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Defoliation by insect herbivores can be a persistent disturbance affecting ecosystem functioning. We devel-
oped an approach to map canopy defoliation due to gypsy moth based on site differences in Landsat vegeta-
tion index values between non-defoliation and defoliation dates. Using field data from two study areas in the
U.S. central Appalachians and five different years (2000, 2001, 2006, 2007, and 2008), we fit a sigmoidal
model predicting defoliation as a function of the difference in the vegetation index. We found that the nor-
malized difference infrared index (NDII, [Band 4−Band 5] / [Band 4+Band 5]) and the moisture stress
index (Band 5/Band 4) worked better than visible-near infrared indices such as NDVI for mapping defolia-
tion. We report a global 2-term fixed-effects model using all years that was at least as good as a mixed-
effects model that varied the model coefficients by year. The final model was: proportion of foliage
retained=1/(1+exp(3.057−31.483∗ [NDIIbaseyear−NDIIdisturbanceyear]). Cross-validation by dropping each
year of data and subsequently refitting the remaining data generated an RMS error estimate of 14.9% defoliation,
amean absolute error of 10.8% and a cross-validation R2 of 0.805. The results show that a robust, generalmodel of
percent defoliation can be developed tomake continuous rather than categoricalmaps of defoliation across years
and study sites based on field data collected using different sampling methods.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Temperate forests throughout the world experience periodic in-
festations by herbivorous insects. The damage to forests can be ex-
tensive. Dale et al. (2001) concluded that insects and pathogens are
the most expensive disturbance agents in North America, affecting
20 M ha in the U.S. per year. Among insects and pathogens, defolia-
tors are herbivores that consume leaves but do not necessarily kill
trees. Defoliation by herbivores accounts for 5–10 M ha of distur-
bance per year in the U.S., of which 0.5–1 M ha on average and over
5 M ha in peak years are attributable to the gypsy moth (Lymantria
dispar L.; Man, 2010). Defoliation events may not result in wide-
spread mortality, but herbivory does reduce tree growth (Katovich
& Hanson, 2001; Muzika & Liebhold, 1999; Naidoo & Lechowicz,
2001) and can kill trees after successive years of defoliation (Conway
et al., 1999; Fajvan & Wood, 1996). In addition, several studies have
shown significant effects on forest nutrient cycling following defoli-
ation events, for example increases in nitrogen export from forested
watersheds (Eshleman et al., 1998; Swank et al., 1981; Townsend et
al., 2004). In eastern North America, the chief defoliating insects are
the exotic gypsy moth and native forest tent caterpillar, spruce
d).

rights reserved.
budworm and jack pine budworm. Of these species, larvae of the
gypsy moth (caterpillars) defoliate the largest area, and because it
is a non-native species whose range is expanding, the gypsy moth
is of considerable research and management interest. In this paper,
we focus on defoliation of Appalachian oak forests by the gypsy
moth, but demonstrate an application of our approach to defoliation
by the forest tent caterpillar of Minnesota aspen forests.

Starting with Landsat, satellite-based remote sensing has long
been used to detect defoliation by herbivores, including the gypsy
moth on deciduous broadleaf forests (Ciesla et al., 1989; Hurley et
al., 2004; Joria & Ahearn, 1991; Muchoney and Haack, 1994;
Williams et al., 1985), several defoliators of aspen forests (Hall et
al., 2003; Moskal & Franklin, 2004), and the jack pine budworm
(Radeloff et al., 1999), pine sawfly (Eklundh et al., 2009), and spruce
budworm (Franklin et al., 2008) in evergreen conifers. Numerous ap-
proaches have been demonstrated, including classification (Muchoney
& Haack, 1994; Spruce et al., 2011), unmixing (Radeloff et al., 1999),
image algebra (Hurley et al., 2004; Muchoney & Haack, 1994; Royle &
Lathrop, 1997), vegetation indices (de Beurs & Townsend, 2008),
thresholds (Eklundh et al., 2009; Spruce et al., 2011) and change vector
analysis (Townsend et al., 2004). Landsat data have been used most
widely, but studies have shown the capacity of a wide range of sen-
sors, including SPOT (Ciesla et al., 1989; Joria & Ahearn, 1991) and
MODIS (de Beurs & Townsend, 2008; Eklundh et al., 2009; Spruce
et al., 2011). In our review of the literature, almost all efforts to
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Fig. 1. Study area in western Maryland and adjacent Pennsylvania and West Virginia.
Boxes indicate areas shown in Figs. 2 and 5. Study areas are each 28 km wide.
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map defoliation have yielded maps that are either binary (i.e., defo-
liated or not, e.g., Spruce et al., 2011) or with a small number of gen-
eral categories (e.g., moderate, heavy defoliation). Alternative to
satellite remote sensing, aerial disturbance detection sketch maps
generated by the US Forest service (FHTET Geoportal, http://
svinetfc8.fs.fed.us/aerialsurvey/, accessed 27 January 2011) are use-
ful for broad-scale monitoring, but are often inconsistent in detail
and spatial coverage (Johnson & Ross, 2008; MacLean &
MacKinnon, 1996) as discussed in detail by de Beurs and
Townsend (2008). These efforts show the potential of satellite and
aerial methods for detecting insect-induced defoliation, though none
of the products previous to this project provide percent estimates
of forest defoliation. In this paper, we demonstrate a method to
map defoliation as a continuous measure of proportion defoliated.

Mapping of defoliation has employed a wide range of vegetation
indices, including measures that exploit the red/near infrared (NIR)
contrast such as NDVI and WDRVI (Eklundh et al., 2009; Hurley et
al., 2004; Jepsen et al., 2009), the tasseled cap indices (Townsend et
al., 2004), and indices that are responsive to vegetation moisture stress
based on the contrast between NIR and shortwave infrared (SWIR)
reflectance (Fraser & Latifovic, 2005; Vogelmann & Rock, 1989). In
this paper, we evaluate some common indices for their ability to
distinguish the intensity of gypsy moth defoliation.

