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RAYSAW: A LOG SAWING SIMULATOR FOR 3D LASER-
SCANNED HARDWOOD LOGS

R. Edward Thomas1

Abstract.—Laser scanning of hardwood logs provides detailed high-resolution imagery 
of log surfaces. Characteristics such as sweep, taper, and crook, as well as most surface 
defects, are visible to the eye in the scan data. In addition, models have been developed 
that predict interior knot size and position based on external defect information. 
Computerized processing of complete log shape data, combined with predicted 
internal defect information, promises to reduce waste and improve grade recovery 
in primary breakdown operations. RAYSAW is a hardwood log sawing research tool 
that processes high-resolution 3D laser-scan data and uses internal defect prediction 
models to estimate the occurrence of defects on sawn board faces. RAYSAW uses 
mathematically based ray-tracing image generation methods to generate virtual boards 
that can be graded, remanufactured, or processed into dimension parts using available 
free software. Th e RAYSAW sawing simulator allows researchers to examine the 
impacts of various sawing practices and log quality and shape characteristics on grade 
and value recovery.

INTRODUCTION

Ray-tracing is a mathematically based methodology for creating photo-realistic images on a 
computer. As such, ray-tracing creates a 2D picture of a 3D world where objects are defi ned with 
light sources and view point (Watkins and Sharp 1992). In ray-tracing, a “light” ray is cast from the 
observer into the scene onto the objects in the scene. Wherever the light ray intersects an object, a 
pixel records the color parameters of the intersection point. In addition, the light ray can bounce 
from object to object, generating photo-realistic object refl ections and transparencies.

In RAYSAW, the light ray is replaced by a simulated band saw blade. Instead of the light rays 
emanating from viewpoint, the band saw blade “rays” emanate from a line parallel to the longitudinal 
axis of a log. Th e series of intersection points with the log and defects defi ne the edge and defect 
points of a board. RAYSAW processes 3D log data collected using a three-head high- resolution 
laser-scanner and predicted internal defect data based on log surface defect indicators (Th omas 
2008, 2009). Th e ability to process the 3D log data on a computer allows researchers to examine the 
impact of various sawing practices and diff erent log quality and shape characteristics on lumber grade 
and value recovery. Once this technology is industrialized, it promises to improve grade recovery 
in hardwood sawmills. Recent advances in image processing have resulted in methods capable of 
detecting external log defects in the 3D laser data cloud (Th omas et al. 2006, Th omas and Th omas 
2011). To make image data usable, the incoming 3D laser data are fi rst processed to remove outlier 
points and fi ll areas of missing data using surrounding area information. Figure 1 shows a sample log 
from a laser-scanner as a dot cloud image.
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Several simulators and a computerized sawing system for hardwoods have been developed in recent 
years. One of the fi rst was a mathematically based hardwood log sawing program developed at the 
Forest Products Laboratory (FPL), in Madison, WI (Richards et al. 1979). Th e FPL log sawing 
program processed rough geometric log shape data (small- and large-end diameters, taper, sweep, 
and crook) and defect data. Defect data were manually placed on the log and internally modeled as 
a conic shape with the tip at the log center and the open end of the cone terminating inside or just 
outside the log surface. Th e FPL program would examine 12 diff erent starting rotation degrees and 
do a complete sawing solution for each starting position using the same sawing pattern. Th e FPL 
sawing program was not user-interactive and simply provided end results based on the input log data 
and sawing specifi cations.

Later programs such as GRASP (Occeňa and Schmoldt 1996) were interactive and allowed users to 
guide the sawing process. Th e input data for GRASP are in a complete wire-frame form generated 
from CT scan data and digitized log coordinates. Log defects for GRASP were reconstructed 
using CT cross-sectional profi les and were modeled as separate solids within the wire-frame log 
representation. GRASP required the use of a third-party 3D computer-aided modeling program.

Perhaps the most advanced log sawing system is the one developed at West Virginia University 
(WVU) by Lin et al. (2011). Th eir sawing system processes summarized 3D laser-scan data and 
inferred internal defect shape and position data (Th omas 2008, 2009). Th e 3D laser-scan data are 
summarized to a circular single scan line for every foot of log length. Th e WVU system was not 
developed so much as a simulator but as a real-time system for determining the optimal breakdown 
of hardwood logs. As such, their system includes modules for grading lumber and for optimal edging 
and trimming operations. However, their sawing system uses a circular log shape model that prevents 
the system from accurately sawing elliptical or irregularly shaped logs.

