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ABSTRACT.—FIA plot data were used to assist in classifying forest land cover from

Landsat imagery and relevant ancillary data in two regions of the U.S.: one around the

Chesapeake Bay area and the other around Utah. The overall accuracies for the forest/

nonforest classification were over 90 percent and about 80 percent, respectively, in the

two regions. The accuracies for deciduous/evergreen/mixed and forest type group

classifications were around 80 percent and 65 percent, respectively, and were consistent

in the two regions. These results suggest that use of FIA plot data together with satellite

imagery and relevant ancillary data may substantially improve the efficiency, accuracy,

and consistency of large area forest land cover mapping.

Reliable and updated forest information is required for many

scientific and land management applications. Meeting this

requirement is of interest to both the Forest Inventory and

Analysis (FIA) program of the USDA Forest Service and the

Land Cover Characterization (LCC) Program of the U.S.

Geological Survey (USGS) Earth Resources Observation

Systems (EROS) Data Center (EDC). FIA has a mandate to

collect and report information periodically on status and

trends in the Nation’s forested resources, while the LCC

program has a mandate to develop a circa 2000 national land

cover database through the Multi-Resolution Land

Characterization (MRLC) 2000 project. Therefore, it is in the

best interest of the government that these two agencies

collaborate in mapping the Nation’s land cover. The current

study is the result of an initial collaboration between the two

agencies.

Forest land cover information is often derived from remotely

sensed images using classification algorithms (e.g., Franklin

and others 1986, Mickelson and others 1998), many of

which require substantial amount of reference data (Hall and

others 1995, Townshend 1992). Reliable reference data are

also required for assessing classification results. One of the

challenges to mapping forest land cover over large areas is

the lack of adequate reference data. In areas where some

reference data sets exist, they may have been collected in

different ways and may have different levels of reliability.

Such scarcity of reliable reference data and lack of

consistency among the available data sets often limit the

efficiency, consistency, and accuracy in deriving forest

information from satellite imagery.

The plot data collected through FIA make up a potentially

high quality reference data set for the MRLC 2000 project.

FIA plots represent a statistically based sampling of the

Nation’s land. Detailed information on forest status and
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structure is collected periodically at each plot through

intensive field work. With minimal efforts, this data set can

be reorganized for use with remotely sensed images. The

purpose of the current study is to evaluate the usefulness of

the FIA plot data in deriving forest land cover classifications

from satellite imagery over large areas and to test whether

using this data set can improve the efficiency, accuracy, and

consistency in developing the MRLC 2000 national land

cover database.

DATA AND PREPROCESSING

Study Area

For mapping efficiency, the conterminous United States was

divided into 66 mapping zones for the MRLC project. Two

mapping zones—zones 16 and 60—were used in this pilot

study (fig. 1). Zone 60 represents the eastern coastal

environment, covering the Chesapeake Bay area, while zone

16 represents the western arid and less developed landscape,

covering Utah and southern Idaho. Figure 1 shows the

Landsat paths/rows covered by the two mapping zones.

Landsat Imagery and Ancillary Data

For each Landsat path/row covered by the two mapping

zones, Enhanced Thematic Mapper Plus (ETM+) images were

acquired on three different dates to capture vegetation

dynamics over a growing season and to maximize land cover

type separability (Yang and others 2001a). These images

were acquired between 1999 and 2001 and were selected to

minimize the impact of cloud cover and atmospheric effects.

The images were geometrically and radiometrically corrected

using standard methods at the USGS EROS Data Center

(Irish 2000). Terrain correction using the USGS 1-arc second

National Elevation Dataset was performed to improve

geolocation accuracy. Raw digital numbers were converted to

at-satellite reflectance for the six reflective bands and to at-

satellite temperature for the thermal band according to

Markham and Barker (1986) and the Landsat 7 Science Data

User’s Handbook (Irish 2000). All seven bands were

resampled to a 30-m spatial resolution. Tasseled-cap

brightness, greenness, and wetness were calculated using at-

satellite reflectance based coefficients (Huang and others

2002b).

Ancillary data included the USGS 1-arc second National

Elevation Dataset and three derivatives: slope, aspect, and a

topographic position index. In addition, three soil

attributes—available water capacity, soil carbon content and

a soil quality index—were derived from the State Soil

Geographic (STATSGO) Data Base. All ancillary data layers

were resampled to a spatial resolution of 30 m.

Reference Data Sets

Through intensive field work, the FIA program provides

detailed forest attributes at individual tree, subplot, and plot

levels. Considering the pixel size of the ETM+ imagery and

Figure 1.— Mapping zones of the

conterminous U.S., with the two study

areas shaded. The background grid

represents Landsat 7 path/row

boundary.

