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8.1 Introduction 

Understanding the effects of management activities is difficult for natural 
resource managers and decision makers because ecological systems are 
highly complex and their behavior is difficult to predict. Furthermore, the 
empirical studies necessary to illuminate all management questions quickly 
become logistically complicated and cost prohibitive. Ecological models 
provide a means to formalize our conceptual understanding of how an 
ecological system works and allow us to check this understanding by testing 
model predictions. Validated models can then be used to make predictions 
about the effects of proposed management activities, giving decision makers 
useful information that would not be available from empirical data. 

In this chapter, we discuss evolving modeling approaches and technolo- 
gies for ecological modeling and application to decision making. We begin 
by discussing model conceptualization and design and showing how new 
approaches to model structuring might enhance problem formulation in 
decision making. We then discuss issues surrounding the construction and 
implementation of ecological models after the conceptual development has 
been completed and present evolving approaches that address these issues. 
Finally, we discuss technologies for communicating the structure of and 
output from models to improve their relevance and usefulness to decision 
makers and the stakeholders in the managed system. 

8.2 Model Conceptualization and Design 

Perhaps the biggest problems facing decision makers are (1) forging a 
consensus about what the true problems are and (2) agreeing on the data, 
protocols and analytical tools that will be used to produce the information 
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on which to base decisions. All parties must understand the structure and 
limitations of a proposed model because models with the appearance of 
a "black box" will create suspicion and reduce cooperation, Modelers 
must clearly comunicate to nonmodelers the structure and relationships 
within the model, and provide a method by which participants can suggest 
improvements to model design. 

8.2.1 Approaches and Technologies 
8.2-1.1 Logic-Based Model Specifications 

Since the 1960s, ecological modeling has emphasized simulation of process. 
Early implementations were procedural and based on flow charts Later 
implementations, trying to better cope with ecological complexity, have 
tended toward object-oriented models based on the universal modeling 
language (UML) (Boggs and Boggs 1999) or similar semantic models for 
object-oriented analysis and design. In either case, these implementations 
are fundamentally process oriented. However, ecosystem evaluation based 
on knowledge-based systems theory and logical abstraction shows promise 
for improving the tractability of ecosystem evaluation (Reynolds et al. 
2000). Logic-based networks, flowcharts, and UML are all semantic models 
(Booch 1994), but logic-based networks are distinct from conceptual 
models by having a formal grammar and syntax. Two examples of logic- 
based approaches are fuzzy network models and Bayesian belief networks. 

8.2.1.1.1 Fuzzy Network Models 

Fuzzy logic networks are a powerful form of knowledge representation, 
ideally suited to the abstract problems posed by ecosystem evaluation. 
Similar in concept to a metadatabase, a knowledge base is a formal 
specification for interpreting information (Walters and Nielsen 1988). 
NetWeaver is such a knowledge base, having a formal grammar and syntax 
that makes the knowledge base an executable specification '(Reynolds 
1999). A NetWeaver knowledge base graphically represents the ecosystem 
state as linked networks of propositions.Two key properties of a NetWeaver 
proposition are its measure of truth (i.e., the degree of support for the 
proposition) and its logical specification, which is grap~cally constructed 
from operators (fuzzy, Boolean, and arithmetic), data, and other proposi- 
tions. The implementation of fuzzy math in NetWeaver facilitates compact 
and efficient representation of large, abstract problems. For example, a 
prototype knowledge base evaluates forest ecosystem sustainability as 
prescribed by the Montreal Process (Reynolds 2001). Also, fuzzy math 
provides a set-theoretic implementation of uncertainty (see Section 8.4.1.3) 
as an alternative to the more familiar notion based on probability theory 
(Zadeh and Kacprzyk 1992). 



8. Evolving Approaches and Technologies 137 

Fuzzy network models (FT\TMs) for ecosystem evaluation are not a 
substitute for statistical and process models. Rather, FNMs are most 
valuable when used as logic frameworks for integrating the outputs from 
other models. Consider a hypothetical ecosystem evaluation in which 100 
statistical models were developed and applied to various dimensions of the 
analysis and another 20 simulations of other system components were run. 
A logic framework for integrating all these results might be useful. Because 
FNMs are formal specifications for interpreting information, they are 
cognitive maps of the problem specification (Stillings et al. 1987),They help 
identify questions to be answered, the relevant intermediate states and 
processes, the information required, and how the results are related to 
each other. It is important to note that these logic networks are not just 
specifications, but are themselves models that can be fed data and produce 
interpretable output. Furthermore, in systems like Netweaver, the specifi- 
cation provides an intuitive, graphical explanation for the derivation of 
results so the model is not a black box. 

8.2.1.i.2 Bayesian Belief Networks 

Another class of semantic models are Bayesian belief networks (BBNs) 
(Ellison 1996). Bayesian belief networks are based on probability theory, 
whereas FNMs are based on set theory. The practical implication of this 
difference is that BBNs are best suited to applications where the problem 
is relatively narrow and well defined and most conditional probabilities are 
known, while FNMs are best suited to applications where the problem is 
broad and abstract and a significant proportion of the conditional proba- 
bilities are unknown. 

8.2.1.2 Data Visualization 

Visualization of the relationships and interactions among variables can aid 
mode1 formulation and design. When the relationships among variables 
are clearly understood, model design and behavior will be enhanced, 
and more realistic estimations and predictions will result. Most current sta- 
tistical packages contain sophisticated graphics packages to allow two- 
dimensional (2-D) projection of a three-dimensional (3-D) data space. True 
3-D viewing is possible with specialized projection systems and eyewear 
(polarized lenses, alternating liquid-crystal-display lenses, or virtual reality 
goggles). It is possible to visualize the interactions of five variables in 
a 3-D representation with length, width, height, color, and animation. For 
example, consider a representation of tree growth across a region with lat- 
itude being length, longitude being width, average monthly temperature 
being height, monthly growth rate being color, and time lapse as the ani- 
mation. A good source for information on this topic is the Digital Visual- 
ization Analysis Laboratory of NASA (http://dval-www.larc.nasa.gov). 
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8.2.2 Translating a Conceptual Model into a Logic-Based 

To translate a conceptual model provided by a domain expert (or set 
of experts) into a logic-based network model, we begin with a simple 
conceptual model, such as that described by Bormann et al. (1994) for 
evaluating the sustainability of forest ecosystems (see Rgure 8.1). The key 
concept of this model is that sustainable forest ecosystems can occur within 
the overlap between what is biophysically feasible and what is socially 
acceptable. 

