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THE EFFICACY OF USING INVENTORY DATA TO DEVELOP OPTIMAL DIAMETER INCREMENT MODELS

Don C. Bragg1

ABSTRACT.—Most optimal tree diameter growth models have arisen through either the

conceptualization of physiological processes or the adaptation of empirical increment

models. However, surprisingly little effort has been invested in the melding of these

approaches even though it is possible to develop theoretically sound, computationally

efficient optimal tree growth models using inventory data. The Potential Relative Increment

(PRI) methodology is a good example of a flexible potential growth modeling system

developed under these auspices. I present a series of suggestions for ecological consistency,

variable and parameter assumptions, statistical properties, data quality, and model flexibility

that should be considered when developing optimal increment models, exemplified with

white oak (Quercus alba L.) equations from the Midsouth region.

The increased utilization of ecological simulators has led to a

proliferation of models designed to forecast tree growth.

Several general types can be distinguished, ranging from

empirical regression models to process-based theoretical

constructs or other mathematical designs. The increment

model of the Forest Vegetation Simulator (FVS) (Wykoff and

others 1982) is a classic example of an empirical design:

(1)

Following this formulation, periodic diameter increment

(∆D, in this case, inside bark growth over a 10-yr period) is a

function of inside bark diameter at breast height (d.i.b.) and

squared inside bark diameter (dds):

(2)

where HAB is a habitat type constant, LOC is a location

constant, ASP is stand aspect, SL is stand slope ratio, EL is

stand elevation, CCF is a crown competition factor, CR is

crown ratio, BAL is the total basal area of trees larger than

the subject tree, DBH is diameter at breast height (d.b.h.),

and b
1
 to b

12
 are species-specific regression coefficients. Not

every empirical model has this number of variables and

coefficients, but all are usually designed to maximize

statistical fit to inventory data (often using transformed

independent variables). Process-based growth models

assume a specific, meaningful, and mechanistic relationship

between increment and the independent variable(s). This

approach is increasingly popular in ecological models (e.g.,

Botkin and others 1972, Chertov 1990, Pacala and others

1993) because they attempt to emphasize biological

processes rather than just

enumerating tree growth.

For example, some

approximate

photosynthesis, like Pacala

and others (1993):

(3)
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where g
1
 is the asymptotic growth rate of the species under

high light conditions, g
2
 is the slope at zero light, and GLI is

the global light index (a proxy for photosynthetic potential).

Most mathematical growth models (e.g., Chapman-Richards,

Bertalanffy, Gompertz) associate age and tree size to realized

increment. Zeide (1993) decomposed these models into two

general forms, the power decline (PD) and exponential

decline (ED):

(4)

(5)

where a is current tree age and k, p, and q are species-specific

regression coefficients (k > 0, p > 0, and q < 0). Key features

of these models involve the expansion (e.g., DBHp) and

contraction (e.g., aq or eqa) components, which permit rapid

growth when the trees are small and constrain growth as trees

age (Zeide 1993).

Two philosophies on growth prediction can also be identified.

One concentrates on fitting a response curve through a cloud

of data points and parameterizes the resulting model to be

sensitive to measured variables. Predicted increment is either

adjusted upwards or downwards from the fitted curve to

reflect good or poor growing conditions. The second

approach defines an upper increment response curve for

“ideal” growing conditions and then rescales growth

downward to reflect suboptimal performance. Most empirical

and mathematical models (e.g., Lessard and others 2001,

Wykoff and others 1982, Zeide 1993) typify the first

approach, while process models are more characteristic of the

second (e.g., Botkin and others 1972, Bragg 2001a, Hahn and

Leary 1979). Either approach can yield realized increment,

yet there are instances when potential growth is more

interesting. While not specifically designed for this task, most

empirical or mathematical designs have (under the correct

circumstances) a set of conditions that would produce an

increment prediction analogous to optimal growth. However,

their adaptation for potential increment modeling is an

inefficient solution to a problem better addressed through a

hybridized, inventory-based system.