Zone 60, Chesapeake Bay area

Zone 16, Utah/ southern Idaho area
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possible geolocation errors of the imagery and FIA plots, only

plot-level data were deemed appropriate for use with the

ETM+ imagery. Therefore, tree-level data were summarized to

subplot level and then to plot level. In zone 60, each plot was

labeled with single- or multiple-condition primarily

depending on if there were only one or multiple land use/land

cover types within the plot area. Multiple-condition plots were

excluded to minimize the impact of misregistration errors and

other possible inconsistencies between FIA plots and the

satellite images. This was not deemed necessary in zone 16

because most of the plots were based on the plot design used

prior to 1995, which restricts all plots to single-condition.

Each eligible plot was then classified at three levels: forest/

nonforest, deciduous/evergreen/mixed, and forest type group.

Table 1 lists the number of FIA plots used in this study. Global

Positioning System units were used to locate all plots in zone

60 and 147 plots in zone 16. The remaining plots in zone 16

were digitized from aerial photos used in the field.

Geolocation errors between the digitized plots and ETM+

images were minimal. A visual check of over 100 random

plots digitized from the air photos against corresponding

satellite images suggested that less than 10 percent of the plots

had location errors greater than one ETM+ pixel.

METHODS

Classification Levels

As with the reference data, classification of the ETM+ images

and ancillary data was performed at three levels: forest/

nonforest, deciduous/evergreen/mixed, and forest type group.

A forest/nonforest map is required by FIA to implement a

stratified sampling of forested land in order to produce

accurate estimates of forest attributes. Deciduous, evergreen,

and mixed are the main forest categories in the MRLC 2000

classification scheme. Type group information is often required

for species conservation planning, fire management, and many

other applications. Table 2 lists the major forest type groups in

the two mapping zones.

Table 1.—Number of FIA plots used in this study

Zone 60 Zone 16

Forest/nonforest 1,750 3,037
Deciduous/evergreen/mixed 669 1,754
Forest type group 669 1,852

Another reference data set available in zone 16 consisted of

field data collected by the Fire Science Lab of the Rocky

Mountain Research Station of the USDA Forest Service and

the Utah GAP Analysis Program of Utah State University. Each

field site was classified at two levels: forest/nonforest and

deciduous/evergreen/mixed. This was used as an independent

data set to evaluate the classification results developed using

FIA plot data in mapping zone 16. Although the point

location was not based on any statistically rigorous sampling

design and the evaluation should not be considered a

statistically rigorous accuracy assessment, this independent

reference data set should provide useful information on the

consistency of FIA plot data and the reliability of derived

classifications.

Table 2.—Forest type groups in the two mapping zones

Zone 60 Zone 16

Spruce/fir Pinyon/juniper
Loblolly & shortleaf pine Douglas-fir
Oak/pine Ponderosa pine
Oak/hickory Fir/spruce/mountain hemlock
Oak/gum/cypress Lodgepole pine
Elm/ash/red maple Other western softwoods

Aspen/birch
Western oak
Other western hardwoods

Decision Tree Classifier

Many algorithms are available for classifying satellite

images (Hall and others 1995, Townshend 1992); among

the most popular of these include the maximum likelihood

classifier, neural network classifiers, and decision tree

classifiers. Decision tree was chosen for this study because

it 1) is non-parametric and therefore independent of the

distribution of class signature, 2) can handle both

continuous and nominal variables, 3) generates

interpretable classification rules, and 4) is fast to train and

is often as accurate as, and sometimes more accurate than,

many other classifiers (Hansen and others 1996, Huang

and others 2002a). The decision tree program used in this

study, C5, employs an information gain ratio criterion in

tree development and pruning (Quinlan 1993). This

program has many advanced features, including boosting

and cross-validation.
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Boosting

Boosting is a technique for improving classification

accuracy (Bauer and Kohavi 1998). With this function,

the program develops a sequence of decision trees, each

subsequent one trying to fix the misclassification errors

in the previous tree. Each decision tree makes a

prediction. The final prediction is a weighted vote of the

predictions of all trees. This function often improves

classification accuracy by 5 to 10 percent (e.g., Friedl and

others 1999).

Cross-Validation

Cross-validation is designed to obtain relatively realistic

accuracy estimates using a limited number of reference data

samples for both training and accuracy assessment (Michie

and others 1994). For an N-fold cross-validation the training

data set is divided into N subsets. Accuracy estimates are

derived by using each subset to evaluate the classification

developed using the remaining training samples, and their

average value represents the accuracy of the classification

developed using all reference samples.

RESULTS AND DISCUSSION

Classification accuracies at all three levels in the two mapping

zones were estimated through cross-validation (table 3).