Mapping of defoliation can be more challenging than mapping
mortality due to wood-boring beetles such as the mountain pine bee-
tle because defoliation is an ephemeral process. Trees can re-foliate,
often during the same season, as in broadleaf hardwoods, or over
the course of the following year, as with conifers. A few studies
have taken advantage of this to distinguish defoliation from other dis-
turbances by looking at trends in vegetation indices over a single
season (de Beurs & Townsend, 2008; Hurley et al., 2004), but from
a practical standpoint, this approach cannot be routinely applied
in temperate regions because of cloud-cover at crucial times of in-
sect activity. As an alternative approach, studies have used
anniversary-date change detection to map defoliation; reflectance
measurements from disturbed and undisturbed years are employed
to discriminate transient changes in forest canopies. We chose this
approach, as it offers the maximum flexibility for detecting repeat
defoliations in areas where summer cloud cover is an issue. Although
the ideal timing for image acquisition is just past the completion
of defoliation (e.g. at pupation for caterpillars), we also examine
how variation in the timing of image acquisition affects mapping
of defoliation intensity for the observed years within the 2000–2008
timeframe.

2. Methods

2.1. Study area

We examined two outbreaks of gypsy moth defoliation in two
predominantly-oak forested study areas (collectively 50,000 ha) locat-
ed in the central Appalachian ecoregion (USA) (Fig. 1). We collected
data during a 2000–2001 outbreak in the Green Ridge (GR) area that
covers parts of western Maryland, south central Pennsylvania and the
eastern panhandle of West Virginia; comparable data were collected
during a 2006–2008 outbreak in the Savage River (SR) area in far
western Maryland. Although the two study areas are less than 100 km
apart, they differ considerably in climate, with Green Ridge being in
the comparatively warmer Ridge and Valley physiographic prov-
ince (means: monthly temperature −1.0 to 23.6 °C, annual precip-
itation 1023 mm) and Savage River in the cooler, wetter Appalachian
Plateau (means: monthly temperature −3.2 to 20.9 °C, annual pre-
cipitation 1216 mm) (Townsend et al., 2004). The growing season
initiates 2–3 weeks sooner in GR than SR. Forests of both study
areas are dominated by oaks. The study areas have experienced sev-
eral waves of gypsy moth defoliation, including 1983–1984, 1987,
1990–1991 and 2000–2001 in GR and 1986–1987, 1990–1991, and
2006–2008 in SR. As a test of the generality of our method, we also
applied our results to a 40,000-ha aspen-dominated study area in
northern Minnesota that was affected by the forest tent caterpillar
in 2001.
2.2. Field data

53 field plots were located within the gypsy moth study areas.
Field plots consisted of two crossing 60×60 m transects defining
five subplots (the intersection and each end of the X) at which tree
composition was characterized using the variable plot-size method
(metric basal area factor 2 prism) described by Townsend (2001).
This plot design is optimized to ensure that the area on the ground
captures at least one full Landsat 30 m pixel. Plot data included mea-
surements of tree height, diameter at breast height (DBH) and basal
area. From the tree data, we calculated total dry foliar biomass
using the allometric equations in Jenkins et al. (2003).

Defoliation by the gypsy moth was characterized in two ways. In
2000, 2001, 2006, and 2007, we measured weekly frass-fall (excre-
ment deposition) at each plot during the defoliation event using 4
or 5 litter traps with collection areas ranging from 1.32 to 2.63 m2.
Dried frass samples were converted to mass of foliage consumed
(kg-ha−1) based on a food use efficiency of 0.14 (W. Mattson, pers.
comm.) and then to proportion defoliated by dividing foliage con-
sumed by total foliar biomass. In 2006–2008, two technicians visually
estimated defoliation weekly for 9–15 trees per plot in ten percent in-
crements, from which we calculated seasonal maximum percent de-
foliation for each plot (weighting the estimate for each tree by its
DBH). Both frass and visual estimates were available in 2006–2007
and were highly correlated (data not shown, Pearson's r correlation
>0.9 for all years with both data sets); in the analyses presented
here we used the measure of percent defoliation based on visual esti-
mates because it was a more direct estimate of foliar removal than the
frass data.

Our field sampling in Green Ridge resulted in data from 15 plots
in 2000 and 12 different plots in 2001. 18 plots were also sampled
in Green Ridge in 2008, although in the absence of significant gypsy
moth defoliation, these plots were not used in the image analysis.
In Savage River, we sampled the same 20 plots in 2006, 2007 and
2008. In 2007, the peak defoliation year, we sampled 6 additional
plots (Table 1). The final analysis used 84 of the 93 samples, with 2
plots removed due to selective logging, 3 due to clouds or shadows,
and four (from 2000) because of a secondary defoliation by phas-
mids (“walking sticks”) that occurred in August and September of
1999, skewing base-year foliar estimates for these plots.
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Table 1
Image data used in the study.

Base Defoliation

Year Study site Date Sensor Path Date Sensor Path Description

2000 Green Ridge 8/4/1999 ETM+ 16 8/22/2000 ETM+ 16 11 plots
2001 Green Ridge 8/4/1999 ETM+ 16 8/25/2001 ETM+ 16 12 plots
2006 Savage River 7/7/2001 TM 17 8/6/2006 TM 17 20 plots
2007 Savage River 7/7/2001 TM 17 8/25/2007 TM 17 24 plots
2008 Savage River 7/7/2001 TM 17 7/19/2008 TM 16 17 plots

Model extension
2002 Green Ridge 8/4/1999 ETM+ 16 8/4/2002 ETM+ 16 Non-defoliation year
2008 Green Ridge 7/30/2006 TM 16 8/20/2008 TM 16 Non-defoliation year
2001 NE Minnesota 6/9/1997 TM 26 6/12/2001 ETM+ 26 Different defoliator

Table 2
Landsat vegetation indices tested in the study.

