COMPETITION BETWEEN FUNGI ASSOCIATED WITH
SIREX WOODWASP AND SOUTHERN PINE BEETLE

K.D. Klepzig¹, M.J. Wingfield², and B. Slippers²

¹U.S. Forest Service, Southern Research Station
2500 Shreveport Hwy., Pineville, LA 71360

²Forestry and Agricultural Biotechnology Institute,
University of Pretoria, Pretoria 0002 South Africa

ABSTRACT

The mutualistic symbiotic fungus of the invasive woodwasp Sirex nocitilio is Amylostereum areolatum, a wood rotting fungus. Wood rotted by A. areolatum is fed upon by developing woodwasp larvae. The fungus itself serves as the food source for Deladenus siricidicola, a nematode that also parasitizes Sirex larvae. The resulting sterilization of adult woodwasps serves as the basis for biological control programs worldwide. Biological control of S. nocitilio is achieved via the use of trap logs, colonized by nematodes feeding upon A. areolatum. Any interference with these linked life cycles may disrupt the biological control system and corresponding reductions in S. nocitilio populations.

We tested competitive interactions between A. areolatum and the southern pine beetle (SPB) fungal associates it may interact with if it becomes established in the U.S. South. Amylostereum areolatum (from South Africa), Ophiostoma minus, Ceratocystisip ranaculosus, and Entomocorticium sp. A (all from SPB in the U.S.) were pitted against one another on malt agar.

The area colonized by each competing fungus was measured as an indicator of its ability to colonize (and defend) substrate. The primary phoretic associate of SPB was able to competitively exclude the mutualistic fungus of the Sirex woodwasp and vice versa. The success of SPB or Sirex associated fungi will thus likely depend upon order of arrival. The likely influences on success of Sirex biocontrol efforts may then include the following:

1. Timing of inoculation/placement of trap trees—A. areolatum will need to be well established before exposure to insects vectoring stain fungi.
2. Variability within strains of A. areolatum and parasitic nematodes—Substantial variation exists in competitiveness of A. areolatum strains and in their compatibility with biocontrol nematodes.
3. Abundance of, and pressure from, indigenous pine colonizing beetles and their associated fungi—Seasonal and dynamical factors may influence pressure from competitors for log substrates.