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8.1 Introduction 

Understanding the effects of management activities is difficult for natural 
resource managers and decision makers because ecological systems are 
highly complex and their behavior is difficult to predict. Furthermore, the 
empirical studies necessary to illuminate all management questions quickly 
become logistically complicated and cost prohibitive. Ecological models 
provide a means to formalize our conceptual understanding of how an 
ecological system works and allow us to check this understanding by testing 
model predictions. Validated models can then be used to make predictions 
about the effects of proposed management activities, giving decision makers 
useful information that would not be available from empirical data. 

In this chapter, we discuss evolving modeling approaches and technolo- 
gies for ecological modeling and application to decision making. We begin 
by discussing model conceptualization and design and showing how new 
approaches to model structuring might enhance problem formulation in 
decision making. We then discuss issues surrounding the construction and 
implementation of ecological models after the conceptual development has 
been completed and present evolving approaches that address these issues. 
Finally, we discuss technologies for communicating the structure of and 
output from models to improve their relevance and usefulness to decision 
makers and the stakeholders in the managed system. 

8.2 Model Conceptualization and Design 

Perhaps the biggest problems facing decision makers are (1) forging a 
consensus about what the true problems are and (2) agreeing on the data, 
protocols and analytical tools that will be used to produce the information 
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on which to base decisions. All parties must understand the structure and 
limitations of a proposed model because models with the appearance of 
a "black box" will create suspicion and reduce cooperation, Modelers 
must clearly comunicate to nonmodelers the structure and relationships 
within the model, and provide a method by which participants can suggest 
improvements to model design. 

8.2.1 Approaches and Technologies 
8.2-1.1 Logic-Based Model Specifications 

Since the 1960s, ecological modeling has emphasized simulation of process. 
Early implementations were procedural and based on flow charts Later 
implementations, trying to better cope with ecological complexity, have 
tended toward object-oriented models based on the universal modeling 
language (UML) (Boggs and Boggs 1999) or similar semantic models for 
object-oriented analysis and design. In either case, these implementations 
are fundamentally process oriented. However, ecosystem evaluation based 
on knowledge-based systems theory and logical abstraction shows promise 
for improving the tractability of ecosystem evaluation (Reynolds et al. 
2000). Logic-based networks, flowcharts, and UML are all semantic models 
(Booch 1994), but logic-based networks are distinct from conceptual 
models by having a formal grammar and syntax. Two examples of logic- 
based approaches are fuzzy network models and Bayesian belief networks. 

8.2.1.1.1 Fuzzy Network Models 

Fuzzy logic networks are a powerful form of knowledge representation, 
ideally suited to the abstract problems posed by ecosystem evaluation. 
Similar in concept to a metadatabase, a knowledge base is a formal 
specification for interpreting information (Walters and Nielsen 1988). 
NetWeaver is such a knowledge base, having a formal grammar and syntax 
that makes the knowledge base an executable specification '(Reynolds 
1999). A NetWeaver knowledge base graphically represents the ecosystem 
state as linked networks of propositions.Two key properties of a NetWeaver 
proposition are its measure of truth (i.e., the degree of support for the 
proposition) and its logical specification, which is grap~cally constructed 
from operators (fuzzy, Boolean, and arithmetic), data, and other proposi- 
tions. The implementation of fuzzy math in NetWeaver facilitates compact 
and efficient representation of large, abstract problems. For example, a 
prototype knowledge base evaluates forest ecosystem sustainability as 
prescribed by the Montreal Process (Reynolds 2001). Also, fuzzy math 
provides a set-theoretic implementation of uncertainty (see Section 8.4.1.3) 
as an alternative to the more familiar notion based on probability theory 
(Zadeh and Kacprzyk 1992). 
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Fuzzy network models (FT\TMs) for ecosystem evaluation are not a 
substitute for statistical and process models. Rather, FNMs are most 
valuable when used as logic frameworks for integrating the outputs from 
other models. Consider a hypothetical ecosystem evaluation in which 100 
statistical models were developed and applied to various dimensions of the 
analysis and another 20 simulations of other system components were run. 
A logic framework for integrating all these results might be useful. Because 
FNMs are formal specifications for interpreting information, they are 
cognitive maps of the problem specification (Stillings et al. 1987),They help 
identify questions to be answered, the relevant intermediate states and 
processes, the information required, and how the results are related to 
each other. It is important to note that these logic networks are not just 
specifications, but are themselves models that can be fed data and produce 
interpretable output. Furthermore, in systems like Netweaver, the specifi- 
cation provides an intuitive, graphical explanation for the derivation of 
results so the model is not a black box. 

