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BUILDING IMPROVED MODELS OF SUGAR MAPLE MORTALITY

Charles H. Perry and Patrick L. Zimmerman1

Abstract.—The decline of sugar maple (Acer saccharum Marsh.) in the northern 
United States is causing concern, and several studies have identified soil properties that 
are linked to the observation of dead/dying trees. Unfortunately, the sample of trees 
supporting these studies is purposive in nature; soil properties are assessed only on those 
plots where dead trees are observed. In this study, we used the U.S. Forest Service’s 
Forest Inventory and Analysis database (FIADB) to conduct an exploratory analysis of a 
broader population of sugar maple (live and dead) across a wide range of soil types. This 
population of plots has a highly skewed, zero-inflated distribution: the number of plots in 
the sample without dead trees is an order of magnitude greater than the number of plots 
with dead trees. One effective method of analysis is a hurdle—or conditional—model 
approach. In the first phase, the response variable is the presence or absence of dead 
sugar maple and the inferential space is the entire population of plots with sugar maple 
trees. The second phase uses the relative abundance of dead sugar maple as the response 
variable; in this case, inference is restricted to those plots where dead sugar maple trees 
are observed. In both sets of models, basal area and geology are significant predictors 
of dead sugar maple, but the most significant soil variables vary between these two 
inferential spaces. Our study highlights important analytical considerations when using 
FIADB for analysis of forest health conditions and presents simple methods to create a 
more comprehensive space for statistical inference.
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INTRODUCTION
Several studies of sugar maple (Acer saccharum 
Marsh.) mortality exist (e.g., Horsley et al. 2000, Long 
et al. 2009), but most evaluations focus on an area of 
known decline from Pennsylvania to New Hampshire. 
Sampling of sugar maple decline in these and related 
studies tends to be purposive in nature and evaluates 
only those plots with dead sugar maple.

The U.S. Forest Service Forest Inventory and Analysis 
Program (FIA) collects field data to describe the 
status and trends of forests across the United States. It 
focuses on live trees and live-tree observations vastly 

outnumber those of dead trees in the FIA database 
(FIADB). To wit, the ratio of live-tree to dead-tree 
observations for the complete 2011 5-year inventory of 
the Great Lakes states of Minnesota, Wisconsin, and 
Michigan was 5.8:1.2 However, the inventory is not 
biased systematically against dead trees. Dead trees 
are recognized as particularly important ecologically 
(Woodall et al. 2009), and standing dead trees are the 
subject of specific reporting since Field Guide 2.0 was 
published in 2004 (USDA Forest Service 2004). 

Joint observations of live and dead trees contain 
important ecological information and increasing 
the size of the sample population also increases the 
resulting inferential space. However, a joint analysis 
of live and dead trees in FIADB yields a zero-inflated 
population, and statistical inference which does not 

2 Calculations may be made using FIA’s online tools 
available at http://fiatools.fs.fed.us. 
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account for zero-inflation is likely to be erroneous 
(Martin et al. 2005). Zero-inflation often can be 
accommodated by hurdle and mixture models when 
the additional zeros are “true zeros” (Martin et al. 
2005). Hurdle models (also known as conditional 
models) treat the problem in two stages: first, the 
analyst determines the probability of a species or 
property being present or absent in a binary outcome; 
second, and conditional on its presence, the relative 
abundance of said species/property is found (Cameron 
and Trivedi 1998). Mixture models attempt to answer 
the same two questions in one model, but the resulting 
parameters are more challenging to interpret (Martin et 
al. 2005).

In this paper, we outline the application of a hurdle 
model approach to sugar maple mortality in the 
northern United States. Twenty states were included 
in the analysis: Connecticut, Delaware, Illinois, 
Indiana, Iowa, Maine, Maryland, Massachusetts, 
Michigan, Minnesota, Missouri, New Hampshire, New 
Jersey, New York, Ohio, Pennsylvania, Rhode Island, 
Vermont, West Virginia, and Wisconsin. Our study 
highlights important analytical considerations when 
using FIADB for analysis of forest health conditions 
and presents simple methods to create a more 
comprehensive space for statistical inference.

METHODS
Forest and soil inventory plots in the Northern United 
States were joined and extracted from the FIADB 
(Woudenberg et al. 2010). These data were collected 
between 2000 and 2006. Plots were included in the 
analysis if at least three sugar maple trees with d.b.h. 
greater than 5 inches were measured on the plot.