Acronym Name and equation for Landsat TM and ETM+ Referencea

AI Autumn Index, TM3/TM1 Wolter and Townsend
(2011)⁎⁎

MIR Middle Infrared Index, TM5/TM7 Elvidge and Lyon
(1985)

MSI Moisture Stress Index, TM5/TM4 Rock et al. (1986)
NDII5 Normalized Difference Infrared Index (Band 5),

(TM4−TM5)/(TM4+TM5)
Hardisky et al. (1983)

NDII7 Normalized Difference Infrared Index (Band 7),
(TM4−TM7)/(TM4+TM7)

Hunt and Rock (1989)

NDVI Normalized Difference Vegetation Index
(TM4−TM3)/(TM4+TM3)

Tucker (1979)

RA Reflectance Absorption Index,
TM4/(TM3+TM5)

Arzani and King (1997)

SVI Simple NIR/RED Ratio, TM4/TM3 Jordan (1969)
SVR5 Shortwave to Visible Ratio (Band 5),

3∗TM5/(TM1+TM2+TM3)
Wolter et al. (2008)

SVR7 Shortwave to Visible Ratio (Band 7),
3∗TM7/(TM1+TM2+TM3)

Wolter et al. (2008)

a Many of these indices may have multiple appropriate citations.
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2.3. Remotely sensed imagery and vegetation indices

Image change detection was used to map proportional defolia-
tion using one image from a non-defoliation year and an image from
the defoliation year (Table 1). Image timing played a role in image
selection, but because of persistent cloudiness in the Appalachian
Mountains, we were generally limited to one relatively cloud-free
post-June summer image per year. In our study areas, peak gypsy
moth defoliation can vary from year to year due to inter-annual dif-
ferences in weather, but usually occurs by late June or early July.
Trees may begin to re-foliate 3–5 weeks following peak defoliation,
with maximum re-foliation occurring by mid-August, depending on
climate. Re-foliation is generally a fraction of total foliar biomass
from an undisturbed year, and heavily defoliated stands may not
re-foliate at all (see Fig. 3 in de Beurs & Townsend, 2008).

Although it has been suggested that the combination of pre-
defoliation, peak defoliation, and post-defoliation images in the same
year are most desirable for mapping gypsy moth defoliation (Hurley
et al., 2004), this is not practical in montane forests where clouds can
be frequent. Moreover, same-year pre-defoliation imagery is of limited
value because the life cycle of the gypsymoth parallels spring green-up,
with maximum defoliation occurring shortly after peak leaf expansion.
We were concerned that post-defoliation re-foliation during a year
would affect our analysis, and were fortunate that two post-defoliation
images were available for the analysis of defoliation in 2001: 7/24/
2001, just after peak defoliation, and 8/25/2001, when presumably any
re-foliation would have occurred. We used the 25 August image for
modeling because it was cloud-free, whereas the 24 July image was
obscured by small cumulus clouds.

To develop a generalizable, repeatable method for mapping
defoliation of broadleaf deciduous trees, we examined defoliation
in five different years in two physiographically distinct study areaswith
different Landsat footprints. This approach required a repeatable meth-
od for image pre-processing and the use of easily-calculated image
variables. We employed Landsat images downloaded from the USGS
Global Visualization Viewer (www.glovis.gov). All images were pro-
cessed identically: they were converted to top-of-atmosphere reflec-
tance using coefficients provided in the image header data, then
atmospherically corrected to percent reflectance following the LEDAPS
atmospheric correction processing stream (Masek et al., 2006). LEDAPS
employs the 6S radiative transfer code (Kotchenova et al., 2006) in
conjunction with several atmospheric products to estimate Lam-
bertian surface reflectance for each image pixel. Masek et al. (2006)
report error rates of 0.5% absolute reflectance or 5% measured reflec-
tance. We employed the C-factor topographic normalization tech-
nique of Teillet et al. (1982) to reduce the effects of differential
illumination due to topography. Numerous alternative methods for
atmospheric correction and topographic normalization are available
for pre-processing multi-spectral imagery. Although it was outside
the scope of our work to compare different techniques, we postulate
that our approach will be applicable using other methods if they are
applied uniformly and consistently to all images.

We tested ten different easily-computed Landsat vegetation indi-
ces for their capacity to detect defoliation (Table 2). These included
indices that our previous work had shown to be effective for charac-
terizing defoliation, including several indices that use the sensitivity
of shortwave infrared (SWIR) reflectance to leaf water content and
near infrared (NIR) reflectance to green vegetation biomass and
hence, jointly, to vegetation stress. Undisturbed forests are expected
to exhibit higher values of Normalized Difference Infrared Index
(NDII) (Table 1, sometimes also referred to as the Normalized Differ-
ence Water Index (NDWI) or Normalized Difference Moisture Index
(NDMI)) and lower values of MSI compared to defoliated forests due
to the decline in water content from the loss of leaf area (de Beurs &
Townsend, 2008). We also tested traditional indices such as NDVI
and SVI because of their wide use for characterizing vegetation, as
well as several others that other work by our group suggested may
be sensitive to forest change (Wolter & Townsend, 2011; Wolter et
al., 2008).

We did not employ several indices that we have previously used
to characterize the relationship between forest disturbance and
water quality in our study area, including the Tasseled Cap (Wetness
and Greenness indices, Crist & Kauth, 1986; used in Townsend et al.,
2004), the forest disturbance index of Healy et al. (2005, used in
Eshleman et al., 2009 and Deel et al., accepted for publication) and
a variety of modified vegetation indices such as the enhanced vege-
tation index (EVI, Huete et al., 2002). Many of these indices are
strongly correlated with indices we used (e.g., see Jin & Sader, 2005),
or require within-scene calibration to that limits the generality of the
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index (such as the Healy et al. index). We make one radiometric modi-
fication to our data based on the observation that vegetation indices for
closed-canopy undisturbed forests saturate at a uniform maximum VI.
As such, we aligned our VI images by the eightieth percentile value of
the distribution for forests in the whole VI image.

