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COMPARISON OF LIDAR-DERIVED DATA AND HIGH RESOLUTION 
TRUE COLOR IMAGERY FOR EXTRACTING URBAN FOREST COVER

Aaron E. Maxwell, Adam C. Riley, and Paul Kinder1

Abstract.—Remote sensing has many applications in forestry. Light detection and 
ranging (LiDAR) and high resolution aerial photography have been investigated as 
means to extract forest data, such as biomass, timber volume, stand dynamics, and gap 
characteristics. LiDAR return intensity data are often overlooked as a source of input 
raster data for thematic map creation. We utilized LiDAR intensity and elevation 
diff erence models from a recent Morgantown, WV, collection to extract land cover 
data in an urban setting. Th e LiDAR-derived data were used as an input in user-
assisted feature extraction to classify forest cover. Th e results were compared against 
land cover extracted from high resolution, recent, true color, leaf-off  imagery. We 
compared thematic map results against ground sample points collected using realtime 
kinematic (RTK) global positioning system (GPS) surveys and to manual photograph 
interpretation. Th is research supports the conclusion that imagery is a superior input 
for user-assisted feature extraction of land cover data within the software tool utilized; 
however, there is merit in including LiDAR-derived variables in the analysis.

INTRODUCTION

Light detection and ranging (LiDAR) is an active remote sensing technology that utilizes near-
infrared light pulses, diff erential GPS, and inertial measurements to accurately map objects and 
surfaces along the earth. Th e technology is often utilized from an aerial platform to create elevation 
and topographic models of the Earth’s surface (Lillesand et al. 2008). It has many applications in 
forestry research due to the high spatial resolution and accuracy of the data and also the ability to 
collect multiple returns for a single laser pulse, which allows for the analysis of the vertical structure 
of forested areas (Wynne 2006). Forestry inventory attributes and canopy metrics such as canopy 
height, basal area, volume, crown diameter, and stem density have been derived from LiDAR data 
(Magnussen et al. 2010, Næsset 2009, Popescu et al. 2003). Also, the classifi cation of individual tree 
species has been pursued (Brandtberg 2007, Ørka et al. 2009).

LiDAR intensity is a measure of the strength of the return pulse, and this measurement is correlated 
with surface material (Lillesand et al. 2008). However, prior research by Lin and Mills (2010) has 
shown that return intensity is infl uenced by many variables including footprint size, scan angle, 
return number, and range distance. LiDAR return intensity has not been as heavily explored for its 
usefulness in forestry and land cover mapping due to the diffi  culty of radiometric calibration (Flood 
2001, Kaasalainen et al. 2005). Brennan and Webster (2006) explored the use of LiDAR-derived 
parameters, including intensity, for land cover mapping using image object segmentation and rule-
based classifi cation and obtained individual class accuracies averaging 94 percent.
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Th e purpose of this work was to compare LiDAR-derived data, LiDAR all return intensity and 
elevation diff erence models, and high resolution aerial imagery as inputs for user-assisted feature 
extraction of land cover with the software tool Feature Analyst (Visual Learning Systems, Missoula, 
MT). Land cover was diff erentiated in an urban setting and results were compared. Th e following 
land cover classes were of interest: barren/developed/impervious, grass, water, deciduous tees, and 
coniferous trees. We investigated whether forested land cover could be diff erentiated from other land 
cover types in an urban environment using feature extraction if only LiDAR data are available but no 
high-resolution imagery. Th e LiDAR-derived data were utilized in a raster format.

User-assisted feature extraction uses user-defi ned knowledge, as training data, to recognize and classify 
target features in an image (Visual Learning Systems 2002). Feature Analyst uses machine-learning 
algorithms and techniques as object recognition to automate feature-recognition from imagery 
(Visual Learning Systems 2002). Unlike supervised classifi cation techniques, feature extraction 
classifi es an image using more than just the digital number (DN) or spectral information contained 
by each pixel. Spatial context information such as spatial association, size, shape, texture, pattern, 
and shadow are considered (Opitz 2003). Studies have shown that feature extraction or object-based 
algorithms are more eff ective and accurate at extracting information from high resolution imagery 
than traditional image classifi cation methods, such as supervised classifi cation, because additional 
image characteristics are considered such as spatial context (Friedl and Brodley 1997, Harvey et al. 
2002, Hong and Zhang 2006, Kaiser et al. 2004).