RAYSAW was designed to use the native high-resolution data format directly from a laser log 
scanner. As such it processes true log shape data accurately to the nearest 1/16 inch. RAYSAW is a 
non-interactive, non-optimizing sawing simulator that determines the grade recovery given a log’s 
shape and size, its defects, a sawing pattern, and a starting rotational degree. Th e starting rotational 
angle defi nes the starting position for a log. As in the Lin et al.’s (2011) sawing system, RAYSAW 
uses the internal defect prediction models developed by Th omas (2008, 2009) to determine internal 
defect shape and position. Combining the external laser imagery, surface defect locations and sizes, 
and predicted internal dimensions yields a 3D view of the log complete with external and internal 
defect data. Th is provides a near ideal data platform for conducting sawing research. And it allows 
the impact of alternative processing strategies given specifi c log features to be evaluated with respect 

Figure 1.—Sample dot cloud image of a 3D laser-scanned red oak log.
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to grade recovery. By using high-resolution data, RAYSAW generates accurate and realistic board 
profi le data, from which accurate volume information can be calculated. Th is paper describes 
RAYSAW’s mathematical basis and the system’s sawing processes.

METHODS

Th e quality of the sawing solution depends on the computer model of the log being as accurate 
as possible. Abstractions and generalizations of log shape and log characteristics can result in less 
accurate solutions. Th e log surface is represented by a series of scan lines 1/16 inch apart that encircle 
the log. Each scan line is composed of 200 to 500 points depending on log circumference with 
smaller logs having fewer surface points. Outliers are statistically defi ned as any data point that is 
numerically distant from the rest of the data. In the log data, outliers are typically caused by the 
supports that hold the log during scanning, loose or dangling bark, and laser refl ections off  airborne 
dust. Outliers are removed from the original data by statistically comparing the location of points 
to neighboring points. Th e second step is fi lling in any missing data points to ensure a completely 
defi ned surface. Missing data points are commonly caused by outlier removal or by surface 
shadowing by the log supports and dangling bark. Missing data points are fi lled in using an average 
of neighboring points.

After the log data are cleaned of outliers and missing data points are fi lled, the external and internal 
defect representations can be added. External defect data consist of surface length, width, rise, 
and position (angle and distance from large end). Th e external defect data can be supplied by the 
automated defect detection software (Th omas et al. 2006, Th omas and Th omas 2011), or from a 
manually recorded log diagram. A log diagram records log shape and size as well as the position 
and type of all surface defects (Bulgrin n.d.). Internal defect features are generated using a series 
of prediction models (Th omas 2008, 2009). Th ese models were developed using multiple linear 
regression methods to determine the correlations among external defect indicators such as log 
diameter, defect width, length, and rise to internal features such as encapsulation depth, total depth, 
penetration angle, and cross-sectional dimensions. Th e models were created by analyzing 842 red 
oak (Quercus rubra L.) and 1,000 yellow-poplar (Liriodendron tulipifera L.) defect samples collected 
from logs that were harvested from three sites in central Appalachia. Using the prediction models. an 
internal log defect representation is created. All defects have eight sides and two segments: internal 
endpoint to midpoint, and midpoint to external endpoint (Fig. 2). In instances where the defect has 
been encapsulated by clear wood, the external defect endpoint begins at the predicted beginning of 
the defective wood. Th e defect surface is modeled as a series of facets or triangles as shown in Figure 2.

In ray-tracing, a ray of light is traced from the observer back into the scene. As the ray hits objects, 
points and refl ections are registered. For sawing a log, the ray-tracing process is greatly simplifi ed 
because we are interested only in recording the points of intersection. While conventional ray-tracing 
has a single observer point, ray-tracing based sawing uses a line of starting points corresponding 
to the track of the saw along the log’s length. For log sawing, the process of ray-tracing is further 
simplifi ed to use two diff erent intersection formulae. Th e fi rst is a simple line intersection formula 
that locates the board edges. Each scan line around the circumference of a log at a given longitudinal 
point consists of 200 or more data points. Figure 3 shows the points of a single scanned line of a 
sample log and the outline of an internal defect. Line segments are defi ned between adjacent points 
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of a single scan line of a log. Th e equation for a sawing line S and a line segment L that connects two 
adjacent points in the scanned log circumference, where S has two points A and B, and L two points 
C and D are: = + ( )= + ( )
Solving for the intersection of point of S and L gives the following equations:+ ( ) = + ( )+ ( ) = + ( )

Figure 2.—Computer modeled internal 
and external representation of a log 
defect.