2.4. Statistical analyses

All statistical analyses employ proportion of foliage remaining (1
minus proportion defoliated) as the dependent variable, expressed
as a range from 0 (completely defoliated) to 1 (no defoliation). We
fit a negative logistic (sigmoidal) curve to predict the proportion of
foliage remaining as a function of the change in a vegetation index
between and a non-disturbance (base) year and the disturbance
year, following:

Foliage remaining proportionð Þ ¼ b
1þ exp − cþ d � ΔVIð Þ½ � ; ð1Þ

where the parameter b represents the asymptote (maximum foliage
retained), c and d are parameters determining the shape of the sig-
moidal curve, and ΔVI is the difference between years in the selected
vegetation index (VI) for the plot, i.e.:

ΔVI ¼ VI base yearð Þ−VI defoliation yearð Þ ð2Þ

For all of the indices we tested except MSI, healthy green vegeta-
tion has a higher VI than damaged vegetation, so the expectation is
that ΔVI increases as defoliation increases. Values of ΔVI close to
zero or negative indicate stands with minimal disturbance between
years. MSI, the ratio of Landsat band 5 to band 4, increases with de-
creasing vegetation vigor, so the form of the relationship is reversed.
Our model (Eq. (1)) does not include an intercept, which would rep-
resent a lower bound to our estimate of the proportion of foliage
retained. The lower bound is assumed to be zero, indicating com-
plete defoliation. We did, however, model the upper asymptote, b,
as all plots in our study exhibited some level of foliar damage due
to herbivory.

Because we used data from five different years and two different
study areas, we developed two forms of models, a global model, in
which image VI is assumed to vary as a function of defoliation, inde-
pendent of the year sampled. To address the possibility that the
models differed between years, we also fit a mixed-effects model,
in which a random effect (year) was fit for parameters c and d.
Note that our prime interest was to develop the global model with-
out random year effects, because it would be more generalizable to
years not having field measurements. Defoliation and disturbance
represent one component of change in the imagery, but some areas
also experience increasing greenness. Although we did not directly
sample forest regrowth, we calculated a measure of forest regrowth
for 24 of our samples in Savage River that exhibited decreasing de-
foliation from 2006 or 2007 to later years. Regrowth is calculated
as 1+[defoliation in earlier year−defoliation in the later year]
and effectively extends the range of measurements. We fit an alter-
native sigmoidal model to the defoliation plus regrowth data using
Eq. (1).

We tested the 10 vegetation indices (Table 2) for their potential
to characterize defoliation using the simplest form of Eq. (1), with
b=1 (asymptote of all foliage retained) and no random effects. The
vegetation index exhibiting the best performance using the Akaike
Information Criterion (AIC) and Schwartz's Bayes Information Crite-
rion (BIC, see Burnham & Anderson, 2002) was then used for further
model development, statistical testing and mapping. The traditional
coefficient of determination (R2) is not appropriate for non-linear
models. As such, we report a generalized form of the coefficient of
determination (Nagelkerke's pseudo-R2) based on the likelihood
function (Cox & Snell, 1989; Nagelkerke, 1991). However, AIC and
BIC are generally considered better measures than R2 for model selec-
tion because they penalize models with increasing complexity (i.e.,
more parameters). For evaluation of the models themselves, we report
the mean absolute error of prediction (MAE) and root mean square
error of prediction (RMSE). These measures are most useful for this
work, as they provide measures of the level of expected error in
units of proportion of the foliage remaining/consumed.

Preliminary efforts, including the results reported by de Beurs and
Townsend (2008), indicated that vegetation indices using the near
infrared (NIR) and shortwave infrared (SWIR) bands on Landsat were
most sensitive to defoliation, so our expectation was that either NDII
or MSI would be the preferred vegetation index. NDII has the benefit
of being normalized, making numerical interpretation of differences
between years relatively straightforward. In contrast, ΔMSI can
potentially provide a wider dynamic range than NDII. Both indices
reduce the effects of topography in imagery, although because it is
normalized, NDII may be less sensitive to the effects of differences
in illumination than MSI.

2.5. Model evaluation

We evaluated all predictive models using cross-validation by year.
To do this, we dropped all data from each year successively and re-
built the model using the remaining four years. We then applied the
resulting model to the data from the dropped year and calculated
cross-validation (CV) fit statistics, reported as CV-MAE, CV-RMSE
and CV-R2. As a secondary measure of cross-validation, we also report
the model fit for each iterative model. Drastic changes in model per-
formance for a particular dropped year, by either model improvement
or decline, indicates that a particular year does not fit the overall
trends in the relationship between defoliation and ΔVI.

Further testing of the predictive models involved map comparison
and image substitution. We visually compared our maps of defolia-
tion from each year to US Forest Service aerial sketch map data of
gypsy moth defoliation. This provides no absolute validation of our
results, as the sketch map data are discontinuous in spatial extent
and, as reported elsewhere, are widely varying in overall quality (de
Beurs & Townsend, 2008). However, they do provide a general quali-
tative measure of concurrence between our maps and an indepen-
dent data source. We also applied our final model to images from
years of known minimal defoliation (2002 in both areas, and 2008
in Green Ridge, based on sketch map data) to ensure that the model
did not erroneously map defoliation where none occurred.

We were also interested in evaluating the importance of image
date during the growing season for mapping defoliation. Because of
the cloudiness of the Appalachian Mountain region, we were limited
in the availability of relatively cloud-free images for this study, mean-
ing that we employed images that were not optimally tied to peak
defoliation. However, for 2001 and 2008, alternate images were avail-
able (Table 1). We applied the final model to the alternate images and
compared these with the maps developed using the model data.

Finally, we hypothesized that in addition to being generalizable
to gypsy moth defoliation in Appalachian forests, our model is suffi-
ciently general to enable its application to defoliation by other her-
bivores of closed-canopy broadleaf deciduous forests. We therefore
applied the model to a defoliation event by the forest tent caterpil-
lar of aspen-dominated forests in the Arrowhead region of north-
eastern Minnesota. Such an approach facilitates the retrospective
analysis of past forest disturbances for which field data are lacking,
and represents the development of an index measure of defoliation
(rather than a direct estimate), since calibration data are not avail-
able. For this analysis, we employed Landsat images for a defoliation
year (2001) and a non-disturbance year (1997, see Table 1). The
Minnesota Landsat images were processed identically to the Appa-
lachian images.