Feature extraction takes into account the spatial context that is available in high resolution data. 
We hypothesized that the textural information available in LiDAR-derived data could be utilized to 
diff erentiate forested land cover from other land cover types. As Figure 1 demonstrates, forested areas 
often show more texture and variability of LiDAR intensity values than more homogenous surfaces, 
such as pavement or grass.

STUDY AREA

Th is study was conducted in Morgantown, WV, within a 5.3 km2 area near the Evansdale Campus 
of West Virginia University (Fig. 2). Th is area was selected because LiDAR and high resolution aerial 
imagery were available and a wide variety of land cover types are present.

METHODS

LiDAR Data

LiDAR data were collected on November 12, 2008, at an altitude of 3,500 ft (1066 m) above ground 
level (AGL) from an aircraft platform. An ALTM 3100 sensor was utilized at a pulse rate of 100 kHz, 
a half scan angle of 18 degrees, and a scan frequency of 30 Hz. Up to four returns were recorded per 
laser pulse. Th is was a leaf-off  collection.

Imagery Data

True color imagery was fl own during leaf-off  conditions in March of 2010 at a cell size of 6 inches. 
Th is imagery was made available by the Monongalia County Commission. Visual inspection of the 
imagery showed that it was well color balanced and precisely orthorectifi ed.
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Figure 1.—Comparison of LiDAR intensity texture in forested (A and B) and nonforested (C and D) areas 
(1 ft cell size intensity models and 6 inch cell size imagery).
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Data Preparation

Raster grids were created from the LiDAR point data. Th e data were converted to multipoint 
shapefi les within ArcMap using the 3D Analyst Extension. Point data were then interpolated to raster 
grids using inverse distance weighting (IDW). Grids with a cell size of 1 ft were created for all returns 
and ground returns to create a digital elevation model and a digital surface model. Th e ground model 
was subtracted from the all returns model to obtain an elevation diff erence model for the study area. 
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Elevation diff erences between the surfaces were most commonly a result of vegetation and manmade 
structures. An intensity grid was created from the all returns data at the same resolution using the 
same methodology.

Training Data

Training data for the land cover classes of interest were created by manual interpretation of the 
imagery and LiDAR-derived raster grids as polygons within ArcMap; as a result, land cover training 
data were created by visual interpretation of the input raster grids. Training data were collected 
throughout the study area in order to take into account class variability. Table 1 describes the training 
data collected. Due to variability, the most training data were collected for the barren/developed/
impervious class. Separate training data were collected for conifers and deciduous trees. Th e same 
training data was used for each feature extraction performed so as not to induce variability or bias 
between the runs.

Feature Extraction

Th ree separate feature extractions were performed using the following raster data:

1) True color imagery

2) LiDAR-derived variables (all return intensity and elevation diff erence)

3) All three inputs

Th is was conducted so that comparisons could be made between thematic map results obtained from 
only the imagery, only the LiDAR-derived variables, and a combination of the two. User-assisted 
feature extraction was performed within ERDAS IMAGINE® using the software tool Feature Analyst 
by Visual Learning Systems. Th is software tool has many user defi ned parameters as described in 
Table 2.

Class Number of training polygons Total area

Water 60 73,505 m2

Grass 80 12,774 m2

Deciduous trees 55 22,923 m2

Coniferous trees 53 1,472 m2

Barren/Developed/Impervious 264 59,201 m2

Table 1.—Training data for land cover classes

Table 2.—Feature Analyst parameters used

Parameter Imagery LiDAR-Derived All

Classification method Multi-class Multi-class Multi-class

Output format Raster Raster Raster

Wall-to-wall classification Applied Applied Applied

Resampling factor 2 1 1

Histogram stretch Applied Applied Applied

Input presentation Manhattan (7) Manhattan (9) Manhattan (5)