The model of Bormann et al. (1994) is easily translated into a logical 
representation (Figure 8.2), where each oval represents a logic network that 
evaluates a proposition-The ultimate proposition of interest concerns forest 
ecosystem sustainability, and this proposition depends on two premises: that 
social values are satisfied and that it is biophysically feasible to maintain 
the ecosystem in a specified condition. Each premise of forest ecosystem 
sustainability is abstract, but can be further elaborated by using the 
concepts discussed by Davis et al. (2001). For example, the proposition 
concerning the feasibility of biophysical condition depends on premises 
about maintaining suitable forest structure, composition, and ecosystem 
processes If this model specification was implemented in Netweaver, which 
is based on fuzzy math, the specification for biophysical feasibility could 
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FIGURE 8.1. Conceptual model of forest ecosyste~n sustainability [adapted from 
Bomann et aI. (1994)j. 
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FIGURE 8.2. A logic-based representation of the conceptual model for forest 
ecosystem sustainability [From Fig. 1 in Bonnann et al. (1994)l extended with con- 
cepts presented by Davis et al. (2001). 

be stated as "the assertion of biophysical feasibility is true to the degree 
that structure, composition, and processes of the ecosystem are in a suit- 
able condition," 

The premises providing support for or against biophysical feasibility and 
social acceptability are still relatively abstract, but, in general, propositions 
become progressively more specific and concrete as the logic specification 
is extended to progressively deeper levels (see Figure 8.2). Continued 
development of the logic structure by the extension of each logic pathway 
would quickly produce propositions that could be evaluated by comparison 
to data. 

Both the conceptual model (see Figure 8.1) and its translation into a 
logic-based representation (see Figure 8.2) are useful forms of model visu- 
alization. The logic-based form is particularly intriguing because it seam- 
lessly integrates symbolic and spatial reasoning (Stillings et al. 1987). 
Indeed, when a logic network and its logical antecedents are viewed as 
propositions and premises, respectively, knowledge-base architectures pro- 
duced by systems like Netweaver provide an intuitive visual representation 
of a formal logical discourse (Halpern 1989). With respect to decision 
making, the logic model provides an intuitive and unambiguous specifica- 
tion of what is of concern, how elements are logically interdependent, what 
data are required to evaluate the concern, and, perhaps most importantly, 
how infomation is to be interpreted to arrive at a conclusion. 
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8.3 Model Implementation 

Simulation modeling has traditionally been conducted in the realm of 
high-level procedural computer programming, creating programs that can 
be difficult to use and that produce complex output. Long time intervals 
between the design of a model and its implementation tend to decrease 
its relevance and utility. Furthermore, the nature of the code produced 
tends to make linking models problematic and prone to error. Emerging 
approaches are beginning to overcome limitations in designing, coding, and 
linking computer models, allowing more flexible implementation of models 
to answer specific questions posed by decision makers. 

8.3.1 , Approaches and Technologies 
8.3.1.1 Markov Models 

Markov models represent one widely used approach that underlies many 
ecological models. The main advantage (and also the main limitation) of a 
Markov model is revealed in the definition of the Markov property: given 
the present, the future is independent of the past. In such a model, no infor- 
mation other than the present state is required to predict the future. Markov 
models are therefore specified by some initial probability distribution 
of states, and a description of the probability of transition from any partic- 
ular state to some other state at some future time. These transitions are 
specified by a transition matrix (for discrete-time models) or a transition 
probability-density function (for continuous-state models) of the probabil- 
ities of transition from one state to any other state in one time period. 

Because Markov models ignore past history, they are relatively easy to 
construct from observations of a system. The major limitation is that, in 
many cases, history does matter, and projecting the future based solely on 
the current state may be quite inaccurate. For example, if a population is 
far from demographic equilibrium, then age structure significantly affects 
overall population growth rates The eEed of the "baby-boom" generation 
(the generation born between 1946 and 1960) on future demographics in 
the United States is a good example. Of course, one can extend the state 
space of the model by including a sequence of past states within the current 
state to make the Markov assunlption more appropriate. However, this 
greatly increases the dimensionality of the problem and reduces the advan- 
tage of the Markov approach. 

8.3.1.2 Agent-Based Models 

Agent-based models are another class of models related to the Markov 
framework. Agent-based approaches simulate the autonomous behavior 
of agents (individuals) by constructing rules governing the physiology 
and behavior of those individuals As the agents act according to the rules 
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(moving, feeding, mating, avoiding predators, respiring, etc.), they interact 
with their surroundings and with other agents. Such models allow study of 
the relationship between individual actions and complex ecological systems 
(DeAngelis and Gross 1992). The models can be linked to geographic infor- 
mation systems (GIs) and to models simulating other speciesThere are few 
limits to the sophistication of these models. The state of individuals may 
include location, sex, size, social status, and fat content, and the behavioral 
rules may be related to environmental factors (e.g., temperature, water, 
nutrient availability, and habitat condition), other agents, physiological 
stress, environmental cues, or random actions. Model behavior can often be 
compared directly with empirical observations. 

As an example, an individual-based, landscape-scale model was con- 
structed to simulate the interaction of dispersing American martens with 
the spatial variability of energy (i.e., acquisition of prey) and mortality 
risk (by predation) associated with different habitat types (Gardner and 
Custafson in press). Movernent decision rules vary with the physiological 
state of the individual, such that martens tend to select habitats that mini- 
mize predation risk, except when energy reserves are low, in which case they 
select habitats that provide increased energy intake. Marten movements are 
simulated on heterogeneous, grid-cell landscapes, and the movement paths, 
percentage of dispersing martens killed or starved, and proportion of 
martens successfully dispersing to a new home range are measufed. The 
agent-based approach is well suited to modeling the dispersal process 
because it formalizes the behavior of an individual and allows the study 
of how that behavior interacts with the landscape structure produced by 
management, disturbance, and development. 

