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INVASIVE POTENTIAL OF INVASIVE PLANTS IN THE FOREST  
OF THE SOUTHERN REGION, UNITED STATES

Dawn Lemke, John W. Coulston, Philip Hulme, Clint Paterson, and Jennifer A. Brown1

Abstract.—Alien plants introduced for commercial or landscaping use have caused 
substantial problems as invaders of natural and managed ecosystems. The magnitude of 
the problem has dramatically increased over the past few decades with accelerated land 
disturbance, land use changes, and global and internal transportation. In the southern 
region of the United States, invasive plants are one of the threats to the long-term 
sustainability of our forest ecosystems along with climate change and land use change. 
We assessed the potential distribution of invasive plants in forests of the southern 
region using data from the invasive species component of the U.S.Forest Service Forest 
Inventory and Analysis (FIA) Program and freely available digital data including 
elevation, climate, and land use. Using an ensemble modeling approach, we integrated 
maximum entropy algorithms, logistic regression, random forest, boosted regression 
trees, and support vector machine. Areas of agreement between models were considered 
areas of high probability. This suggests the importance of adaptive management and 
long-term monitoring programs and the need for further development of methods for 
assessing probable future climate conditions. We have used this approach to evaluate the 
relative importance of dependent variables and the application and selection of modeling 
techniques.
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INTRODUCTION
Invasive species pose a major threat to the 
sustainability of natural ecosystems through biotic 
homogenization and loss of biodiversity, with negative 
consequences for both social and economic systems 
(Miller et al. 2012). Invasive species are considered 
a major component of global environmental 
change (Vitousek et al. 1997). Identifying areas of 
potential invasion is an important part of ecosystem 
management, and one tool that can be applied to this 
is species distribution models (SDMs) (Gallien et al. 

2010). SDMs can be used to predict spatial patterns of 
potential biological invasions and prioritize locations 
for early detection and control of invasion outbreaks. 
SDMs combine concepts from ecology and natural 
history with more recent developments in statistics and 
geospatial information systems (Franklin 2009). In 
this paper we focused on two questions specific to the 
application of SDMs: 1) Which modeling technique(s) 
is most appropriate for this study?; and 2) Do 
environmental determinates remain consistent among 
models? To address these questions we developed 
SDMs for 22 plants invasive to the forests of the 
southern region of the United States using five SDM 
methods.

METHODS
Invasive plants considered for this study included all 
species with more than 100 plot occurrences in the 
invasive plant component of the FIA database (USDA 
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FS 2007) (Table 1). Twenty-two environmental 
variables derived from the national land cover 
database, digital elevation models, and Bioclim data 
were used (full details given in Lemke et al. 2011) 
(Table 2). Environmental variables were checked 
for intercorrelation and the statistical package R 
was used to develop the following five models for 
each species: maximum entropy algorithms, logistic 
regression, random forest, boosted regression trees, 
and support vector machine (R Core Team 2012). 
Data were down sampled to give a 1:4 ratio (for every 
occurrence location, four random absence records 
were selected) for logistic regression, random forest, 
boosted regression trees, and support vector machine 
models to balance the data. Models were derived 
using a manual backward selection method where 
variables that had little or no impact on the model 
were removed based on the results of 10 model runs 
(Lemke et al. 2011). The key variables in determining 
the occurrence of each species were identified by their 

percent contribution to the final model and with a 
jack-knife test on gain and influence on the area under 
the curve (AUC). This approach assisted in reducing 
a model that over fits. Three techniques were used to 
assess model reliability: the performance of test and 
training data, the omission rate, and AUC. Data were 
randomly split with 30 percent in test and 70 percent 
in training datasets for the regional models and were 
run 10 times with random selections. The omission 
rate was calculated using a threshold value defined 
by the maximized sum of sensitivity and specificity. 
Models with an omission rate less than 0.25 and an 
AUC of greater than 0.75 were considered acceptable. 
Ensemble models were built for each species that 
had more than one acceptable model using only the 
acceptable models. When more than 75 percent of 
the models agreed in occurrence, these areas were 
considered highly likely to be invaded, when less than 
25 percent of the models agreed in occurrence, these 
areas were considered highly unlikely to be invaded, 

Table 1.—Comparison of five species distribution modeling techniques (boosted regression trees [BRT], 
logistic regression [LR], maximum entropy algorithms [ME], random forest [RF], and support vector 
machine [SVM]) for 22 species invasive to the forest of the Southern region. An omission rate (OR) less 
than 0.25 and an area under the curve (AUC) of greater than 0.75 were considered acceptable models, 
shown in bold.
	 BRT	 LR	 ME	 RF	 SVM
Species	 n	 AUC	 OR	 AUC	 OR	 AUC	 OR	 AUC	 OR	 AUC	 OR

