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a b s t r a c t

Reserve site selection models can be enhanced by including habitat conditions that populations need for
food, shelter, and reproduction. We present a new population protection function that determines
whether minimum areas of land with desired habitat features are present within the desired spatial con-
ditions in the protected sites. Embedding the protection function as a constraint in reserve site selection
models provides a way to select sets of sites that satisfy these habitat requirements. We illustrate the
mechanics and the flexibility of the protection function by embedding it in two linear-integer program-
ming models for reserve site selection and applying the models to a case study of Myotis bat conservation
on Lopez Island, United States. The models capture high-resolution, species-specific habitat requirements
that are critical for Myotis persistence. The models help quantify the increasing marginal costs of protect-
ing Myotis habitat and show that optimal site selection strategies are sensitive to the relative importance
of habitat requirements.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Conservation planners make land use and management deci-
sions to ensure the long term viability of species and ecosystems
(Margules and Pressey, 2000). One facet of conservation planning
is the decision about which parcels of land to purchase or restore
given budget limits (Moilanen, 2005). Many types of quantitative
tools have been developed to address this reserve site selection
problem (see Sarkar et al., 2006 or Moilanen et al., 2009 for re-
views). Integer programming formulations typically use number
of species represented, number of times species are represented,
reserve area, and measures of connectedness and fragmentation
as criteria for site selection (e.g., ReVelle et al., 2002; Williams
et al., 2004). Most experts agree that these criteria are limited be-
cause they do not account for all the factors that affect the long-
term viability of populations, including the amount, quality, and
spatial arrangement of habitat features that species need to persist
(e.g., Church et al., 2000; Sarkar et al., 2006).

To address this limitation, we present a population protection
function that can be used to represent habitat requirements in lin-
ear-integer formulations of reserve site selection models. The pro-
tection function is based on the assumption that every species has
specific habitat requirements for food, shelter, and reproduction.
Further, these requirements can be expressed using measures of
ll rights reserved.
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land cover and vegetation structure at the patch and landscape
scales. The protection function determines whether minimum
areas of land with desired habitat features are present within de-
sired spatial conditions in the protected sites. We demonstrate
how the protection function can be embedded as a constraint in
two types of reserve site selection models. In both cases, a set of
sites that meets all of the habitat requirements for a given species
must be contained in the reserve system for that species to be con-
sidered adequately protected.

The population protection function is akin to a habitat suitabil-
ity index (HSI) model, a tool developed in the 1980s to evaluate
wildlife habitat (U.S. Fish and Wildlife Service, 1980, 1981). HSI
models express habitat quality on a suitability index scaled from
zero to one based on functional relationships between species
presence and habitat variables. HSI models are widely used in for-
est planning simulation to evaluate trends in indicators of biodi-
versity (Marzluff et al., 2002; Larson et al., 2004; Edenius and
Mikusiński, 2006; Spies et al., 2007). They are also embedded in
timber harvest scheduling models to determine the optimal timing
and location of harvest areas while providing desired levels of
landscape structure and composition associated with suitable
wildlife habitat (Öhman et al., 2011).

A few reserve site selection models include persistence-limiting
factors based on habitat quality and location. For example, Church
et al. (2000) classify sites by habitat quality and assign weights to
protecting species based on the levels of habitat quality that are
available in the protected sites. The objective of the model is to
maximize the weighted sum of species present. Malcolm and
ReVelle (2002) and Williams et al. (2003) develop flyway models
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for migrating birds that identify sets of sites that are within a max-
imum distance of each other to facilitate migration. Miller et al.
(2009) select parcels to restore and protect wetland habitat in agri-
cultural landscapes surrounding core butterfly reserves. Our popu-
lation protection function provides a general framework for
including habitat features and spatial conditions at the individual
site and landscape scale in reserve site selection models. This
framework is useful at a time when the accumulation of knowl-
edge about the needs and life history of sensitive species has
reached unprecedented resolutions due to technological advances
in remote sensing, wildlife tracking and statistical analyses (e.g.,
Barclay and Kurta, 2007; Tomkiewicz et al., 2010; Cagnacci et al.,
2010).

A few reserve site selection models directly optimize the likeli-
hood of species presence or persistence as functions of habitat fea-
tures of the candidate sites. For example, Moilanen (2005)
estimates the probability of species presence in each site as a non-
linear function of habitat quality in and around the site. The re-
serve selection model minimizes the cost of protecting sites
subject to a lower bound on the expected number of sites contain-
ing each species. Polasky et al. (2008) predict species persistence in
a landscape as a nonlinear function of habitat preferences, area
requirements, and dispersal abilities in a given land use pattern.
They choose land uses to maximize the expected number of species
sustained on the landscape subject to economic constraints. While
these models contain detailed relationships for the likelihood of
species presence or persistence, they are nonlinear-integer formu-
lations that require heuristic algorithms and custom software for
solution. Further, the solutions have no guarantee of optimality.
In contrast, our population protection function can be embedded
in linear-integer programming formulations, for which exact solu-
tions can be found using off-the-shelf commercial software such as
ILOG CPLEX (IBM, 2011).

Lastly, we mention that in the facility location literature, prob-
lems with compound coverage requirements similar to that of the
general species protection function depicted in this paper have
been documented. Schilling et al. (1979) considered a fire protec-
tion system for the City of Baltimore, United States, where demand
nodes were covered only if both primary and certain specialty fire
fighting equipment were available. While the logical structure of
Schilling et al.’s (1979) model was similar, the model proposed
here is more general in that the coverage requirements are not re-
stricted to be binary in nature.