8.3.1.3 New Approaches for Dealing with Scale 

A number of studies in theoretical ecology point to the importance of scale 
in ecological modeling (Kolasa 1989; Rahel1990; Levin 1992; Holling 1992). 
Levin (1992) argues that "the problem of pattern and scale is the central 
problem in ecology." Kolasa (1989), Rahel (1990), and Holling (1992) 
acknowledge that spatial scale and temporal scale are paramount to under- 
standing community dynamics, 

Two scale considerations constrain realistic ecosystem simulation. Fust, 
ecological systems are comprised of processes that occur across a wide 
range of spatial and temporal scales. At one extreme lie small-scale, short- 
time-period processes, such as the collision of molecules. At the other 
extreme lie large-scale processes, such as global population dynamics (and 
associated movement patterns), that may span thousands of kilometers 
in space and decades in time. Studying one extreme or the other cannot 
provide a comprehensive view of ecological systems. Second, ecological 
systefns have emergent properties that can only be described across multi- 
ple hierarchical levels (O'Neill et al. 1989). Hybrid modeling frameworks 
have been developed to explicitly resolve mismatches of scale. 
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8.3.1.3.1 Coupled EuZerian--Lagmngian Hybrid Models 

Ecological-simulation approaches can be broadly separated into those 
using an Eulerian-reference framework and those using a Lagrangian- 
reference framework. In an Eulerian-reference framework, a modeler 
discretizes space into cells and then transports and conserves mass, momen- 
tum, and energy through a grid of cells (see Figure 8.3A). The subset of 
ecological processes best simulated using an Eulerian framework occur 
over small spatial scales and short time steps relative to both the spatial 
scale of discretization and the time step used to model transfers across cell 
boundaries. In aquatic systems, such processes can be averaged within cells 
and dispersed among cells with a relatively small accumulation of errors. 
For example, the accuracy with which a chemical transformation can be 
simulated is not substantially affected by changes in cell size as long 
as the cell size is large relative to the spatial scale of the process (see Figure 
8.3A). This assumption appears to hold true for the simulation of chemical 
transformations, microbial degradation, algal photosynthesis, and other 
biogeochemical processes that occur over relatively small spatial and 
temporal scales. 

In a Lagrangian-reference framework, the modeler disaggregates reality 
into smaller control volumes or particles (for brevity, we refer to both as 
particles) and tracks the changes in the particles through space and time 

FIGUE 8.3. Comparison of Euferian (A) and Lagrangian (B) reference frame- 
works. The grid in @) is for scaling purposes only and does not represent part of 
the Lagrangian framework. 
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(see Figure 8.3B). The Lagrangian framework is required for the subset 
of ecosystem-level processes that violate Eulerian assumptions because (I) 
the scale of movement of the simulated process is great relative to that used 
in the Eulerian representation of the system or (2) movement dynamics 
associated with the contrasting process are sufficiently complex that they 
cannot be averaged into an Eulerian framework without propagating 
substantial error. For example, the effects of a highly mobile and abundant 
fish species on chemical transformations in a lake cannot be averaged in an 
Eulerian framework because fish schooling behavior and complex swim- 
path selection prevent biomass from being accurately distributed into cells 
at time steps At the scale of discretization (1 m3) used in this example, fish 
may cross multiple cells in a single time step, or most of the fish may 
concentrate in a very small part of the physical domain represented by the 
model grid. The scale of fish movement exceeds the scales of advection and 
dispersion used to describe fluid motion and chemical transformations. This 
example requires use of the Lagrangian framework (see Figure 8.3B) 
because fish-movement capabilities are large relative to the scale of 
discretization. The agent-based models discussed in the previous section 
also use the Lagrangian frame of reference. 

These two modeling frameworks have been combined into a single, 
unified framework termed the Coupled Eulerian-Lagrangian Hybrid 
(CEL Hybrid) Ecological Modeling System. The couple, a generic linking 
program built on particle-tracking concepts, is the unique information 
transformationltranslation module of CEL Hybrid models that allows 
the analysis to switch between the two reference frameworks without infor- 
mation loss. Particle-tracking algorithms emulate the path made by a 
neutrally buoyant particle passively transported through a physical domain 
represented as a 3-D grid. They interpolate discontinuous information 
represented in an Eulerian grid to intermediate points of interest to gene- 
rate a nearly continuous Lagrangian pathway (Martin and McCutcheon 
1999). Particle-tracking logic enables the modeler to use the strength of a 
Lagrangian framework to maintain the integrity of individuals as they 
move through simulated space, while concurrently using the power of the 
Eulerian framework to sirnulate the physicochemical environment and 
other characteristics of the system over time and space. For example, 
Goodwin et al. (2001) describe how fish-movement rules based on particle- 
tracking logic can be programmed into a water-quality model, and Nestler 
et al. (2002) describe the accuracy of calibration of such an approach. 

Closer examination of the Goodvvin et al. (2001) model illustrates how 
dynamically coupled Eulerian-based and Lagrangian-based models can 
overcome scale discrepancies (Figure 8.4). They used a specialized coupling 
program, the Numerical Fish Surrogate (WS) to simulate the sensory 
inputs and emergent behavior (Warburton 1997) of adult blueback herring 
(Alosa aestivalis), a cool-water fish species common in inland and coastal 
environments. This species moves extensively within a hydrosystem and 
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FIGURE 8.4. Visualization of output from coupled models. Open circles represent 
virtual fish; shaded Ms  represent water temperature ("C); contour lines represent 
selected dissolved-oxygen concentrations [mgL (ppm)]; arrows represent velocity 
vectors; bar charts indicate instantaneous fish responses to various environmental 
factors for each movement direction. V = water velocity, TP = temperature, DO = 
dissolved oxygen, and RD = random number. 

uses different habitats for spawning, rearing, feeding, and refuge, and 
no single model type is presently adequate to simulate its movement 
behavior. The Eulerian module is a 2-D (laterally averaged) water-quality 
model that is used to describe hydraulic and water-quality time histories in 
a grid framework. The Lagrangian module is a fish-movement model that 
emulates swim-path-selection behavior by the blueback herring in contin- 
uous space. The NFS is the coupling module that interpolates and translates 
information between the Eulerian and Lagrangian modules so that the 
strengths of each modeling reference framework can be effectively 
employed. Coupled models offer the potential to increase the accuracy of 
model predictions because an optimum reference framework can be used 
for different sets of environmental variables. For the example in Figure 8.4, 
the fit between modeled predictions and field data, summarized to the 
nearest meter vertically, was R2 = 0.93. The best fit longitudinally, summa- 
rized to the nearest 5-km-long segment, was R2 = 0.67. 

8.3.1.3.2 Fractal Approaches 

Other new approaches for dealing with scale exist. Nestler and Sutton 
(2000) employed a type of fractal geometry tool, the angle measurement 
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technique, to describe changes at multiple scales in a regulated river to illus- 
trate a multiscale analysis. They quantified how the distribution of energy 
at multiple scales in a river cross-section was changed by impoundment. 
The unregulated river channel possessed an evenly graded distribution of 
subchannels, each characterized by relatively low energy. Some years after 
regulation, the river had gradually changed into a high-energy main channel 
flanked by small-scale subchannels. This multiscale change in channel-bed 
form could not have been described with more conventional single-scale 
approaches. 

