to

make maps of predicted pp%ba, rm%ba and conifba, both

including and excluding X and Y as possible predictor vari-

ables. To assess the accuracy of the regression model, we ana-

lyzed the model fit and performed a tenfold cross-validation

procedure in which successive sets of 10 percent of the data

were withheld from the model and subsequently predicted.

Scatterplots of observed vs. actual values and residual plots

were produced and assessed. Finally, we compared the charac-

teristics of the output data sets with those of the original sam-

ple data, looking for differences that might be effects of the

modeling technique or data sets used. 

Results and Discussion

Characteristics of the Data.—The skewed distributions of the

dependent variables indicated a probable need for transforma-

tion before analysis, and indeed a clearer spatial structure and

stronger correlations with the independent variables were

observed with the normal-score transformed data. 

The following are results of variography and correlation

analyses: 

Species Variogram nugget (% of variation explained) r value

pp%ba 0.45 (55%) 0.4–0.6

rm%ba 0.8 (20%) 0.2–0.3

conifba 0.55 (45%) 0.5–0.7

Both pitch pine relative basal area (pp%ba) and total coniferous

basal area (conifba) had a strong spatial structure and fairly

strong correlations with the independent/explanatory variables.

Red maple had weak spatial structure and weaker correlations

with the independent/explanatory variables.

4 U.S. Department of Agriculture, Forest Service. 2000. Forest inventory and analysis national core field guide, volume 1: field data collection procedures for phase
2 plots, version 1.4. Unpublished report on file at USDA Forest Service, Forest Inventory and Analysis, Washington, DC.
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Models.—The model developed by the linear regression using

the full set of sample points and used for producing the final

conifba map was:

conifba = -1.22186 + (0.03134*fall_wet) –

(0.02951*fall_bright) + (0.02204* spr_green) - (0.01713 *

sum_green) + (0.00265*y) - (0.00906*soil_awc) 

R2 = 0.62, p = 0.13, RMSE = 0.63.

The model used for the rm%ba final map was: 

rm%ba = -1.1885 + (0.03983*sum_green) –

(0.03552*fall_green) – (0.00774*position_ind) +

(0.00825*soil_awc)

R2 = 0.25, p = 0.046, RMSE = 0.88.

The model for predicting pp%ba was:

pp%ba = 1.63594 + (0.03333*spr_green) -

(0.02823*sum_green) - (0.01128*soil_awc) 

R2 = 0.54, p = 0.0006, RMSE = 0.686.

The same larger set of potential predictor variables was

provided for the development of the 10 validation models.

Each of these models was similar to that developed from all the

sample points. 

Calculating and Depicting Map Error/Uncertainty

How good is the model? How close to reality is the output

map? How likely are we to find on the ground what is depicted

in my map? A measure of uncertainty associated with each esti-

mate can reveal some pertinent information, and it can capture

one or more of the above elements of uncertainty since they are

related. The most directly interpretable values for the user are

measures of how the output map relates to reality, typically in

terms of comparison to point locations on the ground. How-

ever, depending on the final use(s) of the output data set, other

characteristics may also be important, such as the accuracy of

area summaries or the spatial distribution of features.

We assessed the uncertainty of our regression models by

examining the results of the tenfold cross validation. This

involved dividing the data into 10 random parts, each contain-

ing 90 percent of the data, and running linear regression on

each of the 10 sets. Each of the original values was then com-

pared with that value predicted using the model created without

it. Scatterplots of observed vs. predicted backtransformed val-

ues from this validation for each of the dependent variables are

shown in figure 3. From these validation data we can calculate

an RMSE value to describe the uncertainty associated with our

output map. The validation RMSE with an average uncertainty

of +/- 23 percent for estimates of red maple relative basal area,

and 31 ft2 for estimates of total coniferous basal area. However,

RMSE is only a single average value for the entire map. How

does the magnitude and direction of that difference vary with

location and predicted value?

The previous analysis estimated the error associated with

each known value. We also wanted to produce a spatial depic-

tion of model uncertainty. Assuming that the validation we con-

ducted using plots for which we had data provided a picture of

the distribution of possible prediction errors, we grouped all the

predicted values into classes, ensuring that enough plots fell in

each, and calculated the average validation error associated

with that class (table 2). We then reclassified our table of pre-

dictions to create an error map (fig. 4a) using table 2 as a

lookup table. Figure 4b is the associated map of estimated val-

ues. Note that we are also assuming that we can associate a

pixel (30- x 30-m grid cell) with a plot (a 4-point cluster of

1/24-acre circular plots spread over approximately 1 acre). 

Checking Characteristics of the Output Data Set

What are the characteristics of the output maps in relation to

the original sample data and the ancillary data used? When we

checked the univariate statistics of the output data set, the pre-

dicted data duplicated the original data’s sample histogram for

all three variables fairly well (fig. 5). Looking at the correlo-

gram/spatial structure of the output data set, the output is spa-

tially more smoothed than the original data (table 3). This is

partly due to the characteristics of the predictor data sets used.

Figure 3.—Actual vs. predicted values for a) proportion of red
maple basal area and b) total coniferous basal area. Diagonal
line is the line of 1:1 agreement. 
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Joint attribute structure—the relation between the forest vari-

ables predicted—is another important characteristic for those

interested in querying the output data sets together. Although

we did not model the three variables together, and thus did not

explicitly attempt to retain this information in the modeling, it

is nevertheless important to understand how this is expressed in

the output data sets. Comparing the joint attribute structure in

the output to the original data shows substantial similarities but

also some truncation of the original ranges of values (fig. 6).

Finally, looking at the output map and the input data sets that

were used to create it, we observed that the characteristics of

the source data sets were influencing the output in ways that

may be undesirable. For example, in figure 7d, areas with the

highest estimates (along the shorelines) are clearly influenced

strongly by soil available water content (soil_awc) values (7a).

In figure 7b, some relics of how the position_index value was

calculated appear as “contour lines” in the rm%ba map. Such

effects may be important clues to the driving factors associated

with particular species, or, in this case, more likely suggest

room for improvement in the model and/or in the

a The average plus error can be sufficiently different from the average minus
error such that one might want to depict them separately.

