
151

A PRE-TREATMENT ASSESSMENT OF SMALL MAMMALS  
IN THE HARDWOOD ECOSYSTEM EXPERIMENT

Natasha A. Urban and Robert K. Swihart1

Abstract.—The Hardwood Ecosystem Experiment (HEE) is a 100-year, replicated 
experiment implemented in south-central Indiana to examine the impacts of multiple 
timber management regimes on forest ecosystems. A secondary objective of the HEE 
is to evaluate responses of small mammal assemblages. We trapped at 32 sites prior to 
silvicultural treatments to assess pre-treatment small mammal communities. Trapping 
at all sites in both years allowed for modeling of multi-season occupancy and relative 
abundance using environmental covariates while incorporating imperfect detection. 
Estimated occupancy probabilities and species richness were larger than naïve estimates. 
Species richness was not significantly different between treatments or years. Except 
for the abundance of eastern chipmunks (Tamias striatus), the probability of occupancy 
and relative abundance of species did not differ among proposed treatment units. 
Abundance of white-footed mice (Peromyscus leucopus) and short-tailed shrews (Blarina 
brevicauda) and survival of local populations of pine voles (Microtus pinetorum) were 
greater for sites with northeastern aspects. Abundance of short-tailed shrews and pine 
voles also increased with greater herbaceous ground cover. By incorporating detection 
probability, we were able to derive more accurate estimates of relative abundance and, 
when coupled with a Bayesian framework, estimate occupancy for uncommon species. 
The baseline responses reported here can be used by forest managers to determine 
impacts of even-aged and uneven-aged oak (Quercus) management on small mammals 
subsequent to timber harvest.

INTRODUCTION
The most accurate depiction of species responses to 
forest management involves longitudinal studies that 
monitor focal taxa at a site from the time of timber 
harvest until the site is subjected to harvest again. 
Due to the cost and long-term commitment required 
of broad-spectrum longitudinal studies, most studies 
restrict their focus to responses over brief periods 
before and after a forest management activity (Fantz 

and Renken 2005, Ford and Rodrigue 2001, Kirkland 
1990, Potvin et al. 1999, Yahner 1992) or to responses 
inferred from chronosequences sampled at a point in 
time (Urban and Swihart 2011). Although valuable, 
these short-term studies fail to portray wildlife 
response to forest regeneration beyond the earliest 
stages. Further, it is important to observe population 
dynamics across landscapes, not just within stands 
(Gram et al. 2001). With the notable exception of the 
Missouri Ozark Forest Ecosystem Project (MOFEP) 
(Gram et al. 2001,2003), few studies have been 
devoted to a complete landscape-level, longitudinal 
assessment of small mammal responses. 

The Hardwood Ecosystem Experiment (HEE) was 
established in south-central Indiana to examine the 
ecological and social impacts of alternative forest 
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management regimes on public land. Objectives of this 
100-year, landscape-level, replicated experiment are 
reviewed by Kalb and Mycroft (this publication). 

Secondary objectives for the HEE include 
determination of the effect of alternative forest 
management practices on the long-term distribution, 
diversity, and abundance of small mammals at local 
and landscape scales. Within this study, we sought 
to characterize the small mammal communities 
and populations of the HEE forest stands before 
silvicultural treatments were applied.

STUDY AREA
Sampling sites were located in three different publicly 
owned tracts, all located in the Brown County Hills 
region between Bloomington, Martinsville, and 
Nashville, IN. Two of the tracts, Morgan-Monroe 
State Forest (MMSF) and Yellowwood State Forest 
(YWSF), are part of the HEE and are discussed in 
more detail by Kalb and Mycroft (this publication). 
The third location, Brown County State Park (BCSP), 
was established in 1920 and is the largest state park 
in Indiana at 64 km2 (lat. 39°16' N long. 86°22' 
W). All three sites have a similar history inasmuch 
as they all consist of land that was farmed in the 
1800s and early 1900s and then reverted to stands 
of native oak-hickory (Quercus-Carya), American 
beech-maple (Fagus grandifolia-Acer), and mixed 
mesophytic forest with scattered pine (Pinus) 
plantations established in the early half of the 20th 
century (Carman, this publication). BCSP has not been 
subjected to timber harvest since its inception, whereas 
the State Forests have been harvested, principally 
via uneven-aged management, over the past several 
decades.2 Sample site selection and descriptions for 
MMSF and YWSF are described by Kalb and Mycroft 

(this publication). Four small-mammal trapping grids 
were established in each of the 6 treatment research 
cores, resulting in 12 grids per management treatment 
(Fig. 1). Along with the three HEE control trapping 
sites at MMSF and YWSF, a fourth was located in 
BCSP. Two trapping grids were established at each 
of the four sampling sites, resulting in a total of eight 
control grids for sampling of small mammals (Fig. 1).

MATERIALS AND METHODS
Mammal Sampling
Each grid consisted of 27 trapping stations arranged 
in a 3 x 9 lattice (Fig. 2). The three long transect lines 
were laid out 50 m apart across the slope with 20- to 
50-m spacing between stations, depending on the 
size of the harvest treatment (Figs. 2a,b). As with the 
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Figure 1.—Sampling sites and small mammal grid 
locations for the Hardwood Ecosystem Experiment. These 
nine sampling sites are located in Morgan-Monroe and 
Yellowwood State Forests. A tenth sampling site is located at 
Brown County State Park and contains a control grid.
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treatment grids, the control grids contained 27 stations 
allocated among three transects that were spaced 50 
meters from each other and were placed across slope 
(Fig. 2c). 

Every station received a Sherman trap (H.B. Sherman 
Trap, Inc., Tallahassee FL), and six sunken traps were 
placed within the harvest area on the center transect 
(Fig. 2). The sunken traps were composed of 16.5cm 
x 15.9cm aluminum cans with small perforations 
for drainage. Sherman and sunken traps were placed 
within 1 and 1.5 m, respectively, of the center of a trap 
station. Sunken traps were situated whenever possible 
along a natural drift fence such as a fallen log. Due to 
disturbance caused by raccoons (Procyon lotor) and 
opossums (Didelphis virginiana), Tomahawk traps 
(Tomahawk Live Traps Co., Tomahawk, WI) were 
placed in each corner of a trapping grid and baited 
with cat food. All captured raccoons and opossums 
were relocated at least 10 km away from a sample site 

Figure 2.—Layout of Hardwood Ecosystem Experiment small 
mammal trapping grids. Several grid orientations were used 
depending on the size and treatment of the potential harvest 
area.

to discourage their immediate return to the site.

Sherman traps were pre-baited for the 3 days 
preceding trapping. Small mammals were habituated 
to sunken traps during the pre-baiting period by 
placing a plastic lid over the trap and then covering 
it with leaf litter. Following pre-baiting, traps were 
set and checked for 5 consecutive days, both in the 
morning and evening. Sherman traps were baited with 
a mixture of sunflower seeds and rolled oats, and 
sunken traps were provisioned with earthworms. 

For each captured individual, species, weight, sex, 
and reproductive status were recorded. Rodents were 
considered reproductively active if they were lactating 
or had an enlarged pubic symphysis (females) or 
descended testes (males). Shrews were toe clipped for 
identification. All trapping and handling procedures 
were approved by the Purdue Animal Care and Use 
Committee (protocol #07-045).

Vegetation Sampling
For each harvest site, a short site description was 
recorded. At the center of the harvest area, percent 
slope was estimated using a clinometer, and plot 
aspect was estimated in degrees using a compass. 
Slope position and shape also were determined using 
pre-defined classifications (Ruhe 1975). Within an 
11.4-m radius (0.04 ha) from plot center, all trees >5 
cm diameter at breast height (d.b.h.) were identified 
to species and d.b.h. was measured. For all coarse 
woody debris >10 cm diameter at its midpoint, length, 
midpoint diameter, and decay class (Maser et al. 1979) 
were recorded. 