Find rotated instances of features Applied Applied Applied

Learning algorithm Approach 1 Approach 1 Approach 1

Aggregate areas 80 80 80
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Th e only parameters changed between runs were the resampling factor and the pattern width of the 
input presentation. Th e resampling factor was set at 2 for the image only result so that a 1 ft cell 
size output would be obtained to match the cell size of the other results. Th e input presentation 
determines the shape and size of the search window used to gather spatial context information for 
each pixel. Feature Analyst records the spectral information for all pixels within the pattern to defi ne 
the characteristics of the land cover class. Within Feature Analyst, the number of bands multiplied 
by the number of pixels within the search window cannot exceed 100 (Visual Learning Systems 
2002). For each run we used the maximum pattern width allowable for the Manhattan pattern 
to make the most use of the spatial context information in the imagery and the LiDAR-derived 
variables.

We defi ned the parameters based on results obtained in previous research, suggestions from the 
software user’s manual, and professional judgment. Although it is possible to conduct further 
processing within Feature Analyst to enhance the results, we decided to compare initial outputs 
so as not to induce variability and bias between the runs; as a result, the fi nal accuracies obtained 
here should not be considered a representation of the optimal use of the software. All results were 
thematic map raster grids with a 1 ft cell size.

Error Assessment

Two error assessments were performed. First, 10,000 random points were selected using Hawth’s 
Tools, an extension for Arc Map. Th e thematic map class for each run was determined at each point. 
A 200-point subset of these points was then randomly selected for validation. We then manually 
interpreted the land cover class at the point locations by comparison to the true color imagery.

Second, 140 ground points were collected in the study area representing thematic categories using 
Pacifi c Crest realtime kinematic (RTK) survey equipment. Th e horizontal precision of these points 
averaged 0.03 m (3 cm). Th ese points were then compared to the thematic map results. It should be 
noted that these points do not represent a rigorous random sample. Th ey were collected to conduct a 
relative comparison of the mapping results and should not be considered a measure of true accuracy.

RESULTS AND DISCUSSION

Th ematic map results are provided in Figures 3 through 5. By visual inspection, several observations 
can be made regarding the products. First, two problems associated with image classifi cation at 
this spatial scale are shadowing and relief displacement of above ground objects, such as trees. In 
the imagery alone result, we observed that tree shadows were often classifi ed as part of the tree, 
potentially overestimating the tree extents. Building shadows were often classifi ed as coniferous 
trees. We generally found that the inclusion of the LiDAR-derived parameters help to reduce this 
type of error. An example is shown in Figure 6 in which a water tower shadow was classifi ed as 
coniferous trees in the image only result but was more correctly classifi ed in the result utilizing all 
variables. Relief displacement is a problem in aerial imagery, but is not a problem in the LiDAR 
data. Th is displacement distorts the true location and spatial extent of a tree crown. Th ere were also 
classifi cation errors associated with roofs, which contain spectral variability by color and texture. 
Generally, LiDAR data enhanced roof and building classifi cation.
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LiDAR-derived data poorly separated deciduous and coniferous trees as shown in Figure 7. It should 
be noted that leaf-off  LiDAR data were utilized, and leaf-on data were not assessed. Leaf-on data 
may allow for more separation between these forest types; however, that was not explored. Based on 
visual inspection, coniferous and deciduous trees were more accurately diff erentiated from imagery 
than LiDAR-derived parameters. Th is may be a result of intensity, elevation diff erence, and intensity 
spatial texture being similar for both categories. In leaf-off  imagery, deciduous and coniferous trees 
are spectrally diff erent. Th ese forest types proved to be more separable using image spectral bands 
than LiDAR intensity and elevation diff erence within the software tool utilized.

Error matrixes for the classifi cations are provided in Tables 3 through 6. Th ematic map accuracy 
was compared at randomly selected point locations based on manual photograph interpretation. 
Th ese error matrixes suggest that the classifi cation relying on LiDAR-derived variables alone was 
least accurate. Confusion between coniferous and deciduous trees was common. Th e matrixes and 
Khat coeffi  cients of agreement do not suggest a signifi cant increase in accuracy when LiDAR-derived 
parameters are included with the imagery.