Table 2.—Calculating average error for each class of predict-
ed value—i.e., for each range of predicted values, the range of
possible actual valuesa

Figure 4.—Map of the predicted values (a) and of the estimat-
ed uncertainty plotted from table 2 (b).

Figure 6.—Scatterplots of the joint attribute structure of origi-
nal and predicted data.

Figure 5.—Univariate histograms of the sample data com-
pared with predicted values.
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independent/source data sets when they become available. The

results also suggest that in future studies we may want to

reevaluate the inclusion of ancillary spatial layers that adverse-

ly affect the final maps.

Incorporating Spatial Structure

On the basis of the nugget values calculated during the variog-

raphy analysis, there is spatial structure in the sample data, par-

ticularly with relative pitch pine basal area and total coniferous

basal area. In addition, the simple spatial location variables of

standardized X and Y demonstrate some level of correlation (r

values of 0.33 to 0.56 for X and 0.02 to 0.12 for Y)) with all

three species or species-group variables. Whenever X or Y was

one of the final independent variables in the model, it always

smoothed the output data set (fig. 8), and did not noticeably

change the amount of spatial structure remaining in the residu-

als (table 4). This limited effect of including or excluding X

and/or Y as predictor variables in the model is probably

because much spatial information is already implicitly con-

tained in the satellite imagery and other spatial data sets when

these are strongly correlated to the variable of interest. For

variables that are both poorly correlated with the independent

variables and contain a high level of spatial structure, incorpo-

rating spatial information could introduce important additional

information (Goovaerts 1999, Moeur and Riemann 1999).

None of the variables investigated contained this combination

of characteristics. However, where including the spatial struc-

ture in the modeling is desirable, multivariate linear least

Figure 8.—Effect of using X in the model for estimating red
maple relative basal area (rm%ba): a) a map of the model
developed excluding XY as optional predictor layers (-0.73814
+ (0.01412 * sum_green) – (0.00759 * position_ind) –
(0.00593 * X)), b) a map of the model developed including XY
as options (-1.18850 + (0.03983 * sum_green) – (0.03552 *
fall_green) + (0.00825 * soil_awc) – (0.00774 *
position_ind)). Note the increased smoothing of the results in
b) when the smoothly varying variable X is included.

Figure 7.—Degree to which the spatial characteristics of the
predictor data sets can contribute to the final map. This may
or may not be realistic, but in the Northeast, where things are
seldom driven so cleanly by a single variable, we would tend
to suspect this as a characteristic of the data and model rather
than of the phenomena: a) soil_awc; b) position_indicator; c)
plus/minus error associated with predicted estimate; d) pre-
dicted %ba value for red maple.

Item Original Predicted

rm%ba 80 12

conifba 55 8

Table 3.—Comparison of nugget values in the correlograms of
the original values and the predicted values, expressed as %
of the sill. A lower nugget indicates more spatial structure;
there is a noticeable difference between the original and pre-
dicted values here.

Model
Item With X Without X

rm%ba 52 68

conifba 100 100

Table 4.—Nugget values in the residuals, expressed as % of
the sill. A low nugget often indicates spatial structure not
explained by the model. Including X in the model did not
reduce the amount of spatial structure in the residuals.
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squares regression is probably not the best tool to take advan-

tage of spatial information. Because it is mostly a per pixel

modeling technique, linear regression does not easily incorpo-

rate information on the value, distance, or direction of neigh-

boring data when producing an estimate. Other approaches may

be much more effective in taking advantage of this spatial

information. 

Conclusions

Know the characteristics of your data and the phenomena going

in—it will help greatly in the modeling, both in effectiveness

and accuracy, for each has different characteristics that can

affect the effectiveness of a particular modeling technique.

Similarly, check the characteristics of the data coming out—it

will help in understanding the characteristics of the output data

set, which, in turn, may result in iterative improvement even if

it does not contribute directly to a calculation of error/uncer-

tainty. As stated earlier, the characteristics of the spatial data

sets used in predicting the variable of interest affected the char-

acteristics of the output. Such effects may be important clues to

the driving factors associated with particular species, or, more

likely in this case, signal possible improvements in the model

and/or in the independent/source data sets. 

Having some measure of uncertainty is SO important!

Each of these maps is only a modeled estimate of what is

occurring on the ground, so there is always some level of

uncertainty as to the degree to which the modeled map reflects

reality. Providing a measure of uncertainty with each estimate

gives the user additional information to work with. With linear

regression, a single validation RMSE value, such as a single

%accuracy value for a classified map, doesn’t tell the whole

story with the mapped output of a regression model because we

know there is spatial and class variability to that error and we

want to know where that occurs. A single RMSE value calcu-

lated without the use of a validation data set is even less satis-

factory because an uncertainty value calculated only from data

that went into the modeling does not account for errors in our

admittedly less-than-perfect input data sets. Error/uncertainty

from comparisons between modeled estimates and plot data can

be calculated when both are of a reasonably similar scale/reso-

lution (e.g., a 30-m pixel with a 1/6-acre clustered plot). 

Does spatial structure matter when we incorporate satel-

lite-derived and ancillary spatial data sets into the modeling of

forest attributes; that is, do we lose potential information by not

including it? In this study, bringing the satellite and other layers

into the modeling seemed to account for much of the variability

that the spatial structure was describing. However, if we wish

to include spatial structure in the modeling (as might be the

case with a variable with weak correlations with the independ-

ent variables but a strong spatial structure), bringing X and Y

into the regression as simple variables is only a partial solution

with some consequences (i.e., smoothing), and is probably not

the best technique for this task.

There are many characteristics of a spatial data set. Many

maps are a compromise of some characteristics in favor of oth-

ers, e.g., smoothing the map to discern patterns at the expense

of local heterogeneity. Which aspects are most important in the

output map will depend on how the data will be used. What the

maps are being used for will direct/dictate how we look at

them, what we consider to be accurate (or the most important

aspect of accuracy), what we consider to be the dominant char-

acteristic that makes us accept or reject a map, and what mod-

eling techniques we choose because of the characteristics they

preserve or the characteristics of their output.

