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Annual Monitoring of US Timber Production:  
Rationale and Design
John W. Coulston, James A. Westfall, David N. Wear, Christopher B. Edgar, Steven P. Prisley,  
Thomas B. Treiman, Robert C. Abt, and W. Brad Smith

Understanding roundwood production in the United States at fine spatial and temporal scales is needed to support a range of analyses for decision making. Currently, estimates 
of county-level roundwood production are available at various time intervals for different regions of the country and for different products. Here we present our reasoning for 
moving to an annual timber products monitoring program and further present a comparison of sample designs to facilitate an annual program without increased effort. We 
found that both probability proportional to size and stratified simple random sampling designs were viable options, but the stratified simple random sampling design provided 
more flexibility. This flexibility was deemed important to target emerging markets and to enable sampling with certainty of specific firms. Our results lay the foundations for 
moving to an annual timber products output monitoring design in support of market, sustainability, and policy analyses as well as projections.
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Wood product markets affect forest sector jobs (Hodges 
et al. 2012, Woodall et al. 2012, Sorenson et al. 2016), 
shape the composition and structure of future for-

ests (Wear et al. 2016), and are strong drivers of investments in 
forest management (FAO 2009). Monitoring timber products 
output (TPO) is key to understanding the current utilization of 
raw material (industrial roundwood; see Table 1 for background) 
to support these markets. In the United States, TPO monitoring 
has been a constituent program within the USDA Forest Service, 
Forest Inventory and Analysis program (FIA) since 1948. The goal 
of this effort is to estimate the amount of roundwood removed by 
product at the county and state level along with the cross-regional 
movement of industrial roundwood (Bentley and Johnson 2011). 
Estimates from the TPO program have provided the essential 
foundation for US timber market analyses and projections (e.g., 
Adams and Haynes 1996, Buongiorno 1996, McCarl et al. 2000, 
Abt et  al. 2009, Ince et  al. 2011), sustainability analyses (e.g., 

Wear and Greis 2002, USDA Forest Service 2012, Wear and Greis 
2013, Shifley and Moser 2016), policy analysis (Boyd and Hyde 
1989, Haynes 2003, Wear and Coulston 2015), and local wood 
basket analysis of potential market expansion. The usefulness of 
any timber market analysis, forest sustainability assessment, and 
ultimately any policy analysis in the forest sector is constrained by 
the quality and precision of these essential data.

The objective of this article is to describe a new approach to TPO 
data collection and estimation that is efficient in supporting timber 
market and forest assessment work. There are several alternative 
sample-based and remote sensing-based approaches that capture 
some information related to timber product removals from forests 
but would be inadequate for obtaining information on industrial 
roundwood by product. For example, remote sensing approaches 
or FIA inventory approaches can be used to estimate the area of 
harvesting (Coulston et al. 2015, Moisen et al. 2016) but not the 
output of specific products. Remote sensing can provide more 
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precise estimates of the timing of harvest than estimates from the 
FIA inventory but cannot provide estimates of volume by product. 
FIA inventory data can be used to estimate average annual removal 
volumes over a 5-, 7-, or 10-year period (Coulston et al. 2015) but 
not for a single year and product—FIA field plot data can only pro-
vide removal estimates by tree species and size, which provides lim-
ited insights into actual uses. Because estimates of actual product 
use cannot be constructed from harvests estimated by traditional 
inventory or remote sensing approaches, an auxiliary approach is 
needed to define TPO flows.

TPO monitoring by the US Forest Service began in 1948 
as part of the FIA program (Bentley and Johnson 2011) in 
response to timber supply concerns following WWII, and infor-
mation from TPO provided estimates of removals to comple-
ment the first forest inventories. Methodologies have evolved 
over time, and the current approach relies on a census of all 
primary wood using mills/facilities. Primary wood using facili-
ties, defined as mills that process roundwood in log form, bolt 
form, or as chipped roundwood (Bentley and Johnson 2011), 
receive a questionnaire focused on obtaining volumes by prod-
uct (e.g., sawlog, pulpwood, veneer logs, poles, and logs used 
for composite board products) and species group (e.g., hard-
wood, softwood) received by the mill and its county of origin. 
The implementation of the TPO census varies by product class 
and region. Because of their size and small number, pulp mills 
are currently canvassed every year. The remaining mills are can-
vassed on a periodic basis with different regional frequencies. 
The South has a 2-year frequency, the North has a 3–5-year 
frequency, and the West has a 5–7-year frequency. This vari-
able frequency creates complications and limits the precision 
and regional consistency of estimates of US product use. Non-
response is also an issue with a census-based approach. Current 
response rates in the South ranged from approximately 60% to 
100% depending on state. Conducting a census does not always 
result in a response for each mill, which means the census esti-
mates have non-quantifiable error.

 Rapid technological change in forest products, dynamic hous-
ing cycles, and increasing demand for mill residues increases the 
need for timely, spatially explicit mill consumption data. Emerging 
and hidden demands as well as market shifts cause spatial and tem-
poral changes in timber product mixes. In the past 25 years, for 

example, oriented strand board has largely displaced the market 
share of plywood. Over the same time period, input demands have 
declined, and species mixes in the paper sector have shifted, while 
lumber output has strongly shifted from West Coast to southern 
species in response to harvesting policy shifts on public forests. 
Wood-based bioenergy is an emergent industry partially driven by 
the export of wood pellets from the eastern United States. There is a 
need to monitor timber products at fine temporal and spatial scales 
to quantify trends and changes in markets and the resulting effects 
on forest composition and structure.

