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ABSTRACT.—Point pattern analysis is a branch of spatial statistics that quantifies the

spatial distribution of points in two-dimensional space. Point pattern analysis was

conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern

analysis techniques and to determine the ability of pattern descriptions to describe stand

attributes. Results indicate that the Ripley’s K(t) statistic may be readily calculated for

FIA plots, providing an assessment of spatial pattern. Correlation was found between

Ripley’s K(t) and stand disturbance history and forest type. However, spatial pattern

assessment may be confounded by stands with few trees per acre. Basal area growth

prediction using Ripley’s K(t) as a predictor variable is seriously limited by past stand

disturbances. Although point pattern analysis may be limited by plot buffer creation

techniques and the relatively small size of sample plots, extensive FIA sampling across

the forests of the United States allows unprecedented spatial analysis of North America’s

forests.

Information concerning the spatial pattern of individual

plants within plant communities may refine understanding

of ecological processes (Hasse 1995, Legendre and Fortin

1989). Spatial patterns in plant communities are not only a

record of past events, but they may also be a valuable

predictor of future processes (Dale 1999). In forest stands,

quantifying individual tree spatial patterns may provide

information on forest establishment, growth, competition,

reproduction, and mortality (Dale 1999). Point pattern

analysis, a branch of spatial statistics, can be used to quantify

the spatial pattern of plant communities (Cressie 1993).

Point pattern analysis using FIA stem-mapping information

permits refined analysis of past disturbance events, current

forest type, and future stand growth on FIA plots. Such

analyses permit the spatial investigation of forests at an

unprecedented scale across the United States. A technique

and possible benefits of conducting spatial point pattern

analysis using FIA data are explored.

STAND-LEVEL POINT PATTERN ANALYSIS

Point pattern investigations may improve the assessment of

forest attributes of FIA plots: forest growth, forest type, and

disturbance history. The spatial arrangement of individual

trees in a stand may explain variations in stand growth

patterns previously unexplained by current growth and yield

models. Distance-independent diameter growth models do

not explicitly account for the spatial aspects of tree data, but

they indirectly accounted for spatial effects through inclusion

of competition variables such as stand density (Lessard and

others 2001). However, the assumption that competitive

forces are applied equally throughout a stand is unrealistic

for mixed-species, multi-aged forest stands or stands that are

patchy due to disturbance (Moeur 1993). Clustering of trees

has been found to decrease volume growth by up to 20

percent, compared to regular spatial distributions common to

plantations (Miina 1994, Shao and Shugart 1997). Spatial

statistics offer alternatives to the traditional broad population

density investigations (Weiner 1982) by providing a

methodology by which the spatial arrangement of individual

plants may be quantified.

Spatial point pattern analysis has been used to investigate

stand disturbance histories (Harrod and others 1999, Mast

and Veblen 1999, Mateau and others 1998, Moeur 1997). It

has commonly been found that as stands age, their tree point

pattern shifts from that of a clustered distribution to that of a

random distribution (Mast and Veblen 1999, Moeur 1997).

Natural gap-disturbance events may increase clustering,

while anthropomorphic disturbances, such as timber stand

improvement operations, may increase uniformity.
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Spatial point pattern descriptions of stands have been used

to describe the competitive interactions between trees in

mixed-species forests (Duncan 1991, Szwagrzyk 1992,

Ward and others 1996), which may in turn reveal

successional pathways. It can be hypothesized that the

spatial arrangement of shade-intolerant tree species will be

less clustered than that of shade-tolerant tree species, due to

species-specific self-thinning behaviors. As forests progress

through stand development, from a species composition

dominated by shade-intolerant species to those that may be

more shade tolerant, one might expect a change in spatial

point patterns. In addition to shade tolerance, younger

species components of a forest community (more shade

tolerant) may tend to be more clustered due to recent

regeneration events. Whether as an indicator of stand

history, growth, or forest type, spatial point pattern analysis

may provide another stand variable of considerable value in

ecological analyses.