We first present our generalized population protection function
and then demonstrate how it can be embedded in two types of re-
serve site selection models. We illustrate how the model and the
generalized protection function work in practice with a case study
of protecting habitat for Myotis bats on Lopez Island, United States.
The models capture high-resolution, species-specific habitat
requirements that are critical for species persistence. We show
how sensitive the set of optimal reserves might be to the relative
importance of various habitat requirements. We conclude by dis-
cussing the flexibility and limitations of the proposed approach,
and illustrate its compatibility with other spatial models.
2. Methods

2.1. A generalized concept of protection

In the following, we provide a general definition of our concept
of protection to motivate the proposed mathematical program-
ming models. The principles of representativeness and persistence
advocated by Margules and Pressey (2000) imply that a species
may be considered effectively protected only if at least one sustain-
able population is protected, indicating that a population is the
unit of conservation concern. Accordingly, we define a population
as a group of conspecific individuals occupying a particular place
for a particular time. To distinguish one population from another,
we assume that each population retains exclusive use of some re-
source, defining its particular place as distinct from other
populations.

Using terminology defined in Williams et al. (2005), a site refers
to a single decision unit that can be selected or not, a reserve is a
spatially cohesive (e.g., connected) set of sites selected together,
and a reserve system is a set of reserves that makes up the solution
to a reserve design problem. Let Kj be the set of distinct survival
requirements for population j of a given species, and let k index
set Kj. Set Kj may vary between species, but will be the same for
each population j of a given species. For simplicity, we refer to Kj

as habitat requirements, although it does not need to be restricted
in practice since survival requirements other than habitat may in-
clude such factors as the availability of prey or the presence of
reproductive males and females. Index k appears as a superscript
throughout the mathematical notation in this paper to distinguish
it from other indices. Lastly, I denotes the set of sites where conser-
vation action may be taken as part of creating a reserve system,
and J denotes the set of populations that need and can receive pro-
tection. Let i index set I and j index set J. The proposed species spe-
cific population protection function, yjð~xÞ is a continuous function
that determines the amount of protection afforded to population
j in the reserve system:

yjð~xÞ ¼min
k2Kj

1
mk

j

X
i2Sk

j
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ijxi

0
B@

1
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Decision variable xi is binary: xi = 1 if site i is selected for protec-
tion, 0otherwise. Parameters mk

j and ak
ij, respectively, are the min-

imum amount of habitat k required by population j, and the
amount of habitat k available to population j in location i. We note
that this specification assumes that multiple populations (or spe-
cies) can share commonly accessible resources without any fore-
gone benefits. A discussion about the relaxation of this
assumption is presented in the Conclusions. Set Sk

j denotes the re-
source locations that population j can use to satisfy its habitat
requirement k. The summation term is thus the total amount of
habitat k available to population j. Dividing by the minimum
amount that is required scales the sum so that values below one
indicate under-protection, and values above one indicate that
requirement k is met. The function yjð~xÞ, therefore, takes a value
greater than one only if all habitat requirements (Kj) are satisfied
for population j. The value of the function is strictly less than one
if any one of the habitat requirements in Kj is unsatisfied, indicat-
ing inadequate protection. In the next section, we show how this
population protection function can be embedded in a linear-
integer reserve site selection model.

2.2. Model formulation

Mathematical programming is a useful tool to design conserva-
tion reserves because of its flexibility to incorporate various con-
servation goals and because efficient, off-the shelf software is
available to formulate and identify optimal solutions. Efficiency
in optimization is particularly important when the number of pos-
sible conservation actions is high, and the constraints on these ac-
tions are complex. Mathematical programs comprise objective
functions that represent quantitative goals, such as maximizing
conservation benefits or minimizing costs, and inequalities that
represent resource limitations or conservation requirements. An
example of the latter in our context is the requirement for a pop-
ulation to be considered protected. Multi-objective mathematical



Fig. 1. Schematic illustration of sites and habitat areas for a hypothetical species for
application of the General Maximal Covering Problem (GMCP) and the General
Maximal Protection Problem (GMPP). Depending on whether Site 4 or Site 7 is the
less expensive, the single optimal solution to the dual-objective GMCP either {3,4}
or {3,7}. For the GMPP, either Sites 3 and 4, 4 and 7, or the trio of 3, 4, and 7 is
optimal depending on their costs and the relative importance of water vs. forage
habitat.
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programs, including the two models presented below, can identify
sets of solutions (i.e., reserves) that represent tradeoffs among the
objectives. We embed the population protection function (Eq. (1))
in two dual-objective programs to illustrate the tradeoff analyses
that can be performed using our new concept of protection.

The first model, the Generalized Maximal Covering Problem
(GMCP) is as follows:

Max
X

J

yj ð2Þ

Min
X
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Subject to:
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where ci denotes the cost of taking conservation action in site i, yj is
a binary indicator of whether population j is adequately protected
in a particular solution and all other parameters are defined as for
function (1). Common conservation actions include the outright
purchase of a site for conservation, the ecological restoration of a
degraded site, and the acquisition of a conservation easement
(Salafsky et al., 2008). Our proposed framework can include any
or all of these options as long as the associated costs and benefits
are known. For a discussion of the costs of alternative conservation
actions, see Naidoo et al. (2006). Other facility or species coverage
models with budget constraints include Church and Davis (1992)
and Ando et al. (1998).