Current approaches to constructing TPO estimates are based on 
a census and implemented at variable frequencies across the nation. 
This limits our capacity for timely and accurate market and forest 
assessments in the United States. Further, there is a need to inte-
grate TPO information with harvest/removal information from the 
FIA inventory so that volume of wood removed from forests and 
delivered to mills can be reconciled. This is particularly important 
because growth, removals, and mortality estimates from the FIA in-
ventory are lagged by a minimum of 5 years under a 5-panel design 
based on the midpoint of the remeasurement period. For example, 
suppose there is a time 1 measurement of the FIA panel design 
available for 2006–2010 and a time 2 measurement of the complete 
panel design available from 2011 to 2015 (Table 2). Under a linear 
trend, the approximate year that average annual removal estimates 
represent is circa 2010–2011 (Van Deusen 2002). Given a coordi-
nated sample design, TPO monitoring can provide up-to-date esti-
mates of forest inventory removals and product usage and greatly 

Management and Policy Implications

Monitoring timber production in a timely and consistent fashion across the 
United States is essential to understanding how forests support wood prod-
uct markets, the sustainability of the resource, and the potential impacts of 
emerging markets. Consistent monitoring is needed from the county scale to 
the national scale. Here we present the rationale and a statistical design for 
timber production monitoring on an annual time-step. Estimates arising from 
the proposed design are expected to more effectively and consistently inform 
US timber market analyses and projections, sustainability, policy, and local 
wood basket analysis of potential market expansion.

Table 1. Terminology used in timber products output monitoring.

Term Definition

Bioenergy/fuelwood Roundwood products and mill residue byproducts used to produce some form of energy (heat, steam, etc.) in residential, indus-
trial, or institutional settings

Byproducts Primary wood products, e.g., pulp chips, animal bedding, and fuelwood, recycled material from mill residues
Composite panels Roundwood products manufactured into chips, wafers, strands, flakes, shavings, or sawdust and then reconstituted into a variety 

of panel and engineered lumber products
Industrial roundwood products Any primary use of the main stem of a tree, such as sawlogs, pulpwood, and veneer logs, intended to be processed into primary 

wood products such as lumber, wood pulp, or sheathing, at primary wood-using mills
Post, poles, pilings Roundwood products milled (cut or peeled) into standard sizes (lengths and circumferences) to be put in the ground to pro-

vide vertical and lateral support in buildings, foundations, utility lines, and fences. May also include nonindustrial (unmilled) 
products.

Pulpwood A roundwood product that will be reduced to individual wood fibers by chemical or mechanical means. The fibers are used 
to make a broad generic group of pulp products that includes paper products, as well as fiberboard, insulating board, and 
paperboard.

Sawlog A roundwood product, usually 8 feet in length or longer, processed into a variety of sawn products such as lumber, cants, pallets, 
railroad ties, and timbers

Veneer log A roundwood product either rotary cut, sliced, stamped, or sawn into a variety of veneer products such as plywood, finished 
panels, veneer sheets, or sheathing
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enhance the value of the national FIA inventory. In the remainder of 
this article, we describe annual TPO monitoring methods designed 
to provide annual estimates (and standard errors) of timber product 
outputs in the United States.

Techniques to Move to an Annual TPO Program
As noted earlier, the goal of the TPO program is to provide 

estimates of roundwood removal by product, species group, and 
source location. These data are procured from each mill. This is 
accomplished either directly from individual mill questionnaires or 
in some cases through a single contact within the corporate struc-
ture of companies that own numerous mills. Data for each mill is 
collected for each source location (county) from which they draw 
wood. For example, a sawmill in state 1 may respond to the ques-
tionnaire that they consumed 300,000 cubic feet of hardwood saw-
logs. They further report that the source location of this roundwood 
was 20% from county A  in state 1, 60% from county B in state 
1, 15% from county C in state 1, and 5% from county D in state 
2. When these types of data are collected from all mills, the total 
production of county A in state 1 (for example) can be estimated 
as the sum of each mill’s consumption that came from county A in 
state 1. In the work presented here, per county estimates of produc-
tion and per state estimates of production are considered domains. 
Further, estimates can also be created for an individual product 
(e.g., sawlogs). Other ancillary data are also collected from mills 
such as information on residues and byproducts. However, the pri-
mary goal of the TPO program is to estimate roundwood removals 
at county and aggregate (e.g., multi-county woodshed, state) scales, 
and thus the focus of this manuscript is also to this end.

One approach for an annual TPO program is to shift from the 
periodic census to an annual census of primary wood-using facil-
ities. However, this assumes that an up-to-date mill list is avail-
able, resources are available to conduct the census, and all mills 
will respond. Sample-based approaches are a clear alternative to 
a complete census and can provide reduced cost, greater speed, 
greater scope, and quantifiable precision (Cochran 1977). Non-
response is an issue to be considered in any survey. A census with 
non-response leads to a sample without a design, which affects 
quantifying precision, whereas sample-based approaches allow 
the practitioner to appropriately adjust for non-response using 
design-compatible methods. Some initial sample designs for esti-
mating mill receipts at the state level are presented and discussed 

by Brown and Oderwald (2012). The focus here differs from the 
work by Brown and Oderwald (2012) because our interest is in 
estimating production at the county and state level rather than 
mill receipts at the state level. In this paper, we consider a sample 
design to include both a sample selection process and estimation 
process as suggested by Kish (1995).

Potential TPO sample designs and a census assume a finite pop-
ulation of mills, which can be enumerated to construct the sam-
pling frame. There are several national mill lists available for the 
United States. These include the TPO mill list maintained by FIA, 
the University of Georgia Center for Forest Business Forest Industry 
Shapefiles (UGA 2016), and others such as the Wood2Energy list 
(https://www.wood2energy.org/). These lists may also contain 
information such as primary product, production capacity, and 
number of employees, which facilitates using stratified and proba-
bility proportional to size sampling designs. The potential for frame 
error will depend on the source, the update frequency, and the com-
pleteness of each list with respect to the target population (primary 
wood-using facilities that use roundwood from the United States).