Vegetative structure also was recorded at the center of 
each harvest area. At the cardinal points of a circle of 
radius 3.6 m (0.004 ha) from the center of the harvest 
area, an ocular estimate of cover of herbaceous plants 
and seedlings <1 m tall was made within a 1-m2 
quadrat. All saplings <5 cm d.b.h. and >1 m tall were 
identified to species and counted within the 0.004-
ha circle. Each stem was counted for multi-stemmed 
vegetation. 
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Canopy structure was sampled at 2-m intervals along 
four 10-m transects oriented up slope, down slope, 
and perpendicular to slopes from the center of each 
harvest area. At each sampling point, a density pole 
was used to measure vegetation density in four vertical 
strata with 1-m height increments. At each decimeter 
on the density pole, vegetation within 5 cm of the pole 
was counted as a contact, and the dominant species 
was recorded. The density was then determined by 
summing the number of decimeter contacts (Mills 
et al. 1991). At the end of each transect, a spherical 
densiometer was used to estimate canopy cover.

Microsite sampling was done for each small mammal 
trapping station. At each station, a 1-m radius circle 
was placed adjacent to the Sherman trap. The percent 
herbaceous and woody cover for plants <50 cm tall 
was recorded. At the circle center, depth of the leaf 
litter was measured. The length of all coarse woody 
debris >5 cm also was sampled.

Analysis Based on Occurrence
All sites were sampled for 2 consecutive years, 
thus permitting use of a multi-season, Bayesian 
hierarchical multi-species model of site occupancy 
that incorporated imperfect detection (Kéry and Royle 
2008, Royle and Dorazio 2008: 390-393). The model 
enables estimation of both species- and community-
level attributes, including survival and colonization 
parameters. 

The general structure of the hierarchical model has 
been described in detail elsewhere (e.g., Royle and 
Dorazio 2008). Briefly, each of R (=32) harvest sites 
is visited on J (=5) occasions for T (=2) years, and for 
each occasion a record is made of species detected. 
For each of the n species, a count, ykt , denotes the 
number of detections of the species in J visits to site k 
in year t. Conditional on the target species’ occurrence 
at site k, the corresponding ykt can be modeled as a 
binomial random variable with J trials consisting of 
detection probability pkt . The detection frequencies 
for each of the ith observed species at the R sites can 

be summarized conveniently in a matrix Yn*R. For the 
initial year (t=1) and for the ith species and kth site, 
the species occurs with probability ψik . A latent state 
variable zikt represents whether the species occurs 
at the site (zikt=1) or not (zikt=0). Occupancy state 
of the subsequent year (t+1) and survival (Øt ) and 
colonization (γt ) probabilities are dependent on the 
initial occupancy state (Royle and Dorazio 2008):

z(i,k,t+1) | z(i,k,t) = Bernoulli(π(i,t))

where

π(i,t) = z(i,k,t)(Øi )+[1 – z(i,k,t)]yi .

In words, the occupancy state for species i at site k in 
year t+1 is treated as a Bernoulli random variable that 
is conditioned on the prior year’s occupancy state. 
If the site was occupied by the species in year t, the 
probability of occupancy in t+1 is determined by the 
probability of survival from t to t+1. But if the site was 
unoccupied in year t, its probability of occupancy is 
determined by the probability of colonization during 
the period t to t+1. Thus, the hierarchical model 
includes a matrix Zikt of state variables that are only 
partially observed because detection of a species at 
a site signifies occurrence there, but failure to detect 
a species at a site does not imply its absence at the 
site. Occurrence and detection were modeled as 
hyperparameters. Specifically, we defined ui =  
logit(ψik ) and vi = logit(pik ), where logit(x) =  
ln(x/(1-x)). Interspecific heterogeneity in ψ and p 
were modeled with bivariate normal distributions, 
i.e., ui~N(β,σ2), vi~N(α, σ2), and covariance σuv. The 
parameters β and α represent the mean probabilities 
of occurrence and detection, respectively, on a logit 
scale when considering all observed species in the 
community (Royle and Dorazio 2008: 382).

vu

The hierarchical model is easily extended to 
incorporate effects of environmental covariates on  
ψikt , the probability of occurrence of species i at 
site k in year t. Using the notation above, zikt | ψikt 

~Bernoulli(ψikt ), where logit(ψikt ) is a linear function 
of site-specific covariates. Planned treatment type, 
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basal area, and aspect were chosen as site covariates 
of occurrence. Incorporating covariates into the 
observation portion of the model required modified 
notation because detection may differ among species, 
sites, sampling occasions, and years. Thus, yijkt is a 
binary observation indicating detection (yijkt=1) or 
not (yijkt=0) of species i during the jth visit to site k 
in the tth year. Then yijkt|pijkt,zikt~Bernoulli(pijkt,zikt), 
where logit(pijkt) is a linear function of site- or time-
specific covariates that could influence detection. 
We considered average daily temperature (Temp), 
precipitation (Precip), year, sampling effort (Effort), 
Julian day (JD), and squared Julian day centered 
around the mean (JD2) as possible covariates of 
detection. Detection covariate data are summarized 
in Appendix 1. We determined the best combination 
of detection covariates with the smallest deviance 
information criterion (DIC) value (Spiegelhalter  
et al. 2002). We then incorporated the chosen site-
specific occupancy covariates: even-aged treatment 
type (Trt 1), uneven-aged treatment type  
(Trt 2), aspect, and basal area (BA). Management 
treatment types were grouped according to 
management system: even-aged or uneven-aged.  
All continuous occupancy and detection covariates 
were standardized prior to analysis.

The multi-season hierarchical multi-species site-
occupancy model was implemented within a Bayesian 
framework (Appendix 2). We chose non-informative 
priors to ensure that inference was driven by data 
collected during our study. Specifically, we selected 
priors for the inverse logit of α and β from uniform 
distributions over the interval [0, 1], priors for σu and 
σv from uniform [0, 10], and priors for the correlation 
of u and v, ρ=σuv/σuσv , from uniform [-1, 1]. The model 
was implemented in the software package R 2.6.1 (R 
Development Core Team, Vienna, Austria) using the 
add-on package R2WinBUGS (Sturtz et al. 2005), 
which calls the software package WinBUGS (version 
1.4.3; Lunn et al. 2000, Spiegelhalter et al. 1996). 
WinBUGS uses Markov chain Monte Carlo techniques 
to derive posterior distributions for model parameters. 

For each run, we used five parallel chains of length 
55,000 and discarded the first 5,000 to avoid effects 
due to random starting values (Kéry and Royle 2008). 
A thinning rate of 50 was used to reduce the likelihood 
of dependent samples (Ntzoufras 2009). Gelman-
Rubin diagnostics were used to assess convergence 
(Brooks and Gelman 1998).

Community-level attributes were derived from the 
elements of Z. Species richness was estimated for site 

k as                        An estimate of average species 

richness for category a of harvest sites was derived 
by summing across all sites in the category and then 
dividing by the A sites in the category; i.e.,  

                          . Estimates of average species richness 

were thus obtained for each potential treatment type of 
harvest sites. The same procedure was used to derive 
estimates of the average similarity between pairs of 
categories for each year. We used Jaccard’s coefficient 
(Jaccard 1912) to measure similarity in species 
richness between categories a and b:  

∑
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Sa∩b represents the number of species shared by classes 
a and b, whereas Sa and Sb are the total number of 
species in categories a and b, respectively. Thus, total 
overlap in species yields Cab=1, and no shared species 
yields Cab=0.  

Analysis Based on Relative Abundance
For the four most commonly captured species, we 
implemented a multi-season version of the Royle and 
Nichols (2003) model, incorporating heterogeneity in 
p with finite mixtures. For Nkt animals at trap location 
k, replicate sampling yields a record of the number 
of animals detected there for each year t. Then the 
probability of detecting at least one animal at the 
location, given that the species occurs there, is

                               , where r is the probability of 
capturing an individual (Royle and Nichols 2003). 

1 (1 ) ktN
ktp r= − −
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Considering abundance as a Poisson random variable, 
i.e., Pr(N-n)=e-λλn/n! where λ is the mean of the 
Poisson distribution on N, permits estimation of r and 
λ by the method of maximum likelihood (Royle and 
Nichols 2003).

We implemented a multi-season version of the Royle-
Nichols model using PRESENCE 2.4 (Hines 2006) 
with species-level detection histories developed for 
each trap location. Because a single detection model 
is fitted to observations from all harvest sites, site-
specific estimates of density are not independent. 
Thus, we used the two-stage bootstrap method 
of Buckland et al. (2009) to quantify precision. 
Specifically, for each species, we determined the 
combination of covariates for r resulting in the 
smallest Akaike’s Information Criterion (AIC) value 
(Burnham and Anderson 2002). We then incorporated 
site-specific covariates for λ and chose the model with 
the lowest AIC. 