Objective function (2) maximizes the number of protected pop-
ulations, while objective (3) minimizes the amount spent on pro-
tection. Constraint set (4) captures the meaning of the population
protection function (1). In Eq. (1), the function yjð~xÞ takes a value
greater than one only if all habitat requirements (Kj) are satisfied
for population j. Because one constraint of form (4) is written for
each survival requirement k, the 0–1 indicator variable yj can equal
one only if all the habitat requirements (Kj) are satisfied for popu-
lation j, and yj = 0 wherever one or more of the habitat require-
ments are not satisfied. Lastly, constraints (5) are the binary
restrictions on the decision variables xi and the indicator variables
yj. Since one of the objective functions maximizes the sum of yj’s,
these variables will take the largest values (0 or 1) allowed by con-
straints (4).

Fig. 1 illustrates the application of the GMCP to a population (j)
of a hypothetical species in a model landscape. Suppose this partic-
ular species requires three habitat elements in varying amounts,
mk

j (for k = 1, 2 and 3) to survive. Two of the habitat requirements,
water (k = 2), which is represented by light gray polygons in Fig. 1,
and forage (k = 3), which is represented by the dark gray polygons,
may be shared between populations. Requirement k = 1 on the
other hand is unique to each population. This unique element
may represent a home site such as a den, a nest or a roost. Assume
that this habitat element (black dot on Fig. 1) occurs only on Site 3
and that the other two habitat requirements must also be available
within the home range of the species (dashed circle) for the popu-
lation to survive. In this particular application, sets Sk

1 (for k = 1, 2
and 3) represent the sites within the population’s home range
where habitat element k occurs. Assuming that the amount of hab-
itat that are available for each component in each of the five sites
that overlap with the home range each exceed the corresponding
minimum requirements mk

1 ("k), there are two combination of
sites, Sites 3 and 4, and Sites 3 and 7, that are minimally sufficient
to satisfy the three protection constraints (4) for population 1.
Depending on whether Sites 4 or 7 is less expensive, the single
optimal solution to the dual-objective program (2)–(5) is either
{3,4} or {3,7}.

In application of the GMCP, the scope of the model may be as
broad as protecting global biodiversity, or as fine grain as providing
a single species with adequate habitat to promote its persistence in
a portion of its range. In the special case where (1) each population
in set J represent a distinct species, (2) there is only one habitat
requirement for each population (i.e., |Kj| = 1"j), and (3) the mini-
mum habitat requirements and the site-specific habitat availabili-
ties are both unitary (i.e., mk

j ¼ 1 8j and ak
ij ¼ 18i; j), set Sj reduces

to a presence-absence vector for each species j in the network, and
constraint (4) reduces to

yj 6
X
i2Sj

xi 8j 2 J ð6Þ

Constraint set (6) is the most commonly used definition of pro-
tection in the reserve selection literature. Underhill (1994) first
used this definition with the objective of minimizing the costs of
protection subject to the condition that each species is protected
in the system at least once. Church et al. (1996) used the same def-
inition of protection to address the complementary problem of
maximizing the number of species in the system subject to a bud-
get on site acquisitions. Williams et al. (2005) refer to these prob-
lems, respectively, as the Species Set Covering Problem (SSCP) and
the Maximal Covering Species Problem (MCSP). We refer to Model
(2)–(5) as the Generalized Maximal Covering Problem, in reference
both to the embedded generalized protection function, and to the
fact that the model may be used to design reserves for a single spe-
cies as well as to conserve species diversity.

The second model, the Generalized Maximal Protection Problem
(GMPP), adds another level of sophistication to the proposed con-
cept of protection by creating more differentiation in how the
model rewards alternative conservation choices. The GMPP allows
populations whose protection is already ensured to add value to
the reserve system based on the amount by which their habitat
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requirements are met above the minimum. It also allows planners
to distinguish between sufficient sets of sites by more than mone-
tary criteria.

Max
X

k
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where Pi is the set of populations to which site i can contribute pro-
tection, and wk

j is a weighting constant representing the relative
importance of each habitat requirement k for population j.

The first objective function of the GMPP (7) maximizes the
weighted sum of protection provided by the network for popula-
tion j for each associated habitat requirement. One function of type
(7) is written for each population in need of protection. Objective
(8) and constraints (9) and (11) are identical to objective (3) and
constraints (4) and (5) in the GMCP. Constraint set (10) is new; it
allows xi to be 1, and thus contribute to the objective function va-
lue, if at least one population that has access to site i is protected. It
is important to note that constraint (10) allows site i to remain
unprotected (i.e., xi = 0) even if the above condition holds if other
sites can contribute the same amount of habitat for the protected
populations at a lower price. Constraints (10) ensure that the mod-
el, in its attempt to maximize area-weighted protection, does not
select parcels for acquisition if these parcel are inaccessible for
the given population or species.

The weights (wk
j ) in objective (7) can capture several modeling

concerns that might arise in practice. For example, suppose that for
a given population j, habitat requirement 1 is an order of magni-
tude more important than habitat requirement 2. The weights
w1

j ¼ 10, w2
j ¼ 1 tell the model that if one additional piece of land

can be purchased (or restored), between equally priced choices of
1 ha of requirement 1 and 9 ha of requirement 2, the 1 ha of
requirement 1 should be preferred (10 � 1 ha > 1 � 9 ha). Another
example where the weights could serve to parameterize the rela-
tive importance of different habitat types is the case of prey species
with different energy transfer rates and/or abundances that vary
by habitat. Lastly, the wk

j ’s may be used to indicate the relative
importance of covering various species, where importance may
be driven by such factors as perceived vulnerabilities.