The models produced from linear regression procedures in

this study are by no means the best that could be obtained

given the independent data currently available. However, they

point out potential characteristics and tendencies that can result

when input variables are used in a regression model to simply

predict forest attributes by their relationship to other spatial

variables. Characteristics of the input data sets, which may be

derived from numerous sources and via other modeling tech-

niques, can greatly influence the characteristics of the output. 
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Development and Validation of Spatially
Explicit Habitat Models for Cavity-nesting
Birds in Fishlake National Forest, Utah

Randall J. Schultz, Jr.1; Thomas C. Edwards, Jr.2; Gretchen

G. Moisen3; and Tracey S. Frescino4

Abstract.—The ability of USDA Forest Service Forest

Inventory and Analysis (FIA) generated spatial prod-

ucts to increase the predictive accuracy of spatially

explicit, macroscale habitat models was examined for

nest-site selection by cavity-nesting birds in Fishlake

National Forest, Utah. One FIA-derived variable (per-

cent basal area of aspen trees) was significant in the

habitat model; however, the incorporation of FIA stand

structure information did not increase model accuracy.

Cavity-nesting birds respond strongly to nest-tree

attributes unable to be modeled spatially for this study.

Future modeling efforts should focus on larger taxa

(e.g., ungulates) and richness/diversity studies.

Background

Recent efforts in wildlife habitat modeling have focused devel-

oping spatially explicit habitat models (Carroll et al. 1999,

Dettmers and Bart 1999, Edwards et al. 1996, Knick and

Rotenberry 1995, Lawler and Edwards 2002, Mitchell et al.

2001, Reunanen et al. 2002). The ability to build spatially

explicit habitat models is desirable for several reasons. First,

the models can be used to make spatial predictions across large

and remote regions. Second, they often rely on remotely sensed

data and/or pre-existing habitat data. These data may be quick-

ly and easily applied to habitat modeling. Field habitat data

collection, however, may often be time-consuming and labor

intensive (Mitchell et al. 2001). 

Most spatially explicit habitat models use cover-type infor-

mation, or macroscale information, to predict species presence

(Edwards et al. 1996, Lawler and Edwards 2002, Reunanen et

al. 2002, among numerous others). Despite its ease of use,

coarse-scale cover-type information may be too general and lim-

ited for predicting species reliant on the structure and condition

of individual trees or stands (Lawler 1999, Lawler and Edwards

2002, Schultz and Edwards, unpublished data). Thus, ecologists

have begun to incorporate finer-scale forest structural variables

(i.e., stand structure) into spatially explicit habitat models

(Carroll et al. 1999, Reunanen et al. 2002).

To incorporate forest structure variables, ecologists are

searching for methods of modeling forest structure across space

(Frescino et al. 2001, Moisen and Edwards 1999, Moisen and

Frescino 2002). One technique involves converting statistical

models of forest structure to spatially explicit maps of forest

attributes (e.g., basal area, snag density, live trees per acre,

canopy height, biomass, etc.) (Frescino et al. 2001, Frescino

and Moisen 2004, Terletzky and Frescino 2004). Pre-existing

USDA Forest Service Forest Inventory and Analysis (FIA)

field data are used as response variables, and a combination of

environmental variables and remotely sensed data are used as

predictor variables. The resulting models are converted to spa-

tially explicit prediction maps, and the mapped variables can

then be used in wildlife habitat modeling. 

The primary objective of this research was to determine

whether incorporating FIA-generated spatial products (here-

after mesoscale) improved the predictive accuracy of

macroscale habitat models for cavity-nesting bird nests in

Fishlake National Forest, Utah. The results were then used to

assess both the utility of FIA-generated spatial products in

habitat modeling for cavity-nesting birds, and the current abili-

1 Graduate Research Assistant, Department of Forest, Range, and Wildlife Sciences, and Ecology Center, Utah State University, Logan, UT 84322–5210. Phone:
410–382–7806; fax: 435–797–4025; e-mail: randalljs@cc.usu.edu.
2 Assistant Leader and Associate Professor, USGS Biological Resources Division, Utah Cooperative Fish and Wildlife Research Unit, Utah State University, Logan,
UT 84322–5210. Phone: 435–797–2529; fax: 435–797–4025; e-mail: tce@nr.usu.edu.
3 Research Forester, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401. Phone: 801–625–5384;
fax: 801–625–572; e-mail: gmoisen@fs.fed.us.
4 Forester, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 507 25th Street, Ogden, UT 84401. Phone: 801–625–5402; fax:
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ty of spatially explicit models to predict the presence of cavity-

nesting bird nests in Fishlake National Forest, Utah.

Methods

Study Area

The study area was the Fishlake National Forest, located in

southern Utah at the southern end of the Wasatch Mountains

(fig. 1). The study area encompassed sections of four ranger

districts (Richfield, Loa, Fillmore, and Beaver) across three

general mountain areas (fig. 1). This region of Utah is charac-

terized by high mountains (~2,000 m to ~ 4,000 m) consisting

of broad, rolling plateaus, large alpine meadows, and large

areas of aspen (Populus tremuloides) forest. 

Vegetation at low-elevation sites on the study area consists

primarily of aspen stands interspersed with sagebrush mead-

ows, ponderosa pine (Pinus ponderosa), curl-leaf mahogany

(Cercocarpus ledifolius), gambel oak (Quercus gambelii), Utah

juniper (Juniperus osteosperma) and pinyon pine (Pinus

edulis). The vegetation at middle to high elevations consists of

an aspen/mixed-conifer (Douglas-fir [Pseudotsuga menziesii];

Engelmann spruce [Picea engelmannii]; white fir [Abies con-

color]; subalpine fir [Abies lasiocarpa]), meadow matrix. The

vegetation grades into a spruce-fir forest until upper treeline.