Cochran (1977) suggests that a sample-based approach provides 
the opportunity for surveyors to focus on collecting high-quality 
data because of a reduced workload. However, there are other rel-
evant approaches to ensure that high-quality data are collected. 
Modern forest industry firms, particularly larger corporations, 
maintain electronic databases that likely contain sufficient infor-
mation needed for the TPO survey. Working with this cohort of 
forest industry firms to develop automated data transfer approaches 
would also ensure that high-quality data are collected and allow sur-
veyors to focus on mills that do not maintain databases or choose to 
fill out the traditional survey.

Sample Designs: Methods
Two applicable sample designs for TPO monitoring are strati-

fied random sampling (STSI) and probability proportional to size 
sampling (PPS). Our particular implementation of PPS sampling 
follows the Tille method (Tille 1996). Each of these techniques 
requires the mill list (sampling frame) to have some measure of 
size (MOS) available. We also employ a simple random sample (SI) 
for reference. Our goal was to test flexible and operationally feas-
ible sample designs and understand their statistical properties. To 
accomplish this goal, we base our analysis on the 2011 TPO canvass 
for the southeastern United States (Figure 1). There were N=1363 
mills in the test data. We only considered the portion of these mill’s 
receipts within our study area as roundwood production. A sum-
mary of mill receipts, state roundwood production, and county 
roundwood production summary statistics are presented in Table 3. 
For testing purposes, we consider these data to represent the “true” 
population and sample the true population in a Monte Carlo set-
ting to assess mean square error (MSE) and bias.

Estimators and Sample Selection
Here we use the π estimator as described by Särndal et al. (1992) 

for simple random sample (SI), stratified simple random sample 
(STSI), and probability proportional to size (PPS) designs. We 
selected this approach for compactness and because our primary 
interest is in domain estimates. That is, we sample mills based on 
a sample selection process (e.g., SI), but we are generally interested 
in estimating per-county and per-state production in total and by 

Table 2. Schematic of FIA rotating panel design under a five-panel 
inventory system. Time 1 measurement is denoted by the light gray 
shading. Time 2 measurement denoted by dark gray shading. The 
x’s denote the measurement year of each panel.

Panel

Year A B C D E

2006 x
2007 x
2008 x
2009 x
2010 x
2011 x
2012 x
2013 x
2014 x
2015 x
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timber product. These are domain estimates, and the use of the π 
estimator allows for a rather simple extension for estimating do-
main totals. The calculation of inclusion probabilities for SI, STSI, 
and PPS, as discussed in the subsequent paragraphs, allows us to 
present a single estimator. Under the π estimator, the estimate of 
the population total Y , is:
   

Y
s

 = ∑ yk
kπ

where s is the sample of k=l=1 to n mills, yk is the observed value 
for mill receipts from mill k, and πk is the first-order inclusion 
probability for mill k. The estimated variance of Y  is:
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Under the SI, STSI, and PPS designs, each element in the popu-
lation can be given a probability of inclusion in the sample. The 
three sample selection approaches (SI, STSI, PPS) use different 
methods to determine the inclusion probability. The simplest ex-
ample is the SI approach, where πk= n/N, where N is the popu-
lation size. The second-order inclusion probability under SI is 
πkl=n(n-1)/N(N-1). Under our implementation both the STSI and 
PPS approaches required a MOS (x) for each element in N. For 
STSI, x is used to form H = 1,…,h strata, which are to be sampled 
at a specified nh. A  further description of strata construction for 
two STSI designs is provided in the subsequent paragraphs, but 
for each stratum h, πhk= nh/Nh and πhkl=nh(nh-1)/Nh(Nh-1), which 
leads to an SI sample within strata. For PPS, x is used to calculate 
inclusion probabilities proportional to x and the sample is drawn 

using an elimination method developed by Tille (1996). With PPS, 
one calculates πk proportional to x by (1) calculating n∙xk/∑x for 
each of the N elements in the population, and (2) for any πk >1 the 
value πk is set to one. Steps (1) and (2) are repeated based on the 
remaining elements (πk<1) until all values of πk are in [>0,1]. The 
elimination procedure is an N-n step process where one element 
is removed at each step until the desired sample size is obtained 
(Table 4 illustrates the inclusion probabilities based on an MOS 
for a small example). We point the interested reader to Tille (1996) 
for further details on this method, including the calculation of 
second-order inclusion probabilities. Our implementation of this 
method was performed using the R (R Core Team, 2015) Sampling 
package (Tille and Matei 2015).

For the work presented here, the MOS was modeled mill receipts 
(x). This measure was developed using simple linear regression based 
on the number of employees at each mill to predict receipts. This 
model was constructed for the sole purpose of constructing strata 
based on volumes rather than number of employees. The efficiency 
of the STSI and PPS designs is based on the correlation between 
the x and the variables for which estimates are needed. The correl-
ation between x and actual mill receipts was ρ~0.85 based on the 
2011 TPO data (Figure 2), which was approximately the same as 
the correlation between the number of employees and mill receipts.

Two different stratification approaches were examined. The 
first approach (STSI) was based on creating many approximately 
equal-sized strata of MOS. The second approach (STSIDH) followed 
Brown and Oderwald (2012), where the cumulative square-root 
frequency method (Dalenius and Hodges 1959) was used to define 
strata boundaries based on the MOS and Neyman allocation was 
used to allocate the sample.