Fig. 1 illustrates the application of GMPP to the same hypothet-
ical population in the model landscape. The same two sets of sites
(3 and 4, 3 and 7) are still minimally sufficient to satisfy the protec-
tion constraints for population 1. As in the GMCP, the relative costs
of those sites are an important driver of optimality. However, the
first objective function of GMPP (7) can distinguish between vary-
ing levels and types of protection. The pair of sites that provides
the most protection depends on the weights associated with hab-
itat elements 2 and 3. If the pair of Sites 3 and 4 is less expensive
and provides more protection, it will be strictly preferred (domi-
nant) to the pair 3 and 7. If Sites 3 and 7 provide more protection,
however, the two solutions could each be efficient. Sites 3, 4, and 7
together may constitute a third efficient solution that is both more
protective and more expensive than either of the first two
solutions.
It is also possible that conservation planners will wish to ana-
lyze the tradeoffs between weighted protection and the number
of populations/species covered. In this case, a combined, three-
objective model that appends the GMCP’s Objective (2) to the
GMPP can be used to identify parcel selections that are Pareto-
optimal with respect to costs, weighted protection and the number
of species covered.

In the next section, we illustrate the use of GMCP and GMPP in a
case study, and highlight their advantages over current methods.
We also demonstrate the benefits of the combined, three-objective
model. The case study is suggestive of the benefits of reserve de-
sign models that can use the full power of habitat and species
information that are available today.

2.3. Case study: Myotis bats on Lopez Island

The 7721 ha Lopez Island is located in the San Juan Archipelago
in northwestern Washington State (Fig. 2). It has a small, but grow-
ing population of human inhabitants (U.S. Census 2010). The Island
is heavily forested with 74.3% of the land area classified as private
forest holdings (University of Washington Geographic Information
Service, 2007). Conversion of forest lands to real estate develop-
ment is a serious concern because of the Island’s proximity to
the Seattle metropolitan area and the availability of waterfront
properties and other premium lots for sale (Tóth et al., 2011). In
1992–2001 alone, the latest 10-year period for which data is cur-
rently available, private forest conversion occurred at an average
annual rate of 4.88% in San Juan County (Bolsinger et al., 1997;
Gray et al., 2005).

Lopez Island is also home to seven species of conservation con-
cern, five of which are bats: the Big Brown Bat (Eptesicus fuscus)
and four smaller Myotis species (Washington Department of Fish
and Wildlife, 2010). Resident bat populations are particularly vul-
nerable to habitat loss (Johnson and Gates, 2008; Oprea et al.,
2009). One strategy to mitigate the problem is to retain lots that
provide bat habitat by outright purchases or by acquiring conser-
vation easements on the lots before they fall victim to develop-
ment (Tóth et al., 2011). In our study, Lopez Island will serve to
demonstrate the use of the proposed protection function, via the
GMCP and GMPP models, to design reserves for bats. Without loss
of generality, we focus on the four Myotis species. The protection of
the Big Brown Bat and the two other listed species, the Bald Eagle
(Haliaeetus leucocephalus) and the Peregrine Falcon (Falco peregri-
nus) would involve the same steps that follow in life history iden-
tification, data collection and model specification.

2.3.1. Assumptions – Myotis life history and habitat requirements
The four Myotis species on Lopez Island are the California Myo-

tis (Myotis californicus), Western Long-Eared Myotis (Myotis evotis),
Long-Legged Myotis (Myotis volans), and Yuma Myotis (Myotis
yumanensis). Between the four species, life history traits are simi-
lar. All are nocturnal, leaving their roosts at night to eat and drink.
As all bats must, the four species drink water at least nightly, from
open water sources such as ponds, streams or stock tanks. The
Myotis bats feed mainly on insects, at times gleaning insects from
water or other surfaces. Foraging is done over water sources,
around trees and cliffs, in forest or woodland openings, or among
shrubs—in places close to cover but without full canopy closure
(Zeiner et al., 1988).

During the day, Myotis bats roost in places with favorable tem-
perature fluctuations and minimal wind including buildings,
mines, caves, or crevices, spaces under bark, and snags (Zeiner
et al., 1988). Males and non-reproductive females typically roost
separately from reproductive females and young, either singly or
in small groups, although the Long-Legged Myotis may be found
in large colonies. Multiple species may be found roosting or feeding



Fig. 2. Lopez Island is situated in the Pacific Northwest United States roughly halfway between Seattle, Washington and Vancouver, Canada. A set of 1395 available land
parcels have been identified as potential candidates for the Myotis reserve system.
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together. Maternity roosts, which are generally found in warmer
locations than other roosts, vary in size by species from 12 to 30
mothers and young (Long-Eared Myotis) to several thousand
(Yuma Myotis). Bats may make migrations to suitable hibernacula
for the winter. Such migrations are necessary where day roosts are
frequently disturbed, or lack the temperature and wind regulation
necessary for hibernation. The preceding life history accounts are
based on capture data from California and were confirmed for
the northern end of the species range in British Columbia by
Nagorsen and Brigham (1993). Four basic habitat requirements
can be identified based on this information: open water, forage
habitat, roosts, and hibernacula.