Study Species

The study species included all cavity-nesting birds found to

nest in aspen communities of the forest. The species included

six primary cavity-nesting birds: red-naped sapsucker

(Sphyrapicus nuchalis), northern flicker (Colaptes auratus),

hairy woodpecker (Picoides villosus), downy woodpecker

(Picoides pubescens), three-toed woodpecker (Picoides tri-

dactylus), and red-breasted nuthatch (Sitta canadensis); and six

secondary cavity-nesting birds: tree swallow (Tachycineta

bicolor), violet-green swallow (Tachycineta thalassina), moun-

tain chickadee (Poecile gambeli), mountain bluebird (Sialia

currucoides), western bluebird (Sialia mexicana), and house

wren (Troglodytes aedon). 

Study Design

We built habitat models based on presence/absence data for

nests of cavity-nesting birds. To determine if the addition of

mesoscale variables improved macroscale model accuracy, we

built and validated predictive models using only macroscale

variables and additional multiscale models using both

macroscale variables and mesoscale variables. Model building

data were collected in 2001, and validation data were collected

in 2002. We compared model performance using the percent

correctly classified (PCC), sensitivity, specificity, and the area

under curve (AUC) values. 

Nest Searches

Sample locations were identified using a 30-m resolution digital

vegetation map from the Utah Gap Analysis Project (Edwards et

al. 1998, Homer et al. 1997). Sample locations were restricted

to aspen stands adjacent to meadow and/or conifer cover types.

A total of 14 locations were searched during the study. We

selected nine locations for model building during the summer of

2001, and reserved five locations for model validation during

the summer of 2002. All the model-building locations were

located on the Richfield Ranger District and a small section of

the Loa Ranger District (fig. 1). To select validation locations

for 2002, we stratified the forest geographically and reserved

new locations in previously unsearched sections of the national

forest. Thus, the 2002 validation locations were located on the

Fillmore and Beaver Ranger Districts, and another section of the

Loa Ranger District (fig. 1). 

Figure 1.—The Fishlake National Forest in southern Utah,
including the location of ranger districts.
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We systematically surveyed study locations for active

nests of cavity-nesting birds from late May until early July. We

considered a nest active if it showed evidence of incubation,

presence of eggs, presence of young, and/or feeding activity. To

mark the active nests, we recorded the UTM coordinates at

each nest using a global positioning system. Several non-nest

locations were selected at the end of each breeding season. We

considered a non-nest location to be an aspen tree (>10 cm

d.b.h. and >1.4 m high) within a previously searched location.

We randomly selected non-nest locations that were 100-150 m

apart from each other and each active bird nest.

Habitat Data Collection

Based on prior statistical analysis, we chose 15 ha as the

macroscale for cavity-nesting birds in Fishlake National Forest

(Schultz and Edwards, unpublished data). This scale approxi-

mates the home-range of the northern flicker, the largest and

most abundant bird in the data set (Dunning 1993, Lawrence

1967). All macroscale variables were measured at this scale.

All macroscale variables were generated from 30-m reso-

lution vegetation data layers in Arc/INFO GIS. The vegetation

data layers were derived from the 1999 National Land Cover

Data set, which was created using Landsat Thematic Mapper

imagery and ancillary data (Vogelmann et al. 2001). Five gen-

eral cover types were considered: open land (shrublands, grass-

lands, wetlands), aspen forest, conifer forest, mixed forest, and

an “other” cover type. Using a square moving window centered

on each nest and non-nest, we estimated landscape attributes

using FRAGSTATS (McGarigal and Marks 1995). We selected

nine attributes we felt were relevant to cavity-nesting bird habi-

tat, including the percent landscape of cover types, edge densi-

ty of aspen, and richness/diversity measurements (table 1). 

We used a 30-m pixel to represent the mesoscale, or stand

habitat. This scale was the smallest measurement possible in

this study. In addition, this scale roughly approximates the size

of a 0.04 ha plot, a commonly used field measurement in avian

habitat studies (James and Shugart 1970, Noon 1981).

Mesoscale measurements were derived from 30-m resolution

digital maps of FIA-derived variables, including aspen basal

area, number of snags, number of live trees per acre, and

canopy height (table 1). 

The FIA data were modeled spatially using several differ-

ent statistical tools, including generalized additive models

(GAMs) and multivariate adaptive regression splines (MARS).

The models were then converted to spatially explicit prediction

maps of mesoscale forest structure, which were then used in

habitat modeling (Terletzky and Frescino 2004).

Variable 
name Description

Macroscale %open Percent landscape of open 
land, including meadows

%aspen Percent landscape of aspen 
forest

%conifer Percent landscape of conifer 
forest

%mixed Percent landscape of mixed 
conifer/aspen forest

Lpopen Largest patch of open land 
(% of landscape)

Lpaspen Largest patch of aspen forest 
(% of landscape)

Edaspen Edge density of aspen forest 
(m/ha)

Pr Patch richness of the 
landscape (#)

Sdi Simpson’s Landscape 
Diversity Index (%)

Mesoscale Ba Live tree basal area (sq 
ft/acre)

Crcov Crown cover (%)

Stage Stand age (yrs)

Tpa Live trees per acre 
(trees/acre)

Vol Net volume of trees (cu. 
ft./acre)

Qmd Quadratic mean diameter of 
trees (in)

Bio Live tree biomass (tons/acre)

Aspba Aspen basal area (%)

Asprot Aspen rot (presence/absence)

Snags Number of snags

Avtrht Average tree height (ft)

Table 1.—Habitat variables and their descriptions, Fishlake
National Forest, Utah (macroscale variables based on cover-
type metrics measured at a 15 ha scale; mesoscale variables
obtained from FIA-generated spatial products and measured at a
30-m scale)
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Statistical Models

To reduce redundancy of information in the habitat models, we

examined correlations among variables and retained variables

we deemed to have high ecological relevance. We chose a

Pearson’s correlation coefficient of 0.7 to be the minimum

value necessary for variable elimination. We used stepwise

logistic regression (Hosmer and Lemeshow 1989, SAS version

8) to model the presence of cavity-nesting birds based on habi-

tat associations. 