Figure 3.—Ray-traced sawing diagram 
of a log cross-section with an internal 
defect.



Proceedings of the 18th Central Hardwoods Forest Conference GTR-NRS-P-117 329

Solving for ua and ub: =  ( )( ) ( )( )( )( ) ( )( ) 

=  ( )( ) ( )( )( )( ) ( )( ) 

Th e intersection point can be determined via substitution as:= +  ( )= +  ( )
Using the above equations, all log circumference line segment intersections with the sawing line are 
calculated. By moving the saw line along the length of the log, the entire board is “sawn” from the 
log. Because the saw line moves from scanned slice to scanned slice, the points and line are always 
coplanar, thus we need only consider two dimensions. Th e above equations also are used to detect 
when a saw line intersects a previous saw line. When this situation occurs, an edged, rather than wane 
edged, board is produced.

Detecting the intersection of the saw line with defects and generating the respective defect outline 
on the board’s surfaces is more complex. Th e defects are modeled by a set of triangles, where the 
three points of the triangle defi ne a plane. Th us, a line and plane intersection equation is used. 
Given a defect facet F with the normal vector n indicating the direction of F, and a saw line vector s, 
respectively. First, determine the vector w, the diff erence between n and s.=
Th e next step is fi nding r, the distance from the origin of s to the intersection point on the facet.=        

Adding s to the direction vector u by the distance r gives the intersection point P.= +   

Th e above equations will fi nd the intersection of the saw line s and the facet F. However, because F 
defi nes a plane, the next step is to determine if the intersection lies within the three points, Fa, Fb, 
and Fc that defi ne the facet. Given the vectors:

   =     =
Determine the following dot products:

  =    =    =   
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Next, fi nd the vector from Fa to the intersection point P:=  

Th en, determine the following dot products with the vector W:

   =     =  

Finally, determine the unit vector distances of the intersection point from the points Fb and Fc using 
the dot product values. =     

 

=   

If either Q or T is less than 0 or greater than 1, then the intersection lies outside of the facet, and the 
sawline does not intersect that portion of the defect.

As the sawing line moves along the length of the log, RAYSAW stores the distance of all intersects 
with the log surface, other sawlines, and defects. Th e distance data are processed such that a virtual 
board face with defects is produced. For example, Figure 3 shows a sawline intersecting a log cross 
section. Th e distance from the origin where each intersection occurs and the type of object (defect 
or log) intersected is recorded. Two passes of the sawing line at diff erent cutting depths yields a 
complete board. RAYSAW can produce board data compatible with the ROMI rough mill simulator 
(Weiss and Th omas 2005) or the UGRS hardwood lumber grading and remanufacturing program 
(Moody et al. 1998).

RESULTS

As a demonstration of RAYSAW and the internal prediction models, the red oak log shown in 
Figure 2 was sawn with the sawing pattern shown in Figure 4. For this example, the log was sawn on 
a portable bandsaw mill. Th e sawing pattern and rotational positions were then reproduced in the 
sawing pattern for RAYSAW. Th e log was sawn into eight boards and a 2.125 by 5.875 inch cant. 
In the interest of brevity, only the fi rst boards from sawn faces 1 and 3 are examined. Sawing started 
with a slab and a board being removed from face 1 (labeled “Board 1” in Figure 4). A photograph of 
the actual board and the computer predicted board are shown in Figure 5. Next, a slab is removed 
from face 2. From face 3 a slab and three boards are sawn. Th e outermost board sawn and the 
computer predicted board from this face are shown in Figure 6 (labeled “Board 2” in Figure 4).

Th ere are two basic types of errors: missed defects and false-positive defects. Missed defects are 
actual defects whose occurrence the models did not predict. False-positive defects are ones that were 
predicted, but did not actually exist. For those defects predicted that did actually exist, there are two 
additional types of errors: positional and dimensional. Positional error is the distance between centers 
of the actual and predicted defect centers. Dimensional error is the diff erence between actual and 
predicted defect lengths and widths.
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Figure 4.—Sawing pattern used to process 
log shown in Figure 1. Boards named are 
displayed in Figures 5 (Board 1) and 6 
(Board 2). Faces are labeled by sawing 
sequence.

Figure 5.—Computer generated and actual board cut for Board 1.