Myotis bats primarily forage along forest edges with partially
closed canopies (Grindal and Brigham, 1999). We treat forage areas
and water separately since water can also function as forage hab-
itat but forage habitat cannot function as a water source (Thomas
and West, 1991). For this reason, we will assume in our models
that water is more important for the bats than forage habitat. Since
the relative importance of the two requirements is not known with
accuracy, we run sensitivity analyses. We assume that Myotis bats
primarily roost in old houses and barns on Lopez Island and take
water from nearby sources. We do not explicitly address the fourth
habitat requirement, hibernacula, in the case study because Myotis
bats can migrate long distances to find appropriate locations.

Finally, a reserve design consideration that can affect species
persistence is access to the various habitat elements. As bats can
fly between portions of their home range, it is not necessary for
their reserves to be structurally connected by shared boundaries.
Bats can rely on functionally connected networks (Tischendorf
and Fahrig, 2000a,b) that require only spatial proximity among
the component reserves. In our case study, spatial proximity will
be ensured by requiring that the habitat components can be
reached from each roost (c.f. Williams et al., 2005). Beyond this,
we do not explicitly address connectivity, functional or structural,
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of the reserve system by way of additional constraints. Implicitly,
we assume that bats may migrate distances greater than the length
of the Island to find hibernacula, thus rendering the entire Island
functionally connected. While there are arguments for discon-
nected reserves for bats due to the potential spread of white nose
disease from the eastern United States (Frick et al., 2010), these
concerns would therefore only become relevant for reserve design
problems on a larger scale.

Using these assumptions, we apply the GMCP to maximize the
number of protected roosts, and the GMPP to maximize the impor-
tance-weighted area of habitat provided in the reserve system. We
chose to apply both models in the case study to demonstrate two
common conservation scenarios. In some cases, it may be more
important to have many roosts with minimally sufficient protec-
tion, whereas in other cases protecting fewer roosts with more
habitat resources could be more valuable. To analyze the tradeoffs
among all three concerns of cost minimization, the maximization
of weighted protection, and the maximization of the number of
protected roosts, we also solve a combined model that has three
objectives: Eqs. (2), (7), and (8) subject to the constraints of the
GMPP: In Eqs. (9)–(11). Our analyses demonstrate the utility of
the proposed protection function to conservation planners, in
terms of identifying robust conservation strategies.

2.3.2. Parcel data
The Washington State Digital Parcel Database (WAGIS, 2007)

was used as a primary data source for the models. The database
identifies each parcel on the Island (see Fig. 2) that is potentially
available for conservation acquisitions. We focused on acquisitions
only; conservation easements and ecological restorations were not
considered as applicable alternatives in this case study. We also
assumed that close to 100 specific parcels were safe from develop-
ment. These parcels are currently either in conservation, agricul-
ture or recreation ownerships, or are designated forestlands. A
‘‘forestland’’ designation is a beneficial tax status in Washington
State for lands exclusively used for forest management. We used
the National Land Cover Dataset (U.S. Geological Survey, 2007) to
estimate forest areas within each parcel, and selected a total of
1395 parcels (4913.48 ha) that were above 0.5 ha in size and con-
tained at least 0.25 ha of forest cover. We assumed that these par-
cels were all available for conservation at 2007 market prices that
were obtained from San Juan County assessors.

2.3.3. Satellite imagery
ArcGIS World Imagery, a high-resolution (<1 m for the United

States) map service provided by Esri (2008), was used to delineate
the three habitat elements required by Myotis bats. While for Lopez
Island this was done manually using the graphical interface of Arc-
GIS (Esri, 2009), automated pattern-recognition algorithms can be
used for larger applications to speed up processing. We identified
44 possible roost sites in old barns spread across the Island. Open
freshwater sources and forest edges were delineated within 500 m
of each potential roost (Fig. 3). The choice of a 500 m range was
based on expert opinion.

2.3.4. Model specifications
For both GMCP and GMPP, we set I to be equal to the set of 1395

parcels identified as per the details in Section 2.3.2. Set J is popu-
lated by the 44 potential roost sites or populations. There are three
habitat requirements K = {1, 2, 3} denoting water, forage, and
roosts, respectively. While parameter a1

ij represents the area of
water, a2

ij represents the area of forage available to roost j in site
i. The values of a1

ij range from 0 to 2.55 ha per roost with a total
of 30.38 ha for all roosts, and a2

ij ranges from 0 to 28.49 ha per
roost, with a total of 717.66 ha. Parameter a3

ij is binary: it
represents roost availability to population j in site i. It is 1 if site
i contains roost j, 0 otherwise.