Strata for STSI were developed by first creating a sam-
pled-with-certainty strata and then by creating approximately equal 
strata sizes in terms of cumulative modeled mill receipts (x) by 
product. This stratification approach approximates a PPS approach. 
Each mill with x> 10 million cubic feet per year was in its own 
stratum (Nh=nh=1) and therefore was sampled with certainty (141 
mills). We denote the sample size of this portion of the sample as 
nc. The number of remaining elements in the sample are the nu and 
n=nc+nu. For the remaining mills, we developed the strata based on 

Figure 1. The percent of regional roundwood consumption of primary mills in the 12-state study area of the southeastern United States.
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the x and primary product. To construct the strata for each primary 
product: (i) place x in descending order  =  dx. (ii) Calculate the 
target strata size as t=2∙∑x/nu. (iii) Cumulate dx until the size >=t. 
This denotes the boundary of the first stratum. Starting at the next 
element in dx after the stratum boundary, repeat (iii) to identify the 
next stratum boundary and repeat until the end of dx is reached. 
Two elements are then randomly selected without replacement 
from each stratum. Table 4 illustrates STSI stratum boundaries and 
the inclusion probabilities based on an MOS for a small example 
when no certainty strata are used.

The STSIDH approach was a three-step process to (1) determine 
number of strata to use, (2) determine strata boundaries, and (3) 
allocate the sample. We created a single sampled-with-certainty 
stratum for the 141 mills with x>10 million cubic feet of mill 
receipts per year. As suggested by Brown and Oderwald (2012), we 
used hierarchical clustering to identify the number of clusters for 
the remaining mills. This technique relies on the similarity among 
items (mills) to form relatively homogeneous groups. We used the 
Ward’s (1963) clustering algorithm to form the clusters based on 
the number of employees and consumption of each mill. Both the 
number of employees and mill consumption were standardized to 
a mean of zero with unit variance for this analysis. We used the 
cubic clustering criterion (CCC) (Sarle 1983) and the pseudo t2 
(Duda and Hart 1973) to determine the number of clusters (H). 
We calculated the bin size (b) as the min(H∙15, u), where u is the 
number of unique values of x as suggested by Rivest and Baillargeon 
(2017). The frequency in each bin was then found and the square 
root of the frequency (√f) was calculated. Next, the cumulative 
sum of √f was calculated. The approximate strata break points were 

calculated as sb= ∑√f / H. Final stratum boundaries are found by 
selecting the bins where the cumulative frequency is closest to 1∙sb, 
2∙sb,,,(H-1)∙sb. The sample size for each stratum was then calculated 
via Neyman allocation, where nh=n(NhSh)/[∑(NhSh)], where Sh is 
the standard deviation of the x within strata h. Table 4 illustrates 
STSIDH stratum boundaries and the inclusion probabilities based 
on an MOS for a small example.

Monte Carlo Analysis
We performed a Monte Carlo analysis to quantify the empir-

ical MSE, empirical bias, and the empirical variance of the esti-
mate under three sampling intensities. This approach allowed us 
to approximate the true error of domain estimates arising from 
each sampling design at three different sampling intensities. We 
tested sampling intensities of 15%, 25%, and 50%. We selected 
these sampling intensities because they would allow for an annual 
sampling effort without increasing the surveyor’s effort, as defined 
by the average number of mills contacted per year, under a 6–7-
year, 4–5-year, and 2-year periodic survey, respectively. For each 
sampling intensity and sample design, the Monte Carlo analyses 
proceeded as follows: (1) Draw a sample of size n from the popula-
tion. (2) Construct domain estimates (i.e., estimate the total prod-
uct output and total by product for each individual county and 
each individual state). (3) Repeat (1) and (2) R=5000 times. In this 
manner, there was a distribution of 5000 point estimates for each 
timber product (e.g., pulpwood, sawlogs, poles, and total product) 
for each of the 971 counties and 12 states in the study area.

The empirical MSE for each sample design (PPS, SI, STSI, 
STSIDH) for each domain was

  MSE
Y Y

Rd

r

R

d d

=
−



=∑ 1

2


.

where Yd was the true total for the domain of interest. The 
empirical bias was

 
bias

Y Y

Rd

r

R

d d

=
−



=∑ 1



.

Table  3. Summary statistics of population mill receipts, state  
production, and county production.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

(million cubic feet)

Mill receipts 0.00 0.16 0.64 4.93 2.15 105.50
County production 0.00 1.14 3.91 6.82 10.01 57.14
State production 72.02 365.20 559.60 551.70 667.70 1,218.00

Table 4. Example inclusion probabilities and sample selection for the SI, PPS, STSI, and STSIDH designs for a sample of n=6 from a popu-
lation of N=16. The stratum boundaries for the STSI and STSIDH are denoted by the gray and white shadings. Under the STSI design, each 
stratum is approximately 27 units of MOS. The STSIDH design was implemented with H=2 strata and bin size of 6, and the sample was 
allocated via Neyman allocation. The selected samples are denoted by the bold font under each design.

PPS STSI STSIDH SI

Measure of Size Inclusion Probability Stratum Inclusion Probability Stratum Inclusion Probability Inclusion Probability

10 0.73 1 0.67 1 0.40 0.38
9 0.66 1 0.67 1 0.40 0.38
9 0.66 1 0.67 1 0.40 0.38
8 0.59 2 0.40 1 0.40 0.38
7 0.51 2 0.40 1 0.40 0.38
5 0.37 2 0.40 2 0.36 0.38
5 0.37 2 0.40 2 0.36 0.38
4 0.29 2 0.40 2 0.36 0.38
4 0.29 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
3 0.22 3 0.25 2 0.36 0.38
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The suggested empirical variance of the estimate (VEd) was
 VE MSE biasd d d= − 2 .