Fig. 2. False color images of the Savage River area for 7 July 2001 (top, not defoliated)
and 25 August 2007 (bottom, defoliated). Band combination is Landsat channels 5, 4,
and 3 in RGB. Study area is 28 km wide.
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3. Results

Indices that employed NIR and SWIR bands provided the best
estimation of defoliation using the two-term fixed-effects (“global”)
model (Table 3). NDII5 and the closely related MSI produced nearly
identical results, exhibiting a strong sigmoidal relationship between
foliage retained and the change index (Fig. 3). The ability to detect
defoliation using SWIR and NIR is clearly illustrated in pre- and post-
defoliation Landsat images for the study area (Fig. 2). The cross-
validation RMS error to predict foliage removal/retention as a func-
tion of ΔNDII5 was 14.9% with a cross-validation R2 of 0.802. Average
error on cross-validation was less than 11%. Indices employing visi-
ble wavelengths or exclusively SWIR bands performed less well,
although the reflectance–absorption index (RA), which uses the
sum of Landsat's red and 1.55–1.75 μm SWIR5 bands in the denomi-
nator, also performed well. NDII7, which uses the 2.08–2.35 μm
SWIR7 channel, did not perform as well as NDII5, probably due to
the lower signal in the SWIR7. NDVI performed less well than all of
the SWIR/NIR-based indices (Fig. 3), with amuchmore scattered dis-
persion of points and several likely outliers. All years fall on the pre-
diction line, with no apparent systematic bias by year.

For the remainder of the analyses we report ΔNDII5 exclusively.
We tested whether our assumption of a “global” 2-term fixed-effects
model (Table 4) based on a sigmoidal fit using all years of data was rea-
sonable. We found that a mixed effects model using year as a random
effect (F(6,84)=148.9, pb0.001) did not provide a statistically signifi-
cant improvement over the global model. Although the mixed model
was significant, the 95 percent confidence intervals for the random
effects all bounded zero, indicating that they did not improve the
model over a global fixed effects for parameters c and d. This inter-
pretation is confirmed by the AIC for the two models, which was
lower for the global model (−94.7 vs.−92.2), and generalized coef-
ficient of determination, which was about the same for both models
(0.844 vs. 0.842). The RMS error for the global model was slightly
worse than for the mixed model (13.5% vs. 12.9%). The lower AIC
and equivalent values of Nagelkerke's R2 for the global model result
from a lower model complexity (fewer parameters) compared to
the mixed-effects model. Note that BIC was lower for the mixed effects
model (−94.5) than the global model (−87.4), which does indicate
that the mixed model is able to account for some of the variability in
model fit across years.

Finally, we tested for the necessity of an upper asymptote for
percent vegetation retained in the global model, by adding a third
fixed parameter, b, which would represent a maximum amount of
foliage retained, or conversely the minimum amount of defoliation
measured. We performed this analysis because all plots – regardless
of the presence of the gypsy moth – exhibited some measurable
herbivory every year; there were no field plots with 100% foliage
retained (Fig. 3). The results of this analysis also confirmed that
the 2-parameter fixed effects model was sufficient. Model AIC was
lower for the 2-parameter model (−94.7 vs. −92.8), RMS error
Table 3
Comparison of 2-term fixed-effects models for all indices. Index names listed in Table 2.

Index Model diagnostics

AIC BIC MAE RMSE Infl

NDII5 −94.7 −87.4 0.097 0.135 0
MSI −88.5 −81.2 0.102 0.140 0
RA −81.6 −74.3 0.108 0.146 −
NDII7 −68.6 −61.4 0.112 0.158 0
NDVI −53.1 −45.8 0.122 0.173 0
SVI −2.3 5.0 0.182 0.235 4
MIR −1.9 5.4 0.182 0.235 0
SVR 29.9 37.2 0.218 0.284 0
AI 56.8 64.1 0.282 0.333 −
SVR7 59.5 66.8 0.290 0.339 −
was nearly identical (13.5% vs. 13.6%) and Nagelkerke's R2 was the
same (0.844). The estimated asymptote, b, for the 3-parameter
model was 0.977 (or 97.7% foliage retained) with 95% confidence
intervals of 0.873 and 1.081, indicating that a modeled asymptote
does not differ measurably from the assumed asymptote of one in
the model presented in Table 4. As such, all further results focus exclu-
sively on the two-term global model to predict defoliation/retention
using ΔNDII5.

We report the inflection point for the sigmoidal curves (Fig. 3) in
Table 3. The inflection point indicates the value of ΔNDII5 at which
point the model effectively separates the most defoliated and least
defoliated observations. For ΔNDII5, this value is 0.068, so that an
approximate decrease of 0.07 in NDII5 captures major defoliation.
NDII values range −1 to +1, but are effectively much smaller
than this (+0.28 to +0.52), so that a 0.07 change in NDII5 represents
about 30% of the effective range of the index. We conclude that NDII5
is quite sensitive to differences in foliage present between defoliation
Cross-validation results

ection N-RSQ CV-MAE CV-RMSE CV-RSQ

.068 0.844 0.106 0.145 0.821

.320 0.832 0.111 0.151 0.804
0.056 0.817 0.117 0.157 0.788
.067 0.787 0.120 0.169 0.756
.035 0.744 0.129 0.178 0.728
.732 0.531 0.205 0.262 0.414
.328 0.528 0.189 0.243 0.495
.673 0.311 0.229 0.304 0.211
0.276 0.051 0.296 0.353 −0.065
0.458 0.020 0.313 0.372 −0.179
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Fig. 3. Model results for vegetation indices to predict gypsy moth defoliation by year and study site (circles=Green Ridge, squares=Savage River). Lines indicate best-fit
2-parameter sigmoidal model as reported in Table 3.

Table 5
Cross-validation results by year.

Year Global modela Cross-validation 1 Cross-validation 2

MAE RMSE RSQ MAE RMSE RSQ MAE RMSE RSQ

2000 0.073 0.111 0.871 0.079 0.116 0.859 0.100 0.138 0.840
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and non-defoliation years. It is also noteworthy that all sites with
ΔNDII5≤0 are clearly not defoliated based on the field data (Fig. 3).