There are substantial advantages to multiscale analysis. First, it is a more 
accurate representation of reality, so that the causes of and solutions to 
environmental degradation can be more accurately determined. Second, 
because scale is incorporated as a metric, different-sized organisms 
(responding to features at different scales) can be evaluated in a single 
analysis By performing a spatial analysis as a first step, an investigator can 
optimally size sampling or simulation to reflect the dominant scales within 
a river system rather than impose an arbitrarily selected scale of analysis. 

8.3.1.4 Declarative Modules 

A well-recognized method for reducing conceptual and progra&ng 
complexity involves structuring a model as a set of distinct modules with 
well-defined interfaces. Modular design facilitates collaborative model con- 
struction, allowing teams of specialists to work independently on different 
modules. Modules can be archived in distributed libraries and serve as a set 
of templates to speed future development. 

The most common approach to model integration, which involves linking 
procedural models through the use of distributed object formalisms, is 
greatly limited by the fact that the various submodels are, by their nature, 
overspecified as modules. That is, in the process of implementing a sub- 
model in a procedural programming language, the modeler generally 
"hard codes" many choices, such as programming language, spatiotemporal 
representation, model control and input/output (VO) interfaces, and 
computing paradigm (e-g., serial or parallel message passing). These fixed 
aspects are extremely limiting and irrelevant to the essential dynamics of 
the model. To improve flexibility, it is useful to develop a formalism 
for coding archivable modules that allows maximum generality and appli- 
cability of the modules. This formalism can be accomplished through 
declarative module specifications containing only enough information to 
specify the essential dynamics of the module and allowing a wide range 
of customized procedural implementations (Maxwell 1999; Maxwell 
and Gostanza 1997a,b). This approach provides the high level of abstrac- 
tion necessary for maximum generality, yet provides enough detail to 
allow a dynamic s&ulation to be produced automatically. The approach 
separates general specifiwtions from site-specific specifications. Because 
only the universal blueprints are included in the module specification, 
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the site-specific specializations can be delegated to a separate model- 
configuration phase. Examples of declarative-modeling formalisms include 
the Simulation Module Markup Language (SMML) (Mawell 1999; 
M m e l l  and Costanza 1997b), the Integrated Modeling Architecture being 
developed at the University of Maryland, and the Modelica modeling lan- 
guage being developed by EUROSIM (Federation of European Shulation 
Societies; http:/lws3.atv.tuurien,ac.atleuros~. 

As an example of a declarative module specification, consider the 
follotving SMML declaration representing a deer-population state variable. 
The specification defines a set of input ports that will be linked to the output 
ports of other modules with "link" statements and an equation that is used 
to update the value of DEER-POPULATION in response to event notifi- 
cations. An SMML-model declaration does not specify IIO configuration, 
memory allocation, temporal dynamics, and spatial-grid configuration. The 
code describing these aspects of the model is generated automatically at 
the initiation of a simulation run based upon site-specific configuration 
information. 

(atom name="DEER-POPULATION7 type="state") 
(port type-."input" namsuDEER-BIRTHS" /) 
(port type="input" ~~I~~="DEER-STARVATION'~ /) 
(port type="input" name="DEATI-FS-FROMMPREDATION77 /) 
(dynamic event="integra te" type="code" ) 
(code) ((DEER-BIRTHS-DEER-STARVATION)-DEATHS-FROM- 

PREDATION) (Icode) 

8.3.1.5 Control Theory Models and Spatial Optimization Models 

Spatial dynamics present difficult challenges to ecological modelers. A 
central issue in computational ecology is Linking the demand for biological 
resources with the dynamics of those resources (Gross and DeAngelis 
2001). These resources do not occur uniformly in space, and managers seek 
some control over this heterogeneity (Hof and Bevers 1998). Given a 
variety of criteria for managing a system, how should the "control" of the 
system be applied spatially in order to optimize the objective? 

A large body of literature deals with optimization of outputs that vary as 
components of the system are controlled (Clark 1976). A comparable body 
of literature for spatial problems is only beginning to be developed (Hof 
and Bevers 1998; Jager and Gross 2000). Hof and Bevers (1998) provide 
examples of spatial optimization on a spatial grid through the use of limited 
state variables and mixed-integer programming methods to develop 
management solutions. Management objectives include designing species 
reserves, maximizing biological diversity, and maintaining population sizes 
above specific thresholds in stochastic environments The computational 
limitations in solving optimization problems are both discouraging and 
encouraging. The size of feasible problems is severely restricted, but the 



8. Evolving Approaches and Technologies 147 

computational lhitations have prompted the development of new anafy- 
tical and computational methods (particularly on parallel processors) that 
are discussed later in this chapter. 

Other approaches to spatial optimization include the combinatorial inter- 
change technique to minimize spatial fragmentation (Loehle 1999) that 
extends the stochastic search algorithms of Bettinger et al. (1997). This 
approach cannot readily link to dynamic models to predict population 
responses to fragmentation, but it is computationally efficient compared to 
mixed-integer programing methods. A Markov-decision approach can be 
applied to optimize landscapes for metapopulations ('Ihck and Possingham 
2000). This method allows simple dynamics of localized patches to be 
included, but the size of the problem increases exponentially with the 
number of states allowed. Other algorithms have been applied to attempt 
to specify optimal spatial-reserve patterns for biodiversity conservation 
(Csuti et al. 1997; Pressey et al. 1997), although they ignore population 
dynamics. 

8.3.1.6 New Methods for Developing Statistical Models 

New techniques are also being developed to improve our ability to produce 
ecological statistical models and to handle increasingly large data sets. 
Traditional multivariate linear-regression tools are useful for finding global 
effects, especially with sparse data sets. For data mining (finding previously 
unknown, significant relationships between variables in large data sets), 
there is no need to assume global structure. Local data can r e h e  global 
rules by adding conditions to global rules. The resulting regression is 
thereby determined by local conditions. Classification and regression tree 
analysis (RTA) uses iterative splitting of the data to develop empirical rela- 
tionships between response and predictor variables without the restrictive 
distribution assumptions of classical regression analysis. This approach 
creates models that are fitted by binary recursive partitioning, in which a 
data set is successively split into increasingly homogeneous subsets (Clark 
and Pregibon 1992). Regression tree analysis is much more flexible than 
classic statistical met hods in uncovering structure in data with variables that 
are hierarchical, nonlinear, nonadditive, or categorical in nature. Regression 
tree analysis is useful as a means of devising prediction rules for rapid and 
repeated evaluation, as a screening method for variables, as a diagnostic 
technique to assess the adequacy of linear models, and for summarizing 
large multivariate data sets (Clark and Pregibon 1992; Iverson et al. 
1999). 