Detection covariates considered for analysis were 
JD, JD2, year, Effort, Temp, and Precip. Site-specific 
covariates for λ were coarse woody debris at the trap 
level (Micro CWD), percentage of herbaceous cover 
at the trap level (Herb), percentage of woody cover 
at the trap level (Wood), depth of leaf litter at trap 
level (Litter), Trt 1, Trt 2, BA, and aspect. Confidence 
intervals and standard errors for each parameter were 
estimated using bootstrap re-sampling of trap locations 
in each harvest site (Urban 2010). The selected Royle 
and Nichols (2003) model was fitted in R 2.6.1 using 
at least 200 bootstrap samples for each species, 
resulting in 200 x 1,728 trap-specific abundance 
values. These estimates were used to derive standard 
errors of N for each harvest site. Trap spacing was 
likely to result in multiple trap stations within a home 
range, so we suspect that our estimates of λ are biased 
high and are more likely to serve as estimates of 
relative abundance (Urban and Swihart 2011).

RESULTS
Trapping Results
Trapping in 2007 occurred from 25 June through 3 
August with 8,936 trap nights and 6 species captured. 
In 2008 trapping took place from 16 June to 25 July 
for a total of 8,978 trap nights and 7 species captured. 
Total captures consisted of 2,101 white-footed mice 
(see Table 1 for list of common and scientific names), 
1,143 eastern chipmunks, 96 pine voles, 71 short-tailed 
shrews, 4 smoky shrews, 4 southeastern shrews, and 3 
long-tailed weasels. 

Occupancy Analysis
All species were used for the multi-season, multi-
species occupancy models. Average temperature and 
Julian day were the best DIC detection covariates for 
both years of data. Pine voles were more detectable 
during later trapping dates (Table 2). Conversely, 
eastern chipmunks had higher detections during 
earlier trapping dates. Mean estimates of occupancy 
for all species and for both years increased from 
naïve occupancy after the incorporation of detection 
probability (Fig. 3). Ninety-five-percent credible 
intervals for all treatment covariate by species 
combinations contained zero, indicating that they 
were not useful predictors of occupancy for any of 
the seven species. Likewise, treatment did not affect 
the survival or colonization of local populations, with 
one exception (Table 3). Survival of local pine vole 
populations was positively affected by northeastern 
aspects.

The incorporation of probability of detection increased 
species richness values. The mean estimated species 
richness for all sites in 2007 (4.6) was 47 percent 
higher than the naïve mean species richness (3.1). In 
2008, the mean estimated species richness (4.8) was 
60 percent higher than naïve richness (3.0). Mean 
estimated species richness did not differ significantly 
among treatment types (F = 0.47, p = 0.63) or years  
(F = 0.60, p = 0.44).
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Table 1.—Trapping results for the Hardwood Ecosystem Experiment pre-treatment sampling period. 
Seven species were captured during the 2007 and 2008 sampling period. All seven species were used for 
the occupancy analysis, and the four most common were used for the relative abundance analysis.

Species	 Scientific name	 2007	 2008	 Total

White-footed mouse	 Peromyscus leucopus	 1,152	 949	 2,101
Eastern chipmunk	 Tamias striatus	 453	 690	 1,143
Pine vole	 Microtus pinetorum	 47	 49	 96
Short-tailed shrew	 Blarina brevicauda	 39	 32	 71
Smoky shrew	 Sorex fumeus	 3	 1	 4
Southeastern shrew	 Sorex longirostris	 3	 1	 4
Long-tailed weasel	 Mustela frenata	 0	 3	 3

Figure 3.—Naïve and estimated (95-percent credible interval) values for probability of occupancy from the multi-season, multi-
species occupancy model. All estimated occupancy values were higher than the naïve values.

Table 2.—Results from the multi-season, hierarchical multi-species occupancy model analyzed within a 
Bayesian framework. Asterisk (*) indicates parameters for which 95-percent credible intervals excluded zero.

	 White-footed	 Eastern	 Pine	 Short-tailed	 Smoky	 Southeastern	 Long-tailed
 	 mouse	 chipmunk	 vole	 shrew	 shrew	 shrew	 weasel

Covariate	 βj	 βj	 βj	 βj	 βj	 βj	 βj
 	 SE	 SE	 SE	 SE	 SE	 SE	 SE

p	 -0.02	  -0.29*	   0.39*	 -0.10	 -0.49	 -0.68	  0.19
Julian day	  0.14	   0.17*	   0.21*	  0.20	  0.47	  0.52	  0.45
	 -0.04	 -0.07	 -0.13	  0.06	 -0.01	  0.02	  0.00
Temperature	  0.12	  0.14	  0.16	  0.17	  0.22	  0.23	  0.24

Ψ	  0.98	  0.38	  0.36	  0.91	  1.18	  0.16	  0.18
Uneven-aged	  1.31	  1.10	  0.94	  1.26	  1.42	  1.57	  1.54
	  0.78	 -0.01	  0.35	 -0.85	 -0.74	  1.22	 -0.52
Even-aged	  1.50	  1.18	  1.05	  1.27	  1.83	  1.67	  1.68
	 -0.14	 -0.24	 -0.12	 -0.09	 -0.38	 -0.12	 -0.10
Basal area	  0.61	  0.50	  0.38	  0.47	  0.75	  0.87	  0.80
	  0.97	 -0.32	  1.04	  0.73	  0.49	  0.45	  0.00
Aspect	  1.30	  1.13	  0.91	  1.10	  1.46	  1.48	  1.53
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Table 3.—Survival and colonization parameters from the multi-season, hierarchical multi-species 
occupancy model analyzed within a Bayesian framework. Models included even-aged or uneven-aged 
proposed treatment type, aspect, and basal area occupancy covariates as explanatory variables. The best 
detection probability covariates included were Julian day and average temperature, as determined by the 
lowest Deviance Information Criterion. Asterisk (*) indicates parameters for which 95-percent credible 
intervals excluded zero.

	 White-footed	 Eastern	 Pine	 Short-tailed	 Smoky	 Southeastern	 Long-tailed
	 mouse	 chipmunk	 vole	 shrew	 shrew	 shrew	 weasel

Covariate	 βj	 βj	 βj	 βj	 βj	 βj	 βj
 	 SE	 SE	 SE	 SE	 SE	 SE	 SE

Uneven-aged
Colonization	  0.52	  0.88	  1.22	  0.60	  0.32	  0.44	  0.43
	  1.95	  1.79	  1.67	  1.87	  1.98	  1.92	  2.00
Survival	  1.25	  1.22	  0.75	  1.18	  0.16	  0.69	  0.74
 	  1.45	  1.47	  1.46	  1.43	  1.89	  1.73	  1.76

Even-aged
Colonization	 -0.96	 -0.45	 -1.71	 -1.35	 -1.23	 -1.04	 -1.45
	  1.96	  1.90	  1.49	  1.63	  1.88	  1.91	  1.87
Survival	  1.17	  1.17	  1.13	  0.63	  0.52	  0.45	  0.64
 	  1.44	  1.45	  1.34	  1.57	  1.80	  1.81	  1.78

Basal area
Colonization	 -0.09	  0.37	  0.59	 -1.09	 -0.19	 -0.50	 -0.01
	  1.88	  1.86	  1.50	  1.74	  1.86	  1.84	  1.60
Survival	 -0.09	 -0.09	 -0.23	  0.02	 -0.03	 -0.29	 -0.06
 	  0.83	  0.84	  0.88	  0.71	  1.16	  1.16	  1.19

Aspect
Colonization	  0.15	  1.13	 -0.34	  0.31	 -0.19	 -0.16	  0.40
	  1.99	  1.77	  1.66	  1.66	  1.97	  1.99	  1.82
Survival	  1.85	  1.82	   2.26*	  1.99	  0.74	  0.80	  1.36
 	  1.44	  1.47	   1.29*	  1.37	  2.10	  2.07	  1.86

Jaccard’s similarity coefficients for 2007 and 2008 
indicated that all pairs of projected treatments had 
nearly two-thirds of their species in common (Table 4). 
This level of similarity was consistent across years.