RIPLEY’S K(t)

A widely used spatial statistic of point pattern analysis is

Ripley’s K(t), a univariate second-order analysis of point

patterns in a two-dimensional space (Dale 1999, Hasse

1995). The term “second order” refers to the analysis of all

point-to-point distances, as opposed to first-order analyses

such as “nearest neighbor” that use only the mean of inter-

point distances (Dale 1999, Hasse 1995). With Ripley’s

analysis, a circle of radius t is centered at each spatial data

point and the number of neighbors within the circle is

counted (Hasse 1995). The variable t is often referred to as

the step-size. For n individual points in the area A, the

density (D=n/A) is the mean number of points per unit area

(Hasse 1995). The K(t) function gives the expected number

of points within radius t of an arbitrary point under a

prescribed distribution (Hasse 1995). If points are

randomly distributed (following a Poisson distribution),

then the expected value will not exceed a fixed threshold

(Hasse 1995). Confidence intervals are calculated for this

expected value using Monte Carlo simulations. Simulations

entail randomly generating points for plots of the same size

as the observed plot, with the lowest and highest values of

K(t) for each t used to estimate the lower and upper bounds

of confidence envelopes (Hasse 1995). If the expected value

for any size-step exceeds the value established by the

confidence envelopes, then the null hypothesis of spatial

randomness is rejected for that t (Hasse 1995, Mast and

Veblen 1999). To achieve a 99 percent confidence interval,

99 simulations must be calculated (Mast and Veblen 1999).

Recent research suggests that toroidal edge corrections should

be utilized (Boots and Getis 1988, Duncan 1990, Mast and

Veblen 1999, Ripley 1977). Toroidal edge correction involves

wrapping the plot around a torus such that opposite sides of

the plot connect, creating a data set with no boundary (Hasse

1995, Ripley 1977).

OPERATIONAL CONSIDERATIONS OF PATTERN

ANALYSIS

Two attributes of the current FIA sampling design confound

point pattern analysis. First, the circular subplot shape does

not allow for toroidal edge correction. Second, the FIA subplots

may be too small to allow for robust spatial analysis. Point

pattern analysis is usually conducted on rectangular plots

substantially larger than current FIA sub plots. Hence, no

literature exists to propose corrections for the confounding

factors. Therefore, for this study, the subplots for each FIA plot

were truncated to a square shape (excluding all tree locations

outside a superimposed square) and all four truncated subplots

were combined into one square for each FIA plot. The

assumption is that the dispersive and attractive properties of

point patterns will be maintained during subsampling and

recombination, as long as a minimum scale of sampling is not

violated. The toroidal edge correction method (Ripley 1977)

replicates the point pattern of rectangular areas eight times and

adjoins all eight rectangles for a seamless pattern. The

adjoining of all four FIA-subplot point patterns is considered a

process analogous to toroidal edge correction whose validity

should be elucidated by this and future research.

OBJECTIVES

The study had two major objectives:

1. To examine the relationships between Ripley’s K(t)

and FIA stand stem-map patterns, stand growth,

stand disturbance history, and forest type

2. To determine the effect of plot trees per acre (TPA) on

Ripley’s K(t) for individual FIA plots

METHODS

Ripley’s K(t) is computed using the x,y coordinates of every tree

in a rectangular area. Because FIA data are collected using a
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Figure 1a.—To allow buffer creation, all circular subplots

truncated to a square.

Figure 1b.—All square subplots combined to one plot square and

all bearings and distances transformed to x,y coordinate

system (ft).

four-subplot, fixed-radius sampling design, plot truncation

and coordinate transformation are performed. First, the

locations (azimuth and distance from subplot center) of trees

within a superimposed square are extracted from every

subplot (fig. 1a).  Next, the distance and azimuth from plot

center to each tree 5 inches and greater in d.b.h. are

converted to x,y coordinates (using the lower left corner as

the origin). Finally, the tree coordinates from each truncated

subplot are combined to form a larger square with the lower

left corner as the origin and 68-ft sides (fig. 1b). FIA data

from Indiana were used (Time 1: 1998) (443 plots). To

conduct growth analysis, remeasurement information for

some of the plots measured in Time 1 was used (Time 2:

1999 and 2000) (69 plots). Ripley’s K(t) and associated 99

percent confidence intervals were calculated for FIA plots in

this study using spatial analysis programs written by Duncan

(1990).