Multivariate adaptive-regression splines (MARS) is a multivariate, 
nonparametric regression procedure that builds flexible regression models 
by fitting separate splines (or basis functions) to distinct intervals of 
the predictor variables (Friedman 1991). The variables and interactions 
to use and the endpoints of the intervals for each variable are optimized 



148 Eric Gustafson el al. 

simultaneously by evaluating a "loss-of-fit" criterion. Multivariate adaptive- 
regression splines also search for interactions between variables, allow- 
ing any degree of interaction to be considered. It uses adaptive regression, 
guiding the function being estimated by the local nature of the data, W e r e  
RTA excels at detecting local data structure and marginal interaction 
effects between predictor variables, MARS excels at detecting global and 
linear local data structure, flexibly modeling relationships that are additive 
or that involve interactions between predictor variables (Prasad and 
Iverson 2001). The discontinuous branching of RTA is replaced with a con- 
tinuous, smooth response surface. Multivariate adaptive-regression splines 
provide an automatic, nonlinear stepwise regression tool that is particu- 
larly useful where variables need transformation and where interaction 
effects are likely to be relevant. 

8.3.1.7 Providing Improved User Interfaces to Make Models Accessible 

Ease of use is a key criterion for the acceptance or rejection of a model by 
managers, and the user interface provides the biggest opportunity for the 
modeler to improve ease of use. Most users of computer software now 
expect a graphical user interface (GUI). When the GUI is designed to be 
intuitive, consistent, and not redundant and to have a logical flow, potential 
users will be more likely to explore the utility of the model (Jacucci et al. 
1996). A large number of GUI-development software packages are avail- 
able to aid the construction of GUIs for models coded in almost any high- 
level language. A model GUI may also feature sophisticated graphical or 
animated output of model results, making them more readily interpreted 
and allowing more efficient evaluation of multiple model runs (e.g., see 
Figure 8.4). Object linking and embedding (OLE) and dynamic data 
exchange (DDE) are capabilities to embed or link data from one appli- 
cation software within a Ne of another software package. Dynamic data 
exchange might be used to link a spreadsheet model to a simulation model, 
for example. Hypertext markup language (HTML) and other Web-oriented 
code can be used to allow distributed modeling over the Internet. Spatial 
models are often constructed with a custom user interface (e-g., ArcView 
extensions). A common result of an enhanced user interface is an improved 
likelihood that decision makers will apply the model, 

8.3.1.8 New Computational Technologies 

Our discussion has alluded to the limits of computational technology on the 
development of ecological models. Computational science has combined 
elements of computer science, information technology, scientific modeling, 
and numerical analysis to allow new approaches to old problems previously 
handled by approximations and to deal with new problems previously 
considered intractable. Distributed computing combines the computing 
resources of separate machines that may be collocated or physically distant 
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from each other. An example is a Monte Carlo simulation in which many 
repeated stochastic evaluations are distributed to several machines and 
returned to a single machine for collating and analysis Any resource analy- 
sis problem involving multiple independent simulations can be conducted 
in this manner, with the main constraints being the control of the distribu- 
tion of tasks to various machines and the load balancing required so that 

- - - - -  - the final compilation of results is not delayed by machines that are slower 
than others. This method is appropriate to problems like the evaluation of 
multiple alternative scenarios. 

Grid computing is somewhat more complex, involving not just simulta- 
neous use of processing power, but the heterogeneity of resources available 
across a grid of machines (Foster and Kesselman 1999). An example would 
be the activation of and downloading of real-time data from a remote 
sensor, the automated processing of a query to a database for related 
data located on one machine, providing all of the assembled data as input 
to a simulation on a second machine, and processing the output of the 
simulation for visualization and analysis on a third machine. The major 
challenge in grid computing is the development of a software interface 
(middleware) to allow a user to analyze a problem without having to know 
the details of where the software, databases, available central processing 
unit (CPU) cycles, and other resources are located on the grid. The ideal 
system would allow a resource manager to pose a question (with appro- 
priate constraints) and the middleware to assign appropriate components 
to different machines on the grid, automatically handling load balancing, 
error checking, collating, and returning of the results to the user. For 
example, a question might be posed regarding the effects of different land- 
use patterns in the future of water demands in a region. The middleware 
would request land-use history maps from a GIs database, send these to a 
machine for spatial analysis, and conduct a simulation to project alternative 
futures [as is done in the LUCAS system; see Hazen and Berry (1997)J.The 
middleware would concurrently obtain information on water-use history 
from a different database, correlate this information with land-use patterns, 
combine the water-use and land-use simulations, and provide the results to 
the user. Such middleware is well beyond current capabilities, but the soft- 
ware technology needed is developing rapidly (see the GLOBUS project 
at http:llwww.globus.org). 

Alternatively, parallelization methods speed processing by breaking 
the problem into pieces that can be processed separately. Many ecological 
modeling problems clearly fit within this framework, including problems 
involving repeated simulations with alternative inputs, sensitivity analyses 
obtained by varying simulation parameters, and uncertainty analyses 
obtained by including or excluding certain model components or assump- 
tions. Another benefit of parallel architectures is an improved ability to 
model situations that are essentially parallel in reality. Ecological systems 
are inherently parallel because many components vary concurrently in time 
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and space, and interact at numerous scales. Developing appropriate paral- 
lel implementations to model these interactions is quite difficult, and only 
limited research has been conducted. However, the availability of parallel 
architectures for ecological modeling allows one to conceptualize models 
that may be considerably more realistic than strictly serial implementa- 
tions would be. For example, Mellott et al. (1999) investigated parallel 
methods for an individual-based predator-prey model and point out that 
the parallel implen~entation involved quite different assumptions about 
individual movements and interactions than were necessary in a prior serial 
implementation. 

8.3.2 Relevance of Advances in Model Implementation 
for Decision Making 
The advances in model implementation outlined above will enhance deci- 
sion making in the long term by allowing modelers to improve the sophis- 
tication and relevance of models. Public expectations of resource managers 
are steadily increasing, requiring more-definitive abilities to predict the 
consequences of management actions. Much of the information currently 
needed by managers is not available because the models have not yet been 
developed or provide inadequate information. This void exists, at least 
partly, because of limitations in computing power or analytical and 
conceptual-modeling capabilities. A combination of technological advances 
and improved dialogue between modelers and managers is needed to 
fully realize the potential of ecological models to enhance environmental 
decision making. 