Using RMS error as a metric, the overall model performed best for
2001 (8.2%) and worst for 2007 (17.0%) (Table 5). Although we report
CV-R2 values, these are not the best measures of model performance.
For instance, 2008 has a low CV-R2, but its RMS error is also low
(12.8%). This is because this was the last year of the Savage River de-
foliation, and overall foliage consumption was much lower in 2008
than the other years. The cross-validation results mirror the model
results (Fig. 4), indicating a high level of stability in the model even
when data from each year is removed. The models developed without
each year (Cross-Validation 2 in Table 5) perform uniformly well,
providing support for our assertion that the global model we devel-
oped is applicable across years, even those without field data for
calibration.

We applied the model reported in Table 4 to the sets of images
listed in Table 1. The maps of defoliation show distinct patterns asso-
ciated with the 2000–2001 (Green Ridge, Fig. 5A–B) and 2006–2008
(Savage River, Fig. 5E–G) defoliation events. The defoliation events
in 2000–2001 were scattered, with patches of intense defoliation.
In 2001, the naturally-occurring fungal pathogen Entomophaga
maimaiga reduced gypsy moth populations as the larvae matured to
Table 4
Parameter estimates for the fixed-effects (“global”) model using ΔNDII5.

Parameter Estimate ±1 SE T⁎⁎⁎

c 2.059 0.305 11.23
d −30.394 3.275 −11.28

⁎⁎⁎ pb0.0001 (Nagelkerke's R2=0.844, F(3,84)=273.16, n=84, RMSE=0.135).
their largest andmost voracious feeding stages. In Savage River, the de-
foliation event was widespread and locally intense in 2006, then ex-
ploded in 2007 (Fig. 5E–G, see also Fig. 2), before receding again in
2008when the Entomaphaga again reduced the gypsymoth population.
Note that areas sprayed for the suppression of gypsy moth in Savage
River are clearly evident in Fig. 5E–G as a block in the center right
where almost no defoliation is mapped.

We also applied the global model to images of Green Ridge for
two years in which very little (2002) or no defoliation (2008) was
reported by the Maryland Department of Agriculture (Fig. 5C–D).
For 2002, the resulting map (Fig. 5C) shows a few small patches of
defoliation, while the map derived for 2008 shows no defoliation.
Sketch maps for those years also indicate no gypsy moth activity.
Based on these visual comparisons, our model appears to capture
2001 0.069 0.082 0.898 0.070 0.083 0.896 0.102 0.142 0.828
2006 0.108 0.132 0.876 0.123 0.146 0.848 0.094 0.134 0.835
2007 0.110 0.170 0.769 0.111 0.173 0.762 0.091 0.118 0.849
2008 0.099 0.128 0.589 0.121 0.152 0.423 0.092 0.135 0.866

Cross-validation 1 quantifies how well that year is predicted by model built without
that year.
Cross-validation 2 quantifies how well the model that excludes that year performs on
all of the data.

a Quantifies how well global model fits individual years.
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Fig. 4. Results of the cross-validation of the global model (circles=Green Ridge,
squares=Savage River). All plots from each year were removed successively and
the model rebuilt each time. The predictions on the Y-axis are for the removed plots
that were predicted using the model in which that year was removed.
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the lack of defoliation disturbance in the observed non-defoliation
years.

The only year in which two images capturing a defoliation event
were available was 2001, in which we have scenes dated 24 July
and 25 August. For the global model, we used the 25 August image
because it was cloud-free while the July image had cumulus clouds
dotted throughout. Although the July image was timed closer to peak
defoliation, the global model exhibited a stronger fit to the field data
using the August image as the target defoliation image. The results sug-
gest that in these oak-dominated forests, re-foliation is relatively minor
compared to the overall signal of defoliation, especially in dry years
such as 2001 and 2007. Indeed, this result is corroborated by an ex-
amination of the imagery and maps for Savage River for 2007, also
from 25 August (Figs. 2B and 5F). Heavy defoliation is clearly evident
in the August 2007 image, despite potential re-foliation, and the error
rates for 2007 were reasonable (Table 5). Our testing of the set of alter-
nate base image (25 June 2005 instead of 7 July 2001) for Savage River
in 2006–2008 showed little difference, and we conclude that image
selection for both target and base images should be optimized to
select cloud-free images on the closest available anniversary dates.

The model using growth data indicates that the sigmoidal curves
representing defoliation (Fig. 3) can be extended to capture foliar
growth as well (Fig. 6). We developed a single model for defoliation
and growth using NDII5. For this model, we constrained the inflection
point of the curve to zero, such that the crossover from defoliation to
regrowth would occur at ΔNDII=0 (parameter c=0 in Eq. (1)). On
the other hand, we have no measure of the potential maximum
regrowth, so we modeled the upper asymptote. The resulting model
(F(3,108)=513.3, pb0.0001) took the form:

Foliage change ¼ b= 1þ exp −d � ΔNDII½ �ð Þ−1; ð3Þ

where b=1.82 and d=−15.14. This indicates an upper asymptote of
82% foliar increase. Model performance was similar to the global
model, with a mean absolute error of 0.128 (12.8%), an RMS error of
0.165 and Nagelkerke's R2=0.86.