Relative Abundance Analysis
White-footed mice, eastern chipmunks, pine voles, 
and short-tailed shrews were captured in sufficient 
numbers for the multi-season, single-species relative 
abundance analysis. All species except pine voles 
were more detectable during earlier trapping (Table 
5). Trapping effort positively influenced probability of 
detection of mice and pine voles. Increased trapping 
effort and occurrence of precipitation negatively 

influenced eastern chipmunk detection probability, 
whereas increased temperature positively influenced 
detection probability. Occurrence of precipitation also 
negatively affected white-footed mice.

Relative abundance of white-footed mice and short-
tailed shrews was greater on sites with northeastern 
aspects versus southwestern aspects. Short-tailed 
shrew and pine vole relative abundance was greater on 
sites with increased herbaceous cover. Pine voles also 
had higher relative abundance with greater amounts 
of coarse woody debris at the trap level. Relative 
abundance of eastern chipmunks was lower on sites 
proposed for even-aged treatment.
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Table 4.—Jaccard’s similarity coefficients (95-percent credible interval) comparing species richness values 
between the different proposed treatment types. Comparisons were made for each year separately. A 
similarity coefficient value of 1 indicates total overlap in species, whereas a value of 0 indicates no shared 
species. Comparisons for 2007 are located above the diagonal and comparisons for 2008 are below.

	 Treatment type
Treatment type	 Even-aged	 Uneven-aged	 Control

Even-aged	  1	  0.61 (0.54, 0.76)	  0.63 (0.55, 0.77)

Uneven-aged	  0.61 (0.55, 0.76)	  1	  0.62 (0.56, 0.76)

Control	  0.63 (0.55, 0.78)	  0.63 (0.55, 0.77)	  1

Table 5.—Results for the multiple-season, single-species relative abundance analysis for the four most 
abundant species. Bold-faced type indicates significance (P < 0.05). Asterisk (*) indicates parameters for 
which 95-percent credible intervals excluded zero.

Parameter	 White-footed mouse	 Eastern chipmunk	 Pine vole	 Short-tailed shrew

Covariate	 βj	 SE	 βj	 SE	 βj	 SE	 βj	 SE

p
Intercept	 -1.75*	 0.12*	 -1.61*	 0.41*	 -2.55*	 0.46*	 -2.40*	 0.48*
Julian day	 -0.73*	 0.12*	 -0.39*	 0.17*			   -1.53*	 0.77*
Julian day2			    0.06	 0.10	  0.64	 0.46		
Trapping effort	  0.59*	 0.12*	 -0.55*	 0.12*	  1.49*	 0.57*	  0.02	 0.28
Temperature			    0.58*	 0.11*				  
Precipitation	 -1.17*	 0.12*	 -0.38*	 0.13*			   -0.28	 0.60

N
Intercept	  0.27*	 0.11*	  0.10	 0.14	 -2.96*	 0.34*	 -4.32*	 0.66*
Uneven-aged								      
Even-aged	 -0.15	 0.10	 -0.82*	 0.14*				  
Aspect	  0.38*	 0.09*	  0.18	 0.10	  0.51	 0.37	  1.62*	 0.63*
Basal area							        0.81	 0.42
Herb					      0.31*	 0.15*	  1.62*	 0.63*
Wood			    0.11	 0.05				  
Micro CWD							        0.42*	 0.21*

DISCUSSION
Probability of Detection
The incorporation of probability of detection increased 
occupancy probabilities for all species in 2007 and 
2008 relative to naïve estimates. Large credible 
intervals characterized the occupancy analysis, but 
naïve estimates for all species in both years were still 
smaller than the 2.5-percent lower credible intervals. 
Larger credible intervals and elevated occupancy 
probabilities were produced for the rarer species due 
to their lower estimated probabilities of detection. 

Occupancy estimates for species with a probability of 
detection less than 0.15 should be viewed with caution 
when sampling occasions are less than seven, as 
models may not properly distinguish between a truly 
absent species and a non-detection (MacKenzie et al. 
2002). Researchers conducting small mammal studies 
at our sampling sites may wish to follow minimum 
sampling guidelines developed by MacKenzie et 
al. (2002) to better estimate minimum number of 
sites based on detection probabilities and number of 
sampling occasions.
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Treatment Effects
The planned forest management practices for the HEE 
have the potential to alter small mammal populations 
and assemblages. Our study revealed few pre-harvest 
differences among the sites chosen for the various 
treatments. Especially encouraging to future small 
mammal work on the HEE, treatment type was not 
a significant predictor of probability of occupancy 
or abundance, except for lower relative abundance 
of eastern chipmunks on sites slated for even-aged 
management. Species richness and similarity also did 
not differ greatly among treatment types. These similar 
pre-treatment levels will enable easier interpretations 
of treatment effects in subsequent analyses. 

Site descriptors of forest structure, basal area, and 
aspect failed to influence probability of occupancy for 
most species. One exception was higher survival of 
pine vole populations occupying northeastern aspects. 
For most species relative abundance was affected 
by site descriptors of forest structure and aspect. 
Abundance of white-footed mice and short-tailed 
shrews was higher on northeastern facing sites, which 
are often cooler and more mesic. Along with showing 
a relationship with northeastern aspect, short-tailed 
shrews were found on sites with increased herbaceous 
cover and trap-level coarse woody debris. Pine voles 
also were more abundant with increased herbaceous 
cover.

Similar reactions from these species have been 
documented in multiple studies. Higher occupancy 
probability has been seen for short-tailed shrews on 
northeastern sites in south-central Indiana (Urban and 
Swihart 2011). Miller and Getz (1977) also found 
that short-tailed shrews were more common at New 
England sites with higher herbaceous cover. Pine voles 
are associated with habitats containing thick litter and 
herbaceous cover (Smolen 1981). 

Previous habitat studies of short-tailed shrews in 
Michigan noted that deep litter cover is important to 

protect them from dessication and high temperatures 
(Pruitt 1953, 1959). Getz (1961) concluded that 
short-tailed shrews avoid areas with little vegetative 
cover and extreme temperatures and moisture levels 
in Illinois. Schmid-Holmes and Drickamer (2001) 
reported higher abundance for short-tailed shrews at 
Illinois sites with less extreme temperature fluctuations 
and higher tree densities, indicative of older seral 
stages.

The relationships between these species and 
increased herbaceous cover, coarse woody debris, 
and northeastern aspects indicate that they may 
have an initial negative response to proposed forest 
management treatments. Schmid-Holmes and 
Drickamer (2001) found greater abundance of white-
footed mice in older forests that were subjected to no 
harvest or uneven-aged harvesting. A shift from young 
post-harvest openings of small mammal assemblages 
dominated by eastern chipmunks to old harvest sites 
dominated by white-footed mice occurred along a 
chronosequence in south-central Indiana (Urban and 
Swihart 2011). Pine voles and short-tailed shrews 
also were more likely to be found in older sites 
along the chronosequence. However, other studies 
have indicated that both even-aged and uneven-aged 
management may positively influence Peromyscus 
abundance, and short-tailed shrews may have no 
change in abundance (Fantz and Renken 2005, Ford 
and Rodrigue 2001).

Community-Level Responses
Our pre-treatment analysis described the baseline 
community structure and population dynamics for 
the HEE. Subsequent studies should use analytical 
methods similar to the ones described in this chapter 
in order to accurately describe and compare post- 
and pre-treatment data. However, we suggest that a 
more intensive sampling scheme should be used to 
increase captures of less common species. Increased 
trapping effort and subsequent higher captures of rare 
and elusive species could improve future analyses 
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using multi-season, multi-species occupancy models. 
Specifically, focusing trapping effort to sample 
existing sites more often instead of surveying an 
increased number of sites less often likely would 
improve the precision of these occupancy estimates 
(MacKenzie and Royle 2005). 

If detection probabilities remain low, a removal 
sampling design may produce more precise estimates 
(MacKenzie and Royle 2005). Increased capture 
rates would help reduce the large credible intervals 
associated with Sorex occupancy estimates. Increased 
capture rates also could allow more precise estimation 
of extinction and colonization rates between post- and 
pre-treatment data, which could be informative in 
understanding treatment effects.

