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Abstract. Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified
temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their
change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and
linear regression to quantify the influence of drought and temporal trends in annual number and mean size of wildfires.
Analyses confirmed drought as an important driver of both occurrences and fire size. When both drought and time were
incorporated in linear regression models, the number of wildfires showed a declining trend across the full study area,
despite housing density increasing in magnitude and spatial extent. Fires caused by campfires and debris-burning did not
show any temporal trends. Comparison of spatial models representing biophysical, anthropogenic and combined factors
demonstrated human influences on wildfire occurrences, especially human activity, infrastructure and property values.
We also identified a non-linear relationship between housing density and wildfire occurrence. Large wildfire occurrence
was predicted by similar variables to all occurrences, except the direction of influence changed. Understanding these
spatial and temporal drivers of wildfire occurrence has implications for land-use planning, wildfire suppression strategies

and ecological goals.
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Introduction

Understanding the processes underlying spatial and temporal
trends in wildfire patterns is critical for projecting future wild-
fire risk. Traditionally, biophysical factors such as climate, soil
moisture and vegetation types collectively define the fire regime
(Schulte et al. 2005) and its consequent risk to human life and
property. Yet in many areas, humans are the cause of most fires,
and human development and activity patterns (both starting and
putting out fires) are increasingly overriding the biophysical
factors that historically controlled fire regimes (Syphard et al.
2007).

Human factors such as housing density, population density
and road networks have all been identified as important influ-
ences in the spatial distribution of wildfires in places where
people tend to start most fires (Maingi and Henry 2007;
Sturtevant and Cleland 2007; Syphard et al. 2007; Calef et al.
2008; Catry et al. 2009; Grala and Cooke 2010). In areas where
rural development overlaps with fire-prone vegetation, asses-
sing the importance of human and biophysical drivers and their
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spatial and temporal patterns is necessary for both current and
future wildfire risk assessment.

Most of the drivers underlying wildfire occurrence — whether
biophysical or human — are dynamic at different spatial and
temporal scales. Drought cycles, climate, vegetation, and human
activities and development patterns are all simultaneously
changing, but at different spatial and temporal scales. If relation-
ships among wildfires and their underlying drivers remain
constant over time, we would simply need to forecast the drivers
into the future to understand future wildfire risk. Alternatively,
the relationships themselves may change. For example, ignition
and suppression patterns can change over time (Guyette et al.
2002) owing in part to changing social conditions, which could
result in substantially different patterns of wildfire risk. Account-
ing for such variable relationships is important to the dynamic
projection of future wildfire risk under different scenarios of
human development, land management and climatic conditions.

Previous research in the Great Lakes region has shown
human influence, specifically housing density, to be an
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important driver of wildfire occurrence by increasing fire
ignition rates (Cardille ef al. 2001; Sturtevant and Cleland
2007). Given the general increasing trend of housing density
in recent decades in northern Wisconsin (US Census Bureau
2002), we hypothesised an increasing trend in wildfire ignitions.
Our second hypothesis was that annual area burned in this region
would not show a temporal trend, because biophysical variables
assert greater influence than human factors in determining large
fires (Sturtevant and Cleland 2007), and because higher housing
density might lead to faster reporting and suppression, counter-
ing the effect of increased ignitions. Our third hypothesis was
that these trends would be regulated by climatic conditions,
specifically drought, which has been identified by several
researchers as increasing wildfire occurrence (Lorimer and
Gough 1988; Mitchener and Parker 2005; Xiao and Zhuang
2007; Brown et al. 2008; Grala and Cooke 2010). Thorough
understanding of these hypothesised drivers of wildfire occur-
rence should allow the projection of wildfire risk under future
alternative human development scenarios.

The objectives of this study were to quantify the temporal and
spatial trends in wildfire occurrence in northern Wisconsin, to
identify the drivers of these trends, and to assess whether the
relationships between underlying drivers and wildfire occur-
rence vary at different spatial and temporal scales. Accomplish-
ing these objectives will enable the projection of future wildfire
risk assuming continued rural development in the region. We
expand on earlier research by Sturtevant and Cleland (2007)
who applied classification tree analysis to evaluate the relative
importance of human and biophysical factors affecting fire
occurrence in northern Wisconsin. We add to their analysis by
using more fine-scale fire location and spatial covariate data,
and adding specific spatial land-use variables that can be
projected into the future. We additionally evaluate the temporal
component of wildfire occurrences — specifically with respect to
the influence of drought on wildfire occurrence and size — to
better understand the concurrent influence of human develop-
ment patterns on wildfire risk. Understanding these spatial and
temporal drivers underlying observed wildfire patterns has
implications for land-use planning, fire management and eco-
logical restoration (Sturtevant et al. 2009), particularly under
alternative future climate change and land-management
scenarios.