The Potential Relative Increment (PRI) methodology shares

many of the attributes of mathematical and process-based

growth models while retaining strong empirical roots (Bragg

2001a). The PRI equation can be generalized as:

(6)
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where b
1
, b

2
, and b

3
 are species-specific non-linear regression

coefficients. Note that only d.b.h. is needed to predict the

potential increment (∆D
OPT

) of the species, which differs

from other strategies that embed environmental factor(s)

directly in the model (e.g., Botkin and others 1972, Pacala

and others 1993, Wykoff and others 1982) or assume that

tree age is known (Zeide 1993). Using the PRI methodology

as an example, this paper considers the efficacy of adapting

large-scale inventories to create optimal increment models by

providing suggestions to assist in model development and

describing the challenges and potential of inventory-based

approaches.

RULES OF THUMB FOR OPTIMAL

INCREMENT MODELS

As with any statistical model, a number of rules of thumb

should be followed to ensure theoretical robustness and

statistical reliability (and, concurrently, user confidence). The

order of this list is not meant to impart any ranking of

importance, but rather is intended to track the logical flow of

events when developing an optimal diameter increment

model.

1. An optimal increment model must be consistent with

ecological theory, including reasonable assumptions

about the variables and parameters involved.

In general, an ecological growth model should fit basic

expectations of biological behavior. For instance, an optimal

growth model should predict neither infinite nor negative

growth. The first optimal growth models often included

compromises between computational efficiency and

ecological relevance. The resulting efforts may have seemed

practical at the time, but they have imposed some

unfortunate requirements. As an example, the optimal

increment equation of the gap models (e.g., Botkin and

others 1972, Mielke and others 1978, Shugart and West

1977) distributed potential growth along a sigmoidal

function:

(7)

where maximum diameter (DBH
max

, in centimeters) and

maximum height (HT
max

, in centimeters) are estimated from

the literature, and the growth parameter (G) equals:

qp
akDBHDPD =∆:

qapekDBHDED =∆:

( )DBHb
OPT bDBHbDBHD 31

2=∆



(8)

Furthermore, the sigmoid nature of equation 7 produces

two-thirds of the tree’s growth under optimal conditions by

half of the tree’s lifespan, thus noticeably underestimating

tree growth potential (Bragg 2001a), especially when AGE
max

is large. Figure 1 contrasts the diameter growth potential for

white oak (Quercus alba L.), using the gap model FORAR

(Mielke and others 1978, assuming G = 100.7, AGE
max

 = 400

years, DBH
max

 = 122 cm, and HT
max

 = 3,470 cm) and the PRI

coefficients from Bragg (in preparation a). FORAR

appreciably underestimated potential increment, especially

for small to moderate diameter trees (fig. 1). The PRI

approach eliminates most of the unnecessary ecological

limitations of the gap models by providing more realistic

curve shapes and not enforcing a maximum tree size.

when AGE
max

 is an estimate of species longevity (in years)

and α = 1 - 137/HT
max

. Because of some inconsistencies in

the calculation of equation 8, Botkin and others (1972)

approximated values of G and greatly simplified the

derivation of optimal increment. Equation 7 terminates

(reaches zero growth and mandatory senescence) when DBH

× HT = DBH
max 
× HT

max
, placing considerable importance on

DBH
max

 and HT
max

. Neither of these parameters is definitively

known and may not be maximized under the most favorable

growing conditions. As an example, it is not unusual for

some species to reach their maximum age in less than ideal

environments (e.g., bristlecone pine (Pinus longaeva D.K.

Bailey) on alpine sites or northern white-cedar (Thuja

occidentalis L.) on cliff faces (Kelly and others 1992)).

Figure 1.—Differences in white oak optimal diameter growth predicted by the PRI methodology (solid line) and the gap model equation

(dashed line).
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2. An optimal increment model should be statistically

robust yet efficient and parsimonious.

Advances in computational ability make the development of

large-scale empirical models technically possible, often

giving these efforts an advantage over other designs in that

hundreds or perhaps thousands of individual observations

have been used to fit the equations. This large sample,

collected over an extensive geographic distribution, conveys

statistical power (even when many parameters are used).

Inferring ecological meaning, however, from many

coefficients and variables becomes challenging as more and

more factors with increasingly obscure relevance are added.

More parameters also do not equate to a better model

design. Zeide (1991) pointed out that a high-degree

polynomial with the same number of parameters as data

points would provide an exact fit (fig. 2) yet would prove

less biologically relevant than a simpler but noisier model

(e.g., a power function) that does not attempt to explain all

data variation but can be related to a known process (e.g.,

mitosis).