Potential Effects of Oak Management
Results from a chronosequence in similar habitat with 
similar management practices can provide an idea of 
what changes to expect in the HEE small mammal 
community following treatment. Based on our analysis 
of a chronosequence at Crane Naval Surface Warfare 
Center (NSWC) in 2007 and 2008 (Urban and Swihart 
2011), we offer the following predictions for responses 
of small mammals to the HEE treatments.

The most frequently captured species at the HEE 
was the white-footed mouse, which was ubiquitous 
but most strongly associated with older seral stages 
found at NSWC sample sites. In contrast, the eastern 
chipmunk was the most frequently captured species 
on NSWC, where forest management practices have 
been ongoing since the 1950s. The early successional 
openings at NSWC were dominated primarily 
by eastern chipmunks. In general, NSWC was 
characterized by a shift from chipmunk-dominated 
early successional openings to more diverse white-
footed mouse-dominated late-successional openings. 
Pine voles and short-tailed shrews also were associated 
with older sites at NSWC. Thus, we predict increases 
in eastern chipmunks on recently harvested even-aged 

and uneven-aged stands. In contrast, white-footed 
mice, shrews, and pine voles, and hence species 
richness, should decrease at these early successional 
sites. As stands mature, a reversal of these trends is 
likely to occur.

Short-tailed shrews were positively associated with 
northeastern aspects at both NWSC and the HEE, 
whereas white-footed mice were positively associated 
with northeastern aspects at the HEE and eastern 
chipmunks were negatively associated with this aspect 
at NSWC. Blarina and Sorex are sensitive to dry 
environments (Brannon 2002; Getz 1961; McShea 
et al. 2003; Pruitt 1953, 1959); hence, we predict 
increases in shrews on northeastern aspects, especially 
as successional changes lead to increased litter layer 
development. Eastern chipmunks should be most 
prevalent at drier early successional sites. No effect of 
opening size created by even-aged and uneven-aged 
harvesting was found on small mammal populations at 
NSWC sites, although species richness was greater at 
smaller openings. Consequently, we predict that small 
mammal populations at the HEE will not respond to 
the size of harvest openings, although species richness 
may increase at smaller sites as an artifact of sampling 
species associated primarily with adjacent habitats.

White-footed mice at NSWC exhibited greater relative 
abundance in openings with high levels of basal 
area and coarse woody debris. In contrast, eastern 
chipmunks at NSWC exhibited greater relative 
abundance in openings with low basal area and high 
canopy closure. Based on these results, we predict 
that white-footed mice will be more abundant in sites 
with greater tree retention and where coarse woody 
debris has been retained. These conditions could occur 
in more mature stands, greater than 27 years, or in 
harvest areas that remove fewer trees. 

Eastern chipmunks should have larger numbers 
at young sites that still retain some canopy cover, 
such as 4- to 12-year-old sites. They should also 
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have greater numbers at sites with more intensive 
harvesting techniques that retain some canopy cover, 
such as shelterwood, seed tree, and group selection 
methods. However, these species are likely to have 
varying numbers within a site as well. White-footed 
mice likely will exhibit higher abundance around 
coarse woody debris or patches of trees within a site. 
At NSWC, relative abundance of chipmunks and 
mice was negatively affected by proximity to water, 
whereas the opposite was true for short-tailed shrews. 
Following harvest, we predict that these associations 
will emerge at the HEE sites.

We did not consider the importance of mast to 
the population dynamics of the small mammal 
assemblages at the HEE. The two dominant species in 
the small mammal system at the HEE, white-footed 
mice and eastern chipmunks, are important mast 
consumers whose abundances are affected by mast 
production (McShea 2000, Wolff 1996). The amount 
of oak basal area, oak as a percent of the total basal 
area, and mast production data may explain spatial 
or temporal variation in abundance of these species. 
These data are currently being collected at our study 
sites (Kellner et al., this publication).
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Appendix 1.
Sampling data for the probability of detection covariates for the 2 years of trapping at HEE. JD is the 
first Julian day of trapping for a season at a site. Effort is the number of trapping occasions, Temp is the 
average daily temperature, and Precip is the presence (= 1) or absence (= 0) of precipitation during and up 
to 3 hours before trapping.

	 Temp (°C) for each day	 Precip for each day

Site	 Year	 JD	 Effort	 1	 2	 3	 4	 5	 1	 2	 3	 4	 5

1001	 2007	 211	 264	 29	 28	 27	 28	 24	 0	 0	 0	 0	 0

1001	 2008	 167	 282	 18	 18	 20	 19	 21	 1	 0	 0	 0	 0

1002	 2007	 211	 287	 29	 28	 24	 28	 29	 0	 0	 0	 0	 0

1002	 2008	 167	 273	 18	 19	 18	 20	 18	 1	 0	 0	 0	 0

1105	 2007	 204	 274	 27	 24	 23	 21	 26	 0	 0	 0	 0	 0

1105	 2008	 174	 283	 27	 25	 26	 28	 27	 0	 0	 0	 0	 0

1113	 2007	 204	 295	 27	 24	 25	 21	 24	 0	 0	 0	 1	 0

1113	 2008	 174	 283	 27	 25	 26	 28	 27	 0	 0	 0	 0	 0

1121	 2007	 204	 296	 28	 24	 23	 21	 24	 0	 0	 0	 1	 0

1121	 2008	 174	 246	 27	 25	 26	 28	 18	 0	 0	 0	 0	 0

1125	 2007	 204	 292	 27	 24	 24	 25	 21	 0	 0	 0	 0	 0

1125	 2008	 174	 291	 27	 25	 26	 28	 27	 0	 0	 0	 0	 0

1202	 2007	 190	 292	 32	 24	 24	 24	 25	 0	 1	 1	 0	 1

1202	 2008	 188	 277	 24	 25	 26	 21	 27	 0	 1	 1	 0	 0

1204	 2007	 190	 277	 32	 27	 25	 21	 24	 0	 0	 1	 0	 1

1204	 2008	 188	 283	 24	 27	 24	 21	 26	 0	 1	 1	 0	 0

1312	 2007	 190	 254	 32	 25	 26	 24	 21	 0	 1	 1	 0	 1

1312	 2008	 188	 280	 27	 27	 25	 24	 27	 1	 1	 1	 0	 0

1317	 2007	 190	 252	 32	 29	 26	 26	 24	 0	 1	 0	 0	 1

1317	 2008	 188	 214	 29	 26	 27	 23	 18	 1	 1	 1	 0	 0

1321	 2007	 190	 279	 32	 27	 26	 24	 24	 0	 1	 0	 0	 1

1321	 2008	 188	 258	 24	 27	 26	 24	 24	 1	 1	 1	 0	 0

1326	 2007	 190	 242	 29	 28	 26	 23	 27	 0	 0	 0	 0	 1

1326	 2008	 188	 233	 27	 26	 24	 23	 24	 1	 1	 1	 0	 0

1401	 2007	 204	 290	 28	 22	 22	 23	 21	 0	 0	 0	 0	 1

1401	 2008	 202	 283	 32	 23	 24	 23	 24	 1	 1	 0	 0	 0

1404	 2007	 204	 286	 28	 23	 23	 23	 26	 0	 0	 0	 0	 1

1404	 2008	 202	 283	 29	 24	 21	 23	 26	 0	 1	 0	 0	 0

1502	 2007	 197	 292	 29	 26	 27	 27	 23	 0	 1	 1	 1	 0

1502	 2008	 202	 280	 29	 27	 25	 25	 25	 0	 1	 0	 0	 0

1504	 2007	 197	 281	 29	 26	 24	 27	 20	 0	 1	 1	 1	 0

1504	 2008	 202	 287	 32	 26	 25	 25	 25	 1	 1	 0	 0	 0

(Appendix 1 continued on next page)
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Appendix 1 (continued).
Sampling data for the probability of detection covariates for the 2 years of trapping at HEE. JD is the 
first Julian day of trapping for a season at a site. Effort is the number of trapping occasions, Temp is the 
average daily temperature, and Precip is the presence (= 1) or absence (= 0) of precipitation during and up 
to 3 hours before trapping.