In the GMPP, we start with weights of 10 for w1
j and 1 for w2

j

indicating that water is an order of magnitude greater in impor-
tance than forage (Thomas and West, 1991). We test the sensitivity
of the solutions with respect to the relative importance of these
two habitat components by varying w1

j between 1 (no difference
in importance) and 100 (two orders of magnitude difference). Fi-
nally, w3

j is set to 0 for each j e J because no population or roost
can be declared protected, as per constraints (9), unless the site
that contains the roost is protected. Since m3

j ¼ a3
ij ¼ 1 for each

j e J and i 2 Sk
j , constraint set (9) already guarantees that the impor-

tance of protecting roost sites is infinite relative to that of protect-
ing water or forage habitat without including a specific weight for
the roost in the objective function. The minimum habitat require-
ments for water and forage (m1

j and m2
j ) were both set to 1 m2 be-

cause Myotis bats are able to drink from very small water surfaces
(Christy and West, 1993). To illustrate how the GMCP and GMPP
can be combined to investigate the tradeoffs behind importance
weighted protection, the number of protected roosts and acquisi-
tion costs, we solve model (2), (7)–(11) with w1

j ¼ 10.
We apply the GMCP, the GMPP, and the combined models to the

Lopez Island parcel set to determine the optimal allocation of con-
servation funds to Myotis protection. As the precise amount of
funds is unlikely to be known at the beginning of the conservation
effort, we analyze the tradeoffs between protection and expendi-
ture for a range of budgets (US$1M–40M) that represent both the
‘‘reasonably realistic’’, the ’’possible’’, and everything in between.
As an example of conservation effort, the San Juan Preservation
Trust has protected over 5600 ha in the San Juan Archipelago since
1979. With a land price of $100,000/ha, this level of protection
costs over $15M per year.

We use specialized multi-objective mathematical programming
techniques, the e-Constraining Method (Haimes et al., 1971) for the
GMCP and the GMPP, and the Alpha–Delta Method (Tóth and
McDill, 2009) for the combined model, to find sets of parcel
selections that are on the efficiency frontier with respect to
acquisition costs and protection. A set of parcels is on the efficiency
frontier if any change in the set does not improve either the
acquisition cost or the protection function without compromising
the other. The sets of solutions on the efficiency frontier allow
conservation planners to weigh the minimum costs of protection
in a holistic and rigorous manner.

The e-Constraining Method, which was designed to solve dis-
crete multi-objective programs like the GMCP, starts by optimizing
one of the objectives of the program without regard to the other.
We first maximize the number of roosts (Step 1). Then, using the
maximum number of roosts as a constraint, we minimized the
costs to guarantee efficiency (Step 2). This leads to the first solution
on the efficiency frontier. In Step 3, we maximize the number of
roosts for a cost less than or equal to the cost of the first solution
minus a small e. To ensure that this solution achieves the maxi-
mum number of roosts at minimum cost, the e-Constraining Meth-
od ‘‘turns around’’ the problem yet again (Step 4) and minimizes
costs subject to the number of roosts that were possible in Step
3. The resulting solution will be the second on the efficiency fron-
tier. To find the entire set, we repeat the four steps until the value
of the roost maximizing function becomes zero. The resolution of
the efficiency frontier can be controlled by parameter e: smaller
values allow more solutions to be detected at the price of extra
computing time. We set e to US$0.25M to provide sufficient detail
for the dual objectives of the GMCP. Alternatives to e-Constraining
that could be used include the Alpha–Delta and the Tschebycheff
Methods (Tóth et al., 2006).

For the GMPP, we used a modified version of the e-Constraining
Method to account for the fact that, unlike the GMCP’s function (2),



Fig. 3. Myotis habitat identification on Lopez Island using satellite imagery. Open water and forage habitat are shown within 500 m of each potential roost site (old barns).
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the image of GMPP’s function (7) is continuous for all practical pur-
poses. Due to the high number of combinations of sites that can be
acquired to contribute hectares of water and/or forage protection,
the value of objective function (7) can closely map a continuum
only restricted by budget constraints. Since the e-Constraining
Method was specifically designed to solve discrete optimization
problems such as the GMCP, we used a slightly different approach
for the GMPP and find a subset of solutions on the efficiency fron-
tier in two steps. In the first step, we maximized function (7) for a
discrete set of budgets between US$1M and US$40M in US$1M
increments. Then, using the maximum protections as constraints,
we minimized the acquisition costs for each of the 40 solutions.
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We note that there are other ways to solve dual-objective re-
serve site selection problems in which species or habitat coverage
is traded off against total area or cost of selected sites. These meth-
ods include the constraint method in which species or habitat cov-
erage is optimized for increasing levels of a budget constraint or
the multi-objective weighting method in which a weighted sum
of the objective functions is optimized for different values of the
weight (e.g., Snyder et al., 2004). We chose the e-Constraining
Method to ensure that solutions with a given maximum level of
protection also minimize cost. For problems like ours with discrete
objective functions, there may be several solutions that provide the
same level of protection with different levels of cost and this con-
cern led us to use e-Constraining Method, where the solutions that
maximize protection are also checked and corrected for cost
efficiency.

For the three-objective, combined model, we use Tóth and
McDill’s (2009) Alpha–Delta Algorithm that is specifically designed
to enumerate Pareto-efficient (non-dominated) solutions for three
or more objective integer programs. This algorithm assigns an inor-
dinate amount of weight to one of the objectives and negligible
weights to the others. Using this ‘‘slightly tilted’’ composite objec-
tive function (a accounts for the degree of the tilt), the Alpha–Delta
Method systematically explores the objective space via either-or
logical structures. The slightly tilted objective function ensures
that only efficient solutions are selected. The three parameters of
the algorithm, a and one d for each of the two objectives that are
assigned negligible weights in the composite objective function,
are set to 1�, 10 weighed hectares for the protection function and
0.1 for the number of roosts, respectively. These settings are made
to ensure an adequate but not excessively detailed coverage of the
tradeoffs among the three objectives (see Fig. 8). For further details
on this algorithm, please see Tóth and McDill (2009).