Methods
Study area

We evaluated wildfire patterns at two spatial extents. The
smaller study area was defined by Oconto County, WI (Fig. 1),
and contains a mixture of forest, agriculture and developed
lands, with the north-western third dominated by forest,
including a portion of the Chequamegon—Nicolet National
Forest. Developed areas are interspersed throughout the county,
including inholdings within the National Forest. All analysis
was limited to portions of the county for which the WI
Department of Natural Resources (DNR) or the US Forest
Service have primary wildfire protection responsibilities. This
limitation excludes from analysis many areas within incorpo-
rated towns and cities where fire protection is provided by local
fire departments. The larger study area, referred to as the ‘full
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analysis area’ is defined as the portion of Wisconsin within the
Laurentian Mixed Forest Province (McNab and Avers 1994),
which includes Oconto County, including only areas with state
or federal fire protection. The extent of this study area closely
matches the Wisconsin portion of the study area used by Cardille
and others (2001). The full analysis area also encompasses a
mixture of forest, agriculture and developed lands. Oconto
County and the full study area have very similar proportional
land-use areas, with two exceptions. The landscapes differ in
proportional land area in agriculture (39% Oconto County, 14%
full study area) and private forest (21% Oconto Count, 48% full
study area). Total land areas were ~2500 km? for the Oconto
County analysis area and ~56 500 km? for the full study area.
The fire regime across the full study area is dominated by
frequent small fires, and rare large fires, with humans causing
most ignitions. The average fire return interval of nearly
8700 years (Sturtevant et al. 2009) may imply relatively low
fire risk, but within this landscape, the overlap of the human
development with sandy glacial landforms that are prone to
high-intensity fires creates locally substantial risk for life and
property. Approximately 30% of Oconto County lies within the
Northeast Sands Ecological Landscape, composed of glacial
outwash sand plains that were historically dominated by fire-
prone communities of jack pine and oak barrens, with the
remaining area in the less fire-prone Forest Transition and
Northern Lake Michigan Coastal Landscapes (Wisconsin
Department of Natural Resources 2006), historically dominated
by northern hardwoods (Sturtevant and Cleland 2007). The
average fire return interval within the county was ~4900 years
over the time period of our fire data (see below). The presettle-
ment fire return interval in this area ranged from 62 years in the
jack pine barrens to 2128 years in the northern hardwoods
(Sturtevant and Cleland 2007). The overlap of fire-prone land-
scapes and developed areas makes this an ideal study area for
investigating human and biophysical drivers of wildfire.

Fire data

Fire data representing all wildfires suppressed by either federal
or state agencies were provided by the WI DNR and the USDA
Forest Service (USFS) from 1985 to 2007. Each fire record
included fire ignition date, size (acres), cause and location where
the wildfire started. State (WI DNR) fire locations were defined
by a Public Land Survey System (PLSS) quarter-quarter section
(QQ or ‘“forty’), which has a standard size of 16.19 ha (40 acres).
USES fire locations were recorded by latitude and longitude
coordinates. For the purposes of spatial analysis, where all data
were summarised at a QQ-scale (see below), fire locations from
both datasets were assigned to the centroid of the QQ in which
they were located. Records that appeared in both the DNR and
USFS data with matching ignition date, cause, location and size
were assumed to be duplicate records for the same fire, and the
record was removed from one data source. After removing
duplicates, we combined records that had the same ignition date,
cause and location (but different size) into one fire record by
summing the fire sizes. These records were assumed to be
multiple ignitions (usually very small (<<0.01 ha)) associated
with the same fire event. All analyses were limited to fire records
with burned areas greater than or equal to 0.09 ha, the resolution
of Landsat imagery from which we estimated much of the spatial
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Fig. 1. The full study area (Laurentian Mixed Forest Province with state or federal fire protection), and the
Oconto County study area (excluding areas of local fire protection). The full study area closely matches the
Wisconsin portion of the study area of Cardille et al. (2001).

covariate data. This size threshold also represents a reasonable
size for inclusion in wildfire risk assessment, by removing the
influence of 10851 very small fires that together represented
less than 2% of area burned. Because very small fires were more
likely than larger fires to be undetected and unreported (i.e. not
consistently represented in our database), excluding the smallest
fires from analysis also constrained our analysis to where we had
the most complete and consistent data records. The resulting fire
dataset contained 9266 wildfires for the full study area, and 790
wildfires for the Oconto County study area (Tables 1, 2).