8.4 Communicating Model Structure and Output 

Managers are reluctant to use model results for making decisions unless 
they are confident that they understand how the model works and that the 
model, in fact, accurately produces the information they require. Models 
that are perceived as an incomprehensible black box will not be widely used 
by managers. Consequently, it is critical that an implemented modeling 
system be adequately explained and communicated both to managers and 
to stakeholders affected by management decisions. A number of techniques 
are available to enhance the communication of models to decision makers, 
making their structure and function more transparent. 

8.4.1 Approaches and Technologies 
8.4.1.1 Artificial Intelligence 

Artificial intelligence (AI) refers to a branch of computer science focused 
on problems associated with the acquisition, representation, and utilization 
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of knowledge (Schmoldt and Rauscher 1996). One goal of A1 research is 
to program computers to produce seemingly "intelligent" behavior, and this 
ability has several applications in ecological modeling. A1 can provide an 
'~nte1ligent'~nterface with a model, providing context-sensitive help and 
direction in using the model, and it can provide guidance in interpreting the 
results. Communication of model characteristics can be aided by interfaces 
that allow users to click on icons of model modules to delve deeper into 
the structure and assumptions behind each piece of the model. Each icon 
can be expanded to show the underlying knowledge used to describe the 
associated process and the interactions between processes. Examples of this 
kind of representation are the STELLA-based models (Hannon and Roth 
1997) and the logic-based models mentioned in Section 8.2.2. 

8.4.1.2 Gaming 

Communication of model results can also be enhanced when simulation 
models are used in a gaming environment to determine strategies that are 
optimal for achieving goals. Came theory involves the mathematical analy- 
sis of abstract models of strategic competition. Such models are often used 
in military and economic planning and more recently in land-use decision 
making. In these games, the rules are clearly set fonvard, but the ramifica- 
tions of these rules are not always apparent even though (or perhaps 
because) they are determined by feedback loops within the system. Some- 
times unexpected or random events (such as storms) are simulated in the 
models. It is critical that the permissible actions, information available to 
each participant, and criteria for termination of the game be made clear. 
Typically, there is no single way to win such a game. Optimal strategies 
depend upon the goals of the player, and developing a variety of potential 
actions may help determine appropriate strategies to attain the desired 
outcome. The advantage of using a gaming approach in environmental 
decision making is that the options of decision makers can be set forward 
without the expense or time involved in actually implementing such 
options. The engaging nature of these games causes the user to become 
more involved in thinking about the process and interactions than they 
would without the gaming tool. 

8.4.1.3 Dealing with Uncertainty 

A key element of model communication involves appropriate attention to 
the uncertainties in the data, model structure, and model projections. 
Models always contain some errors and inaccuracies because they are 
simplifications of reality. One of the critical tasks in the use of models is to 
identify sources of uncertainty and describe the effects of these uncertain- 
ties on model predictions so that the output of the model can reliably 
support decision making. 

Two strategies are available for dealing with model uncertainty. Many 
population models embrace and acknowledge uncertainty by selecting 
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model parameters from a distribution of values instead of choosing a single 
value for a parameter. With this strategy, a relatively simple mode1 is run 
numerous times (hundreds or thousands), producing a distribution of 
possible model outputsne  modeler acknowledges uncertainty because the 
multiple model outputs are generally presented in a statistical form (e.g., 
20% of the possible outcomes result in a 10% decrease in population size). 
In this context, the modeler presents the results in terms of the risk of a 
certain event occurring. Unfortunately, probabilistic formulations of model 
outputs may be confusing for decision makers because clear, unequivocal 
answers are not provided. 

An alternative to model-based risk assessment is the use of large, 
comprehensive models that attempt to duplicate critical natural processes. 
These models typically have lengthy run times, so that running them 
hundreds or thousands of times is not feasible. Additionally, these models 
are typically used for regulatory purposes, where relative answers may be 
insufficient. These models typically use engineering methods to optimize 
model parameters and to confirm the performance of the simulation. While 
it is not possible to remove all sources of error and uncertainty from these 
models, efforts are generally made to optimize model performance, to iden- 
tify model sensitivity to key parameters through Monte Carlo simulation 
(in which certain model parameters are randomly changed), and to describe 
the error structure of the model by comparing model predictions to 
observed data. Error analysis helps the modeler identify weaknesses of 
the model or biases (particuIar scenarios in which certain state variables 
may be systematically underestimated or overestimated). This explicit 
representation of uncertainties tends to enhance communication only for 
modelers who are comfortable with large, comprehensive models (and not 
necessarily for decision makers). 

8.4.1.4 Model Standards 

Effective communication of model results depends upon adherence to 
certain standards in model development. Ecological models are used in at 
least two ways, conceptual exploration (research) and projection (decision 
making). Exploratory models are used to better understand complex 
natural processes so that the driving variables and relationships bet ween 
variables can be studied. Exploratory models are often highly specialized, 
and their accuracy is evaluated in terms of the statistical variation explained 
by a model. Alternatively, models used in a regulatory context to support 
decisions and determine policies are often developed and applied by the 
engineering profession. Development of engineering models is usually 
founded on a mathematical description of conservation of mass and 
momentum principles Model documentation and confirmation are critical 
elements in establishing the credibility of a model and its application. It is 
important that models, particularly those used in a regulatory context, be 
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described in detail and that important steps in the development of a model 
be referenced. 'This specification allows users of the model to trace the 
development of its mathematical formulations and conceptual underpin- 
nings to ensure that the model is properly applied. Such documentation 
allows models to be categorized by application, dimensionality, spatial 
discretization strategy, solution scheme, and temporal strategy. Within 
each category, efforts should be made to standardize ecological models to 
increase their ease of use and to increase their reliability. All model appli- 
cations should undergo a rigorous, documented confinnation process 
involving parameterization (estimating optimum values for model param- 
eters), calibration (adjusting model parameters and model formulation to 
match observed data with model predictions), and validation (verifyiig that 
the model works correctly on a data set different from the data set used for 
model calibration). 

8.4.1.5 Visual Output 

Visualization is a very powerful form of communication, as epitomized in 
the adage that "a picture is worth a thousand words." For models with a 
spatial component, GIs provides tremendous communication potential by 
placing model inputs and intermediate and final results in a spatial context. 
A good example is a model predicting gray wolf habitat in the northern 
lake states (Mladenoff et al. 1995). By showing the spatial distribution of 
input variable values and the results of model calculations, the authors 
make a compelling case for the utility and validity of their model. 