Plot information included state and county, and 
latitude, and longitude. Plot latitude and longitude 
were used to link plots to spatially explicit geologic 
databases describing the origin of surface material 
(Fullerton et al. 2003). Forest-level attributes included 
the basal area of live and dead sugar maple, ecological 
subsection, forest-type group, stand age, stand-size 

code (a classification of the predominant diameter 
class of live trees), slope, aspect, physiographic 
class (e.g., xeric, mesic, or hydric), and the presence/
absence of disturbance on the plot. Soil plot 
information focused on the suite of soil chemistry 
variables extracted from mineral soil samples (O’Neill 
et al. 2005, Woodall et al. 2010) and their derivatives. 

Statistical analyses were conducted in three stages: (0) 
ordinary linear regression on all plots to demonstrate 
the impact zero-inflation; 1) logistic regression on 
the presence and absence of dead sugar maple; and 
2) ordinary linear regression of those plots with 
dead sugar maple. Given the exploratory nature 
of our investigation using the suite of variables 
available in FIADB, analyses were completed using 
stepwise techniques in R (R Development Core Team 
2011). Appropriate variable transformations were 
suggested by Box-Cox analyses. Zeroes cannot be 
log transformed, so a very small number (0.001) was 
added to variables as required. 

RESULTS
Stage 0
A total of 219 plots were selected that met the defined 
criteria of at least three sugar maple trees and the 
collection of soil chemistry data. A number of terms 
were available as predictors (Table 1). Our first 
effort was directed at modeling the fraction of dead 
sugar maple basal area as the response in a multiple 
regression model. If successful, this would be a simple 
and complete model of sugar maple mortality. This 
investigation collapsed because of the zero-inflated 
distribution; too many plots had zero dead sugar maple 
(Fig. 1).

Stage 1
Given our trouble with the zero-inflated fraction of 
dead sugar maple basal area in stage 0, we adopted 
hurdle modeling. Using the hurdle model, we modeled 
the data in two stages. In stage 1, we modeled the 
presence or absence of dead sugar maple using logistic 
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Table 1.—Variables available to predict sugar maple death across the northern United States

Site characteristics	 Soil characteristics

Latitude, Longitude  {lat, lon}	 pH
Drought index  {di}	 sqrt(ECEC)  {secec}
Ecoprovince  {eco}	 log(Ca:Al ratio)  {lca.al}
Forest-type group  {forest}	 log(Mg:Al ratio)  {lmg.al}
Basal area  {ba}	 log(Mg:Mn ratio)  {lmg.mn}
Stand age  {age}	 log(Exchg. K percentage)  {lekp}
Stand-size class  {size}	 log(Exchg. Na percentage)  {lesp}
Site class  {site.class}	 log(Exchg. Ca percentage)  {lecp}
Slope  {slope}	 log(Exchg. Mg percentage)  {lemp}
Aspect  {aspect}	 log(Exchg. Al percentage)  {leap}
Disturbance  {dist}	
Geology  {geo}
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Figure 1.—Histograms of the observed dead fraction of sugar maple basal area on all plots (A) before and (B) after logarithmic 
transformations.
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regression. In stage 2 (below), we modeled abundance 
given dead trees were present. Modeling presence or 
absence was accomplished using the binomial family 
of glm(). As before, 219 plots were available to 
parameterize the model, and the same terms were used 
as predictors (Table 1).

Exploratory binomial models were built using two 
starting points: 1) intercept only; and 2) a full model. 
Stepwise regression found the best model using AIC 
as the selection criteria. Similar models were selected 
from different starting points. The coefficients of the 
most plausible stage 1 model are included in Table 2.

The interpretation of the intercepts in logistic 
regression is done using log-odds. Each unit increase 
in basal area increases the odds of dead basal area by 
a factor of 1.02. Each 10x increase in Mg:Mn reduces 
the odds of dead basal area to 55 percent of that for the 
original landscape. A till landscape reduces the odds of 
dead basal area to 50 percent of that for other glacial 
landscapes. A nonglacial landscape reduces the odds of 
dead basal area to 10 percent of that for a glacial (non-
till) landscape.