	 Temp (°C) for each day	 Precip for each day

Site	 Year	 JD	 Effort	 1	 2	 3	 4	 5	 1	 2	 3	 4	 5

1602	 2007	 176	 253	 31	 27	 24	 26	 24	 0	 0	 0	 1	 1

1602	 2008	 180	 287	 21	 21	 23	 24	 21	 0	 0	 0	 0	 1

1622	 2007	 176	 252	 24	 24	 26	 26	 26	 1	 0	 0	 1	 0

1622	 2008	 195	 288	 27	 27	 26	 27	 27	 0	 0	 0	 0	 0

1624	 2007	 176	 266	 27	 27	 27	 25	 27	 1	 0	 0	 1	 0

1624	 2008	 195	 293	 27	 27	 27	 27	 25	 0	 0	 0	 0	 0

1627	 2007	 176	 281	 27	 27	 24	 27	 24	 1	 0	 0	 1	 0

1627	 2008	 180	 293	 21	 23	 18	 21	 24	 0	 0	 0	 0	 1

1703	 2007	 183	 277	 29	 24	 24	 26	 28	 0	 0	 1	 1	 0

1703	 2008	 167	 285	 18	 21	 21	 20	 18	 1	 0	 0	 0	 0

1705	 2007	 183	 278	 27	 25	 26	 25	 26	 0	 0	 1	 1	 0

1705	 2008	 167	 292	 18	 21	 19	 19	 22	 1	 0	 0	 0	 0

1716	 2007	 183	 288	 27	 25	 25	 28	 28	 0	 0	 1	 1	 0

1716	 2008	 167	 292	 18	 19	 19	 19	 22	 1	 0	 0	 0	 0

1728	 2007	 183	 289	 29	 21	 26	 24	 24	 0	 0	 1	 1	 0

1728	 2008	 167	 291	 18	 21	 21	 20	 19	 1	 0	 0	 0	 0

1803	 2007	 197	 288	 29	 25	 24	 26	 18	 0	 1	 1	 1	 0

1803	 2008	 180	 290	 21	 20	 23	 18	 21	 1	 0	 0	 0	 1

1820	 2007	 197	 292	 29	 24	 21	 18	 18	 0	 1	 0	 0	 0

1820	 2008	 180	 280	 21	 19	 23	 24	 26	 0	 0	 1	 1	 1

1821	 2007	 197	 276	 29	 23	 22	 27	 20	 0	 0	 0	 1	 0

1821	 2008	 180	 292	 21	 20	 23	 24	 26	 0	 0	 0	 0	 1

1830	 2007	 197	 283	 29	 24	 25	 24	 24	 0	 1	 0	 0	 0

1830	 2008	 180	 296	 21	 20	 24	 19	 22	 0	 0	 0	 0	 1

1907	 2007	 211	 289	 29	 24	 28	 28	 29	 0	 0	 0	 0	 0

1907	 2008	 195	 294	 29	 21	 28	 27	 24	 0	 0	 0	 0	 0

1908	 2007	 211	 293	 29	 20	 20	 21	 21	 0	 0	 0	 0	 0

1908	 2008	 195	 296	 29	 27	 24	 28	 28	 0	 0	 0	 0	 0

1917	 2007	 211	 292	 28	 21	 26	 27	 28	 0	 0	 0	 0	 0

1917	 2008	 195	 283	 29	 21	 24	 27	 23	 0	 0	 0	 0	 0

1919	 2007	 211	 280	 27	 26	 24	 27	 28	 0	 0	 0	 0	 0

1919	 2008	 195	 291	 29	 27	 27	 26	 26	 0	 0	 0	 0	 0
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Appendix 2.
Code for the multi-season hierarchical multi-species site occupancy model implemented within a Bayesian 
framework. This code includes the incorporation of survival and colonization parameters. It was run using 
software packages R 2.6.1 and WinBUGS using add-on package R2WinBUGS.