Unfortunately, many process-based optimal growth models also

suffer from inadequate designs. One major problem is that

their developers used very few samples of the relevant

populations, thereby limiting their utility. The gap models, for

example, use coefficients fit to a handful of trees (i.e., the

one(s) contributing AGE
max

, DBH
max

, and HT
max

), while other

approaches have been developed from limited field sampling

(e.g., Pacala and others 1993), thus constraining extrapolation.

Other authors are quick to point out that process-based

increment equations rarely (if ever) outperform empirical

growth predictions (Fleming 1996, Vanclay 1994). Hence,

statistical efficiency and biological relevance can sometimes fail

at a critical juncture of increment model: realized performance.

The PRI methodology’s compact equation form produces a

parsimonious model while still considering large samples of

known quality and distribution. PRI equations are directly

linked to actual trees in real environments and follow

reasonable rules of behavior. For example, tree diameter

growth peaks at a relatively early age and then declines over

Figure 2.—Example of Zeide’s (1991) assertion that simple models, while usually noisier, can be more appropriate approximations of

natural systems than high-order polynomials designed to maximize fit.
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time (Zeide 1993). The information used to develop PRI

models, while not as formidable as in some empirical

designs, is still considerable (Bragg 2001a). PRI’s realized

performance also does not hinge solely upon optimal

increment model behavior, but rather upon the quality of the

modifying functions (see next section).

3. An optimal increment model should be flexible and

general in its application.

Many empirical and mathematical growth models

incorporate environmental parameters directly into their

equations. To illustrate this point, FVS uses up to 9 specific

parameters (12 if the squared variables are included) and 12

coefficients to forecast growth. The behavior of each must be

simultaneously considered to determine the appropriate

combination, so interpreting parameter behavior (especially

in the context of optimal growth) can be virtually impossible.

As an example, beyond a small improvement in statistical fit,

what is the biological significance of squared elevation or

slope length? How valid is this model if the user prefers not

to apply one or more of these parameters?

Even process-based designs sometimes require users to adopt

assumptions they may be uncomfortable with. For instance,

unless one is willing to use the global light index imbedded

in the growth model of SORTIE, applying equation 3 to

predict growth is not possible. Any model that explicitly

includes such variable force that factor to become an integral

part of the factors affecting growth performance (diameter is

directly related to future increment, so it should always be

included). Greater flexibility is possible in model designs

that separate potential from limitations (e.g., Botkin and

others 1972, Bragg 2001a, Hahn and Leary 1979). The PRI

methodology considers optimal performance solely from

species and current diameter, so any reasonable set of

constraining functions could be used to inhibit growth.

4. The data used to develop an optimal increment model

should be reliably sampled and broad in scope.

Rarely are inventories so poorly implemented that the quality

of the data threatens the interpretation of the results. More

likely, data limitations arise from the inadequacy of sampling

conditions. Large-scale databases like the Eastwide Forest

Inventory Data Base (EFIDB— Hansen and others 1992) are

well suited for developing optimal increment models because

of their considerable sample extent. For example, table 1 lists

the 25 most abundant species in the Midsouth optimal

growth models developed by Bragg (in preparation a). The

EFIDB inventory systems also have rigorous training, data

quality, and accuracy standards that contribute to their

reliability. While the EFIDB has supported the PRI effort to

date, it is anticipated that any data set (e.g., Miles and others

2001) that includes species, original tree diameter, current

tree diameter, and the remeasurement period could be

similarly processed.

What makes the PRI approach unique in empirical growth

modeling is that the regression coefficients are fit using a

restricted subset of the increment data, rather than the entire

collection. Only the trees growing the fastest within their

respective diameter classes are selected for PRI analysis (fig.

3), and even these are pared down (resulting in some PRI

equations being fit with 10 or fewer observations). However,

depending on the species and spatial extent of the project,

Figure 3.—PRI model derivation process for white oak in the

Midsouth showing the initial data (a), a tentative selection of

highest actual relative increment (b), and the final subset of

points chosen to fit the equation (c). Note the outlier identified

by an arrow in (a) and (b).
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hundreds to thousands of individual growth measurements

are first evaluated to produce the final set of high-performing

trees. In fact, PRI models must be derived from extensive

inventories if the methodology is to remain ecologically and

statistically robust (Bragg 2001a, in press a).

