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USING FOREST INVENTORY DATA ALONG WITH SPATIAL LAG 
AND SPATIAL ERROR REGRESSION TO DETERMINE THE IMPACT 
OF SOUTHERN PINE PLANTATIONS ON SPECIES DIVERSITY AND 

RICHNESS IN THE CENTRAL GULF COASTAL PLAIN

Andrew J. Hartsell1

Abstract.—This study investigates the impacts of southern yellow pine plantations 
on species evenness and richness in the gulf coastal plain. This process involves using 
spatial lag and spatial error regression techniques using GeoDa software and U.S. 
Forest Service’s Forest Inventory and Analysis data. The results indicate that increasing 
plantation area is negatively correlated to species evenness and richness. Preliminary 
results indicate that for every 10 percent increment increase in southern yellow pine 
plantation area, Shannon’s E decreases by 0.02 and species richness declines by 1.6 
species. However, these models account for less than 50 percent of the data’s variance, an 
indication that the models are incomplete and more research is needed.
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INTRODUCTION
Biodiversity, synonymous with biological diversity, 
can be defined as “the variety and variability among 
living organisms and the ecological complexes in 
which they occur” (OTA 1987). Humans perceive 
regions with a multitude of diverse species to have 
more value than those that don’t (Ehrlich 1991, Wilson 
1993). Possible reasons that species diversity is valued 
by humans are: larger number of plant species means 
a greater variety of crops and life; greater species 
diversity helps assure natural sustainability for all life 
forms; diverse ecosystems can better withstand and 
recover from a variety of disasters; and finally the 
planets complex systems, ecological networks, and 
energy flows are dependent upon numerous organisms 
and interactions (Gaston 1996, SCBD 2006, Wilson 
1993). 

However, global biodiversity may be threatened 
by anthropogenic sources. The main factors 
responsible for potential biodiversity loss include: 

land use change; habitat change such as forest 
fragmentation and conversion; invasive alien species; 
overexploitation; and pollution. Plantations, which are 
artificially regenerated forests that are often composed 
of genetically modified or alien species, satisfy two 
of these factors. It is important that science ascertains 
the positive and negative impacts of this management 
regime to facilitate public discourse and planning.

STUDY AREA
The initial study area was limited to the states of 
Texas, Louisiana, Mississippi, and Alabama. Only 
counties in those states having the majority of their 
area in the gulf coastal plain, as defined by Bailey 
(1998), were considered. This population was thinned 
further by two more factors. First, the Mississippi 
River and its associated alluvial basin bisect the study 
area. Counties in this region were removed. Second, 
any county with less than 200,000 acres of forest land 
was removed from the dataset due to FIA’s sampling 
intensity. This assures that at least 30 forested plots 
are in each county, providing a reasonable estimate 
of species diversity and richness at the county level. 
Additionally, any “island” counties that were isolated 
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Figure 1.—Study area.

Species richness (R) is the number of different species 
found in a region or study area. For this study, species 
richness is a count of all tree species found in each 
county. Species richness does not take into account  
the relative abundance distributions of species.

Spatial Statistics
Detecting Spatial Autocorrelation
One of the most common ways of detecting spatial 
autocorrelation in group-level data is the Moran’s I 
statistic. Moran’s I is a weighted correlation coefficient 
used to detect departures from randomness such as 
clusters. The formula for Moran’s I is:

I = ∑i∑jwij (xi − μ)(xj − μ)/ ∑i (xi − μ)2 

where: μ is the mean of the x variable
wij are the elements of the spatial weights matrix.

and not attached to the larger study area were also 
removed. The final dataset was composed of data from 
158 counties (Fig. 1).