##data files
##encounter history data from 2007
##7 rows of species encounter histories
##columns of sites
my.2007=read.table(file=”HEE_psi_2007.csv”, header=T, sep=”,”,
row.names=1)
##encounter history data from 2008
##7 rows of species encounter histories
##columns of sites
my.2008=read.table(file=”HEE_psi_2008.csv”, header=T, sep=”,”,
row.names=1)
##covariate data from 2007
##14 rows of covariate data
##columns of sites
my.cov07=read.table(file=”HEE_cov.csv”, header=F, sep=”,”,
row.names=1)
##covariate data from 2008
##14 rows of covariate data
##columns of sites
my.cov08=read.table(file=”HEE_cov2.csv”, header=F, sep=”,”,
row.names=1)
##organizing encounter history data into an array
my.data2<-array(data=NA, dim=c(7,32,2))
my.year1<-as.matrix(my.2007)
my.year2<-as.matrix(my.2008)
my.data2[,,1]<-my.year1
my.data2[,,2]<-my.year2
my.data<-array(data=NA, dim=c(7,32,2,1))
my.data[,,,1]<-my.data2
##organizing even-aged treatment covariate into array for
input
my.T1_1<-array(data=NA, dim=c(32,2))
cov.T1_07<-as.matrix(my.cov07[2,])
cov.T1_08<-as.matrix(my.cov08[2,])
my.T1_1[,1]<-cov.T1_07
my.T1_1[,2]<-cov.T1_08
my.T1<-array(data=NA, dim=c(32,2,1))
116
my.T1[,,1]<-my.T1_1
##organizing uneven-aged treatment covariate into array for
input
my.T2_1<-array(data=NA, dim=c(32,2))
cov.T2_07<-as.matrix(my.cov07[3,])
cov.T2_08<-as.matrix(my.cov08[3,])
my.T2_1[,1]<-cov.T2_07
my.T2_1[,2]<-cov.T2_08
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my.T2<-array(data=NA, dim=c(32,2,1))
my.T2[,,1]<-my.T2_1
##organizing basal area covariate into array for input
my.ba_1<-array(data=NA, dim=c(32,2))
cov.ba_07<-as.matrix(my.cov07[14,])
cov.ba_08<-as.matrix(my.cov08[14,])
my.ba_1[,1]<-cov.ba_07
my.ba_1[,2]<-cov.ba_08
my.ba<-array(data=NA, dim=c(32,2,1))
my.ba[,,1]<-my.ba_1
##organizing aspect covariate into array for input
my.aspect_1<-array(data=NA, dim=c(32,2))
cov.aspect_07<-as.matrix(my.cov07[5,])
cov.aspect_08<-as.matrix(my.cov08[5,])
my.aspect_1[,1]<-cov.aspect_07
my.aspect_1[,2]<-cov.aspect_08
my.aspect<-array(data=NA, dim=c(32,2,1))
my.aspect[,,1]<-my.aspect_1
##organizing temperature detection covariate into array for
input
my.temp_1<-array(data=NA, dim=c(32,2))
cov.temp_07<-as.matrix(my.cov07[7,])
cov.temp_08<-as.matrix(my.cov08[7,])
my.temp_1[,1]<-cov.temp_07
my.temp_1[,2]<-cov.temp_08
my.temp<-array(data=NA, dim=c(32,2,1))
my.temp[,,1]<-my.temp_1
##organizing Julian day detection covariate into array for input
117
my.jd_1<-array(data=NA, dim=c(32,2))
cov.jd_07<-as.matrix(my.cov07[12,])
cov.jd_08<-as.matrix(my.cov08[12,])
my.jd_1[,1]<-cov.jd_07
my.jd_1[,2]<-cov.jd_08
my.jd<-array(data=NA, dim=c(32,2,1))
my.jd[,,1]<-my.jd_1
#treat occupancy covariates and p covariates the same until
#the logit step
Ymat=my.data #my presence/absence data
mycov=my.cov #my covariates data
nrepls=5 #days sampled, monday through friday
##monitor amount of time it took to run
start.time=Sys.time()
n = dim(my.data)[1] #number of species indicated by number of
rows
nsites = dim(my.data)[2] #number of sites indicated by number
of columns
nyear=dim(my.data)[3]
nfiller=dim(my.data)[4]
#create arguments for bugs()
##input data
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data = list(n=n, R=nsites, J=nrepls, Y=my.data, T=nyear, Q=nfiller,
c.T1=my.T1, c.T2=my.T2, c.aspect=my.aspect, c.ba=my.ba,
c.jd=my.jd, c.temp=my.temp)
##parameters listed after model runs
params = list( ‘alpha’, ‘beta’, ‘beta1’,’beta2’,
##T1surv = survival dependent on even-aged treatment,
T1col=colonization dependent on uneven-aged trtment
‘T1’,’T1surv’,’T1col’,
‘T2’,’T2surv’,’T2col’,
‘aspect’,’aspectsurv’,’aspectcol’,
‘ba’,’basurv’,’bacol’,
‘temp’,
‘jd’,
118
‘rho’, ‘sigma.u’, ‘sigma.v’,
‘sigma.u1’, ‘sigma.v1’, ‘sigma.u2’, ‘sigma.v2’,
‘s.T1’,’s.T1surv’,’s.T1col’,
‘s.T2’,’s.T2surv’,’s.T2col’,
‘s.aspect’,’s.aspectsurv’,’s.aspectcol’,
‘s.ba’,’s.basurv’,’s.bacol’,
‘s.jd’,
‘s.temp’,
‘phi’, ‘eta’,
‘pvec’,
‘lphi0’, ‘lgamma0’,
‘psivec’,
‘phisurv’,
‘gamma’,
‘phiyr’,’gammayr’
‘Z’)
## initials
inits = function () {
psi.meanGuess = runif(1, .25, 1)
psi.mean1Guess = runif(1, .25, 1)
psi.mean2Guess = runif(1, .25, 1)
p.meanGuess = runif(1, .25, 1)
## initial values for covariates
beta.T1 = runif(1, 0, 1)
beta.T1col = runif(1, 0, 1)
beta.T1surv = runif(1, 0, 1)
beta.T2col = runif(1, 0, 1)
beta.T2surv = runif(1, 0, 1)
beta.T2 = runif(1, 0, 1)
beta.aspect = runif(1, 0, 1)
beta.aspectcol = runif(1, 0, 1)
beta.aspectsurv = runif(1, 0, 1)
beta.ba = runif(1, 0, 1)
beta.bacol = runif(1, 0, 1)
beta.basurv = runif(1, 0, 1)
beta.temp = runif(1, 0, 1)
beta.jd = runif(1, 0, 1)
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rhoGuess = runif (1, 0, 1)
sigma.uGuess = runif (1, 0, 1.5)
sigma.vGuess = runif (1, 0, 1.5)
sigma.u1Guess = runif (1, 0, 1.5)
sigma.v1Guess = runif (1, 0, 1.5)
sigma.u2Guess = runif (1, 0, 1.5)
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sigma.v2Guess = runif (1, 0, 1.5)
sigma.T1 = runif(1, 0, 1)
sigma.T1surv = runif(1, 0, 1)
sigma.T1col = runif(1, 0, 1)
sigma.T2 = runif(1, 0, 1)
sigma.T2surv = runif(1, 0, 1)
sigma.T2col = runif(1, 0, 1)
sigma.aspect = runif(1, 0, 1)
sigma.aspectsurv = runif(1, 0, 1)
sigma.aspectcol = runif(1, 0, 1)
sigma.ba = runif(1, 0, 1)
sigma.basurv = runif(1, 0, 1)
sigma.bacol = runif(1, 0, 1)
sigma.temp = runif (1, 0, 1)
sigma.jd = runif (1, 0, 1)
list(psi.mean=psi.meanGuess, p.mean=p.meanGuess,
psi.mean1=psi.mean1Guess,
psi.mean2=psi.mean2Guess,
b.T1=beta.T1,
b.T1surv=beta.T1surv,
b.T1col=beta.T1col,
b.T2=beta.T2,
b.T2surv=beta.T2surv,
b.T2col=beta.T2col,
b.aspect=beta.aspect,
b.aspectsurv=beta.aspectsurv,
b.aspectcol=beta.aspectcol,
b.ba=beta.ba,
b.basurv=beta.basurv,
b.bacol=beta.bacol,
b.temp=beta.temp,
b.jd=beta.jd,
sigma.u=sigma.uGuess, sigma.v=sigma.vGuess,
rho=rhoGuess,
sigma.u1=sigma.u1Guess, sigma.v1=sigma.v1Guess,
sigma.u2=sigma.u2Guess, sigma.v2=sigma.v2Guess,
s.T1=sigma.T1,
s.T1surv=sigma.T1surv,
s.T1col=sigma.T1col,
s.T2=sigma.T2,
s.T2surv=sigma.T2surv,
s.T2col=sigma.T2col,
120
s.aspect=sigma.aspect,
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s.aspectsurv=sigma.aspectsurv,
s.aspectcol=sigma.aspectcol,
s.ba=sigma.ba,
s.basurv=sigma.basurv,
s.bacol=sigma.bacol,
s.temp=sigma.temp,
s.jd=sigma.jd,
phi=rnorm(n*nfiller, log(psi.meanGuess/(1-psi.meanGuess)),
sigma.uGuess),
lphi0=rnorm(n, log(psi.mean1Guess/(1-psi.mean1Guess)),
sigma.u1Guess),
lgamma0=rnorm(n, log(psi.mean2Guess/(1-psi.mean2Guess)),
sigma.u2Guess),
eta=rnorm(n*nfiller, log(p.meanGuess/(1-p.meanGuess)), sigma.vGuess),
T1=rnorm(n*nfiller, log(beta.T1/(1-beta.T1)), sigma.T1),
T1surv=rnorm(n*nfiller, log(beta.T1surv/(1-beta.T1surv)), sigma.T1surv),
T1col=rnorm(n*nfiller, log(beta.T1col/(1-beta.T1col)), sigma.T1col),