CHALLENGES TO THE APPLICATION OF

INVENTORY INFORMATION

As can be seen in the preceding paragraphs, every growth

model comes with potential and challenges, not the least of

which is user confidence. Ecological modelers are often leery

of purely empirical designs because of their less than

satisfactory mechanisms, yet many also find mathematical or

process approaches troubling because of shortcomings in

Table 1.—Twenty-five most abundant species used to derive Midsouth optimal diameter growth models (Bragg 2002a).

FIA Min. Ave. Max. Std.
Common name Scientific name code n d.b.h. d.b.h. d.b.h. dev.

—————— centimeters ——————
Loblolly pine Pinus taeda L. 131 37,672 2.8 24.8 103.4 14.42
Shortleaf pine Pinus echinata Mill. 110 17,114 2.8 25.3 89.7 10.96
Post oak Quercus stellata Wangenh. 835 13,308 2.8 25.2 104.4 14.02
White oak Quercus alba L. 802 13,085 2.8 25.6 101.9 14.60
Sweetgum Liquidambar styraciflua L. 611 12,250 2.8 24.3 111.3 14.59
Black oak Quercus velutina Lam. 837 7,145 2.8 26.3 133.1 15.04
Water oak Quercus nigra L. 827 5,464 2.8 34.8 140.7 20.91
Southern red oak Quercus falcata Michx. 812 5,128 2.8 30.5 138.2 16.22
Blackgum Nyssa sylvatica Marsh. 693 3,942 2.8 22.5 93.0 16.01
Black hickory Carya texana Buckl. 408 3,937 2.8 17.8 70.9 11.01
Baldcypress Taxodium distichum (L.) Rich. 221 3,695 3.3 42.8 250.2 28.44
Northern red oak Quercus rubra L. 833 3,319 2.8 29.2 94.5 14.36
Winged elm Ulmus alata Michx. 971 3,170 2.8 13.6 67.8 10.32
Red maple Acer rubrum L. 316 3,113 2.8 16.1 89.4 12.81
Green ash Fraxinus pennsylvancia Marsh. 544 3,058 2.8 28.1 96.5 17.21
Willow oak Quercus phellos L. 831 2,867 2.8 37.6 149.1 20.30
Mockernut hickory Carya tomentosa Poir. Nutt. 409 2,572 2.8 19.0 85.3 12.84
Sugarberry Celtis laevigata Willd. 461 2,486 2.8 28.5 114.3 14.92
Eastern redcedar Juniperus virginiana L. 68 2,435 2.8 15.2 72.9 9.57
Blackjack oak Quercus marilandica Muenchh. 824 2,304 2.8 20.4 72.1 11.35
Cherrybark oak Quercus pagoda Raf. 813 2,112 2.8 37.7 117.3 20.22
Water tupelo Nyssa aquatica L. 691 2,061 2.8 31.5 95.5 13.09
Overcup oak Quercus lyrata Walt. 822 2,010 2.8 40.4 129.8 19.92
American elm Ulmus americana L. 972 1,734 2.8 24.3 148.6 18.28
American hornbeam Carpinus caroliniana Walt. 391 1,271 2.8 11.8 44.5 7.53

their structure and implementation. New techniques like PRI

that blend empirical, mathematical, and process-based

principles have considerable promise in the development of

optimal growth equations because of their flexibility and

robustness. However, as with any system derived from

inventory data, the PRI methodology has two areas of concern

(missing data and outlier handling) that need to be addressed

further.

Missing Data

Regardless of how accurately measurements are taken, errors

of omission can be problematic for optimal increment models

(Bragg 2001a). Fortunately, while the PRI methodology is

sensitive to limited data, the process is designed to
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conservatively estimate potential increment (Bragg 2001a).

Regression models can also suffer from inadequate

interpolation or inappropriate extrapolation (Vanclay 1994)

due to missing or limited data. Problems may also arise if

certain environmental conditions are absent from the

inventory (e.g., no wet bottomlands or steep, rocky slopes),

so as much of the expected range of site conditions as

possible should be included to promote model applicability.

