Publication Details

Nitrogen cycling responses to simulated emerald ash borer infestation in Fraxinus nigra-dominated wetlands

Publication Toolbox

  • Download PDF (1.0 MB)
  • This publication is available only online.
Davis, Joshua C.; Shannon, Joseph P.; Van Grinsven, Matthew J.; Bolton, Nicholas W.; Wagenbrenner, Joseph W.; Kolka, Randall K.; Pypker, Thomas G.

Year Published

2019

Publication

Biogeochemistry

Abstract

Understanding short- and long-term responses of forest nutrient cycling to disturbance is vital to predicting future forest function. Mortality of ash trees (Fraxinus spp.) due to emerald ash borer [EAB, Agrilus planipennis (Coleoptera: Buprestidae)] invasion is likely to alter ecosystem processes within infested stands throughout North America. In particular, the loss of Fraxinus nigra (black ash) from F. nigra-dominated swamps may significantly impact the biogeochemical cycles within these ecologically important wetlands. A multiyear manipulative study of nine F. nigra-dominated wetlands in Michigan, USA was undertaken to investigate the potential response of above- and belowground biogeochemical processes to EAB. Short- and long-term changes to site conditions following infestation were emulated by respectively girdling or felling F. nigra saplings and overstory trees. Following disturbance, a short-term reduction in demand for soil nitrogen (N) by dominant canopy species was hypothesized to result in increased soil N availability and a subsequent increase in N uptake by retained species. Though reduced total N return via litterfall indicated decreased demand, this resulted in minimal impacts to soil N availability following treatment. Additionally, increased N uptake by co-dominant Acer rubrum (red maple) and Betula alleghaniensis (yellow birch) was not observed; these combined responses may be attributable to increased immobilization of N by soil microbes. In the 3 years following treatment, the response of foliar characteristics of residual stems—including decreased N concentrations and increased leaf mass per area—appeared to be driven primarily by aboveground conditions and a change from shade- to sun-acclimated leaves. While increased microbial immobilization of N may reduce long-term changes in site fertility, these responses may also limit the potential for short-term positive growth responses of extant woody vegetation. In the longer term, replacing N-rich F. nigra leaf litter with that of A. rubrum and B. alleghaniensis, which have lower N content, is likely to have important feedback effects on soil processes.

Keywords

Soil nitrogen; Black ash; Forested wetlands; Invasive species; Disturbance ecology

Citation

Davis, Joshua C.; Shannon, Joseph P.; Van Grinsven, Matthew J.; Bolton, Nicholas W.; Wagenbrenner, Joseph W.; Kolka, Randall K.; Pypker, Thomas G. 2019. Nitrogen cycling responses to simulated emerald ash borer infestation in Fraxinus nigra-dominated wetlands. Biogeochemistry. 145(3): 275-294. https://doi.org/10.1007/s10533-019-00604-2.

Last updated on: September 16, 2020