T2=rnorm(n*nfiller, log(beta.T2/(1-beta.T2)), sigma.T2),
T2surv=rnorm(n*nfiller, log(beta.T2surv/(1-beta.T2surv)), sigma.T2surv),
T2col=rnorm(n*nfiller, log(beta.T2col/(1-beta.T2col)), sigma.T2col),
aspect=rnorm(n*nfiller, log(beta.aspect/(1-beta.aspect)), sigma.aspect),
aspectsurv=rnorm(n*nfiller, log(beta.aspectsurv/(1-beta.aspectsurv)),
sigma.aspectsurv),
aspectcol=rnorm(n*nfiller, log(beta.aspectcol/(1-beta.aspectcol)),
sigma.aspectcol),
ba=rnorm(n*nfiller, log(beta.ba/(1-beta.ba)), sigma.ba),
basurv=rnorm(n*nfiller, log(beta.basurv/(1-beta.basurv)), sigma.basurv),
bacol=rnorm(n*nfiller, log(beta.bacol/(1-beta.bacol)), sigma.bacol),
temp=rnorm(n*nfiller, log(beta.temp/(1-beta.temp)), sigma.temp),
jd=rnorm(n*nfiller, log(beta.jd/(1-beta.jd)), sigma.jd),
Z = array(rbinom(n*nsites, size=1, prob=psi.meanGuess),
dim=c(7,32,2,1))
)}
modelFilename <- “MSOMKN.txt”
###defining model and priors
cat(“
model {
121
psi.mean ~ dunif (0,1)
psi.mean1 ~ dunif (0,1)
psi.mean2 ~ dunif (0,1)
beta <- log(psi.mean) - log(1-psi.mean)
beta1 <- log(psi.mean1) - log(1-psi.mean1)
beta2 <- log(psi.mean2) - log(1-psi.mean2)
b.T1 ~ dunif(0,1)
b.T1surv ~ dunif(0,1)
b.T1col ~ dunif(0,1)
b.T2 ~ dunif(0,1)
b.T2surv ~ dunif(0,1)
b.T2col ~ dunif(0,1)
b.aspect ~ dunif(0,1)
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b.aspectsurv ~ dunif(0,1)
b.aspectcol ~ dunif(0,1)
b.ba ~ dunif(0,1)
b.basurv ~ dunif(0,1)
b.bacol ~ dunif(0,1)
b.temp ~ dunif(0,1)
b.jd ~ dunif(0,1)
mu.T1<-log(b.T1/(1-b.T1))
mu.T1surv<-log(b.T1surv/(1-b.T1surv))
mu.T1col<-log(b.T1col/(1-b.T1col))
mu.T2<-log(b.T2/(1-b.T2))
mu.T2surv<-log(b.T2surv/(1-b.T2surv))
mu.T2col<-log(b.T2col/(1-b.T2col))
mu.aspect<-log(b.aspect/(1-b.aspect))
mu.aspectsurv<-log(b.aspectsurv/(1-b.aspectsurv))
mu.aspectcol<-log(b.aspectcol/(1-b.aspectcol))
mu.ba<-log(b.ba/(1-b.ba))
mu.basurv<-log(b.basurv/(1-b.basurv))
mu.bacol<-log(b.bacol/(1-b.bacol))
mu.temp<-log(b.temp/(1-b.temp))
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mu.jd<-log(b.jd/(1-b.jd))
sigma.u ~ dunif (0,10)
sigma.v ~ dunif (0,10)
sigma.u1 ~ dunif (0,10)
sigma.v1 ~ dunif (0,10)
sigma.u2 ~ dunif (0,10)
sigma.v2 ~ dunif (0,10)
s.T1 ~ dunif(0,10)
s.T1surv ~ dunif(0,10)
s.T1col ~ dunif(0,10)
s.T2 ~ dunif(0,10)
s.T2surv ~ dunif(0,10)
s.T2col ~ dunif(0,10)
s.aspect ~ dunif(0,10)
s.aspectsurv ~ dunif(0,10)
s.aspectcol ~ dunif(0,10)
s.ba ~ dunif(0,10)
s.basurv ~ dunif(0,10)
s.bacol ~ dunif(0,10)
s.temp ~ dunif(0,10)
s.jd ~ dunif(0,10)
tau.u <- pow(sigma.u,-2)
tau.v <- pow(sigma.v,-2)
tau.u1 <- pow(sigma.u1,-2)
tau.v1 <- pow(sigma.v1,-2)
tau.u2 <- pow(sigma.u2,-2)
tau.v2 <- pow(sigma.v2,-2)
tau.T1<-pow(s.T1, -2)
tau.T1surv<-pow(s.T1surv, -2)
tau.T1col<-pow(s.T1col, -2)
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tau.T2surv<-pow(s.T2surv, -2)
tau.T2col<-pow(s.T2col, -2)
tau.aspect<-pow(s.aspect, -2)
tau.aspectsurv<-pow(s.aspectsurv, -2)
tau.aspectcol<-pow(s.aspectcol, -2)
tau.ba<-pow(s.ba, -2)
tau.basurv<-pow(s.basurv, -2)
tau.bacol<-pow(s.bacol, -2)
tau.temp<-pow(s.temp, -2)
tau.jd<-pow(s.jd, -2)
rho ~ dunif(-1,1)
var.eta <- tau.v/(1.-pow(rho,2))
for(i in 1:n) {
phi[i] ~ dnorm(beta, tau.u)I(-5,5)
T1[i] ~ dnorm(mu.T1, tau.T1)I(-5,5)
T1surv [i] ~ dnorm(mu.T1surv, tau.T1surv)I(-5,5)
T1col [i] ~ dnorm(mu.T1col, tau.T1col)I(-5,5)
T2[i] ~ dnorm(mu.T2, tau.T2)I(-5,5)
lphi0 [i] ~ dnorm(beta1, tau.u1)I(-5,5)
T2surv [i] ~ dnorm(mu.T2surv, tau.T2surv)I(-5,5)
##T2 covariate for survival parameter
lgamma0 [i] ~ dnorm(beta2, tau.u2)I(-5,5)
##lgamma0 coefficient for intercept
T2col [i] ~ dnorm(mu.T2col, tau.T2col)I(-5,5)
##T2 covariate for colinization parameter
aspect[i] ~ dnorm(mu.aspect, tau.aspect)I(-5,5)
aspectsurv [i] ~ dnorm(mu.aspectsurv, tau.aspectsurv)I(-5,5)
aspectcol [i] ~ dnorm(mu.aspectcol, tau.aspectcol)I(-5,5)
ba[i] ~ dnorm(mu.ba, tau.ba)I(-5,5)
basurv [i] ~ dnorm(mu.basurv, tau.basurv)I(-5,5)
bacol [i] ~ dnorm(mu.bacol, tau.bacol)I(-5,5)
temp[i] ~ dnorm(mu.temp, tau.temp)I(-5,5)
jd[i] ~ dnorm(mu.jd, tau.jd)I(-5,5)
}
p.mean ~ dunif (0,1)
124
alpha <- log(p.mean) - log(1-p.mean)
for(i in 1:n){
mu.eta[i] <- alpha + (rho*sigma.v/sigma.u)*(phi[i] - beta)
eta[i] ~ dnorm(mu.eta[i], var.eta)I(-5,5)
}
# at logit(psi) you should add your occupancy covariates and
for logit(p) you should
#add your detection covariates
for (i in 1:n){
for (k in 1:R) {
for (t in 1:T){
for (z in 1:Q){
logit(p[i,k,t,z]) <-eta[i]+jd[i]*c.jd[k,t,z]+temp[i]*c.temp[k,t,z]
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}}}}
#State Submodel
# initial state and likelihood for year = 1
#first year occupancy
for (i in 1:n){
for (k in 1:R) {
for (t in 1:1){
for (z in 1:Q){
logit(psi[i,k,t,z]) <-phi[i]
+T1[i]*c.T1[k,1,z]
+T2[i]*c.T2[k,1,z]
+aspect[i]*c.aspect[k,1,z]
+ba[i]*c.ba[k,1,z]
Z[i,k,1,z] ~ dbern(psi[i,k,1,z])
mu.p[i,k,1,z] <- p[i,k,1,z]*Z[i,k,1,z]
Y[i,k,1,z] ~ dbin(mu.p[i,k,1,z], J)
}}}}
##determining survival and colonization
##for year 1 to 2
for (i in 1:n){
for (k in 1:R) {
for (t in 2:2){
for (z in 1:Q){
logit(phisurv[i,k,t-1,z]) <- lphi0[i]
+T1surv[i]*c.T1[k,1,z]
+T2surv[i]*c.T2[k,1,z]
+aspectsurv[i]*c.aspect[k,1,z]
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+basurv[i]*c.ba[k,1,z]
logit(gamma[i,k,t-1,z]) <- lgamma0[i]
+T1col[i]*c.T1[k,1,z]
+T2col[i]*c.T2[k,1,z]
+aspectcol[i]*c.aspect[k,1,z]
+bacol[i]*c.ba[k,1,z]
mu[i,k,t,z]<-Z[i,k,t-1,z]*phisurv[i,k,t-1,z]
+ (1-Z[i,k,t-1,z])*gamma[i,k,t-1,z]
Z[i,k,t,z] ~ dbern(mu[i,k,t,z])
mu.p[i,k,t,z] <- p[i,k,t,z]*Z[i,k,t,z]
Y[i,k,t,z] ~ dbin(mu.p[i,k,t,z], J)
}}}}
# Derived parameters: Compute annual occupancy and growth
rates
for (i in 1:n){
psivec[i,1]<-mean(psi[i,1:R,1,1])
pvec[i,1]<-mean(p[i,1:R,1:T,1])
phiyr[i,1]<-mean(phisurv[i,1:R,1,1])
gammayr[i,1]<-mean(gamma[i,1:R,1,1])
}
for(i in 1:n){
for(j in 2:2){
psivec[i,j] <- psivec[i,j-1]*phiyr[i,j-1]
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+ (1-psivec[i,j-1])*gammayr[i,j-1]
growthr[i,j]<- psivec[i,j]/psivec[i,j-1]
turnover[i,j-1]<- ((1 - psivec[i,j-1]) * gammayr[i,j-1])/( (1 –
psivec[i,j-1]) * gammayr[i,j-1]
+ phiyr[i,j-1]*psivec[i,j-1])
eop[i,j-1]<- (gammayr[i,j-1])/( (gammayr[i,j-1])
+ (1-phiyr[i,j-1]))
}}}
“, fill=TRUE, file=modelFilename)
#fit model to data using WinBUGS code, make sure to have
WinBUGS installed
#with the appropriate key decoded
library(R2WinBUGS)
fit = bugs(data, inits, parameters.to.save=params,
model.file=modelFilename,
n.chains=5, n.iter=55000, n.burnin=5000, n.thin=50,
bugs.seed=sample(1:9999,size=1), debug=T, DIC=F, coda=T)
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end.time=Sys.time()
elapsed.time= difftime(end.time, start.time, units=’mins’)
cat(paste(paste(‘Posterior computed in ‘, elapsed.time, sep=’’), ‘
minutes\n’, sep=’’))
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