The application of our global model to the defoliation of aspen
forests by forest tent caterpillar yielded maps that visually matched
observed patterns (Fig. 7). This is important because US Forest Ser-
vice sketch maps for Minnesota show a single large polygon of the
Arrowhead region indicating defoliation, with no detail. However,
detailed patterns of defoliation are evident in the Landsat imagery
(Fig. 7A–B) and are captured by the map (Fig. 7C). Our approach likely
works because both the oak forests of the Appalachians and the aspen
forests of Minnesota are closed canopy broadleaf systems, where
multispectral response from foliage removal is equivalent. In con-
trast to Appalachian oak forests, however, aspen forests usually re-
foliate more readily (i.e. rapidly and completely), meaning that the
timing of image acquisition is an important consideration for mapping
defoliation of this species. Although there is no way to absolutely
validate the assessment of the 2001 aspen defoliation, we provide
this example as a demonstration of the possibilities of our approach
for retrospective analyses of locations and time period of the Landsat re-
cord for which field validation is limited or unavailable.
4. Discussion

Wewere able to consistentlymap gypsymoth defoliation using sim-
ple differences of NDII5 between defoliation and non-defoliation years
across two study sites and five different years. In addition, application
of themodel to non-defoliation years correctly predicted no defoliation.
Cross validation resulted in error estimates of 10–15% defoliation,
which is about the same level of uncertainty associated with the defoli-
ation estimates. A fixed-effect “global” model with an asymptote of 1
(no defoliation) and an intercept of 0 (100% defoliation) adequately
characterized defoliation across all events, while the results of more
complex models with random effects by year yielded no improvement
over the global model. The model should be sufficient to map defolia-
tion for other years in our study areas, and probably in other study
areas having similar forest characteristics.

The success of our effort depended on having images that were
radiometrically comparable. All of the images that we used were
from mid-summer (within a 6-week anniversary date span), and
were processed to surface reflectance identically. The images were
downloaded from USGS at the same time, so the level of processing
at USGS was consistent. Prior to the opening of the USGS archive,
we had used nearest-neighbor resampled images from the same
dates to map defoliation (Townsend et al., 2004), and the results
were considerably more noisy. It appears that the cubic-convolution
resampled data provided by USGS reduce the effects of misregistra-
tion that are prominent in change detection analyses using nearest-
neighbor resampling.

Our results suggest that themodel for mapping defoliation (Table 4)
is extendable to other years and places. A logical next step is to test the
robustness of themodel with other data from sensors that alsomeasure
reflectance in the SWIR and NIR. Likewise, further testing is required to
establish that themodel is extensible to defoliators other than the gypsy
moth, although our results are promising for the forest tent caterpillar.
It is likely that coefficients for models of defoliation of evergreen coni-
fers will differ from this work, but we predict that a similar overall
modeling approach using ΔNDII5 (Eqs. (1) and (2)) will succeed, with
two important caveats: (1) as evergreens, the analyses will have to ad-
dress cumulative defoliation in addition to current-year defoliation, and
(2) the interpretation of the results will be sensitive needle removal
(needles are clipped, but not consumed and fall into the canopy) and
color change in addition to needle consumption (see Radeloff et al.,
1999).

Ultimately, the benefit to our approach is that it is straightforward
and: (1) it requires images processed identically to surface reflec-
tance, with (2) one image from a non-defoliation year and one from
a defoliation year, and (3) the actual change detection is a simple dif-
ference of the two NDII5 images. Our results confirm other studies
showing that NIR/SWIR-based indices such as NDII5 are preferred to
VIS/NIR indices such as NDVI for mapping defoliation (De Beurs &
Townsend, 2008; Fraser & Latifovic, 2005). However, our results
(Table 3) indicate that NDVI remains viable for mapping defoliation
in absence of suitable SWIR bands. Additional modeling application
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Fig. 5. Maps of percent defoliation by gypsy moth for a subset area of Green Ridge in (A) 2000, (B) 2001, (C) 2002, (D) 2008 and Savage River in (E) 2006, (F) 2007 and (G) 2008.
Location of subset areas are shown on Fig. 1. Gray areas indicate non-forest, clouds and cloud shadows. Logged areas are also masked. Compare Savage River results to Landsat im-
ages shown in Fig. 2.
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and validation studies involving other regions, more extensive field
data and insect defoliators are recommended.

Our results are distinguished from other studies in that we map
foliage retained (and its inverse, proportion defoliated) as a contin-
uous range from 0 to 100%. Other efforts to map defoliation have
produced categorical maps. Even with the estimated ±10–15%
error of our maps, we provide information that will be useful to as-
sess the relative spatial variations in impacts of defoliation. Clearly,
improvement in spatial predictions of forest growth and productivity,
forest watershed nutrient retention, and possibly fire hazards will be
valuable for management and recreational purposes. In remote areas
with little directmapping of defoliation disturbance, or in any area lack-
ing resources for intense mapping of insect defoliation, our model,
along with suitable Landsat data, will also be useful for identification
of areas in need of management prescriptions or for monitoring of for-
est resource conditions.

Although this study is specific to forest defoliation rather than
mortality, our work has actual or potential value for other types of
forest disturbance monitoring. For example, there is a considerable
literature on the use of multispectral imagery to map mortality due
to insects such as the mountain pine beetle. However, most studies
tend toward mapping categorical variables rather than producing
maps with continuous estimates of damage (e.g., Hatala et al., 2010;
Hicke & Logan, 2009;Wulder et al., 2005). Studies that employ hyper-
spatial data can generate maps of damage rates because of the ability
to map individual trees, although at the cost of broad spatial coverage.

One of the strengths of our study is that we had field data to char-
acterize defoliation across five events in two study areas. It is notable
that the methods of field data collection varied from year to year,
with estimates of defoliation being derived from frass (excrement)
collections, allometry, and optical estimates of percent defoliation.
Nevertheless, our model produced consistent results across years re-
gardless of the specific field method used for estimating defoliation.
This provides additional evidence that the approach is both extensible
across studies and robust against differences inmeasurement andmea-
surement error. We do not suggest that differences in defoliation

image of Fig.�5


Fig. 6. Model using regrowth estimates to predict growth and defoliation.

Fig. 7. Defoliation by the forest tent caterpillar in northern Minnesota in 2001: (A) Base
image fromDDMonth 2002, (B) Target defoliation image fromDD July 2001, (C) Mapped
defoliation using the global model presented in Table 4. Color scheme is same as Figs. 2
and 5.
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estimation techniques have no impacts on defoliation predictions.
However, we do feel that the robustness of our methods largely over-
comes the inherent differences in empirical data collections. Our work
does point to the importance of field calibration and validation. Al-
though we used a jack-knife approach for model evaluation, the ideal
study would use an independent image data set, for example high res-
olution imagery timed to peak defoliation, which were not available
for this study.