The GIs also provides a framework for integrating information from 
different modeling paradigms. An example is the development of integrated 
forest management models, where a GIs provides the integration for timber 
optimization models and process models predicting wildlife habitat and 
biological diversity (Naesset 1997). The optimization model produces treat- 
ment schedules for forest stands, the locations of which are tracked in. the 
GIs. A spatial model that can access the GIs can assess the potential effects 
on wildlife when those specific stands are harvested. Fiially, GIs can act as 
a catalyst for stakeholder involvement (Cornett 19%). People find it much 
easier to relate to ~sualizations of data and concepts than to text and 
numbers. Because "seeing is believing," spatial representations of model 
results can lower skepticism and increase the involvement of stakeholders 
in the decision-making process. Maps, animations, or virtual reality pictures 
are understood by most users (Shepard 2000). For example, FORSYS (a 
cooperative for forest systems engineering) is developing graphical systems 
to represent the data gathered by the national forests to visually demon- 
strate alternative management practices (McCaughy 2001). 

While model and data visuatizations may be very useful, there are limi- 
tations. Just as graphs can be constructed in ways that are misleading, 
the huge variety of color schemes available can cause the same data to be 
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interpreted quite differently. Visualizations of results should take account 
of the limitations and variations in human sight (Agoston 1987). Up to 8% 
of some human groups are partially color-blind (color-deficient or dyschro- 
matopic). Ecological model applications should use color schemes that 
allow major results to be appropriately interpreted by these individuals 
(Curnutt et al. 2000). 

8.4.2 Communicating Model Assumptions and Results 
for Decision Making 
The development of high-quality ecological models will not contribute to 
decision making unless they provide the information that managers want. 
To build relevant models, the modeler must consult with managers or stake- 
holders from the conceptualization stage through validation and use. This 
level of communication will develop an understanding and trust in the 
model by the users, giving them a full knowledge of its strengths and weak- 
nesses, what assumptions were made, what shortcuts were taken, and how 
all of these affect the validity of the model. If the managers are uncom- 
fortable with some of the assumptions, they may collect the data needed to 
fill in the knowledge gaps highlighted by the modeling process. This involve- 
ment will instill a sense of ownership and trust in the model output. 

8.5 Case Studies Using New Modeling Approaches for 
Decision Making 

Two case studies illustrate how intractable resource management problems 
can become manageable through the use of ecological models. 

8.5.2 Computational Fluid Dynamics Model for 
Fish Movement 
Detailed fish swim-path selection at small scales can be simulated by 
coupling a computational fiuid dynamics (CFD) model with a fish move- 
ment model (NFS) to design fish passages around turbines in a hydroelec- 
tric dam. The CFD model (the Eulerian-reference framework) describes 
the physical domain as a fine-scale grid composed of multiple cells. The 
CFD module provides discrete representations of the flow field (data are 
presented at cell nodes or cell faces only), and the Lagrangian module 
provides the framework necessary for depicting movement of individual 
fish (Figure 8.5). 

The linkage between the CFD model and the NFS model is built with a 
common engineering tool known as a partide tracker (described earlier). 
With the coupled framework, a fish track can be envisioned as a sequence 
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Euferian Reference Frame Lagrangian Reference Frame 

FIGURE 8.5. Merging CE;D output data that uses a Eulerian reference frame with 
fish-track data that use a Lagrangian reference frame onto a single geospatial 
framework creates a coupled Eulerian-Lagrangian frame of reference. 

of position pairs comprising an initial and sequential position, with the 
change in position determined by the sum of two different vector processes, 
passive transport and volitional swimming. Over short time steps (a second 
or less), a fish must be swimming headfirst into the current if its displace- 
ment is less than what would be predicted by passive transport because fish 
generally do not swim backwards. Conversely, if its displacement was 
greater than would be predicted by passive transport alone, it must be swim- 
ming with the current (Figure 8.6). 

The simple logical progression presented by Figures 8.5 and 8.6 can 
become the basis of an analytical or statistical procedure to unravel how 
fish respond to hydraulic fields. Hydraulic information at nodes from the 
CFD output can be interpolated to the initial position of each position pair. 
With this information, it is reasonable to pose the two fundamental ques- 
tions of fish swim-path selection presented in Figure 8.7: (1) What hydraulic 
conditions determine whether a fish is oriented with or against the current? 
(2) What hydraulic conditions determine the magnitude of volition swirn- 
ming once the fish's orientation is known? Of course, the same logic applies 
to each of the vector directions. 

The swim-path behavior of the virtual fish can be summarized in various 
ways to support decision making. For example, exit pathways of virtual fish 
can be summarized as the proportion using a preferred pathway, such as 
bypass system, versus a less-desirable passage, such as through the turbines. 
Such predictive simulations can be used to select optimum fish passage or 
fish protection designs or operations. 
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If totaI movement greater than passive 
transport, then fish swims with flow: 

If total movement less than passive 
transport, then fish swim against flow: 

FIG- 8.6. Hydraulic conditions interpolated to the position of the fish can be used 
to transport the fish through the CF'D grid as though it were a neutrally buoyant, 
passive particle. The predicted location of the fish under passive transport can be 
subtracted from the known position of the fish at the next time step. The difference 
between the two distances represents the direction and extent of volitional swirn- 
ming by and the random velocity component of the fish. 

of hydraulic variables at position 
is the best discriminators of headfirst 
vs tailfirst orientation at position ti+, in 

I Position t, l I JF 

FIGURE 8.7. By comparing fish total displacement to passive transport, it then 
becomes possible to ask two fundamental questions. 
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Update: Fish Locatioflassage 
i 

FIGURE 8.8. Example of one frame from an animation based on CFD output (rep- 
resented by arrows) coupled to a swim-path-selection model for a Columbia River 
darn to assess the performance of a surface bypass collector. The collector attracts 
forebay fish to four entrances (BGS, STE-I, CTR, and NTH) so that outmigrating fkh 
have an alternative passageway around the dam instead of passing through the tur- 
bines (TUR). The decision-support module (histogram at top of figure) tracks how 
many simulated fish exit the dam by each possible route and how many remain in 
the forebay (WM).The Cm> was provided by Iowa Institute of Hydraulic Research 
and was produced with the WKANS model. 

The use of CFD model output coupled to fish swim-behavior models is 
relatively new, and methods are still evolving. Extensive model calibration 
and verification must be made before the results of such analyses can be 
used for natural resources management. However, in spite of challenges, 
coupled models have the power to address major fishery resource man- 
agement issues that currently are intractable (e.g., Figure 8.8). 