To assess the relative ability of the macroscale and multi-

scale habitat models to predict nest presence, we searched the

five validation locations during the summer of 2002 and

observed how well the 2001 models predicted nests and non-

nests. We assessed model performance using various measures

of model classification accuracy and performance, including

percent correctly classified (PCC), sensitivity (true positive

fraction), specificity (true negative fraction), and the threshold-

independent area under curve (AUC) value from receiver oper-

ating characteristic (ROC) analysis (Fielding and Bell 1997,

Zweig and Campbell 1993). We used a 0.5 decision threshold

for all threshold-dependent classification analyses. 

Results

Model Development

We found a total of 227 nests during the course of this study:

165 nests for model building (2001) and 62 nests for model

validation (2002). In addition, we selected 170 non-nest loca-

tions: 117 for model building and 53 for model validation.

Cavity-nesting birds increased with the percent of open

habitat in both the macroscale and multiscale models (table 2).

In the multiscale models, cavity-nesting birds also increased

with the percent basal area of aspen. Model fit based on R2 and

Somer’s D statistic was low for both models, and fit differed

only marginally between the models (table 2). 

Model Validation

In general, incorporating mesoscale FIA-derived information did

not increase the accuracy of spatially explicit habitat models for

cavity-nesting birds (table 3). Overall, classification accuracy

was generally poor, with the macroscale model predicting mar-

ginally better than the multiscale models (table 3). Sensitivity

values were remarkably higher than their corresponding speci-

ficity values, suggesting both models tended to overpredict bird

habitat. Specificity values were low for both models. AUC val-

ues did not differ much between models (table 3). 

Model / variable R2 D Estimate Standard error

Macroscale 0.063 0.341
Intercept -0.406 0.216

%open 0.025 0.006

Multiscale 0.077 0.365

Intercept -0.773 0.287

%open 0.029 0.006

Aspba 0.008 0.004

Table 2.—Estimates of model fit for the stepwise logistic regression habitat models of cavity-nesting bird nesting habitat in
Fishlake National Forest, Utah (variables significant at the p=0.05 statistical level)

Model PCC (%) Sensitivity Specificity AUC

Macroscale 63.5 0.774 0.472 0.670

Multiscale 57.4 0.677 0.453 0.680

Table 3.—Relative model performance of the macroscale and
multiscale models of cavity-nesting bird nesting habitat in
Fishlake National Forest, Utah (PCC, sensitivity, and specifici-
ty values based on a 0.5 classification threshold)
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Discussion

The results of this study suggest that mesoscale FIA-derived

information can be applied to wildlife habitat modeling. The pos-

itive association between nest presence and aspen basal area sup-

ports this conclusion. Although spatially explicit FIA information

can be used in habitat modeling, it did not increase the ability to

predict nest presence of cavity-nesting birds in this study. 

Two factors may account for the inability of mesoscale

FIA-derived information to increase model accuracy. First,

scale is inevitably an issue of concern in ecology (Levin 1992,

Wiens 1989). A 30-m resolution may be too coarse a scale to

predict nesting habitat for cavity-nesting birds. The distribution

of cavity-nesting bird nests might better be predicted by nest

tree attributes and stand structure in areas much smaller than

30 m. Cavity-nesting birds are strongly associated with nest

tree attributes, including tree diameter and the evidence of

decay (e.g., fungal conks) (Conner et al. 1976, Daily 1993,

Daily et al. 1993, Dobkin et al. 1995, Kilham 1971, Lawler

1999). Fungal conks indicate heartrot, which facilitates excava-

tion by cavity-nesting birds. However, the presence of fungal

conks is a variable for which we cannot currently build spatial-

ly explicit maps. Future habitat modeling efforts for cavity-

nesting birds in this and other similar regions should focus on

finding macroscale and mesoscale surrogates for fungal conks

and/or heartrot.

Second, a habitat model is only as accurate as the data

used to build the model. Map error is a concern, and both vege-

tation modeling error and spatial error may have influenced the

accuracy of the habitat models. Future vegetation mapping

should focus on more accurate maps of forest structure and rig-

orous field-validation.

In aspen forests of Fishlake National Forest, ecologists

cannot currently predict nest presence of cavity-nesting birds

accurately without field habitat data. FIA-generated spatial

products may have more utility for other species and issues

than cavity-nesting bird nest-site selection. These products may

be useful for ungulates and other large animals, where 30-m

resolution may be more appropriate. Species richness and

diversity studies may also benefit from this information. Future

efforts concerning the utility of FIA-generated spatial products

in wildlife habitat modeling should continue on these fronts.
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Integrating Spatial Components into FIA
Models of Forest Resources: Some
Technical Aspects

Pat Terletzky1 and Tracey Frescino2

Abstract.—We examined two software packages to

determine their feasibility of implementing spatially

explicit, forest resource models that integrate Forest

Inventory and Analysis data (FIA). ARCINFO and

Interactive Data Language (IDL) were examined for

their input requirements, speed of processing, storage

requirements, and flexibility of implementing.

Implementations of two models was compared across

three mapping extents in the two software packages.

IDL completed the models in approximately half the

time that ARCINFO did and required less memory.

The Rocky Mountain Research Station (RMRS), Interior West

Forest Inventory and Analysis (IWFIA) program, Ogden, Utah,

developed spatially explicit forest resource models that inte-

grated forest inventory data with spatial data (satellite imagery

and elevation data) (Frescino and Moisen 2004). Model genera-

tion was done with the Multivariate Adaptive Regression

Splines program (MARS; Friedman 1991), a flexible, nonpara-

metric regression-modeling tool that establishes relationships

between a forest resource attribute and spatial information. 

We were provided the MARS models and asked to create a

user-friendly method of implementing the models to generate

spatially explicit forest resource maps. Incorporating the spatial

information into the forest resource models required a large

amount of memory, special computing capabilities, and fast

computers. We evaluated two software packages, ARCINFO

(ESRI Inc., Redlands, California) and Interactive Data

Language (IDL, Research Systems, Inc.; www.rsinc.com)

based on four parameters: required inputs, processing speed,

required memory, and ease of implementation. Although IDL is

not common in the Forest Service (FS), we decided to examine

it after several attempts with ARCINFO failed.