Sample Designs: Results
We tested two different stratified designs, STSI and STSIDH. For 

the STSI design, the number of strata depended on the sample size 
because, with the exception of the sampled-with-certainty strata, 
two units per strata were sampled. This resulted in 432 strata under 
sf=0.5, 243 strata under sf=0.25, and 176 strata under sf=0.15. The 
number of strata for the STSIDH design was based on a hierarchical 
cluster analysis, as suggested by Brown and Oderwald (2012). We 
extended this approach to include a sampled-with-certainty stra-
tum (x>10 million cubic feet). Mills that were not included in the 
certainty stratum were used for the cluster analysis to determine 
the number of strata. We identified the significant groupings by 
examining when the pseudo t2 index was less than the pseudo t2 
critical value. We then examined the CCC index for this subset of 
grouping. This resulted in selecting the 12-cluster solution, and 13 
strata (12 strata from cluster analysis and one sampled-with-cer-
tainty strata) were subsequently used for the STSIDH design.

To compare the results, we examined quantiles of RMSE=MSE0.5 
at the county level, state level, by product, sample design, and 
sampling fraction. We note that our approach is different than 
estimating the variance for quantiles and other order statistics. 
The PPS, STSI, and STSIDH designs performed similarly in terms 
of total roundwood production and outperformed the SI design 
(Tables 5 and 6). In terms of RMSE, the county-level precision 
was similar for the STSIDH, STSI, and PPS designs across the 
5000 Monte Carlo replications and sampling fractions (Table 5). 
For example, at the 0.25 sampling fraction the first quartile of 
RMSE was 0.6 million cubic feet for the PPS, STSI, and STSIDH 
designs. The third quartile was 2.1, 2.2, and 2.2 million cubic feet 

for PPS, STSI, and STSIDH, respectively. However, the PPS design 
had notably smaller RMSE than the STSI design at the state level 
across sampling fractions (Table 5). The PPS also had lower me-
dian, mean, 3rd quantile, and maximum RMSEs than the STSIDH 
design. For example, the median state-level RMSE was 72.9, 98.5, 
and 93 million cubic feet for the PPS, STSI, and STSIDH designs, 
respectively, under a 0.15 sampling fraction. Because the SI de-
sign was predominantly included to provide context for STSI, 
STSIDH, and PPS design, we only report results for estimating 
total product output using the SI design where on average the SI 
had a 3–12-fold increase in RMSE.

We also examined the RMSE for certain products for the PPS, 
STSI, and STSIDH designs. RMSE was relatively consistent between 
STSI, PPS, and STSIDH designs across sampling fractions for saw-
logs for county-level estimates (Table  5). The maximum county 
RMSE was an exception where the PPS design tended to have 
smaller maximum RMSE than both the STSI or STSIDH designs 
and the STSI design tended to have a smaller maximum RMSE 
than the STSIDH design. At the state level, for sawlogs, the STSI 
design had consistently smaller RMSE than the PPS or STSIDH 
design (Table 5).

Pulp mills use large amounts of pulpwood, and because of their 
size their inclusion probabilities were typically larger than for any 
other mill types and often were in the range of 0.9–1.0, depending 
on sampling fraction. However, the STSI and STSIDH designs used 
a sampled-with-certainty threshold of 10 million cubic feet mod-
eled mill capacity, which ensured that 73 of the 76 pulp mills were 
sampled across sampling intensities. This was different than the PPS 
approach where, as the sampling fraction decreased, the propor-
tion of pulpmills sampled also decreased. This led to smaller RMSE 
for the STSI and STSIDH designs (Tables 5 and 6). With respect to 
poles, the STSI approach generally had smaller RMSE across sam-
pling fractions at the state level (Table 6). This was because the STSI 

Figure 2. Relationship between modeled mill receipts and actual mill receipts (million cubic feet).
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design was stratified by product and MOS (x). By applying this 
stratification approach, minor products such as poles were ensured 
to be in the sample at a specified rate, which decreased RMSE. 
However, this purposive stratum construction for minor products 
likely led to some of the increase in state-level total product RMSE.

The efficiency of each design is partially related to the propor-
tion of total mill receipts sampled. Under the SI design, each mill, 
regardless of size, had an equal probability of being selected in the 
sample, which means that the proportion of mill receipts sampled 
was approximately equal to the sampling fraction. This was not the 
case for the PPS, STSI, and STSIDH designs. For example, at the 
0.15 sampling fraction, the PPS, STSI, and STSIDH designs sampled 
0.69, 0.73, and 0.72 of the total mill receipts, respectively. At the 
0.5 sampling fraction, the PPS, STSI, and STSDH designs resulted 
in sampling 0.96, 0.93, and 0.95 of total mill receipts, respectively.

MSE was a function of the bias and the variance of the estimate. 
We examined the contribution of bias2 to MSE for PPS, STSI, and 
STSIDH designs. The contribution was defined as 100∙bias2/MSE. 
For county-level domain estimates, bias2 contributed less than 1% 
to overall MSE. Similarly, bias2 typically accounted for less than 
0.5% of the MSE at the state level. This suggests that the estimated 
variance of Yd

  should reflect the MSE for a domain. However, 

when examining county-level domain estimates, we found that 
occasionally the estimated variance of Yd

  was substantially lower 
than the MSE for the domain. This primarily occurred in counties 
where harvest for products was a rare event, and only one mill drew 
a small portion of its total roundwood receipts from that county.