These accuracy estimates can be considered reasonably

realistic, because the FIA plots are not spatially auto-

correlated, they cover the entire of each study area, and their

locations were determined through statistically based

sampling designs (Michie and others 1994). This point is

demonstrated by the fact that for the forest/nonforest and

deciduous/evergreen/mixed classifications in zone 16, the

accuracies estimated using the independent reference data set

collected by the Fire Science Lab of the Rocky Mountain

Research Station and the Utah GAP Analysis Program were

similar to those estimated through cross-validation (table 3).

With the boosting function of the C5 program, overall

accuracies of around 80 to 90 percent, 80 percent, and 65

percent were achieved in both mapping zones for the forest/

nonforest, deciduous/evergreen/mixed, and forest type group

classifications, respectively. At the three classification levels,

the boosting function improved classification accuracy by

about 2 to 10 percent in absolute values. Similar

improvements using the boosting function have been reported

in other studies (e.g., Chan and others 2001). The final

classifications in the two study areas were developed using the

boosting function. The classifications in zone 16 were

evaluated by field crews of the Rocky Mountain Research

Station and the Utah GAP Analysis Program. Both parties

agreed that these classifications were reasonably accurate.

Despite the very different landscapes, classification accuracies

for the two mapping zones are comparable at the deciduous/

evergreen/mixed level and at the forest type group

Table 3.—Classification accuracy estimates for the two mapping zones

Classification level                 Forest/nonforest      Deciduous/evergreen/mixed    Forest type group
Accuracy Std. error Accuracy Std. error Accuracy Std. error

                                               -    -    -    -    -    -    -    -    -    -    -Percent-    -    -    -    -    -    -    -    -   -    -

Zone 60, cross-validation
Without boosting 90.7 0.4 74.0 1.4 59.6 1.1
With boosting 93.7 0.7 78.9 0.8 66.1 2.2

Zone 16, cross-validation
Without boosting 80.4 0.4 78.0 0.4 56.6 0.9
With boosting 82.7 0.4 81.2 0.6 65.8 1.2

Zone 16, use of independent test data set
Without boosting 75.7 - 75.3 - - -
With boosting 79.0 - 83.4 - - -
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level, suggesting that similar accuracies are likely achievable

in other areas using FIA plot data, Landsat 7 imagery, and

relevant ancillary data.

However, the forest/nonforest classification in zone 16 is

about 10 percent less accurate than in zone 60. This is

probably because some forest and natural nonforest

vegetation are more difficult to separate both spectrally and

physiologically in the arid environment of zone 16. Even

from the ground, some field crews recognized that it is

sometimes very difficult to separate tall shrubs from sparse

short trees without ambiguity. Considering the complex

topography and the difficulty in defining forests in zone 16,

the accuracies achieved in this zone probably represent the

lower end of the accuracies expected in forest/nonforest

classifications throughout the Nation.

The development of the classifications in each mapping zone

took an experienced person about 3 to 4 months, including

pre-processing of the ETM+ images and ancillary data

discussed earlier. Our experience from developing the 1992

National Land Cover Dataset (Vogelmann and others 2001)

suggests that if the FIA plot data had not been readily

available for this study, at least one-third extra time and

effort would have had to be devoted to reference data

collection. For the MRLC 2000 project, even if some

resources are available for reference data collection, the

spatial coverage and location of collected reference data

points very likely will not be as preferable as the FIA plot

data.

The ability of the cross-validation to produce accuracy

estimates at the classification stage can be highly valuable to

many users of regional classifications, because statistically

rigorous accuracy assessment of such classifications can be

very expensive and often takes a long time before any

accuracy estimate can be derived (Yang and others 2001b,

Zhu and others 2000). In order for the cross-validation

estimates to be as little biased as possible, however, the

reference data should not be spatially auto-correlated and

should be collected through a statistically based sampling

design (Friedl and others 1999, Michie and others 1994).

The FIA plot data make up perhaps one of the few readily

available reference data sets for regional applications that

meet these criteria.

CONCLUSIONS

1. FIA plot data are useful reference data for mapping

forest land cover at regional and national scales. Forest

maps developed using this data set, Landsat 7 ETM+

image, and ancillary data in the two mapping zones had

overall accuracies of about 80 to 90 percent, 80 percent,

and 65 percent at the forest/nonforest, deciduous/

evergreen/mixed, and forest type group levels,

respectively.

2. Use of FIA plot data as part of the reference data set in

the MRLC 2000 project can substantially improve

mapping efficiency, accuracy, and consistency. The

spatial coverage of the plots and the statistically based

sampling design of plot location make it possible to

produce reasonably realistic accuracy estimates at the

classification stage.

3. The decision tree classifier proves a viable and efficient

method for deriving forest classifications over large

areas. The boosting function can improve classification

accuracy by 2 to 10 percent in absolute value.

4. Synergistic use of FIA plot data and satellite

imagery at a national scale likely will benefit both

USGS EDC’s MRLC 2000 program and the FIA

program of the USDA Forest Service.
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