RESULTS/DISCUSSION

Point pattern analysis of FIA data has numerous limitations

and caveats. First, the actual area of analysis is reduced due

to buffer creation resulting in a substantial loss of data.

Second, Ripley’s K(t) may only be calculated on data from the

newly adopted four-plot fixed-radius sampling designs. All

the previous surveys using variable-radius sampling designs

cannot be used for spatial analysis. Third, Ripley’s K(t) may

only be calculated for trees greater than 5 inches in diameter.

The fixed radius for sampling of trees less than 5 inches in

d.b.h. is 6.8 ft, a size insufficient for broad deductions about

tree spatial distributions. Fourth, because the FIA plots used in

this analysis are actually a combination of subplots that are

spatially disparate, plots located in ecotonal/multi-use areas

may confound tree point pattern analysis; e.g., where one

subplot is located on cropland while the other three are on

forest land. The number of conditions and the actual ground

land use classifications should be considered when calculating

the Ripley’s K(t) statistic. Finally, to ease the data management

requirements for spatial analysis of large inventories, a single

step-distance (t) may need to be selected.

Although numerous limitations exist, for a large proportion of

the forest land sampled by FIA, the Ripley’s K(t) statistic may

prove to be an important measure of spatial character. From

visual inspection of two FIA plot stem-maps, spatial

arrangement differences are obvious (figs. 2 and 3). One

distribution qualitatively appears random, while the other

appears clustered. The Ripley’s K(t) statistic quantifies these

apparent differences in tree spatial distributions. The stand that

is described as clustered is significantly (a=.01) clustered at

scales between 12 and 28 ft according to the square-root

transformed Ripley’s K(t) statistic (Busing 1996); i.e., its spatial

distribution is significantly different from a random

distribution (fig. 4). For the stem-map qualitatively described

as random, the Ripley’s K(t) quantifies its spatial pattern as

random across all scales of observation (null hypothesis of

spatial randomness is not rejected) (fig. 5). Based on visual

observations for over 400 stands, the Ripley’s K(t) statistic

appears to correctly quantify the spatial patterns of FIA plots.
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Figure 2.—Random distribution of individual tree locations Figure 3.—Clustered distribution of individual tree locations

(Indiana, County 93, Cycle 4, plot 82).

Figure 4.—Ripley’s K(t) and associated 99 percent confidence intervals for one FIA plot (Indiana, County 93, plot 82).
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Because spatial analyses of large forest inventory data sets

may encounter a wide range of forest conditions, the effect of

TPA on Ripley’s K(t) values was examined. Because Ripley’s

K(t) was computed for all step-size distance classes from 2 to

38 ft (2-ft step-sizes), one distance class (24 ft) was chosen

as a basis of comparison. This step-size appeared to be a

distance at which the K(t) values stabilized and were usually

indicative of clustering or randomness. Using the step-

distance of 24 ft, the range of Ripley’s K(t) values increase

with decreases in TPA (fig. 6). Ripley’s K(t) formulation

strictly operates on coordinates, not on the size of individual

trees. It would be expected that other measures of tree

density such as basal area would have a less robust

relationship with Ripley’s K(t) values. Stands with low TPA

may have a greater ability to express clustering tendencies

when using only one step-distance as a basis of comparison.

Therefore, only FIA plots with at least a fixed minimum

number of trees should be used in spatial analysis due to the

possibility of extraneous Ripley’s K(t) values in plots with

low TPA.