Temporal analysis

We used multiple linear regression models to quantify temporal
trends in the annual number of wildfires and mean fire size.

Annual totals for the number of wildfires (=0.09 ha) and area
burned were calculated as the sum across fire records for each
calendar year. Annual mean fire size was calculated as the total
area burned divided by the annual number of fires. We used the
statistical program R (R Development Core Team 2008) to
perform the linear regressions (/m in package stats), using the
packages Imtest (Zeileis and Hothorn 2002) and bbmle (Bolker
2010) for model evaluation and the package effects (Fox 2003)
to create the variable effects plots.

Others have identified drought as an important influence on
fire regimes (Lorimer and Gough 1988; Mitchener and Parker
2005; Xiao and Zhuang 2007; Brown et al. 2008; Grala and
Cooke 2010), so we included the Palmer Drought Severity Index
(PDSI) as an independent variable in the regression analysis.
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Table 1. Annual number of fires by cause for fires =0.09 ha, number of fires =16.19 ha (40 acres), mean fire size (ha) and Annual Palmer Drought
Severity Index (PDSI) for the full study area
Year Number of fires =0.09 ha Fires Mean fire  Annual

Total Lightning Equipment Smoking Campfire Debris-burning Railroad Arson Miscellancous —10-19ha  size (ha) — PDSI
1985 218 19 21 12 5 98 3 27 33 1 4.02 2.36
1986 267 2 21 9 12 83 11 29 100 7 8.45 1.67
1987 629 17 81 32 33 221 53 92 100 8 6.42 —2.35
1988 726 44 117 27 27 198 74 105 134 11 5.50 —2.98
1989 610 4 82 31 30 236 40 78 109 7 4.42 —2.44
1990 627 6 82 37 27 271 25 79 100 10 4.68 0.50
1991 280 2 40 14 6 103 13 40 62 1 3.57 2.34
1992 273 1 39 12 10 93 9 45 64 6 3.89 1.53
1993 270 3 25 9 4 133 23 28 45 3 3.35 1.34
1994 555 11 74 17 21 211 43 84 94 1 3.18 —0.01
1995 434 5 38 10 26 196 25 68 66 0 2.63 0.53
1996 304 3 34 13 13 153 14 30 44 2 3.16 2.62
1997 447 2 40 16 20 237 24 36 72 0 2.24 0.03
1998 497 12 56 19 33 178 11 70 118 6 4.34 —1.09
1999 414 3 61 21 22 153 17 59 78 2 3.45 —0.17
2000 422 5 67 11 14 197 15 35 78 7 432 —0.04
2001 194 2 32 8 15 72 2 22 41 0 2.40 0.92
2002 190 3 23 8 7 92 5 13 39 0 2.66 2.18
2003 527 94 66 13 35 175 21 48 75 5 3.88 0.28
2004 275 6 27 11 19 141 5 23 43 3 3.80 0.76
2005 339 0 57 3 17 143 1 36 82 0 2.45 —0.26
2006 352 5 53 4 19 137 4 33 97 3 3.00 —0.59
2007 416 8 62 2 21 132 6 49 136 11 8.86 —1.03
Allyears 9266 257 1198 339 436 3653 444 1129 1810 94 4.28 0.27

Table 2. Annual numbers of fires =0.09 ha, mean fire size (ha) and
Annual Palmer Drought Severity Index (PDSI) for Oconto County

Year Number of fires =0.09ha Mean fire size (ha) Annual PDSI
1985 14 1.22 3.13
1986 14 18.53 2.26
1987 46 1.62 —1.91
1988 54 1.77 -2.19
1989 79 5.43 —2.22
1990 39 3.65 0.41
1991 20 10.33 2.52
1992 21 1.08 2.56
1993 24 1.73 2.96
1994 62 4.14 0.17
1995 43 2.77 0.33
1996 33 1.99 2.69
1997 37 2.69 0.30
1998 19 2.92 —0.81
1999 55 5.21 —0.93
2000 36 2.49 —0.35
2001 15 1.38 0.13
2002 22 2.82 2.03
2003 56 2.51 1.63
2004 17 13.49 1.36
2005 27 1.76 —0.30
2006 28 3.02 0.47
2007 29 2.53 —0.29
All years 790 3.69 0.61

