Publication Details

Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment

Publication Toolbox

  • Download PDF (1.0 MB)
  • This publication is available only online.
Wilson, Rachel M.; Griffiths, Natalie A.; Visser, Ate ; McFarlane, Karis J.; Sebestyen, Stephen D.; Oleheiser, Keith C.; Bosman, Samantha ; Hopple, Anya M.; Tfaily, Malak M.; Kolka, Randall K.; Hanson, Paul J.; Kostka, Joel E.; Bridgham, Scott D.; Keller, Jason K.; Chanton, Jeffrey P.

Year Published

2021

Publication

Journal of Geophysical Research: Biogeosciences

Abstract

Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass-balance model revealed increases in peat-supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland-climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source.

Keywords

climate change; peatlands; C loss; radiocarbon; dissolved organic carbon; mass balance

Citation

Wilson, Rachel M.; Griffiths, Natalie A.; Visser, Ate; McFarlane, Karis J.; Sebestyen, Stephen D.; Oleheiser, Keith C.; Bosman, Samantha; Hopple, Anya M.; Tfaily, Malak M.; Kolka, Randall K.; Hanson, Paul J.; Kostka, Joel E.; Bridgham, Scott D.; Keller, Jason K.; Chanton, Jeffrey P. 2021. Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences. 126(11): e2021JG006511. 17 p. https://doi.org/10.1029/2021JG006511.

Last updated on: December 2, 2021