Methods

We implemented two MARS models in ARCINFO and IDL,

and compared the time it took to complete the models and the

storage required. The simple model had 6 input files, 13 inter-

mediate files, and 1 output file; the complex model had 9 input

files, 20 intermediate files, and 1 output file. Each model was

implemented across three mapping extents (fig. 1). The largest

mapping extent was a zone level, approximately 6,997,000

hectares, and the smallest extent was a forest level, approxi-

mately 627,000 hectares. The ecoregion level (Bailey 1980)

was between the zone and forest levels and was 2,925,000

hectares (fig. 1).

We addressed two issues before implementing the models:

(1) conversion of the spatially explicit models into the specific

language for each software and (2) input and output data for-

1 Utah State University, Logan, UT.
2 USDA FS FIA, IWFIA, Ogden, UT.

Figure 1.—Depiction of the three mapping scales used to
examine two spatially explicit forest resource models.



mats. The models were originally in ASCII format and required

conversion to the specific language for each software package.

Conversion into the ARCINFO software language (ARC Macro

Language – AML) was done by a Visual Basic program, writ-

ten by John Nelson, Ogden IWFIA (fig. 2). This program

required user input as to file locations and file output names,

and resulted in an AML code, which was then run in ARCIN-

FO. Using this conversion program reduced the number of user

input errors caused by typing the model into the computer by

hand. Since there was no conversion program to create the cor-

responding IDL program, the MARS model was transcribed to

the IDL format by hand typing the correct IDL code.

The original input and final output data format was an

ARCINFO grid. Grids are a specific type of raster data unique

to ARCINFO. Raster data are simply a series of columns and

rows with each cell having a value that represents a specific

class (e.g., 1 = water, 2 = agriculture, 3 = urban), or a single

value from continuous data (e.g., elevation, soil pH). We

required ARCINFO grids as the original inputs and final out-

puts because it is an industry standard and many Forest Service

Geographical Information Systems (GIS) facilities have the

ARCINFO software. Whereas ARCINFO required no changes

in input or output data, IDL required converting the input grids

to binary format, and the output binary files to grids, which

required ARCINFO (fig. 3). 
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Figure 2.—Conversion of a spatially explicit MARS model (a) in ASCII text to ARCINFO AML format (b) based on the Visual
Basic conversion program. The original model and the AML output contain references to grids (Veg, Elev, Lat, and Long) and
intermediate products to generate the final output (BF2, BF4, BF5, and BF6).

Figure 3.—Process of implementing a spatially explicit model
in IDL.

(a) Forest Resource Model (Mars)

BF2 = max(44 – Veg, 0)

BF4 = max(1380 – Elev, 0) x BF2

BF5 = max(Lat – 1800, 0)

BF6 = max(12336 – Long, 0) x BF4

Final_Grid = (0.992 + 0.987 x BF2 + .002 x BF4 - .032 x BF5 + .266 x BF6)

(b) Equivalent AML code

BF2 = con((44 – Veg >= 0), 44-Veg, 0)

BF4 = con((1380 – Elev >= 0), 1380 – Elev, 0) x BF2

BF5 = con((Lat – 1800 >= 0), Lat-1800, 0)

BF6 = con((12336 – Long >= 0) 12336-Long, 0) x BF4

Final_Grid = (0.992 + 0.987 x BF2 + .002 x BF4 - .032 x BF5 + .266 x BF6)
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Comparison of ARCINFO and IDL Model
Implementation Methods

The IDL method took about half as long as ARCINFO,

although as the area of interest increased the difference less-

ened (figs. 4 and 5). The values for the IDL process included

the time to convert the ARCINFO grids into binary files and

the output binary file into an ARCINFO grid. The simple

model was able to run in both ARCINFO and IDL, but the

complex model resulted in erratic output in ARCINFO.

Although binary files require more storage than ARCINFO

grids, IDL input and output files required less total storage

space than ARCINFO (fig. 6). The ARCINFO method created

temporary intermediate grids that were saved to memory,

whereas the IDL method processed one row of data at a time,

thus requiring only the memory needed to hold one row. 

Conclusion

All models were able to complete implementation in IDL and

generate an output file. ARCINFO, while eventually able to

generate an output file for the complex model, proved to be

unreliable and unstable, often generating an output grid that

showed all cell values as zero, or completely nonsensical data

values. The feasibility of implementing IDL depended on more

than technical results. Implementation required considering (1)

the type of operating system required, (2) the computer hard-

ware requirements, (3) the cost of obtaining and maintaining

IDL, (4) the ease of use and access to people who know how to

implement the software, and (5) the limited input data formats

(ASCII or binary). We compared all of these aspects for

ARCINFO and IDL (table 1). The advantages of ARCINFO are

that many people know how to work with ARCINFO; model

implementation is a simple, one-word command (&r <name of

model AML>); and data inputs and output are grids. The disad-

vantages are that it can be unstable for complex models, and

large amounts of memory are required because all input grids

and intermediate grids are stored in memory. The advantages of

IDL are that it is less expensive than ARCINFO; requires less

memory because model implementation is done only on certain

sections of the input files at a time, and the programming lan-

Figure 4.—Comparison of the time it took to run a simple
mode (6 inputs, 13 intermediate grids (binary data for IDL),
and one output) for three levels in the ARCINFO and the IDL
software packages.

Figure 5.—Comparison of the time it took to run a complex
model (9 inputs, 20 intermediate grids (binary data for IDL)
and one output) for three levels in the ARCINFO and the IDL
software packages.

Figure 6.—Comparison of required storage for the simple
model in the ARCINFO and the IDL software packages.
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guage is easy to learn. The disadvantages of IDL are that there

are fewer people who know how to write IDL code than

ARCINFO AML code, a program needs to be written to imple-

ment the model, and input and output data are restricted to

binary or ASCII formats.