Tree of heaven (Ailanthus altissima)	 854	 0.88	 0.14	 0.81	 0.18	 0.88	 0.13	 0.89	 0.43	 0.80	 0.17
Silktree (Albizia julibrissin)	 677	 0.76	 0.32	 0.69	 0.42	 0.76	 0.24	 0.72	 0.80	 0.59	 0.49
Princesstree (Paulownia tomentosa)	 231	 0.81	 0.22	 0.73	 0.23	 0.80	 0.26	 0.79	 0.67	 0.64	 0.33
Chinaberry (Melia azedarach)	 468	 0.87	 0.20	 0.79	 0.16	 0.86	 0.22	 0.86	 0.52	 0.82	 0.29
Tallowtree (Triadica sebifera)	 930	 0.93	 0.14	 0.88	 0.22	 0.93	 0.13	 0.94	 0.30	 0.89	 0.22
Autumn olive (Elaeagnus umbellate)	 327	 0.88	 0.16	 0.75	 0.20	 0.98	 0.19	 0.89	 0.44	 0.82	 0.17
Privets (Ligustrum L.)	 7580	 0.81	 0.23	 0.72	 0.31	 0.77	 0.21	 N/A	 0.62	 0.29
Bush honeysuckles (Diervilla spp.)	 499	 0.89	 0.22	 0.74	 0.38	 0.89	 0.18	 0.90	 0.40	 0.84	 0.18
Nandina (Nandina Thumb.)	 143	 0.81	 0.21	 0.77	 0.36	 0.80	 0.38	 0.81	 0.67	 0.73	 0.35
Nonnative roses (Rosa spp.)  	 3031	 0.87	 0.18	 0.76	 0.21	 0.85	 0.16	 0.88	 0.46	 0.74	 0.35
Climbing yams (Dioscorea L.) 	 120	 0.78	 0.35	 0.62	 0.31	 0.83	 0.22	 0.79	 0.52	 0.61	 0.31
English ivy (Hedera helix)	 104	 0.85	 0.29	 0.79	 0.33	 0.84	 0.21	 0.88	 0.58	 0.81	 0.36
Japanese honeysuckle (Lonicera japonica)	 15931	 0.82	 0.21	 0.69	 0.23	 0.72	 0.20	 N/A	 0.71	 0.30
Kudzu (Pueraria spp.)	 280	 0.79	 0.33	 0.71	 0.24	 0.82	 0.30	 0.82	 0.64	 0.62	 0.28
Periwinkles (Vinca spp.)	 115	 0.74	 0.42	 0.67	 0.47	 0.74	 0.42	 0.77	 0.77	 0.61	 0.20
Nonnative wisterias (Wisteria spp.)	 113	 0.78	 0.35	 0.75	 0.25	 0.80	 0.30	 0.74	 0.80	 0.65	 0.23
Tall fescue (Schedonorus phoenix (Scop.) Holub)	 810	 0.85	 0.22	 0.72	 0.28	 0.82	 0.25	 0.85	 0.52	 0.62	 0.32
Nepalese browntop (Microstegium vimineum)	 1740	 0.86	 0.15	 0.73	 0.22	 0.83	 0.12	 0.86	 0.51	 0.56	 0.21
Japanese climbing fern (Lygodium japonicum)	 1299	 0.93	 0.11	 0.89	 0.15	 0.92	 0.08	 0.97	 0.27	 0.90	 0.08
Garlic mustard (Alliaria petiolata)	 105	 0.95	 0.17	 0.82	 0.11	 0.97	 0.19	 0.97	 0.19	 0.94	 0.13
Shrubby lespedeza (Lespedeza frutescens)	 964	 0.82	 0.35	 0.67	 0.39	 0.79	 0.30	 0.79	 0.68	 0.54	 0.19
Chinese lespedeza (Lespedeza cuneata)	 1909	 0.77	 0.26	 0.62	 0.39	 0.76	 0.27	 0.78	 0.66	 0.53	 0.10
Percent of acceptable models	 86%	 59%	 45%	 55%	 91%	 68%	 90%	 5%	 36%	 50%
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and when the model agreement was between 25 and 75 
percent the area was considered moderately likely to 
be invaded.