DEFINITIONS and CONCEPTS
Measuring Biodiversity
Shannon-Wiener (Shannon’s) evenness index (E) and 
diversity index (H) come from information theory and 
measure the order and disorder within a population 
(Shannon and Weaver 1971). Shannon’s diversity 
index is derived by calculating the proportion of 
species i relative to the total number of species (pi ), 
 and then multiplying by the natural logarithm of 
this proportion (ln pi ). The result is summed across 
species, and multiplied by −1:

H = −∑ pi ln pi  
R

i = 1
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Geographically Weighted Regression:  
Spatial Lag and Spatial Error Models
Geographically weighted regression (GWR) can be 
performed in the presence of spatial autocorrelation. 
GWR accounts for distinctions between spatial 
similarity between the dependent and independent 
variables. Ordinary least squares (OLS) and other 
simple statistics do not do this. The basic formula  
for GWR is:

y = χβ + ei

where:  χ is an n×p matrix of regressors
	 β is a p×1 vector of unknown parameters
	 e is unobserved scalar random variables (errors).

Spatial lag models (SLM) and spatial error models 
(SEM) are two types of GWR. Spatial lag models 
produce a spatially lagged variable on the right 
hand side of a regression equation. A spatial error 
model (SEM) considers the estimation of maximum 
likelihood of a spatial regression model that includes a 
spatial autoregressive error term on the right hand side 
of the regression equation.

METHODS
Species richness, Shannon’s E, total forest area, 
and percent of forest area in southern yellow pine 
plantations (SYP) were computed for each county 

in the study area. Ordinary least squares (OLS) 
analysis was performed on the both Shannon’s E and 
species richness using GeoDa version 0.95 software 
(OpenGeoDa version 1.2 is now available from the 
GeoDa Center at Arizona State University). Moran’s 
I was calculated to determine if spatial dependence 
was an issue. If the data was determined to be spatially 
autocorrelated, then a series of LaGrange multiplier 
(LM) test statistics were computed. The results of the 
LM would then indicate which GWR model, spatial 
lag model or spatial error model, would be used in the 
final analysis.

RESULTS
Shannon’s evenness index (E) was the first dependent 
variable investigated. The OLS regression of 
Shannon’s E was performed using percent of forest 
land per county in southern yellow pine plantations 
(PCT_SYP_PL) as one independent variable, and 
a dummy variable that indicated if a county was on 
the east side of the Mississippi River. The average 
Shannon’s evenness index was 0.695 (Table 1). The 
R2 and adjusted R2 were 0.368 and 0.360, respectively. 
The F-statistic and associated p-value indicated that 
the model was statistically significant. All three 
predictor variables, the intercept and two independent 
variables, were significant as well. 

Table 1.—Results of ordinary least squares analysis on species evenness index using percent southern 
yellow pine plantations per county and location flag 

Dependent Variable:	 SHANNONS_E	 Number of Observations:	 158
Mean dependent var:	 0.694942	 Number of Variables:	 3
S.D. dependent var:	 0.0565841	 Degrees of Freedom:	 155

R-squared:	 0.368228	 F-statistic:	 45.1709
Adjusted R-squared:	 0.360076	 Prob(F-statistic):	 3.49482e-016 
Sum squared residual:	 0.319599	 Log likelihood:	 265.867
Sigma-square:	 0.00206193	 Akaike info criterion:	 -525.734
S.E. of regression:	 0.0454085	 Schwarz criterion:	 -516.546
Sigma-square ML:	 0.00202278
S.E. of regression ML:	 0.0449753

Variable	 Coefficient	 Std. Error	 t-Statistic	 Probability
CONSTANT	 0.7422254	 0.01048335	 70.80043	 0.0000000
PCT_SYP_PL	 -0.002851605	 0.0003366784	 -8.469818	 0.0000000
EAST_FLAG	 0.03198344	 0.007769342	 4.116622	 0.0000623
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Tests for multicollinearity, normality, and 
heteroskedasticity proved to be insignificant 
(Table 2). However, Moran’s I proved to be highly 
significant (p value =0.000000) indicating that 
spatial autocorrelation was an issue with the data. 
The first two tests (LM-error and LM-lag) were both 
significant, indicating that the robust models are more 
appropriate. The robust versions were to be considered 
only if the standard versions were significant. In 

this instance, both LM-lag and LM-error were 
significant, so the robust versions were then used. 
The Robust LM-error statistic was not significant (p 
value=0.8675), but the Robust LM-lag statistic was 
(p value=0.0087). Therefore, a spatial lag model is 
needed to remove any spatial autocorrelation. Table 3 
shows the results of the spatial lag regression model on 
Shannon’s evenness.