Literature Cited

Bailey, R.G. 1980. Description of the ecoregions of the United

States. Misc. Publ. 1391. Washington, DC: Department of

Agriculture.

Frescino, T.S.; Moisen, G.G. 2004. Predictive mapping of for-

est attributes on the Fishlake National Forest. In: Proceedings

of the 4th Annual Forest Inventory and Analysis symposium;

2002 November 19–21; New Orleans, LA. Gen. Tech. Rep.

NC-252. St. Paul, MN: U.S. Department of Agriculture, Forest

Service, North Central Research Station.

Friedman, J.H. 1991. Multivariate adaptive regression splines.

Annals of Statistics. 19: 1–141.

Comparison Factors ARCINFO IDL

Operating system Windows (95, 98, 2000, NT) Windows (95, 98, 2000, NT)

Unix Unix

Computer requirements

RAM 16MB 256MB

Hard drive 25MB 1GB

Processor 486 or higher Pentium II 

Cost $3,000 (Windows) Windows $650/ Unix $1,250

Ease of use Many routines written; many AML Some routines written; fewer IDL
programmers programmers

Data format Grid, binary, ASCII Binary, ASCII

Table 1.—Comparison of (1) operating systems that could run each package respectively, (2) machine requirements, (3) approxi-
mate cost, (4) potential number of experienced users, and (5) available input data formats for ARCINFO and IDL
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Using FIA and GIS Data to Estimate Areas and
Volumes of Potential Stream Management
Zones and Road Beautifying Buffers

Michal Zasada1, 5, Chris J. Cieszewski2, Roger C. Lowe3,

Jarek Zawadzki1, 6, Mike Clutter4, Jacek P. Siry2

Abstract.—Georgia Stream Management Zones

(SMZ) are voluntary and have an unknown extent and

impact. We use FIA data, Landsat TM imagery, and

GAP and other GIS data to estimate the acreages and

volumes of these buffers. We use stream data classi-

fied into trout, perennial, and intermittent, combined

with DEM files containing elevation values, to assess

buffers with widths consistent with Best Management

Practice rules. Our results suggest that SMZs in

Georgia occupy about 3.6 percent of the forested area

and contain about 4 percent of its volume. Assuming

100-foot buffers, the area would be more than 7.5

percent and the volume 8.4 percent. 

As the country becomes more populated, urban expansion will

leave fewer acres available for production forestry. We will

also face greater demand for clean water and other nontimber

forest benefits, which will also reduce the number of acres

available for production forestry. At the same time, demand for

various wood products from our forests will increase. Thus, we

will have less land from which more wood products will be

required (Wear and Greis 2002). This could mean that the

standing timber supply may not meet demand. Since policy-

makers and business leaders make decisions that affect our

forests, we need tools to evaluate the potential effects that their

decisions will have on this resource. For example, we might

wish to know how environmental constraints (such as mandato-

ry SMZs of various sizes along streams and rivers) would

affect the inventory of merchantable trees or business decisions

such as the location of pulp or sawmills in particular locations

within the State. 

Riparian / Stream Management Zones

The Stream Management Zone (SMZ) is a mandated protection

zone around a stream, lake, or other water body meant to pro-

tect factors such as water quality and fish habitat. The SMZ

consists mostly of riparian habitat area—the area directly adja-

cent to a waterway that includes the bank vegetation and a strip

of forest. 

The most important function of riparian zones is maintain-

ing water quality. They buffer rivers from adjacent pollution

sources by filtering sediments, absorbing nutrients, and stabi-

lizing stream banks. Riparian zones also provide habitat for

wetland animals and plants, and travel routes for others. They

provide habitat and food for stream organisms, and, by shading

streams, moderate ambient temperature (Welsch 1991).

Stream management zones were mandated by Federal

water quality legislation (“Clean Water Act”) to minimize or

prevent nonpoint sources of water pollution (NPSP). In 1976

the U.S. Environmental Protection Agency recommended using

Best Management Practices (BMPs) as a primary method for

controlling NPSP. The State of Georgia chose a nonregulatory

system of voluntary compliance. The Georgia Forestry

Commission issued the current “Georgia’s Best Management

Practices For Forestry” manual in 1999.

Nowadays we are facing the possibility of mandatory

BMPs for all forested areas. Changes in BMPs are also possi-

ble to meet the demands of some environmentalists to make

required buffers around streams wider and forest management

inside of them more restricted (Wenger 1999). Currently, for

perennial streams BMPs recommend leaving evenly distributed

50 square feet of basal area per acre or at least 50 percent of

the canopy cover after a harvest. For trout streams, an addition-

al no-harvest zone around the stream’s bank must be created.

For intermittent streams, requirements include leaving 25

square feet of basal area per acre or at least 25 percent of

1Postdoctoral Fellow, 2Assistant Professor, 3GIS Analyst, 4Professor, respectively, Warnell School of Forest Resources, University of Georgia, Athens, GA.
5Assistant Professor at Faculty of Forestry, Warsaw Agricultural University, Poland.
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canopy cover after a harvest (GFC 1999). The extent of these

potential harvesting limitations is not yet known.

Although many studies on riparian / stream management

zones in the South exist (e.g., Wenger 1999), literature on their

extent, assessment, and statistics is scarce. Cubbage and

Woodman (1993) estimated harvesting area losses and costs by

management classes using hypothetical “Forest Management

Units” (FMUs) based on data from the FIA inventory for

Georgia. They estimated forested area in stream management

zones to range from 4.8 percent of total forest area (based on

recommendations from BMPs of 1989), through 5.3 percent

with buffers 35 to 100 feet wide, depending on slope to 7.09

percent for primary SMZs 300 ft wide. Beyond this study,

some limited statistics are available from small-scale assess-

ments and experiments, including ecological, biochemical,

physiological, socioeconomical, and hydrological issues (e.g.,

Coweeta Long Term Ecological Research). However, these

studies use mostly simplified assumptions (area of the buffer is

calculated as a product of the stream length and the buffer

width) and don’t provide more detailed statistics.