Observations on Sampling Frame Error, Measures 
of Size, and Non-Response

Sampling frame error is an important consideration for the sample 
designs we tested. In our work, frame error arises when the mill list 
is imperfect. We expect that frame errors will likely result from both 
under-coverage and over-coverage of small mills. For example, if a 
mill has closed but remains in the sample frame, then over-cover-
age occurs. If a mill opens or reopens but is not included in the 
sample frame, then under-coverage occurs. Over-coverage has the 
potential to be accounted for because some of the closed mills may 
be selected as part of the sample. However, under-coverage is more 
problematic because they are completely unknown. We hypothesize 
that under-coverage and over-coverage will mainly be an issue for 
small mills because large mills are easily identified due to the typical 
volumes of wood they process but small mills are more difficult to 

Table 5. Quantiles of RMSE across 971 counties under PPS, SI, STSTDH, and STSI designs at three sampling intensities for three selected 
products and total product.

Product Method Sampling Fraction Min. 1st Qu. Median Mean 3rd Qu. Max.

(million cubic feet)

Total PPS 0.15 0.0 1.1 2.3 2.9 3.9 41.3
0.25 0.0 0.6 1.2 1.5 2.1 27.3
0.50 0.0 0.1 0.3 0.4 0.5 11.7

SI 0.15 0.0 1.5 4.6 7.7 11.2 55.4
0.25 0.0 1.1 3.4 5.6 8.1 40.3
0.50 0.0 0.6 1.9 3.2 4.7 23.4

STSI 0.15 0.0 1.1 2.5 3.4 4.4 47.1
0.25 0.0 0.6 1.2 1.7 2.2 30.5
0.50 0.0 0.1 0.3 0.6 0.7 8.6

STSIDH 0.15 0.0 1.1 2.4 3.4 4.7 44.5
0.25 0.0 0.6 1.2 1.6 2.2 25.6
0.50 0.0 0.1 0.3 0.4 0.5 12.8

Pulpwood PPS 0.15 0.0 0.0 0.0 0.3 0.1 5.4
0.25 0.0 0.0 0.0 0.0 0.0 4.1
0.50 0.0 0.0 0.0 0.0 0.0 1.9

STSI 0.15 0.0 0.0 0.0 0.0 0.0 0.7
0.25 0.0 0.0 0.0 0.0 0.0 0.7
0.50 0.0 0.0 0.0 0.0 0.0 0.7

STSIDH 0.15 0.0 0.0 0.0 0.0 0.0 4.8
0.25 0.0 0.0 0.0 0.0 0.0 2.5
0.50 0.0 0.0 0.0 0.0 0.0 1.3

Saw logs PPS 0.15 0.0 1.0 2.0 2.5 3.3 21.0
0.25 0.0 0.5 1.1 1.3 1.8 8.4
0.50 0.0 0.1 0.2 0.3 0.5 3.3

STSI 0.15 0.0 1.1 2.1 2.7 3.6 25.6
0.25 0.0 0.5 1.0 1.3 1.7 10.4
0.50 0.0 0.1 0.2 0.3 0.4 2.8

STSIDH 0.15 0.0 1.0 2.1 2.9 3.9 33.3
0.25 0.0 0.5 1.0 1.4 1.9 15.2
0.50 0.0 0.1 0.2 0.3 0.5 2.9

Poles PPS 0.15 0.0 0.1 0.2 0.6 0.6 40.7
0.25 0.0 0.1 0.2 0.4 0.4 26.3
0.50 0.0 0.0 0.1 0.2 0.2 11.7

STSI 0.15 0.0 0.1 0.2 0.5 0.4 31.9
0.25 0.0 0.1 0.1 0.4 0.3 29.9
0.50 0.0 0.0 0.1 0.2 0.2 8.5

STSIDH 0.15 0.0 0.1 0.3 0.7 0.6 43.9
0.25 0.0 0.1 0.1 0.4 0.3 25.3
0.50 0.0 0.0 0.1 0.2 0.2 12.7
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identify and track and may operate in an ephemeral nature. Under-
coverage will lead to a negative bias in the estimate of the total, and 
over-coverage will lead to a positive bias in the estimate of a total. 
This is because each mill’s sampled value is expanded by πk

-1. For 
example, under SI πk

-1=N/n and when there is under-coverage, N is 
smaller than the true population size, resulting in sampling weights 
being too small. The opposite holds for over-coverage. Under the 
STSI design, however, frame errors depend on how strata are con-
structed. We constructed strata based on mill primary product and 
the measure of size. With this approach, frame errors in small saw-
mills, for example, will not affect estimates of totals for large saw-
mills or pulpmills. This is because each stratum has a weight of Nh/nh 
and is unaffected by frame errors in other strata.

With the exception of the SI design, the sample designs tested 
required an MOS. As the correlation between MOS and the vari-
able of interest decreases, these designs will approach an SI. In 
our example, we used modeled mill receipts as our measure of 
size (Figure  2). Increased precision can be achieved by using an 
improved MOS. For example, based on simulation, if an MOS 
was available that was within ±25% of mill receipts, the median 
RMSE for county-level total product estimates in Table 5 would be 
reduced by 30% across sampling fractions. The work presented here 
relies on mill receipts predicted from the number of employees at 

each mill. This approach can be improved by using a mill’s previous 
receipts (when available) as a predictor variable. Unfortunately, pre-
vious mill receipts were not available for this analysis; however, one 
critical area of future research is on testing alternative MOSs to 
further increase precision of estimates.