Table 2.—Regression diagnostics on ordinary least squares analysis of Shannon’s species evenness index

REGRESSION DIAGNOSTICS 
MULTICOLLINEARITY CONDITION NUMBER	 5.998419
TEST ON NORMALITY OF ERRORS
TEST	 DF	 VALUE	 PROB
Jarque-Bera	 2	 0.2463868	 0.8840927

DIAGNOSTICS FOR HETEROSKEDASTICITY 
RANDOM COEFFICIENTS
TEST	 DF	 VALUE	 PROB
Breusch-Pagan test	 2	 1.014434	 0.6021692
Koenker-Bassett test	 2	 1.02169	 0.5999884

SPECIFICATION ROBUST TEST
TEST	 DF	 VALUE	 PROB
White	 5	 N/A	 N/A

DIAGNOSTICS FOR SPATIAL DEPENDENCE 
FOR WEIGHT MATRIX:  Queen (row-standardized weights)
TEST	 MI/DF	 VALUE	 PROB
Moran’s I (error)	 0.277114	 5.5791937	 0.0000000
Lagrange Multiplier (lag)	 1	 33.2970224	 0.0000000
Robust LM (lag)	 1	 6.8814084	 0.0087097
Lagrange Multiplier (error)	 1	 26.4434443	 0.0000003
Robust LM (error)	 1	 0.0278303	 0.8675084
Lagrange Multiplier (SARMA)	 2	 33.3248527	 0.0000001

Table 3.—Spatial lag regression model on Shannon’s species evenness index

Spatial Weight:	 Queen
Dependent Variable:	 SHANNONS_E	 Number of Observations:	 158
Mean dependent var:	 0.694942	 Number of Variables:	 4
S.D. dependent var:	 0.0565841	 Degrees of Freedom:	 154
Lag coeff. (Rho):	 0.510154

R-squared:	 0.518880	 Log likelihood:	 282.131 
Sq. Correlation:	 -	 Akaike info criterion:	 -556.262 
Sigma-square:	 0.00154043	 Schwarz criterion:	 -544.012 
S.E. of regression:	 0.0392483

Variable	 Coefficient	 Std. Error	 z-value	 Probability
W_SHANNONS_E	 0.5101542	 0.07463184	 6.83561	 0.0000000
CONSTANT	 0.3820561	 0.05341811	 7.152183	 0.0000000
PCT_SYP_PL	 -0.002135705	 0.0003113954	 -6.8585	 0.0000000
EAST_FLAG	 0.01523912	 0.007230402	 2.107645	 0.0350616
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The same process was repeated for species richness 
(R). The OLS regression on species richness included 
another independent variable, the amount of forest 
land in a county. This variable was labeled Forest_K, 
as each whole unit represents 1,000 acres of forest 
land. The average species richness for the study area 
was 50.5 (Table 4), indicating that each county in the 
study area has an average of 50 distinct tree species 
greater than 1.0 inch diameter at breast height (d.b.h.). 
The R2 was 0.298 and the adjusted R2 was 0.284, 

indicating that less than 30 percent of the dataset’s 
variation was captured in the model. However, the 
model and all variables were statistically significant. 

Tests for multicollinearity and normality indicated 
that neither was a problem. However, both tests for 
heteroskedasticity revealed that variances may not 
be equal. Furthermore, Moran’s I shows that the data 
are spatially dependent (Table 5). The LM statistics 
indicated that the Robust LM-lag was insignificant. 

Table 4.—Results of ordinary least squares analysis on Shannon’s species richness using percent 
southern yellow pine plantations per county, amount of forested acres per county, and location flag

Dependent Variable:	 RICHNESS	 Number of Observations:	 158
Mean dependent var:	 50.5506	 Number of Variables:	 4
S.D. dependent var:	 8.09715	 Degrees of Freedom:	 154

R-squared:	 0.297692	 F-statistic:	 21.759
Adjusted R-squared:	 0.284011	 Prob(F-statistic):	 8.38957e-012
Sum squared residual:	 7275.27	 Log likelihood:	 -526.734
Sigma-square:	 47.242	 Akaike info criterion:	 1061.47
S.E. of regression:	 6.87328	 Schwarz criterion:	 1073.72
Sigma-square ML:	 46.046
S.E. of regression ML:	 6.78572 