MS Visual Basic was used to populate the proposed GMPP,
GMCP, and combined models with the parcel data and IBM ILOG
CPLEX Optimization Studio version 12.1 and 12.2 were used to
solve them. Execution time was not an issue because a solution
to each optimization problem was found in seconds.
3. Results

3.1. GMCP and GMPP model solutions

The GMCP model identifies the parcels that will protect the
greatest number of roosts for a range of budgets. Fig. 4 shows
the efficiency frontier for the GMCP in terms of the number of pro-
tected Myotis roosts and acquisitions costs. The e-Constraining
Method found 44 solutions corresponding to the 1–44 roosts that
can possibly be protected. The rightmost point on the curve repre-
sents the 44-roost solution that is available for US$21.5M. Because
we identified only 44 roost sites, investments greater than this
amount will not be helpful assuming that minimally sufficient pro-
tection guarantees the long-term persistence of the populations.
The increasing slope of the efficiency frontier suggests that the
marginal cost of protecting an additional Myotis roost on Lopez Is-
land increases as the number of protected roosts increases. This
finding is in agreement with similar patterns that have been docu-
mented in other environmental protection functions (e.g., Kushch
et al., 2012).

Fig. 5(left) shows the map of the optimal reserve system under
GMCP at US$10M. Thirty roosts can be protected with this budget
by purchasing 36 sites (see solid black on Fig. 5). To contrast the
two models, we also map a GMPP solution that is optimal for
roughly the same US$10M budget. This solution provides 11.4 ha
of water and 204.7 ha of forage habitat for only 13 roosts, as
opposed to the GMCP’s 30, through the purchase of 40 parcels.
The tradeoff between the GMCP and the GMPP solution is clear:
the former supplies more roosts at minimally sufficient protection,
whereas the latter supplies more protection for a lesser number of
roosts.

The efficient frontier for GMPP at w1
j ¼ 10 is shown as a solid

black curve on Fig. 6. This curve exhibits a similar, although not
as pronounced, pattern of increasing marginal cost of Myotis roost
protection as the GMCP. It is noteworthy that while the GMCP
curve reaches its maximum level of protecting 44 roosts at about
US$21.5, the GMPP requires US$140M to protect all 44 roosts.
The graph on Fig. 6 only shows the solutions up to US$40M.
3.2. Sensitivity analysis on relative habitat importance

Fig. 6 shows the efficient frontier of GMPP solutions for values
of w1

j between 1 and 100. Because the value of w1
j changes the scale

of the objective values, the horizontal axis of the chart measures
the total area of protected water and forage habitat instead of
importance-weighed area. The solid line corresponds to the origi-
nal parameterization (w1

j ¼ 10), with lighter gray indicating the
other frontiers.

For values of w1
j < 10, greater total area is conserved in the opti-

mal solutions. For values of w1
j > 10, a smaller total area is con-

served, since additional area of water increases the value of the
reserve system due to its higher relative weight. When w1

j is in-
creased substantially, approaching two orders of magnitude great-
er than w2

j , there are some low budget levels for which the slope of
the frontier is decreasing, meaning that after a relatively large ini-
tial investment, the next few protection increases can be made at
lower marginal cost. The implication is that the optimal reserve
systems and the efficient frontiers are sensitive to the parameter-
ization of w1

j – the relative importance of different habitat require-
ments. Fig. 7 demonstrates that even relatively modest changes in
w1

j can induce reserve networks that are dramatically different in
terms of water and forage habitat. This suggests that having a good
handle on the role of various habitat requirements for a given spe-
cies can be very important to making optimal conservation deci-
sions for at-risk populations.

The preservation of ‘‘locally and regionally significant rare plant
or animal habitats’’ is a priority of the San Juan Preservation Trust
(http://www.sjpt.org/page.php?content_id=21). In the light of our
findings, we recommend that the organization, along with others
who have a stake in protecting open space on Lopez Island, invest
in determining the relative benefits of the different habitat compo-
nents that are associated with priority species, including Myotis
bats.
3.3. Sensitivity analysis on relative habitat importance

Fig. 8 shows the set of non-dominated solutions that were
found by the Alpha–Delta Algorithm (Tóth and McDill, 2009) for
the three-objective model that combined the objectives of both
the GMPP and the GMCP. It is clear that if both the importance
weighted protection and the number of protected roosts are to
be maximized, the acquisition costs increase exponentially. The
tradeoff surface in Fig. 8 allows the conservation planner to ana-
lyze the tradeoffs between weighted protection and costs at a
given number of desired roosts. For example, if one wishes to
preserve 20 roosts, 113.52 weighted hectares of protection can
be achieved (3.56 ha of water and 77.95 ha of forage) for
US$4.82M, while 248.7 (8.8 ha of water and 160.6 ha of forage) is
possible for US$8.09M, and 395.88 (14.16 ha of water
and 254.24 ha of forage) is possible for US$13.82M. Fig. 8 shows
several additional compromise alternatives that are possible for
20 roosts.

http://www.sjpt.org/page.php?content_id=21


Fig. 4. The efficient frontier for the general maximal covering problem applied to Myotis habitat protection on Lopez Island. The US$9.6M solution is mapped out in Fig. 5. The
dashed line separates the solutions that are cheaper in terms of average protection cost per roost from those that are more expensive. The slope of the curve illustrates the
increasing marginal cost of protecting roost sites on Lopez Island.