Many of the recommended steps for minimizing non-response are al-
ready followed as part of the TPO program. These steps include: (1) eval-
uating the questionnaire to ensure that questions are understandable and 
follow a logical format, (2) evaluation of respondent’s burden, (3) a com-
munication plan that informs respondents of the importance of the survey, 
and (4) a follow-up schedule for cases of both unit and item non-response, 
including reminders and/or in-person visits. As Kish (1995) and Cochran 
(1977) suggest, sample-based approaches offer the practitioner the oppor-
tunity to focus efforts on collecting high-quality data rather than ensuring 
that data is collected for all units in the population. In short, this focus on 
collecting high-quality data allows the practitioner to conduct follow-up 
in-person visits to non-responders, which is one of the more effective ways 
to minimize non-response. With the exception of the SI design, the sample 
designs tested focus on collecting data from larger mills with greater prob-
ability. Anecdotally, non-response typically arises from smaller mills (e.g., 
small hardwood sawmills), and because the relevant designs sample these 
smaller mills with lower probability, the chances of non-response in the 
overall sample decrease. Regardless, non-response is still likely to occur.

Table 6.  Quantiles of RMSE across 12 states under PPS, SI, STSTDH, and STSI designs at three sampling intensities for three selected 
products and total product.

Product Method Sampling Fraction Min. 1st Qu. Median Mean 3rd Qu. Max.

(million cubic feet)

Total PPS 0.15 27.9 61.4 72.9 70.7 79.3 134.3
0.25 12.8 32.3 34.6 36.0 38.0 72.9
0.50 2.3 6.5 9.4 9.2 10.1 22.9

SI 0.15 49.1 186.8 277.8 266.7 360.0 472.7
0.25 35.9 135.8 198.8 194.1 265.7 344.6
0.50 20.6 79.4 116.0 112.6 151.6 201.4

STSI 0.15 33.9 71.5 98.5 91.6 109.8 156.8
0.25 16.5 37.7 49.5 47.3 56.2 82.7
0.50 7.0 15.3 21.0 20.7 26.8 34.9

STSIDH 0.15 43.1 82.4 93.0 90.8 101.2 155.0
0.25 19.9 38.9 43.2 42.9 46.0 79.3
0.50 2.3 7.0 8.7 9.5 10.2 25.6

Pulpwood PPS 0.15 0.0 4.8 11.1 12.4 15.1 38.5
0.25 0.0 0.0 0.0 1.5 0.0 17.8
0.50 0.0 0.0 0.0 0.7 0.0 8.1

STSI 0.15 0.0 0.0 0.0 0.3 0.0 3.0
0.25 0.0 0.0 0.0 0.3 0.0 3.0
0.50 0.0 0.0 0.0 0.3 0.0 3.0

STSIDH 0.15 0.0 0.0 0.0 1.9 0.0 20.8
0.25 0.0 0.0 0.0 1.0 0.0 10.9
0.50 0.0 0.0 0.0 0.5 0.0 5.6

Saw logs PPS 0.15 26.2 45.7 54.2 56.3 69.8 83.4
0.25 11.3 22.2 30.2 28.4 33.2 43.9
0.50 1.5 4.2 6.0 6.2 9.0 11.0

STSI 0.15 32.3 48.5 55.9 59.3 70.7 91.6
0.25 13.3 22.0 25.7 26.7 31.4 43.5
0.50 1.2 3.7 5.9 5.6 7.8 9.0

STSIDH 0.15 41.1 60.3 64.6 70.0 80.9 113.6
0.25 18.9 28.4 30.2 33.0 37.6 53.2
0.50 1.6 4.1 6.9 6.7 9.0 10.6

Poles PPS 0.15 0.4 2.0 3.8 11.8 7.9 75.2
0.25 0.2 1.4 2.6 7.7 5.3 48.6
0.50 0.0 0.5 1.1 3.4 2.4 21.6

STSI 0.15 0.1 2.3 2.9 8.6 3.9 58.3
0.25 0.1 1.4 2.1 7.7 3.8 54.4
0.50 0.0 0.5 1.0 2.6 2.0 15.2

STSIDH 0.15 1.7 3.1 4.3 13.8 8.7 81.4
0.25 0.9 1.7 2.2 7.7 4.7 46.7
0.50 0.0 0.8 1.1 3.8 2.4 23.5
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The typical design-based approaches for non-response require an 
assumption regarding the distribution of the non-response and/or 
modeling the probability of response based on auxiliary informa-
tion in order to recalibrate sampling weights. For example, under 
the STSIDH design, if the practitioner ignores the non-response (i.e., 
just accepts the decrease in n), then by default the non-response 
is assumed to occur at random within stratum (i.e., the mean of 
the observed sample equals the mean of the unobserved sample). 
This assumption, depending on the mechanism driving the non-re-
sponse, may or may not be tenable. Future efforts should focus on 
developing a formal non-response plan and testing the applicability 
of various approaches for non-response.

Discussion
Our results suggest that PPS, STSIDH, and STSI sample designs 

provided viable alternatives to conducting a complete census in 
order to achieve annual TPO monitoring. While the results in 
terms of RMSE and bias were similar for the approaches, their via-
bility in a production monitoring system differ. The STSI design 
is more flexible and is less complicated when compared to the PPS 
and STSIDH designs. For example, the STSI approach easily allows 
for different characteristics among states, different approaches for 
emerging markets, and modification of strata under non-response. 
This may include the construction of specific stratum so that 
assumptions of missing at random are tenable. On the other hand, 
PPS designs require adjusting inclusion probabilities under non-re-
sponse and are less purposive in terms of sampling with certainty. 
The STSIDH design offers some of the flexibility that the STSI 
design does but is more cumbersome and less intuitive to imple-
ment, particularly with respect to the cluster analysis to determine 
the number of strata. Because the STSI, STSIDH, and PPS designs 
had relatively similar performance overall, but the STSI design is 
simpler and more flexible operationally, we recommend the STSI 
design for nationwide testing to support annual TPO monitoring.