The relationship between Ripley’s K(t) values and percentage

changes in stand BA for occupied stands (BA > 100 sq ft/ac)

was examined. Using a step-distance of 24 ft, the Ripley’s K(t)

value increased for individual stands as the percentage growth

in stand BA increased (fig. 7). This result is counterintuitive—

as stands became more clustered, stand basal area growth

increased. Stands that had spatial distributions that tended

toward uniformity (lower K(t) values) experienced losses in

basal area (fig. 7). Stands with a propensity towards a uniform

spatial distribution may have experienced disturbances

(mortality or removals) during the remeasurement interval that

reduced stand BA. When using spatial pattern information to

refine stand growth predictions, past stand disturbances should

have a confounding effect. Disturbances may increase

individual tree growth, but reduce interim levels of stand

growth.

The relationship between stand BA and Ripley’s K(t) may be

more driven by recent disturbance history than density/yield

theories. Mean Ripley’s K(t) values varied according to type of

disturbance (fig. 8). Natural disturbances (windthrow, insects,

disease, or fire) had the highest mean K(t) values, while timber

stand improvement (TSI) disturbances had the lowest mean

K(t) values (fig. 8). Partial stand cuttings and undisturbed

Figure 5.—Ripley’s K(t) and associated 99 percent confidence intervals for one FIA plot (Indiana, County 167, plot 45).
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Figure 6.—K(t) versus Trees Per Acre for FIA plots (Indiana, Cycle 4, t=24 ft).

Figure 7.—Ripley’s K(t) versus annual BA stand growth (%), total BA>100 sq  ft, Indiana, t=24 ft.
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stands had nearly the same mean K(t) value (fig. 8).

Trends in mean Ripley’s K(t) values across different stand

disturbance types may be explained by the inherent spatial

attributes of these disturbances. Natural disturbances, such as

sub-acre-scale gap disturbances, may increase the clustering

nature of tree patterns. Selection thinning, which may

remove only certain size or age classes, may only moderately

increase the dispersion nature of stands. TSI treatments may

actually increase uniformity due to the treatment’s objectives

of reducing competition experienced by individual trees and

removing cull trees.

Mean Ripley’s K(t) values varied across selected forest types in

Indiana (fig. 9). Mean K(t) values appeared to increase with

the increasing shade tolerance of the constituent tree species

of each forest type (fig. 9). The oak and pine forest types

collectively had lower K(t) values when compared to the

more shade tolerant ash, elm, and maple forest types (fig. 9).

Shade-intolerant species may resist clustering more than

shade-tolerant species that are more adapted for the shading

of spatial clustering. Further research should be directed at

understanding the spatial dynamics of species through the

temporal progression of succession. Eventually, point pattern

analyses of FIA data may aid forest typing efforts and

predictions about future forest successional trends at large

temporal and spatial scales.

CONCLUSIONS

Spatial statistics may refine the assessment and prediction of

forest change. Ripley’s K(t) may be easily calculated for all FIA

plots, while affording valuable ecological information. Most of

the limitations concerning application of Ripley’s K(t) involve

plot buffer creation and analysis of plots of a relatively small

size. Preliminary results using data from the four-plot fixed-

radii FIA sampling designs indicate that Ripley’s K(t) may

quantify the spatial point pattern distribution of individual

plots. However, plots with relatively low TPA may have

extraneous Ripley’s K(t) values. The ability of Ripley’s K(t) to

refine prediction of stand basal area changes is confounded by

past disturbance events, which often determine the spatial

pattern of stands in subsequent years. The Ripley’s K(t) statistic

may differentiate between disturbed and undisturbed plots,

while also possibly indicating what disturbance may have

occurred. Ripley’s K(t) values may also indicate forest type due

Figure 8.—Mean K(t) values and associated standard errors for stands by types of identified disturbances (t=24 ft, n > 20).
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to the characteristic shade-tolerance ranges of constituent

tree species. Given the small data set of this study and the

diverse applications of spatial point pattern analyses using

data from the FIA fixed-radius sampling design, numerous

research possibilities exist and warrant consideration.
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