Stage 2
In the second stage of the hurdle model, we modeled 
the amount of dead sugar maple basal area found on 
those plots that have dead sugar maple. We focused on 
the 58 points where dead sugar maple was observed 
(Fig. 2), representing 26 percent of the population of 
plots with sugar maple. The parameters from the most 
plausible model (below) are included in Table 3.

Table 2.—Parameters for the most plausible model 
of sugar maple death using logistic regression 
with all plots

Variable Coefficient	 Estimate	  Std. Error	 Z	 Pr(>|z|)

ba	 0.0197	 0.0057	 3.47	 0.0005
lmg.mn	 -0.5959	 0.2198	 -2.71	 0.0067 
geo:glacial	 -0.3715	 0.5001	 -0.74	 0.4576
geo:till	 -1.0628	 0.3698	 -2.87	 0.0041 
geo:non-glacial	 -2.5894	 0.5593	 -4.63	 3.67e-06
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Figure 2.—Histogram of the observed dead fraction of sugar 
maple basal area for those plots with dead trees.

Table 3.—Parameters for the most plausible model 
of sugar maple death using linear regression with 
only those plots including dead trees

Variable
Coefficient	 Estimate	 Std. Error	 t value	 Pr(>|t|)

Intercepta	 -0.675	 0.587	 -1.150	 0.257
lat	 0.018	 0.014	 1.334	 0.190
secec	 0.077	 0.031	 2.473	 0.018
lca.al	 0.027	 0.013	 2.066	 0.046
lmg.mn	 -0.018	 0.011	 -1.636	 0.110
lesp	 0.080	 0.022	 3.674	 0.001
lemp	 -0.078	 0.033	 -2.362	 0.023
forest (MBB)	 -0.110	 0.077	 -1.428	 0.162
forest (OH)	 0.213	 0.085	 2.501	 0.017
forest (Other)	 -0.140	 0.104	 -1.340	 0.188
age	 0.002	 0.001	 1.660	 0.105
size (Medium)	 0.055	 0.042	 1.318	 0.196
size (Small)	 0.157	 0.115	 1.366	 0.180
site.class (4)	 0.025	 0.103	 0.244	 0.808
site.class (5)	 0.187	 0.107	 1.743	 0.089
site.class (6)	 0.111	 0.111	 1.004	 0.322
dist	 0.065	 0.056	 1.164	 0.252
geo:nonglacial	 0.045	 0.098	 0.455	 0.652
geo:till	 0.089	 0.039	 2.245	 0.031
ba	 -0.001	 0.001	 -2.543	 0.016
aThe model intercept includes forest (AB), size (Large), site (3),  
and geo (glacial, not till). Multiple R-squared: 0.6118, Adjusted  
R-squared: 0.4177, F-statistic: 3.152 on 19 and 38 DF,   
p-value: 0.001269. 
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The exploratory model developed in Stage 2 presents 
results affirming and challenging previous evaluations 
of sugar maple decline. Rising Mg levels (lmg.mn 
and lemp) are associated with declines in death, but 
contrary to expectations, increases in other forms of 
mineral soil nutrition available to trees (lecec, lca.al, 
and lesp) are associated with increasing death of sugar 
maple (Horsley et al. 2000, Long et al. 2009). 

DISCUSSION AND CONCLUSIONS
Statistical inference in a hurdle model approach 
is complicated by the use of two stages of model 
building. In stage 1, we analyzed the full dataset using 
logistic regression, and log (odds) can be difficult to 
interpret. The model developed in the second stage is 
constructed more traditionally―by linear regression―
so interpretation of the resulting coefficients is 
relatively straightforward. Additionally, while these 
two sets of models are similar, they are not identical.

Our emphasis here is to outline a process whereby 
more comprehensive datasets (namely those 
including both live and dead trees) can be used to 
evaluate the likelihood of sugar maple death across 
the species’ range, so additional interpretations are 
being set aside for more thorough consideration in a 
subsequent manuscript. Given our use of AIC, multi-
model inference will be a useful tool for assessing 
predictors within and potentially between the two 
stages (Burnham and Anderson 2002). Our key point 
is that hurdle models offer an opportunity to model 
comprehensive, zero-inflated datasets, like those 
collected by FIA, where the zero-inflation results from 
the presence of true zeros in the dataset (Martin et al. 
2005).
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