Error assessment relative to the ground surveyed points showed a relative increase in accuracy if 
both imagery and LiDAR-derived parameters were utilized as described in Table 6. Deciduous and 
coniferous forests were not diff erentiated in this assessment due to the inability to accurately sample 
coniferous trees with the RTK equipment. Th is assessment suggests that omission error, or the 
misclassifi cation of tree pixels as other land cover types, was the dominant error source.

If the error matrix for the LiDAR-derived data only (Table 4) is recalculated so that error between 
coniferous and deciduous forest is not considered but rather a single forest class, an increase in both 
the user’s and producer’s accuracy for the forest class is observed (Table 7). If a binary forest raster is 
desired within an urban or developed landscape, it may be appropriate to utilize only LiDAR-derived 
variables in a feature extraction environment; however, if coniferous and deciduous trees are to be 
diff erentiated, imagery may be necessary.

Table 3.—Error matrix with imagery utilized

Reference data

Water Grass Deciduous Coniferous Barren User’s accuracy

Classification

Water 9 0 0 0 0 100%

Grass 0 25 0 2 1 93%

Deciduous 0 6 39 0 10 71%

Coniferous 1 8 0 7 2 39%

Barren 0 1 0 0 89 99%

Producer’s 
accuracy

90% 62% 100% 78% 87%
Overall: 85%

Khat: 77%
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Table 7.—Error matrix with LiDAR-derived data utilized and tree type not differentiated

Reference data

Water Grass Forest Barren User’s accuracy

Classification

Water 7 0 0 2 78%

Grass 0 33 4 6 77%

Forest 0 4 42 18 65%

Barren 3 3 2 76 90%

Producer’s Accuracy 70% 83% 88% 75%
Overall: 79%

Khat: 68%

Table 4.—Error matrix with LiDAR-derived data utilized

Reference data

Water Grass Deciduous Coniferous Barren User’s accuracy

Classification

Water 7 0 0 0 2 78%

Grass 0 33 4 0 6 77%

Deciduous 0 0 10 0 6 63%

Coniferous 0 4 23 9 12 19%

Barren 3 3 2 0 76 90%

Producer’s accuracy 70% 83% 26% 100% 75%
Overall: 68%

Khat: 54%

Table 5.—Error matrix with all data utilized

Reference data

Water Grass Deciduous Coniferous Barren User’s accuracy

Classification

Water 9 0 0 0 0 100%

Grass 0 29 0 0 0 100%

Deciduous 0 1 33 1 8 77%

Coniferous 1 5 5 8 4 35%

Barren 0 5 1 0 90 94%

Producer’s accuracy 90% 73% 85% 89% 88%
Overall: 85%

Khat: 77%

Table 6.—Error relative to sampled ground points

Imagery LiDAR-derived All

Forest comission error 10% 0% 0%

Forest omission error 14% 25% 9%

Overall accuracy 93% 91% 97%
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CONCLUSIONS

Although there was not a signifi cant increase in map accuracy when LiDAR-derived variables, such as 
elevation diff erence and all returns intensity, were considered, there was merit in including the data. 
For example, inclusion of LiDAR-derived variables, based on visual inspection, reduced the negative 
infl uence of shadows and relief displacement on thematic map results. However, diff erentiation of 
deciduous and coniferous forest was signifi cantly improved by the inclusion of leaf-off  imagery in 
the analysis. If the desired product was a binary result to diff erentiate forest from nonforest, it may 
be appropriate to utilize only LiDAR-derived data. It should be noted that the results of this analysis 
only apply to the software tool in question. Other processes may allow for more accurate land cover 
mapping, such as the methods suggested by Brennan and Webster (2006). We simply compared 
initial outputs using variable data inputs; as a result, it may be possible to increase thematic map 
accuracy by implementing additional processing available in the software.

Future research should attempt thematic map creation from LiDAR intensity data and other 
derived products using other software tools and processes. Also, the inclusion of additional LiDAR 
parameters, such as the number of multiple returns in a given area, should be explored for their 
usefulness in creating thematic maps. Later echoes may help isolate deciduous trees in leaf-off  data. 
Although this work supports the importance of imagery in thematic map creation, LiDAR data may 
help to increase thematic map accuracy when high resolution land cover is required.
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