RESULTS
The results are reported in two components: model 
comparisons, and the influence and relevance of the 
dependent variables (environmental). Most species had 
at least one acceptable model as assessed by both test 

Tree of heaven	 3	 1	 0	 4	 2	 4	 2	 2	 0	 2	 3	 2	 1	 0	 0	 1	 1	 0	 1	 0	 1	 1
Silktree	 4	 0	 0	 4	 2	 3	 2	 2	 1	 2	 4	 3	 1	 0	 2	 3	 1	 0	 0	 0	 0	 5
Princesstree	 3	 4	 1	 4	 2	 3	 2	 3	 0	 1	 2	 2	 2	 0	 0	 1	 1	 0	 0	 1	 0	 1
Chinaberry	 3	 0	 0	 5	 2	 3	 3	 3	 2	 3	 2	 0	 0	 0	 0	 5	 0	 1	 0	 0	 0	 0
Tallowtree	 1	 0	 0	 5	 2	 2	 5	 3	 1	 1	 3	 2	 0	 0	 0	 0	 3	 0	 0	 0	 0	 0
Autumn olive	 4	 0	 0	 3	 3	 4	 1	 1	 0	 4	 2	 4	 0	 0	 0	 1	 2	 0	 1	 0	 0	 1
Privets	 3	 0	 1	 3	 1	 1	 1	 2	 1	 2	 1	 3	 0	 0	 0	 4	 0	 0	 0	 0	 0	 1
Bush honeysuckles	 4	 0	 0	 4	 1	 4	 2	 2	 1	 2	 2	 3	 0	 0	 0	 3	 2	 0	 0	 0	 0	 1
Nandina	 2	 0	 0	 5	 3	 3	 1	 2	 2	 3	 1	 5	 2	 0	 1	 2	 1	 0	 0	 0	 0	 4
Nonnative roses	 4	 0	 0	 4	 1	 1	 2	 3	 0	 1	 2	 0	 0	 0	 0	 4	 5	 0	 1	 0	 0	 1
Climbing yams	 4	 1	 0	 4	 1	 1	 0	 3	 1	 3	 4	 4	 1	 1	 0	 0	 0	 1	 0	 2	 0	 0
English ivy	 1	 0	 0	 4	 1	 1	 1	 0	 2	 0	 1	 5	 2	 0	 2	 1	 0	 0	 0	 1	 0	 5
Japanese honeysuckle	 3	 0	 0	 3	 0	 0	 3	 1	 2	 2	 4	 1	 1	 0	 0	 3	 1	 0	 0	 0	 0	 1
Kudzu	 3	 0	 1	 3	 2	 1	 2	 3	 1	 4	 4	 3	 1	 1	 2	 3	 1	 0	 0	 1	 0	 5
Periwinkles	 1	 4	 0	 3	 2	 2	 3	 1	 0	 4	 3	 4	 0	 1	 0	 3	 2	 2	 0	 1	 0	 2
Nonnative wisterias	 2	 0	 0	 5	 0	 0	 0	 0	 4	 1	 0	 4	 2	 2	 2	 3	 3	 0	 0	 1	 0	 5
Tall fescue	 4	 0	 0	 4	 2	 4	 2	 4	 0	 3	 2	 0	 0	 0	 0	 3	 2	 0	 1	 0	 0	 1
Nepalese browntop	 3	 0	 0	 4	 2	 3	 4	 4	 0	 2	 4	 2	 0	 0	 0	 1	 1	 0	 1	 0	 0	 1
Japanese climbing fern	 1	 0	 0	 5	 5	 2	 2	 3	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
Garlic mustard	 3	 0	 0	 3	 1	 2	 0	 2	 2	 1	 2	 2	 0	 0	 0	 1	 1	 0	 0	 0	 0	 1
Shrubby lespedeza	 4	 1	 0	 4	 3	 4	 3	 4	 2	 2	 3	 0	 0	 1	 0	 2	 4	 0	 1	 2	 0	 0
Chinese lespedeza	 3	 0	 0	 4	 3	 4	 1	 3	 1	 1	 3	 0	 0	 0	 0	 1	 2	 0	 4	 1	 0	 1
BRT (%)	 73	 9	 0	 95	 36	 45	 23	 41	 14	 45	 59	 64	 27	 18	 18	 50	 18	 9	 5	 5	 0	 18
LR (%)	 14	 14	 0	 23	 5	 0	 50	 0	 45	 9	 32	 23	 0	 5	 0	 86	 59	 5	 32	 0	 0	 77
ME (%)	 59	 5	 0	 95	 14	 41	 32	 59	 14	 41	 41	 64	 14	 5	 23	 45	 32	 0	 5	 27	 0	 27
RF (%)	 100	 15	 0	100	 95	 95	 65	 90	 20	 90	 90	 20	 5	 0	 0	 10	 30	 0	 0	 5	 0	 25
SVM (%)	 50	 9	 14	 95	 45	 68	 27	 55	 18	 36	 23	 55	 14	 0	 0	 14	 14	 5	 5	 9	 5	 23
Overall (%)	 58	 10	 3	 81	 38	 49	 39	 48	 22	 44	 48	 45	 12	 6	 8	 42	 31	 4	 9	 9	 1	 34
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Table 2.—Number of models using each of 22 environmental variables across five species distribution 
modeling techniques (boosted regression trees [BRT], logistic regression [LR], maximum entropy 
algorithms [ME], random forest [RF], and support vector machine [SVM]) for 22 species invasive to the 
forests of the Southern region