Fig. 5. The map on the left shows parcels in black that form the optimal selection for the general maximal covering problem at a budget of US$9.6. This solution allows the
protection of 30 Myotis roosts. To protect one more roost, the US$10M budget is insufficient. The map on the right shows the corresponding solution to the general maximal
protection problems for a budget of US$9.96M. This solution provides much more protection for only 13 Myotis roosts.
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4. Conclusions

We introduce a scalable population protection function that
can make use of increasingly available high-resolution, species-
specific habitat data in reserve selection models. We embed
the protection function in two mathematical-programming
models which we call the General Maximal Covering Problem
and the General Maximal Protection Problem. We illustrate the
mechanics and the benefits of the new models in a case study
of bat conservation. The models help quantify the increasing
marginal costs of protecting Myotis habitat and show that opti-
mal site selection strategies are sensitive to the relative impor-
tance of habitat requirements. We also show how the two
models can be combined to explore the tradeoffs among acquisi-
tion costs and both weighted protection and the number of pro-
tected roosts.



Fig. 6. Sensitivity analysis showing the change in the efficient frontier with changes in the relative importance of water vs. forage habitat for Myotis conservation on Lopez
Island. Because the relative weights change the scale of the amount of protection, the unit on the horizontal axis is total area of water and forage protected.

Fig. 7. Hectares of water vs. forage habitat included in optimal solutions of the
generalized maximal protection problem at a budget of US$10 million in response
to varying w1

j from 1 to 100.
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We note that the protection function has the flexibility to relax
existing habitat requirements or to allow the inclusion of other
habitat requirements in reserve site selection models. As an exam-
ple of the former, bat biologists are discussing whether and to what
extent bats exhibit roost fidelity. Some suggest that fidelity is
related to permanence of the roost structure, so that bats roost in
buildings (e.g. barns) more consistently than they would in tree
cavities or under bark (Barclay and Kurta, 2007). By relaxing the
assumption that a bat population is associated with only one roost
and instead identifying discrete segments of the landscape as
supporting distinct populations, the model could easily reflect a
different, perhaps more accurate understanding of roost fidelity.
The protection function would simply require that a certain num-
ber of roost sites are protected within a specified distance, each of
which could potentially serve as the actual roost for a given popu-
lation. As an example of the latter, the logical structure of the
protection function allows applications where the objects of con-
servation have different needs: it can assess such varied require-
ments as prey density, stream lengths, or even stream lengths
categorized by temperature gradients or stream order. It is also
fully compatible with existing mathematical programming con-
structs such as those introduced by Önal and Briers (2006) for hab-
itat connectivity, by Tóth et al. (2009) for habitat contiguity, or by
Tóth and McDill (2008) for habitat compactness.

One caveat is that the proposed models do not differentiate be-
tween the value of protecting one particular population versus an-
other. Reproduction and survival rates can be different in different
sites and allocating resources to protecting sink populations might
not be the best conservation investment. A potential solution in-
volves assigning different weights to the variables that indicate
whether or not a particular population is adequately protected.

Another limitation of the model is related to potential competi-
tion among populations or species for certain habitat resources.
The US$9.6M GMCP solution on Fig. 4 as an example provides
2.76 ha of water and 52.87 ha of forage habitat for 30 roosts but
33.3 and 53.1% of these areas, respectively, are shared between
two or more populations. If competition exists, then the proposed
models need to be modified to account for the carrying capacity
of each site. If we assume that habitat component k in site i is
evenly split among the populations (or species) that have access
to the resource, then constraints (4) and (9) could be modified as
follows:

yjm
k
j 6

X
i2Sk

j

ak
ijxi

1þ
P

l2Pinfjgyl
8k 2 Kj; j 2 J ð12Þ



Fig. 8. Three-way tradeoffs among parcel selections that are Pareto-optimal with respect to (1) cost, (2) number of roosts and (3) weighted protection under w1
j ¼ 10. Three of

the solutions that provided 20 roosts were labeled for weighted protection and cost.
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In constraint (12), habitat component k that is available for pop-
ulation j from site i (ak

ij) depends (endogenously) on the number of
populations that are protected and have access to the resource on
site i : 1þ

P
l2Pinfjgyl. As an example, if there is one population with

access to site i other than population j, and both site i and the other
population are protected, then only half of ak

ij will be available for
population j to satisfy mk

j due to 1þ
P

l2Pinfjgyl being equal to 2. A
critical issue with constraint set (12) is that there does not appear
to be an obvious way to linearize the fractional term on the right-
hand-side. This would leave the analyst with a nonlinear integer
programming problem whose optimization requires specialized
software. A much simpler modification of constraints (4) and (9)
could assume that commonly accessible resources are available
for only one population:

yjm
k
j 6

X
i2Sk

j

ak
ij 1�

X
l2Pinfjg

yl

0
@

1
Axi 8k 2 Kj; j 2 J ð13Þ

Constraints (13) say that the contribution of site i to habitat
component k for population j is zero if there is one more popula-
tion (other than j) with access to site i that has been declared pro-
tected. Otherwise, the contribution equals ak

ij. While the right-
hand-side of Inequality (13) is nonlinear, the linearization of
cross-products between binary variables is trivial (Williams,
1999, p. 164). Whether construct (13) would be appropriate in a
particular situation will depend on the species in need of protec-
tion. The computational study of the ‘‘competition’’ problem iden-
tified above could serve as the subject of future research.
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