PDSI (Palmer 1965) is an index of long-term surface moisture
conditions that is commonly used in fire—climate studies (Trouet
et al. 2006; Xiao and Zhuang 2007) and is readily available at
broad spatial scales and over a long time period (Dai et al. 2004).
Monthly PDSI values for the Wisconsin North-west, North
Central, and North-east climate divisions (25 counties covering
the northern third of the state) were obtained from the National
Climatic Data Center and averaged across months to create
average PDSI values representing the full study area. In order to
evaluate the seasonal and annual influence of drought, we
calculated PDSI averaged for the wildfire season only
(March—October) and averaged for the entire year, and applied
each version of PDSI in separate regression models. Along with
average PDSI, we used the numeric year as the second indepen-
dent variable in the regressions to quantify temporal trends. Our
hypothesised regression models included a null model (intercept
only), linear PDSI only, PDSI with linear year, and PDSI with
quadratic year. We evaluated each fitted model for residual
homoscedasticity, residual normality and absence of statistically
significant outliers (P < 0.1). Homoscedasticity was evaluated
using the Breusch—Pagan test (package Imtest, Zeileis and
Hothorn 2002), residual normality was evaluated using the
Shapiro—Wilk normality test (package stats; Royston 1995),
and outliers were evaluated using the Bonferroni outlier test
(package car; Fox 2010). We applied logarithmic transforma-
tion of the dependent variable and removal of outliers as
necessary to meet these critical regression assumptions. Models
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Table 3. Spatial covariate datasets and sources
PRISM, Parameter-elevation Regressions on Independent Slopes Model (PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu,
accessed 16 September 2011); WISCLAND, Wisconsin Initiative for Statewide Cooperation on Landscape Analysis and Data (WISCLAND Land Cover,
Wisconsin Department of Natural Resources, http://dnr.wi.gov/maps/gis/datalandcover.html, accessed 21 November 2011); SSURGO, Soil Survey
Geographic Database (USDA Natural Resources Conservation Service, http://soildatamart.nrcs.usda.gov, accessed 26 October 2009); NLCD, National Land
Cover Database; TIGER, Topologically Integrated Geographic Encoding and Referencing system (TIGER/Line Files, US Census Bureau, http://www.census.
gov/geo/www/tiger/tigerua/ua_tgr2k.html, accessed 16 September 2011); ESRI, Environmental Systems Research Institute (ESRI Data & Maps, CD-ROM)

Variable Abbreviation Data source Units
Biophysical factors
Mean maximum August temperature AugMaxT PRISM °C
Mean March precipitation MarPrecip PRISM mm
Mean June precipitation JunPrecip PRISM mm
Presettlement fire rotation majority FR_Major Cleland et al. (2004) Class
Fuel class majority Fuel_Major WISCLAND Class
Soil available water AvWater SSURGO mm
Soil drainage class Drainage SSURGO Class
Percentage water PctWater NLCD (Homer et al. 2004) %
Human factors
Distance to road DistRoad TIGER m
Distance to railroad DistRail TIGER m
Housing density HousDens US Census Bureau (2002) Homes km >
Distance to city >10 000 people DistLgCity ESRI m
Land use majority LU NLCD, US Census Bureau, S. Golding and R. Hammer, unpubl. data Class
Land-use housing density index” LU_HDI NLCD, US Census Bureau, S. Golding and R. Hammer, unpubl. data Index
Population density PopDen US Census Bureau (2002) People km >
Percentage seasonal ownership PctSeas US Census Bureau (2002) %
Median home value MHVal US Census Bureau (2002) US dollars

ALU_HDI is a numerical index (0—4) ranking the land-use classes from lowest to highest housing density.

that did not meet the residual assumptions were dropped from
consideration.

For each model, we calculated small-sample Akaike’s Infor-
mation Criterion (AICc) scores and Akaike weights (w;) for
model comparison (Burnham and Anderson 1998). AIC is an
estimate of the relative Kullback—Leibler (K-L) information loss
in a specific model based on the data, and is appropriate for
model comparisons among multiple working hypotheses (Burn-
ham and Anderson 2004). A lower AIC score indicates less K-L
information loss, and therefore a more plausible model. AIC
includes a penalty for the number of estimated parameters,
which diminishes overfitting. AICc is a variant of AIC with a
correction for finite sample sizes. The Akaike weights, when
calculated across a set of models, give the weight of evidence
(relative likelihood) that each model is the most plausible of the
set (Burnham and Anderson 1998). We identified the most
plausible model as the model with the lowest AICc score among
all models meeting the assumptions. The temporal regression
analysis was performed using the Oconto County and full fire
datasets, and using subsets of the data separated by fire cause for
the full study area.