Narrow sampling conditions can still be projected, so long as

it is recognized that the resulting models should not be

extrapolated to other environments.

Much of this challenge can be addressed by broadening the

sampling extent. For instance, Bragg and Guldin (in

preparation) considered the role of regional distribution and

sample size on PRI models for white oak in the Interior

Highlands of Arkansas, Missouri, and Oklahoma.

Pronounced differences in white oak performance appeared

in regional PRI models, primarily due to limited

representation in critical size classes rather than insufficient

total sample size (fig. 4). Fortunately, we found that pooling

the regional models ameliorated differences and improved

model outcome. Bragg (2001a) recommends at least 100

trees per species before developing PRI equations, but even

this sample size may be inadequate, especially for widely

Figure 4.—White oak sample distribution from the Interior Highlands ecoregion of Arkansas, Missouri, and Oklahoma (adapted from Bragg

and Guldin (in preparation)). Ecological section PRI sample sizes were unevenly distributed, both geographically and statistically.

distributed taxa. Missing species, diameters, or site

conditions could be addressed by strategically

supplementing the inventory with additional field sampling

or the incorporation of other data sets.

Outlier Handling

Every inventory-based optimal diameter increment model

needs to address outlier handling because even the best

implemented system will have some records that

dramatically differ from the rest of the data. In most cases,

either a measurement or a transcription error slipped

undetected through quality control. However, it is possible

that some presumed outliers may actually represent growth

at a heretofore unobserved rate and thus reflect the true

potential. To date, the PRI outlier strategy has been to simply

delete points that noticeably depart from other data (figs. 3a

and 3b). This has worked well, because few species have

more than one or two obviously errant points. For example,

Bragg (in press a) was able to easily identify an outlier in an

Arkansas loblolly pine EFIDB data set because the large

loblolly averaged 4.2 cm of growth annually for 7.2 years

(i.e., during this period, it increased from 61 to 90 cm

d.b.h.).
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But what happens with data points that do not deviate

appreciably from the “good” data? Is there a better way to fit

equations to incorporate more of the information otherwise

excluded via the PRI methodology? These questions

invariably arise when hundreds or thousands of data points

are discarded when the final subset is chosen. Bragg (in

preparation b) suggested the possibility of using a top-

averaging design in which a fixed number (or percent) of the

fast growing records per size class are averaged and then

fitted. While a top-averaging approach increases the

information content of the equations, it results in optimal

growth equations that are even more conservative than the

PRI models. Other statistical approaches like quantile

regression have been used to identify curves corresponding

to various quantiles (e.g., Koenker and Bassett 1978, Yu and

Jones 1998). While these have fit splines rather than specific

functions like PRI, they could identify different thresholds of

acceptance based on predetermined criteria (e.g., optimal

increment curves developed using the 95th quantile).

EFFICACY OF INVENTORY DATA

Inventories provide the opportunity to “model from the

extremes” (Zeide 1991) and to develop optimal tree

increment models based strongly in ecological theory and

statistical robustness. Unfortunately, many ecologists have

avoided using inventories to develop increment models

because they are not aware of their availability or do not

appreciate the usefulness of these data. Other growth and

yield researchers have not grasped the opportunity to craft

alternative approaches to forecasting increment potential.

For example, Lessard and others (2001, p. 302) dismissed

the value of potential growth models for projecting FIA plots

into the future because “…potential growth cannot be

observed and historical procedures for estimating it are

complex and time consuming.” While it is essentially true

that potential growth cannot be measured directly, it can be

estimated with relatively simple and quick techniques (Bragg

2001a, in press b).

CONCLUSIONS

Inventories have considerable potential to contribute to the

development of empirically based, ecologically valid, and

statistically robust optimal tree diameter increment models.

To ensure the optimal increment models developed from

inventory data reasonably approximate species potential,

steps can be taken to increase model reliability. The most

salient points include the application of accepted ecological

theory, robust yet economic statistical derivation, flexibility

and generality in model design, and use of reliable inventory

information. Providentially, blending the important biological

and statistical properties markedly improves the development

and application of increment models. While some notable

challenges remain, the PRI methodology is a good example of

how these desirable aspects can be incorporated with existing

inventories to develop models of potential growth.
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