On Board 1, there are a total of 11 defects. Of these, the internal prediction models predicted the 
occurrence of eight, missing three. In addition, the models predicted two false-positive defects. Th e 
average positional error for Board 1 was 3.64 inches and the average length and width dimensional 
error was 1.04 and 0.93 inches, respectively. For Board 2, the models predicted the occurrence of 
two of four total defects. Th ere was one false-positive defect prediction. Th e average positional error 
for Board 2 was 3.63 inches and the average length and width dimensional error was 1.50 and 0.63 
inches, respectively. Overall, the average positional error was 3.64 inches and the average length and 
width dimensional error was 1.13 and 0.87 inches, respectively.
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In a further study, the accuracy of the red oak prediction models were examined by scanning a set of 
three logs and predicting the occurrence of knot defects on the sawn board faces (Th omas 2011a). 
Th e logs were then sawn on a portable sawmill to replicate RAYSAW’s sawing parameters and log 
positioning. Th e study found that the models accurately predicted approximately 80 percent of 
all knot-type defects. Th e prediction models accurately placed internal knot defects with a median 
positional error of 0.875 inch. Th e error was measured from the center of the actual defect to the 
center of the predicted defect. In most cases the predicted and actual defect areas often overlapped, 
potentially minimizing the impact of defect location error on predicted grade and yield. For 32.8 
percent of predicted internal defects, the diff erence between predicted and actual defect area was 
2.5 in2 or less, with an overall median size error of 4.94 in2. Although this error may sound large, 
consider a knot with an actual size of 3 by 3 inches and a predicted size of 3.7 by 3.77 inches, which 
has an error of 0.7 by 0.77 inches. Th is size error is 4.94 in2 with a relatively small error in predicted 
defect dimensions. In addition, missing the location of a defect by 1 inch on a board is unlikely to 
lead to lower grading of the board, nor will it likely impact yield when the board is processed in the 
rough mill (Th omas 2011b).

DISCUSSION

Although the defect model predictions of location, width, and length seem acceptably small, a second 
study was conducted to determine if these errors have a signifi cant impact on predicted lumber 
quality (Th omas 2011b). In this study, 26 red oak logs were scanned and their defect locations 
manually located and diagrammed. Th e internal prediction models were modifi ed to generate 
internal defect measurement and location estimates that randomly varied between +/- mean absolute 
error (MAE) for each internal characteristic. A total of 30 random defect variations, as well as the 
normal variation and the normal +MAE, and normal –MAE, were generated, producing 33 defect 
variations for each scanned log. Each log was then sawn with four diff erent sawing patterns and 

Figure 6.—Computer generated and actual board cut for Board 2.
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the resulting boards graded with the UGRS grading program (Moody et al. 1998). Overall, there 
were few signifi cant diff erences among the random only sawn lumber sets. Within the 33 defect 
size variations sets, 8 of the 26 logs had no signifi cant diff erences in lumber recovery, and 9 had 
fi ve or less signifi cant diff erences. Th e remaining nine sets had one or more sawing rotation where a 
defect variation resulted in a signifi cant diff erence with all other lumber sets. Some of the signifi cant 
diff erences between the random variation sets were linked to logs that had knot clusters or more than 
an average number of bark distortions. Knot clusters and bark distortions have some of the weakest 
correlations to internal features and thus had a greater variability in internal size and position in the 
random variation sets (Th omas 2008, 2009). Th e random defect variation sets are more likely true 
to reality than the worst (+MAE) and best (-MAE) case defect datasets. When the worst and best 
defect sets were combined with the random variation defect sets, signifi cant diff erences were observed 
between the worst case and the random variation defect sets. Also, as expected, there were signifi cant 
diff erences between the best and worst case defect size variations.

SUMMARY

RAYSAW was developed for research purposes, specifi cally to provide a means of testing the internal 
defect prediction models. As such, RAYSAW lends itself well to answering questions about the 
impacts of various sawing practices and log quality and shape characteristics on grade and value 
recovery of hardwood logs. For example, an elliptical log could be processed using diff erent patterns 
to determine if log rotation has a signifi cant impact on recovery. RAYSAW processes high-resolution 
laser-scan data and reports accurate sawing and waste volumes. Th e simulator saws to a pre-defi ned 
pattern that specifi es the sawing line and board thickness. Th e boards produced by RAYSAW can be 
viewed graphically, graded to NHLA rules, and processed into rough dimension parts using freely 
available software. A graphical user interface for designing sawing patterns is available. Additional 
internal log defects are being collected to refi ne internal defect modeling especially for those defects 
with low internal to external feature correlations, such as knot clusters, and light and medium 
distortions.
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