Spatial analysis

We used spatial point pattern analysis to quantify the spatial
pattern of wildfire occurrences within Oconto County and for
the full analysis area, using the same fire records as the temporal
analysis (all fires =0.09 ha). Analysis was performed using the
R statistical package spatstat (Baddeley and Turner 2005) fol-
lowing the methods of Yang ez al. (2007). We first used Ripley’s

K function to assess the degree of spatial correlation of fire
locations. Because the K function showed strong deviance from
complete spatial randomness of wildfire occurrences, we mod-
elled the occurrences as an inhomogeneous Poisson process,
using spatial covariates (Table 3) to account for the pattern. All
spatial covariate data were aggregated at the QQ scale to match
the resolution of the fire location data. Continuous variables
were summarised as mean values, and categorical variables
were summarised as the most common value within each QQ.
The modelling process assumes no interactions among neigh-
bouring fire occurrences (Poisson), and that the spatial pattern of
occurrences is a result of the spatial heterogeneity of the land-
scape (inhomogeneous). The inhomogeneous Poisson models to
be fit could include any number of spatial covariates in any
functional forms. We constructed 14 a priori candidate models
(Burnham and Anderson 1998; Table 4) using combinations of
spatial covariates, generally categorised as biophysical,
anthropogenic or a combination of both, based on theorised
relationships between the spatial covariates and fire ignitions.
For some covariates, we hypothesised multiple functional forms
(linear and log for population density and housing density; lin-
ear, quadratic, log and categorical for land use), and evaluated
multiple versions of the candidate models that separately
incorporated each selected functional form. We used AICc for
all candidate model comparisons (Burnham and Anderson
1998), identifying the model with the lowest AICc score as the
most plausible model. We did not screen covariate combinations
for multicolinearity because the AIC method of model com-
parison penalises the inclusion of covariates that contribute little
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additional information, so only the most plausible combinations
of variables were selected from among those that were poten-
tially correlated. To quantify the relative strength of evidence
for the chosen model, we calculated w; for each model (Burnham
and Anderson 1998). We used a Monte Carlo test of the
L-transformation of Ripley’s K function (Baddeley 2008) to
assess whether the fit models were appropriate. To assess
whether the relative importance of spatial drivers changed
through time, we evaluated the candidate models separately for
the decades containing 1990 (1985-94) and 2000 (1995-2004).
We also evaluated separate candidate models for large fires
(=16.19 ha (40 acres)) to assess whether spatial drivers for large
fires differed from smaller fires (Sturtevant and Cleland 2007).
The 40-acre threshold for large fires was chosen to be consistent
with previous analysis (Sturtevant and Cleland 2007), and
resulted in a dataset of 94 large fires for the full study area
(Table 1).

After evaluating the hypothesised candidate models, we also
performed exploratory analysis to provide additional insight
into the relative importance of the different covariates. We
evaluated a set of models that included all spatial covariates
with multiple functional forms (‘all-variables’ model), for
comparison with the candidate models we selected. We did
not evaluate all possible combinations of variables, as others
have done for exploratory analysis (Murtaugh 2009), owing to
the millions of potential combinations. Instead, we assessed the
relative contribution of each covariate in the most plausible
candidate model and the all-variables model by comparing the
change in AICc values caused by the individual removal of each
covariate from the model. We performed a model comparison
among a set of models that included the full model, and a model
representing the full model without each one of the covariates.
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The AICc value of the model without a given covariate, when
compared with the AICc value of the full model including that
covariate, gives a relative rank order of model plausibility given
the data. A model with a lower Akaike weight when a covariate
isincluded gives an indication that the inclusion of the covariate
does not result in a more plausible model. Candidate and all-
variables models were evaluated for Oconto County, but com-
puting constraints limited the full analysis area to the candidate
models only.