8.2.1.i.2 Bayesian Belief Networks 

Another class of semantic models are Bayesian belief networks (BBNs) 
(Ellison 1996). Bayesian belief networks are based on probability theory, 
whereas FNMs are based on set theory. The practical implication of this 
difference is that BBNs are best suited to applications where the problem 
is relatively narrow and well defined and most conditional probabilities are 
known, while FNMs are best suited to applications where the problem is 
broad and abstract and a significant proportion of the conditional proba- 
bilities are unknown. 

8.2.1.2 Data Visualization 

Visualization of the relationships and interactions among variables can aid 
mode1 formulation and design. When the relationships among variables 
are clearly understood, model design and behavior will be enhanced, 
and more realistic estimations and predictions will result. Most current sta- 
tistical packages contain sophisticated graphics packages to allow two- 
dimensional (2-D) projection of a three-dimensional (3-D) data space. True 
3-D viewing is possible with specialized projection systems and eyewear 
(polarized lenses, alternating liquid-crystal-display lenses, or virtual reality 
goggles). It is possible to visualize the interactions of five variables in 
a 3-D representation with length, width, height, color, and animation. For 
example, consider a representation of tree growth across a region with lat- 
itude being length, longitude being width, average monthly temperature 
being height, monthly growth rate being color, and time lapse as the ani- 
mation. A good source for information on this topic is the Digital Visual- 
ization Analysis Laboratory of NASA (http://dval-www.larc.nasa.gov). 
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8.2.2 Translating a Conceptual Model into a Logic-Based 

To translate a conceptual model provided by a domain expert (or set 
of experts) into a logic-based network model, we begin with a simple 
conceptual model, such as that described by Bormann et al. (1994) for 
evaluating the sustainability of forest ecosystems (see Rgure 8.1). The key 
concept of this model is that sustainable forest ecosystems can occur within 
the overlap between what is biophysically feasible and what is socially 
acceptable. 

The model of Bormann et al. (1994) is easily translated into a logical 
representation (Figure 8.2), where each oval represents a logic network that 
evaluates a proposition-The ultimate proposition of interest concerns forest 
ecosystem sustainability, and this proposition depends on two premises: that 
social values are satisfied and that it is biophysically feasible to maintain 
the ecosystem in a specified condition. Each premise of forest ecosystem 
sustainability is abstract, but can be further elaborated by using the 
concepts discussed by Davis et al. (2001). For example, the proposition 
concerning the feasibility of biophysical condition depends on premises 
about maintaining suitable forest structure, composition, and ecosystem 
processes If this model specification was implemented in Netweaver, which 
is based on fuzzy math, the specification for biophysical feasibility could 
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FIGURE 8.1. Conceptual model of forest ecosyste~n sustainability [adapted from 
Bomann et aI. (1994)j. 
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FIGURE 8.2. A logic-based representation of the conceptual model for forest 
ecosystem sustainability [From Fig. 1 in Bonnann et al. (1994)l extended with con- 
cepts presented by Davis et al. (2001). 

be stated as "the assertion of biophysical feasibility is true to the degree 
that structure, composition, and processes of the ecosystem are in a suit- 
able condition," 

The premises providing support for or against biophysical feasibility and 
social acceptability are still relatively abstract, but, in general, propositions 
become progressively more specific and concrete as the logic specification 
is extended to progressively deeper levels (see Figure 8.2). Continued 
development of the logic structure by the extension of each logic pathway 
would quickly produce propositions that could be evaluated by comparison 
to data. 