Variable	 Coefficient	 Std. Error	 t-Statistic	 Probability 
CONSTANT	 36.267	 2.222544	 16.31779	 0.0000000
PCT_SYP_PL	 -0.1072605	 0.05378244	 -1.994341	 0.0478798
EAST_FLAG	 3.60517	 1.195587	 3.015397	 0.0030027
FOREST_K	 0.04105437	 0.005197799	 7.898414	 0.0000000

Table 5.—Regression diagnostics on ordinary least squares analysis of Shannon’s species richness index

REGRESSION DIAGNOSTICS 
MULTICOLLINEARITY CONDITION NUMBER	 9.475663
TEST ON NORMALITY OF ERRORS
TEST	 DF	 VALUE	 PROB
Jarque-Bera	 2	 3.64542	 0.1615873

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST	 DF	 VALUE	 PROB
Breusch-Pagan test	 3	 11.23643	 0.0105138
Koenker-Bassett test	 3	 13.29254	 0.0040448

SPECIFICATION ROBUST TEST
TEST	 DF	 VALUE	 PROB
White	 9	 N/A	 N/A

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX:  Queen (row-standardized weights)
TEST	 MI/DF	 VALUE	 PROB
Moran’s I (error)	 0.432723	 8.6153092	 0.0000000
Lagrange Multiplier (lag)	 1	 51.3552467	 0.0000000
Robust LM (lag)	 1	 0.0432789	 0.8352011
Lagrange Multiplier (error)	 1	 64.4791145	 0.0000000
Robust LM (error)	 1	 13.1671467	 0.0002849
Lagrange Multiplier (SARMA)	 2	 64.5223934	 0.0000000
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Therefore, a spatial error model must be created to 
counter these issues. Anselin notes that the spatial error 
model is also useful for reducing heteroskedasticity as 
well (Anselin 1992, 2005). A spatial error regression 
was performed to correct for these issues (Table 6).

The R2 improved to 0.56, but as with the SLM model, 
this is a pseudo statistic and probably not directly 
comparable to OLS R2. The best way to determine an 
improvement of goodness of fit over the OLS model 
is to compare LL, AIC, and SC. For the SLE model on 
species richness, all three improved. 

DISCUSSION
The results of this study indicate that the area of 
southern yellow pine plantations in a county has a 
negative impact on species evenness and richness. 
Based on the spatially lagged regressions, Shannon’s 
evenness (E) will decrease by 0.02 for every 10 
percent increment increase in SYP plantation area. 
Likewise, species richness will drop by 1.6 species for 
the same change in plantation area.

However, while both models are statistically 
significant, they fail to account for over half of 
the variation in the dataset. This indicates that 
there are explanatory variables not accounted 
for. Further research needs to be performed to 

Table 6.—Spatial error regression model on Shannon’s species evenness index

Spatial Weight:	 Queen
Dependent Variable:	 RICHNESS	 Number of Observations:	 158
Mean dependent var:	 50.550633	 Number of Variables:	 3
S.D. dependent var:	 8.097153	 Degree of Freedom:	 155
Lag coeff. (Lambda):	 0.675756

R-squared:	 0.559861	 R-squared (BUSE):	 - 
Sq. Correlation:	 -	 Log likelihood:	 -500.089426 
Sigma-square:	 28.857203	 Akaike info criterion:	 1006.18 
S.E. of regression:	 5.37189	 Schwarz criterion:	 1015.366637 

Variable	 Coefficient	 Std. Error	 z-value	 Probability
CONSTANT	 39.73594	 2.177353	 18.24966	 0.0000000
PCT_SYP_PL	 -0.1636192	 0.04842778	 -3.378622	 0.0007286
FOREST_K	 0.04129515	 0.004798334	 8.606143	 0.0000000
LAMBDA	 0.6757558	 0.06527036	 10.35318	 0.0000000

determine what these variables may be. Possible 
sources are: population estimates, road densities, 
land fragmentation patterns, or other socioeconomic 
factors.
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