Our approach is based on quantitative assessment of changed in
reflectance of defoliated canopies, and appears to work with other de-
foliator species (forest tent caterpillar in Minnesota aspen forests).
We expect that the method would also work across a range of forest
types – not just oaks – defoliated by the gypsy moth. Defoliation of
conifers by the gypsy moth was not addressed specifically in this
study and would require further work to assess the extensibility to
forests with different leaf physiognomies. Several of our field plots
were of mixed oak–conifer composition and did exhibit bias in the
residuals.

Our model of proportion of foliage retained (Eq. (1), Table 4) as-
sumes an asymptote of one, namely that from year-to-year, some
forests experience no defoliation. This is the basis for using a model
with a sigmoidal form. From a remote sensing perspective, this is
borne out by the ΔNDII5 data, in which some areas exhibit negative
ΔNDII5, i.e. NDII increases from the base year to the target year, indi-
cating a forest that has greened between years (Eq. (2), see Fig. 3A).
Yet it is unusual to measure zero defoliation using field methods,
even if a forest is thriving compared to a previous year. Herbivorous
insects, including larvae of the gypsy moth, are always present, even
if the forest is not undergoing an irruptive, regionally evident defoli-
ation. Our field data from Green Ridge for 2008, a year without major
gypsy moth activity, illustrate this. In 2008, average defoliation in
plots in which no larvae were observed (n=15) was estimated at
13.3%, with a minimum of 6.6%. This means that at the lower end of
the predictions (upper end of foliage retained), the maps will always
show some level of insect activity. These low levels of defoliation
activity do not represent error in the maps, but, depending on the
application, users of the maps may want to adjust the predicted
range to capture the effective range of foliage removed/retained.
By definition field measures provide within-year estimates of defo-
liation as [foliage removed (in yr x)] / [foliage produced (in yr x)]. In
contrast, ΔVI characterizes defoliation as a between-year difference,
i.e. [foliage removed (in yr x)] / [foliage produced (in yr a)], where
year a is a base year. The field data effectively biases the model
asymptote away from 1 since there is no measure of defoliation in
the base year. Because defoliation is a relative measure, non-
defoliation years are expected to exhibit foliage retention of ≥1,
i.e. increasing leaf area. We show that the sigmoidal curve (Fig. 2)
can be extended to capture regrowth (Fig. 6) and potentially pro-
vide a better representation of overall canopy foliage disturbance
and recovery. Full implementation of the disturbance/growth model
would require dedicated sampling of year-to-year foliage dynamics in
non-disturbed years.

The choices of base and target (defoliation) images are also impor-
tant to the broader application of our approach. In our study, we used
defoliation images that ranged in date from 19 July to 25 August.
Depending on weather, gypsy moth population levels, suppression
efforts, and pathogens such as E. maimaiga, peak defoliation in the
study area may occur any time between late June and mid-July,
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with potential re-foliation occurring up to a month later. This makes
for a highly dynamic and variable system from year to year. Model
error between and within years (Figs. 2 and 4) can likely be attribut-
ed to some of these factors. However, our results indicate that the
method is relatively robust across a range of dates. Indeed the results
do confirm the observation that even when forests re-foliate, it is
likely proportional to defoliation, and, at least in Central Appalachian
oak forests, of limited signal in the Landsat images. It may be that
other satellites or planned sensors with superior radiometric resolu-
tion and signal-to-noise than Landsat 5 and Landsat 7 will be more
sensitive to re-foliation response.

For this study, we selected base images from years that were as
few years as possible previous to the defoliation years, were cloud-
free and for which no defoliation had been reported, although this
does not guarantee that no defoliation occurred. This meant a time
difference of one and two years for the 2000–2001 Green Ridge defo-
liations, and 5+ years for the Savage River outbreaks. Although we
are not aware of any issues with the 2001 base image for Savage
River, we did have to exclude four plots from our analysis in Green
Ridge because the sites experienced a walking stick defoliation in
the base year, 1999. We were fortunate to have this information
from a different study that sampled these field sites in 1999. However,
it is altogether plausible that isolated defoliation or other canopy
disturbances occurred elsewhere in our Landsat scenes. Discrimina-
tion of defoliation from other disturbances (e.g. logging, other defo-
liators) is also important to the interpretation of results from this
model. Ultimately, the identification of undisturbed base images is
important to this approach, but given a long enough time-series of
Landsat TM/ETM+ and future data sets, we will be able to develop
pixel-wise base maps of maximum greenness using data across mul-
tiple years rather than a single base image (e.g., Spruce et al., 2011;
Deel et al., accepted for publication).

Our results are encouraging in light of the potential launch of
Landsat data continuity mission. The strength of our results in light
of the diminished SNR of late-era Landsat 5 imagery suggests that
the signal of defoliation in broadleaf forests is strong, and that the re-
lationships are stable. The next steps include testing our approach for
mapping disturbance in additional systems, and applying the results
to past events, such as gypsy moth defoliation from the 1980s.

5. Conclusion

We have presented a straightforward method to estimate defolia-
tion using Landsat imagery with radiometric, atmospheric, and topo-
graphic corrections. Ultimately, we conclude that our approach should
be suitable both for characterizing future defoliation events, as well as
back-casting defoliation events –with limitations – in the recent histor-
ical record. If implemented as amonitoring strategy, a small, but careful
effort of field monitoring should provide the necessary data to refine,
update and validate the model parameters. Key considerations of the
applicability of our model include composition of the defoliated species
and vegetation phenology of pre- and post-defoliation images. With
improved sensors and image data, the capacity to detect defoliation
will only improve. From an ecological perspective, our approach
allows characterization of a forest disturbance process that signif-
icantly impacts above- and below-ground forest productivity, as
well as nutrient dynamics (e.g., see McNeil et al., 2007; Townsend et
al., 2004). This researchmay be especially useful in landscape-scale car-
bon modeling, where the characterization of disturbances is a key un-
certainty (Hicke et al. 2012).
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