Both the conceptual model (see Figure 8.1) and its translation into a 
logic-based representation (see Figure 8.2) are useful forms of model visu- 
alization. The logic-based form is particularly intriguing because it seam- 
lessly integrates symbolic and spatial reasoning (Stillings et al. 1987). 
Indeed, when a logic network and its logical antecedents are viewed as 
propositions and premises, respectively, knowledge-base architectures pro- 
duced by systems like Netweaver provide an intuitive visual representation 
of a formal logical discourse (Halpern 1989). With respect to decision 
making, the logic model provides an intuitive and unambiguous specifica- 
tion of what is of concern, how elements are logically interdependent, what 
data are required to evaluate the concern, and, perhaps most importantly, 
how infomation is to be interpreted to arrive at a conclusion. 
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8.3 Model Implementation 

Simulation modeling has traditionally been conducted in the realm of 
high-level procedural computer programming, creating programs that can 
be difficult to use and that produce complex output. Long time intervals 
between the design of a model and its implementation tend to decrease 
its relevance and utility. Furthermore, the nature of the code produced 
tends to make linking models problematic and prone to error. Emerging 
approaches are beginning to overcome limitations in designing, coding, and 
linking computer models, allowing more flexible implementation of models 
to answer specific questions posed by decision makers. 

8.3.1 , Approaches and Technologies 
8.3.1.1 Markov Models 

Markov models represent one widely used approach that underlies many 
ecological models. The main advantage (and also the main limitation) of a 
Markov model is revealed in the definition of the Markov property: given 
the present, the future is independent of the past. In such a model, no infor- 
mation other than the present state is required to predict the future. Markov 
models are therefore specified by some initial probability distribution 
of states, and a description of the probability of transition from any partic- 
ular state to some other state at some future time. These transitions are 
specified by a transition matrix (for discrete-time models) or a transition 
probability-density function (for continuous-state models) of the probabil- 
ities of transition from one state to any other state in one time period. 

Because Markov models ignore past history, they are relatively easy to 
construct from observations of a system. The major limitation is that, in 
many cases, history does matter, and projecting the future based solely on 
the current state may be quite inaccurate. For example, if a population is 
far from demographic equilibrium, then age structure significantly affects 
overall population growth rates The eEed of the "baby-boom" generation 
(the generation born between 1946 and 1960) on future demographics in 
the United States is a good example. Of course, one can extend the state 
space of the model by including a sequence of past states within the current 
state to make the Markov assunlption more appropriate. However, this 
greatly increases the dimensionality of the problem and reduces the advan- 
tage of the Markov approach. 

8.3.1.2 Agent-Based Models 

Agent-based models are another class of models related to the Markov 
framework. Agent-based approaches simulate the autonomous behavior 
of agents (individuals) by constructing rules governing the physiology 
and behavior of those individuals As the agents act according to the rules 
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(moving, feeding, mating, avoiding predators, respiring, etc.), they interact 
with their surroundings and with other agents. Such models allow study of 
the relationship between individual actions and complex ecological systems 
(DeAngelis and Gross 1992). The models can be linked to geographic infor- 
mation systems (GIs) and to models simulating other speciesThere are few 
limits to the sophistication of these models. The state of individuals may 
include location, sex, size, social status, and fat content, and the behavioral 
rules may be related to environmental factors (e.g., temperature, water, 
nutrient availability, and habitat condition), other agents, physiological 
stress, environmental cues, or random actions. Model behavior can often be 
compared directly with empirical observations. 

As an example, an individual-based, landscape-scale model was con- 
structed to simulate the interaction of dispersing American martens with 
the spatial variability of energy (i.e., acquisition of prey) and mortality 
risk (by predation) associated with different habitat types (Gardner and 
Custafson in press). Movernent decision rules vary with the physiological 
state of the individual, such that martens tend to select habitats that mini- 
mize predation risk, except when energy reserves are low, in which case they 
select habitats that provide increased energy intake. Marten movements are 
simulated on heterogeneous, grid-cell landscapes, and the movement paths, 
percentage of dispersing martens killed or starved, and proportion of 
martens successfully dispersing to a new home range are measufed. The 
agent-based approach is well suited to modeling the dispersal process 
because it formalizes the behavior of an individual and allows the study 
of how that behavior interacts with the landscape structure produced by 
management, disturbance, and development. 

