Publication Details

Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2and varying N availability

Publication Toolbox

  • Download PDF (1966968)
  • This publication is available only online.
King, John S.; Pregitzer, Kurt S.; Zak, Donald R.; Kubiske, Mark E.; Ashby, Jennifer A.; Holmes, William E.

Year Published

2001

Publication

Global change biology. Vol. 7 (2001).:p. 65-74.

Abstract

It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 30Pa and 56 Pa CO2 and two levels of soil nitrogen (N) avalibility. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentration of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38mg g-1 litter as DOC, suggesting short-term pulses of dissolved C in soil solution are important components of the terestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by grwoth under higher concentrations of CO2.

Citation

King, John S.; Pregitzer, Kurt S.; Zak, Donald R.; Kubiske, Mark E.; Ashby, Jennifer A.; Holmes, William E. 2001. Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2and varying N availability. Global change biology. Vol. 7 (2001).:p. 65-74.

Last updated on: August 11, 2006