In this research, we have presented the precision of the tested 
designs and sampling fractions in terms of RMSE for total pro-
duction at the state and county levels as well as for select timber 
products. Clearly the precision of estimates differs with respect to 
the domain being estimated. The precision guidelines for the FIA 
program are documented in USDA Forest Service (1970). These 
guidelines suggest that the precision of estimates of annual timber 
cut should be as close as practicable to 5% sampling error per 1 bil-
lion cubic feet of annual timber cut in the east and 10% sampling 
error per 1 billion cubic feet of annual timber cut in the west. Our 
results suggest that these precision requirements could be easily met 
based on the sample designs tested. For example, the STSI design 
under the 0.5 sampling fraction produced estimates for sawlogs in 
South Carolina with a 1.5% sampling error given an observed total 
of 172 million cubic feet. In South Carolina, the sampling error 
rose to 11.8% for the STSI design under a 0.25 sampling fraction. 
However, based on the model provided by Bechtold and Patterson 
(2005), the 11.8% sample error per 172 million cubic translates to 
approximately 1.5% sampling error per billion cubic feet. This sug-
gests that in the study area the required precision can be obtained 
with less than a 0.5 sampling fraction.

Alternative estimators for small domains should be tested. 
There are sources of ancillary data that may increase the precision 
of TPO domain estimates. For example, there are modeled data 
based on remotely sensed information that may predict the area of 

stand-clearing events by county (Moisen et al. 2016). However, a 
closer examination is warranted to understand confusion between 
harvesting and development (Coulston et al. 2014). There are also 
substantial efforts aimed at predicting harvest probabilities for each 
FIA inventory plot based on observed timber market information, 
mean annual increment, and other information that restricts har-
vest on some sites (USDA Forest Service 2012). Hypothetically, 
these predictions can be used to understand likelihood of harvest or 
the supply of volume that would likely be harvested under observed 
market prices. In either case, the predictions may be used to help 
increase the precision of domain estimates based on alternative esti-
mators. These include small area estimation techniques (Rao 2015), 
model-assisted estimators, ratio estimators (Brown and Oderwald 
2012), and synthetic estimators (Särndal et al. 1992).

The FIA program has experience with shifting from a periodic 
design to an annual design. From the 1930s through the 1990s, 
the FIA program conducted periodic timberland surveys at the 
state level. The frequency of these surveys was also variable among 
regions. However, through a set of recommendations provided by 
the first and second blue ribbon panels (AFPA 1998), the FIA pro-
gram shifted to an annual design and extended from a timberland 
emphasis to a forestland focus across all ownerships. The effort to 
annualize the TPO survey is a similar situation. Through a number 
of partner and stakeholder meetings, which included representa-
tives from the US government, state governments, non-govern-
mental organizations, forest industry, and academia, the shift from 
a periodic TPO effort to an annual TPO effort was recommended. 
The work presented here represents the first steps in adopting these 
recommendations.

Future research is needed. We have noted the need for additional 
research on measures of size, alternative estimators, and non-re-
sponse. In addition to these items, some components of the TPO 
program were not tested as part of this research. This includes esti-
mates of mill residues and byproducts. Also, the forest sector is dif-
ferent in different parts of the country. The proposed sample design 
should be tested in those regions to ensure that precision guidelines 
can be met. When considering national application of the sampling 
design, a single base-level sampling intensity should be developed. 
However, flexibility at the state level should also be maintained so 
that individual states may choose to intensify their sample. These 
key research items should be addressed as part of shifting toward an 
annual sample-based timber products monitoring program.

The combination of an efficient sample design and efficient data 
collection protocols (e.g., electronic, automated data transfers) 
presents the opportunity to deliver timely annual timber product 
removals data. Edgar et al. (2015) demonstrated that these types of 
data can be collected and published within one year. A more effi-
cient TPO effort offers several advantages. Timely annual timber 
product removal information allows users to place these removals 
within the context of economic conditions, market prices, and pro-
duction of forest products. Timber product demand is also linked. 
For example, market shifts in demand for structural lumber influ-
ence sawmill consumption of sawlogs and hence residue availability. 
Reductions in sawmill residues such as sawdust and shavings affect 
the availability of those residues for pellet production, which can 
lead to substituting roundwood for residue in order to meet pel-
let demand. Temporally dense estimates of timber product output 
can capture these emerging roundwood demand shifts. Likewise, a 
flexible statistical design such as the stratified approach described in 
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this paper allows for the practitioner to purposively include strata 
for emerging products. Further, spatially explicit estimates of actual 
timber product removals when combined with inventory data and 
land use change information allow for the exploration of the effects 
of land use change on roundwood availability. An annual TPO 
effort will increase knowledge of the forest sector and enhance our 
capability for both strategic and tactical analyses to not only under-
stand markets and forest sector employment, but also understand 
the opportunities for forest management and how these factors will 
shape future forests.

Conclusions/Recommendations
Current annual estimates of timber products output are needed 

to inform both public and private sector decision making and anal-
yses including market, sustainability, and policy analyses across a 
range of spatial scales. Under the current TPO program, only pulp-
mills are canvassed annually and remaining mills are canvassed at 
a variable frequency. While the current TPO program aims to be 
a complete census, there is non-response, which means the cur-
rent approach is a de facto sample. Shifting the TPO program to 
an annual design will provide more timely and consistent infor-
mation across spatial scales. Employing an efficient sample design 
offers the opportunity for this shift with little increase in data col-
lection effort and further allows for statistical inference. We found 
that a stratified simple random sample offers a flexible approach to 
annual TPO monitoring that can be easily implemented. Further 
efficiencies can be realized by working with key industry partners 
on automated data transfer approaches, which will allow increased 
effort on smaller mills, which typically drive non-response rates. We 
recommend that the TPO program continue this line of research to 
shift to an annual sample design in order to provide needed up-to-
date information consistently across the United States.
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