8.3.1.3 New Approaches for Dealing with Scale 

A number of studies in theoretical ecology point to the importance of scale 
in ecological modeling (Kolasa 1989; Rahel1990; Levin 1992; Holling 1992). 
Levin (1992) argues that "the problem of pattern and scale is the central 
problem in ecology." Kolasa (1989), Rahel (1990), and Holling (1992) 
acknowledge that spatial scale and temporal scale are paramount to under- 
standing community dynamics, 

Two scale considerations constrain realistic ecosystem simulation. Fust, 
ecological systems are comprised of processes that occur across a wide 
range of spatial and temporal scales. At one extreme lie small-scale, short- 
time-period processes, such as the collision of molecules. At the other 
extreme lie large-scale processes, such as global population dynamics (and 
associated movement patterns), that may span thousands of kilometers 
in space and decades in time. Studying one extreme or the other cannot 
provide a comprehensive view of ecological systems. Second, ecological 
systefns have emergent properties that can only be described across multi- 
ple hierarchical levels (O'Neill et al. 1989). Hybrid modeling frameworks 
have been developed to explicitly resolve mismatches of scale. 
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8.3.1.3.1 Coupled EuZerian--Lagmngian Hybrid Models 

Ecological-simulation approaches can be broadly separated into those 
using an Eulerian-reference framework and those using a Lagrangian- 
reference framework. In an Eulerian-reference framework, a modeler 
discretizes space into cells and then transports and conserves mass, momen- 
tum, and energy through a grid of cells (see Figure 8.3A). The subset of 
ecological processes best simulated using an Eulerian framework occur 
over small spatial scales and short time steps relative to both the spatial 
scale of discretization and the time step used to model transfers across cell 
boundaries. In aquatic systems, such processes can be averaged within cells 
and dispersed among cells with a relatively small accumulation of errors. 
For example, the accuracy with which a chemical transformation can be 
simulated is not substantially affected by changes in cell size as long 
as the cell size is large relative to the spatial scale of the process (see Figure 
8.3A). This assumption appears to hold true for the simulation of chemical 
transformations, microbial degradation, algal photosynthesis, and other 
biogeochemical processes that occur over relatively small spatial and 
temporal scales. 

In a Lagrangian-reference framework, the modeler disaggregates reality 
into smaller control volumes or particles (for brevity, we refer to both as 
particles) and tracks the changes in the particles through space and time 

FIGUE 8.3. Comparison of Euferian (A) and Lagrangian (B) reference frame- 
works. The grid in @) is for scaling purposes only and does not represent part of 
the Lagrangian framework. 
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(see Figure 8.3B). The Lagrangian framework is required for the subset 
of ecosystem-level processes that violate Eulerian assumptions because (I) 
the scale of movement of the simulated process is great relative to that used 
in the Eulerian representation of the system or (2) movement dynamics 
associated with the contrasting process are sufficiently complex that they 
cannot be averaged into an Eulerian framework without propagating 
substantial error. For example, the effects of a highly mobile and abundant 
fish species on chemical transformations in a lake cannot be averaged in an 
Eulerian framework because fish schooling behavior and complex swim- 
path selection prevent biomass from being accurately distributed into cells 
at time steps At the scale of discretization (1 m3) used in this example, fish 
may cross multiple cells in a single time step, or most of the fish may 
concentrate in a very small part of the physical domain represented by the 
model grid. The scale of fish movement exceeds the scales of advection and 
dispersion used to describe fluid motion and chemical transformations. This 
example requires use of the Lagrangian framework (see Figure 8.3B) 
because fish-movement capabilities are large relative to the scale of 
discretization. The agent-based models discussed in the previous section 
also use the Lagrangian frame of reference. 

These two modeling frameworks have been combined into a single, 
unified framework termed the Coupled Eulerian-Lagrangian Hybrid 
(CEL Hybrid) Ecological Modeling System. The couple, a generic linking 
program built on particle-tracking concepts, is the unique information 
transformationltranslation module of CEL Hybrid models that allows 
the analysis to switch between the two reference frameworks without infor- 
mation loss. Particle-tracking algorithms emulate the path made by a 
neutrally buoyant particle passively transported through a physical domain 
represented as a 3-D grid. They interpolate discontinuous information 
represented in an Eulerian grid to intermediate points of interest to gene- 
rate a nearly continuous Lagrangian pathway (Martin and McCutcheon 
1999). Particle-tracking logic enables the modeler to use the strength of a 
Lagrangian framework to maintain the integrity of individuals as they 
move through simulated space, while concurrently using the power of the 
Eulerian framework to sirnulate the physicochemical environment and 
other characteristics of the system over time and space. For example, 
Goodwin et al. (2001) describe how fish-movement rules based on particle- 
tracking logic can be programmed into a water-quality model, and Nestler 
et al. (2002) describe the accuracy of calibration of such an approach. 