8.5.2 Linked Multihierarclzical Models for 
Decision Support 
A second case study shows a new approach to integrating models to provide 
decision support. All natural systems have numerous interacting compo- 
nents operating at a variety of temporal and spatial extents. The historical 
approach to modeling such systems has been to break the system down into 
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interacting subcomponents described by a dynamical system (typically ordi- 
nary differential equations) and to connect these compartments by Bows of 
material among them (e.g., biomass and nutrients). However, this method 
forces the modeler to use only one mathematical approach to structure the 
system. New methods are developing to allow linkages among system 
components that take into account differing levels of detail to describe the 
interactions between them. Advocates of this multimodeling methodofogy 
argue that the use of a single modeling approach is inappropriate for prob- 
lems spanning a wide variety of temporal, spatial, and organismal scales. 
Multimodebg does not refer to multiple models representing the same 
components of a system to determine the importance of additional detail. 
Rather, it refers to using different modeling approaches for different 
components of the system and linking these different models to study the 
interactions among the components. 

One example of such a multimodel is the ATLSS (Across Trophic Level 
System Simulation) project, constructed to aid analysis of the ecological 
impacts of planning for the hydrologic restoration of the Everglades of 
South Florida (DeAngelis et al. 1998). The ATLSS uses a mixture of 
approaches based upon the inherent temporal and spatial resolution 
and extent of various trophic components, linked together by spatially 
explicit information on the underlying environmental (e.g., water and 
soil-structure), biotic (e-g., vegetation), and anthropogenic (e.g., land-use) 
factors-The linked components include spatially explicit indices (Curnutt et 
al. 2000), compartment models, differential equations for structured popu- 
lations and communities (Gaff et al. 2000), and individual-based models 
(DeAngelis et al. 2000). Linking models that operate at very different spatial 
and temporal extents is a major challenge, requiring a variety of spatial 
interpolation methods (Luh et al. 1997) and careful design of model inter- 
faces (Duke-Sylvester and Gross 2002). The multimodeling approach can 
readily be expanded to include economic, land-use, and human-population 
impacts, although this will require careful error-propagation analysis. 

8.6 Lessons Learned from Earlier 
Modeling Approaches 

The application of ecological models by managers has sometimes fallen 
short of expectations. An analysis of two examples may be instructive for 
ecoIogical modelers in general. 

The FORPLAN linear-programming (LP) model was the primary analyti- 
cal tool used by the U.S. Department of Agriculture (USDA) Forest Service 
for natural resource analysis and forest planning in the 1980s (Iverson 
and Alston 1986). However, FORPLAN fell from favor by the mid-1990s 
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because three interacting factors collectively undermined the acceptability 
of FORPLAN solutions. 

The first h t o r  was the rapidly increasing public interest and participa- 
tion in natural resource management decision making (Behan 1990; Knopp 
and Caldbeck 1988; Wondolleck 1988). The second factor was the agency's 
strategic mistake of reducing all major aspects of the problem to a single 
LP solution, making the models very large and often requiring dubious 
transformations of information in the process. But the third factor, the diffi- 
culty of explaining the derivations of FORPLAN solutions, was perhaps the 
most problematic (O'Toole 1983). With enormous public interest in the 
management implications of model solutions, this final factor was a fatal 
flaw.The lesson for modelers with a stake in resource management is simple: 
scientifically sound models are a necessary, but not sufficient, condition 
for successful model application in the modern public arena of resource 
management. Increasingly, models are expected to explain themselves in 
convincing and intuitive ways. 

8.6.2 Habitat Suitability Index Models 
Another example of a modeling approach that fell short of expectations 
is Habitat Suitability Index (HSI) modeling. Such models have been de- 
veloped for a wide variety of wildlife species as part of a formal habitat- 
evaluation procedure that was extensively applied by the U.S. Fish and 
Wildlife Service (Verner et al. 1986). These models focus on providing a 
simple, formalized method for assessing impacts on wildlife habitat. The 
HSI models attempt to provide information useful to managers on the site 
characteristics that affect the use of particular habitats by a species. The 
models typically consist of simple relationships among habitat quality and 
multiple characteristics, such as canopy cover, diameter classes of trees and 

. shrubs, tree stem densities, area of open water, and distance to forest cover. 
The objective is to combine these variables to provide an overall index of 
suitability. 

The 13SIs are based on local habitat variables, ignoring species interac- 
tions except those caused by the indirect effects of related habitat variables. 
Early HSI models ignored most landscape characteristics, making the 
models inappropriate for situations where the sizes, shapes, edge effects, and 
neighborhood relationships of habitats have a greater effect on habitat pre- 
ference than local forest composition and structure. Because they are based 
only upon habitat variables, they cannot take account of historical factors 
driving local abundances, such as demography. Nor can they deal with the 
absence of species resulting from interactions not described by the given 
habitat variables, such as restrictions caused by pathogens. Considerable 
effort to develop new methods to ameliorate some of these limitations have 
been developed recently, making extensive use of remote-sensing methods 
(Scott et al. 2001). Though inherently static entities, HSIs can also be 
extended to include the dynamics of underlying environmental factors, 
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taking account of different scales of species response both temporally and 
spatially (Gurnutt et al. 2000). 

8.7 Recommendations and Conclusions 

What do these evolving approaches mean for ecological modelers? 
Advances in technology have progressively allowed ecological modelers to 
focus more of their creativity and intellect on the formulation of models 
(design and structure) and less on the mechanics of modeling (computer 
coding and debugging). Furthermore, advances in the sophistication and 
reliability of ecological models have attracted the attention of decision 
makers, who hope that models may provide critical understanding that is 
currently lacking. However, a gap remains between the models developed 
by researchers to answer research questions and the predictive tools needed 
by managers for sound natural resource management decisions. The ques- 
tions of interest to researchers may not be directly relevant to resource 
managers. Our strongest recommendation for ecological modelers who 
wish to be relevant to managers is to talk to managers! Modelers often fail 
to build relevant models primarily because their perception of the needs of 
managers is flawed. 

However, new technologies have the potential to revolutionize the field 
of ecological modeling. Technology is beginning to overcome many of the 
traditional barriers to linking models and dealing with the thorny scale 
issues of the past. Technology provides tremendous efficiencies by making 
collaborative model development easier and allowing model components 
to be used in multiple ways. However, to fully exploit this potential, mod- 
elers must constantly strive to think in new ways. It is now possible to con- 
sider how technology can be used to model systems as they are understood 
rather than to struggle to represent the system within the limits of the 
technology. This possibility presents great opportunity. 

EcologicaI models will be increasingly scrutinized in the public arena. 
They must be defensible (perhaps in court), transparent (in assumptions 
and structure), and thoroughly documented and tested. Consequently, 
modelers must give more attention to communicating with users, decision. 
makers, and stakeholders. The risks are high, but the needs for solid 
ecological models to provide decision support are growing and are critical. 
The payoff will come in the form of better resource management decisions 
and increased public support for ecological modeling research. 
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