Specific Objectives

We analyzed various Georgia data by relating spatially the FIA

data to Landsat TM imagery and other GIS data to estimate the

acreages and volumes of the protective zones and to assess

potential impacts of implementing these zones in Georgia. Our

specific objectives were to:

1. Develop an extended spatially explicit database with the

FIA inventory information, water resources, and road

developments in Georgia, plus hypothetical information on

areas potentially classified as SMZs and road buffers.

2. Use the above database to evaluate the effects of regula-

tions on timber harvests at various distances from roads

and water resources in the State. 

Data

In our study we used several sources of data. Administrative

boundaries, roads, rivers, and elevation data (Digital Elevation

Model – DEM) were downloaded from the Georgia GIS Data

Clearinghouse located at

(www.gis.state.ga.us/Clearinghouse/clearinghouse.html). The

Georgia GIS Data Clearinghouse provides access to

Geographic Information Systems (GIS) resources of Georgia

for use by government, academia, and the private sector, mostly

free of charge. 

Information about natural land cover types comes from

Georgia GAP Analysis Program data and was obtained from

the Internet

(http://narsal.ecology.uga.edu/gap/gap_landcover.html).

Coordinated under the National Gap Analysis Program of the

USGS Biological Resources Division, GAP is a nationwide

biological diversity assessment and planning program. It

assesses the conservation status of native vertebrate species and

natural land cover types throughout the U.S., and facilitates the

application of this information to land management activities.

The GAP data set distinguishes 18 general land cover types,

including three forest cover types (deciduous, evergreen, and

mixed), forested wetlands that can be also classified as decidu-

ous forests, and clearcut/sparse areas, derived from 1998

Landsat TM imagery by a series of unsupervised classifica-

tions. In addition, several ancillary data sources were incorpo-

rated, including roads, power lines, and the National Wetlands

Inventory data. Delineation of additional subclasses of vegeta-

tion is still in progress. We used this data set to stratify Landsat

TM imagery (16 scenes of Georgia collected in 1999 and 2000)

data into three forest types (evergreen, deciduous, and mixed)

and other nonforest types, to mask out some water bodies and

roads, and to determine the initial cover type inside stream and

road buffers.

Trout streams were identified using a “Trout Streams of

Georgia” data set from NARSAL, Institute of Ecology, College

of Environment and Design. 

Methods and Assumptions

First, data on streams were classified into trout, perennial, and

intermittent. Trout streams are those suitable for trout (poten-

tially carrying trout). Perennial streams flow in a well-defined

channel throughout most of the year under normal weather con-
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ditions. Intermittent streams flow in a well-defined channel

during wet seasons but not for the entire year. Classified

streams were masked out with assumed widths. In addition to

data from the Georgia GIS Clearinghouse, we added water

bodies extracted from GAP (recognized on satellite images as

water bodies). 

DEM data sets contain elevation values that were convert-

ed to slopes expressed in percent. The slope data set was

reclassified according to BMP recommendations as slight (0-20

percent), moderate (21-40 percent), and steep (>40 percent)

slope using ArcView software. Having classified the streams

and derived slopes, we could finally create buffers around

streams using widths from the water body shown in table 1.

Buffers were stored in the GIS software (ArcView and ArcInfo)

as a separate information layer. Transportation class (roads)

was extracted from GAP data and combined with GIS

Clearinghouse data. We assumed primary and secondary

buffers (40 and 100 feet) that were processed similarly to

streams. Resulting buffered streams and roads were intersected

with the GAP land cover information layer. 

The next step included the use of GAP data to stratify

Landsat imagery into broad cover type classes. The stratified

Landsat data were classified using the Euclidian distance

approach developed by the USDA Forest Service (Ruefenacht

et al. 2002). Classification for each forest cover type class was

performed separately. Resulting polygons got FIA data

assigned and were intersected with buffered streams and roads.

It allowed calculating more detailed statistics, than using first

step based only on the GAP data set analysis.

Results

The first results are based on GAP data only. As a result, we

obtained area characteristics by GAP cover types. We also com-

bined areas with volume data. For each of the broad forest cover

types we calculated average volume per area using the FIA data-

base (Hansen et al. 1992, Miles et al. 2001) and multiplied it by

the number of acres in a given class. Areas and volumes were

compared with the latest results of the FIA program (Thompson

1998) and presented in table 2. Stream buffers established accord-

ing to Georgia’s BMPs occupy about 872,500 acres, which makes

up 3.57 percent of total forested area of the State. Assuming all

buffers to be 100 feet wide, we came up with over 7.5 percent of

forested area. Forests in the determined buffers contain 3.96 and

8.39 percent of total inventoried volume, depending on buffer

width. Results for the scenario based on BMPs are smaller than

numbers coming from studies by Cubbage and Woodman (4.8 and

5.3 percent), although the authors of the cited study assumed dif-

ferent buffer widths and a completely different (aspatial)

approach. The area of the buffers in “primary SMZ zones” (7.09

percent) corresponds to our results from the scenario assuming all

buffers are 100 feet wide. Shares of various cover types from our

study are comparable to corresponding management class shares

from the cited study (see Cubbage and Woodman 1993).

The next step of the research will be done on classified

Landsat TM data with spatially distributed FIA attributes. Due to

their computational requirements, these analyses are unfinished.
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Table 1.—Buffer widths according to Georgia’s current BMPs
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Table 2.—Summary statistics of stream buffers in the State of Georgia based on GAP data and FIA summaries



2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium 257

Welsch, David J. 1991. Riparian forest buffers; function and

design for protection and enhancement of water resources. NA-

PR-07-91. Radnor, PA: U.S. Department of Agriculture, Forest

Service, Northeastern Area State and Private Forestry.

Wenger, Seth J. 1999. A review of the scientific literature on

riparian buffer width, extent and vegetation. Athens, GA:

University of Georgia, Public Service & Outreach, Institute of

Ecology. 59 p.



258 2002 Proceedings of the Fourth Annual Forest Inventory and Analysis Symposium