Closer examination of the Goodvvin et al. (2001) model illustrates how 
dynamically coupled Eulerian-based and Lagrangian-based models can 
overcome scale discrepancies (Figure 8.4). They used a specialized coupling 
program, the Numerical Fish Surrogate (WS) to simulate the sensory 
inputs and emergent behavior (Warburton 1997) of adult blueback herring 
(Alosa aestivalis), a cool-water fish species common in inland and coastal 
environments. This species moves extensively within a hydrosystem and 
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FIGURE 8.4. Visualization of output from coupled models. Open circles represent 
virtual fish; shaded Ms  represent water temperature ("C); contour lines represent 
selected dissolved-oxygen concentrations [mgL (ppm)]; arrows represent velocity 
vectors; bar charts indicate instantaneous fish responses to various environmental 
factors for each movement direction. V = water velocity, TP = temperature, DO = 
dissolved oxygen, and RD = random number. 

uses different habitats for spawning, rearing, feeding, and refuge, and 
no single model type is presently adequate to simulate its movement 
behavior. The Eulerian module is a 2-D (laterally averaged) water-quality 
model that is used to describe hydraulic and water-quality time histories in 
a grid framework. The Lagrangian module is a fish-movement model that 
emulates swim-path-selection behavior by the blueback herring in contin- 
uous space. The NFS is the coupling module that interpolates and translates 
information between the Eulerian and Lagrangian modules so that the 
strengths of each modeling reference framework can be effectively 
employed. Coupled models offer the potential to increase the accuracy of 
model predictions because an optimum reference framework can be used 
for different sets of environmental variables. For the example in Figure 8.4, 
the fit between modeled predictions and field data, summarized to the 
nearest meter vertically, was R2 = 0.93. The best fit longitudinally, summa- 
rized to the nearest 5-km-long segment, was R2 = 0.67. 

8.3.1.3.2 Fractal Approaches 

Other new approaches for dealing with scale exist. Nestler and Sutton 
(2000) employed a type of fractal geometry tool, the angle measurement 
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technique, to describe changes at multiple scales in a regulated river to illus- 
trate a multiscale analysis. They quantified how the distribution of energy 
at multiple scales in a river cross-section was changed by impoundment. 
The unregulated river channel possessed an evenly graded distribution of 
subchannels, each characterized by relatively low energy. Some years after 
regulation, the river had gradually changed into a high-energy main channel 
flanked by small-scale subchannels. This multiscale change in channel-bed 
form could not have been described with more conventional single-scale 
approaches. 

There are substantial advantages to multiscale analysis. First, it is a more 
accurate representation of reality, so that the causes of and solutions to 
environmental degradation can be more accurately determined. Second, 
because scale is incorporated as a metric, different-sized organisms 
(responding to features at different scales) can be evaluated in a single 
analysis By performing a spatial analysis as a first step, an investigator can 
optimally size sampling or simulation to reflect the dominant scales within 
a river system rather than impose an arbitrarily selected scale of analysis. 

8.3.1.4 Declarative Modules 

A well-recognized method for reducing conceptual and progra&ng 
complexity involves structuring a model as a set of distinct modules with 
well-defined interfaces. Modular design facilitates collaborative model con- 
struction, allowing teams of specialists to work independently on different 
modules. Modules can be archived in distributed libraries and serve as a set 
of templates to speed future development. 

The most common approach to model integration, which involves linking 
procedural models through the use of distributed object formalisms, is 
greatly limited by the fact that the various submodels are, by their nature, 
overspecified as modules. That is, in the process of implementing a sub- 
model in a procedural programming language, the modeler generally 
"hard codes" many choices, such as programming language, spatiotemporal 
representation, model control and input/output (VO) interfaces, and 
computing paradigm (e-g., serial or parallel message passing). These fixed 
aspects are extremely limiting and irrelevant to the essential dynamics of 
the model. To improve flexibility, it is useful to develop a formalism 
for coding archivable modules that allows maximum generality and appli- 
cability of the modules. This formalism can be accomplished through 
declarative module specifications containing only enough information to 
specify the essential dynamics of the module and allowing a wide range 
of customized procedural implementations (Maxwell 1999; Maxwell 
and Gostanza 1997a,b). This approach provides the high level of abstrac- 
tion necessary for maximum generality, yet provides enough detail to 
allow a dynamic s&ulation to be produced automatically. The approach 
separates general specifiwtions from site-specific specifications. Because 
only the universal blueprints are included in the module specification, 










