AUC and omission rates with the exception of kudzu, 
periwinkles, shrubby lespedeza and Chinese lespedeza 
(Table 1). Only one species, garlic mustard, had five 
accepted models, and four species (tree of heaven, 
tallowtree, autumn olive, and Japanese climbing 
fern) had four acceptable models (logistic regression, 
maximum entropy algorithms, boosted regression 
trees, and support vector machine). Overall, boosted 
regression tree and maximum entropy algorithms 
produced the strongest models with 59 percent of 
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models considered acceptable (Table 1). Minimum 
temperature was the most useful of the dependent 
variables, occurring in 81 percent of the models, 
followed by elevation (58 percent) and rainfall in the 
wettest month (49 percent) ( Table 2). Every species 
used minimum temperature in at least three of the 
models and elevation in at least one of the models 
(Table 2). Seven variables (distance to roads and 
rivers, proportion of grass and pine, and change in 
forest and pine) contributed information to less than 
10 percent of the models (Table 2). Tree of heaven was 
the only species to use the dependent variable change 
in pine, and distance to river was only used in the 
support vector machine models for three species. On 
average, the logistic regression models use the fewest 
number of variables (five) and random forest models 
use the highest number (nine). Logistic regression 
differed from the other methods in the selection of 
variables, with few logistic models using minimum 
temperature (23 percent) and elevation (14 percent), 
but instead being dominated by land use (Table 2). 
Eleven ensemble models (combining 2 or more 
models) were developed. 

DISCUSSION
The goal of this study was to assess the impact of 
variable and model selection in SDMs, by comparing 
the consistency of the independent environmental 
variables across models, and the consistency of models 
across species. These issues are fundamental to all 
SDMs but of particular interest to invasive species. 
Invasive species often have expanding distributions, 
and limited information is available on this species, 
resulting in less defined models. Through identifying 
agreement between modeling techniques and variables 
selection, we can have greater confidence in models. 

The area of distribution of a species is determined by 
its ecological and evolutionary history. Many factors 
affect species distribution, but the most important 
are the limits of the species’ tolerances and needs for 
certain abiotic conditions, the suite of other species 
with which it interacts, and the potential for dispersal 
and colonization within a given time period (Soberón 

and Peterson 2005). Aboitic conditions can be used 
to define the potential distribution (the focus of 
our work), with species interactions and dispersal 
constraints defining the realized distribution. Many 
studies have found large-scale environmental factors 
can produce strong SDMs (Franklin 2009). Overall 
we found similar results, with the environmental 
variables used in this study useful in predicting the 
species potential distribution with 40 percent of 
the models considered good (test AUC > 0.75 and 
test omission rate < 0.25). Physiographic variables 
dominated the model over land use variables, 
suggesting these distributions are driven by species 
tolerances. Minimum temperature was the dominate 
variable suggesting many of these species are limited 
by the extreme temperatures of winter or length of 
growing season and competition with other species 
in that niche. Elevation, the second most dominate 
variable, has some correlation with temperature and 
was selected over temperature for inclusion in some 
models, while in others it was selected in conjunction 
with temperature. By selecting in conjunction with 
temperature, it may assist in more narrowly defining 
climatic conditions associated with the species or 
forest communities that occupy the area. When 
used without temperature, elevation is likely a 
representation of climatic conditions, with elevation 
integrating both aspects of temperature (high elevation, 
cooler temperature) and rainfall. Some of the finer-
scale characteristics such as slope and distance to 
rivers were not widely used in models, suggesting 
the models may apply across a regional scale but not 
necessary at a local scale. Many of these relationships 
are nonlinear, with species having preferences for 
the intermediate temperatures and elevations. The 
two models that gave the strongest results (boosted 
regression and maximum entropy algorithms) capture 
nonlinear relationships well. Logistic regression is 
not designed to assess bimodal relationships, and as 
such, many of the models do not integrate temperature, 
rainfall and elevation-based variables, instead focusing 
on land cover characteristics. Our results were similar 
to other studies (Elith et al. 2006), with maximum 
entropy algorithms coming out as one of the strongest 
modeling techniques. 
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