Results
Temporal analysis

For the analysis of all fire records for both the full study area and
Oconto County, the most plausible models for the number of
fires and mean fire size (MFS) all included annual PDSI in a
linear functional form with a negative coefficient (Figs 2, 3).
Because PDSI values relate to the total moisture balance, the
negative relationship implied there was a greater number of
wildfires and the mean size of the fires increased as drought
conditions became more severe. The model of number of fires
for the full study area included year as a variable, indicating a
negative quadratic temporal trend, with the maximum value in
the year 1994. The full study area MFS model included year as a
positive quadratic relationship with a general declining trend
and the minimum value in the year 2001. The most plausible
Oconto County models for numbers of fires and MFS did not
include year as a variable, showing no clear temporal trend.
Separating the analysis by fire cause for the full study area
provided additional insights into the temporal trends. All of the
most plausible models for number of fires included negative
linear relationships for either average annual or seasonal PDSI

Table 4. Candidate models evaluated for spatial analysis. Models were evaluated for both Oconto County and the full study area,
unless noted otherwise as ‘Full’ or ‘County’
See Table 3 for definitions of parameter abbreviations. Abbreviations in parentheses indicate the functional forms considered for each covariate:
F for factor, Log for logarithmic, P1 for first-order polynomial, P2 for second-order polynomial

Model Parameters
Null model None
Biophysical models
Ecosystem FR_Major (F)
Soil Drainage (P2) + AvWater (P2)
Vegetation Fuel_Major (F)
Climate (Full) AugMaxT (P1) + JunPpt (P1) + MarPpt (P1)

Combined Biophysical (County)

Combined Biophysical (Full)
Anthropogenic models

Infrastructure

Development

Economic

Human activity

Combined anthropogenic
Combined models

Ecosystem + Human activity

Soil + Human activity

Ecosystem + Development

Soil 4+ Development

All variables All covariates

Ecosystem + Soil + Vegetation
Ecosystem + Soil + Vegetation + Climate (Full)

DistRoad (Log) + DistRail (Log) + DistLgCity (P1)

LU_HDI (F/Log/P1/P2) + PctSeas (P1) + DistRoad (Log) + DistRail (Log)

MHVal (P1) + PctSeas (P1)

PopDen (Log/P1) + DistRoad (Log) + DistRail (Log) + DistLgCity (P1) + PctWater (P2)
Infrastructure + Economic + LU_HDI (F/Log/P1/P2) + PopDen (Log/P1)

Ecosystem 4+ Human activity + Vegetation
Soil + Human activity + Vegetation
Ecosystem + Development + Vegetation
Soil 4+ Development + Vegetation
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(Fig. 4). The most plausible models for number of fires for
campfire, debris-burning and miscellaneous-caused fire did not
include temporal trends. Models for all other causes (including
lightning) included either a negative linear or quadratic rela-
tionship indicating declining wildfire ignitions over time. The
regression analysis for mean fire size by cause yielded few
cause-specific models including PDSI or year that were more
plausible than the corresponding null model, which did not
contain either PDSI or year as components (Fig. 5). MFS models

800
y = —80.067x + 424.09
700 R? =0.65

600
500

400

Number of fires

300

200

100

—4 -3 -2 -1 0 1 2 3
Annual Palmer Drought Severity Index (PDSI)
Fig. 2. Plot of annual Palmer Drought Severity Index (PDSI) against

annual number of fires (=0.09 ha) for the full study area for the years
1985-2007.
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for equipment, smoking and arson fires did include average
PDSI as a linear relationship. The MFS—PDSI relationship was
essentially flat for smoking-caused fires, but negative for
equipment and arson fires, as it was for all causes in the number
of fires models. MFS from equipment and smoking causes were
the only causes to include a temporal trend, having negative
linear and quadratic relationships respectively.

Spatial analysis

The plot of the estimated K function of the fire occurrences
across the full study area (Fig. 6) showed the level of aggrega-
tion was higher than the theoretical K function for complete
spatial randomness, indicating clustering of wildfire ignitions
up to ~8000m, then showed strong disaggregation at larger
distances. The simultaneous Monte Carlo tests of the L function
showed that all of the chosen most plausible models, for Oconto
County and for the full study area, were well within the simu-
lated critical bands. This result indicates that the patterns of data
were not significantly different from null inhomogeneous
Poisson models based on the fitted models.

The most plausible spatial model for both the full study area
(w; = 1.000) and Oconto County (w; = 1.000) was the Combined
Anthropogenic, which included covariates with a negative
influence on wildfire occurrence (distance to roads, distance
to railroads, distance to large cities and median home value) and
covariates with positive influence on wildfire occurrence (per-
centage seasonal ownership and population density) (Table 5).
The Combined Anthropogenic model also included the land-use
housing density index (LU_HDI) with a polynomial quadratic
form, with a peak maximum value at approximately three,

Full study area Oconto County
Annual PDSI Year Annual PDSI Year
7 H6.2 -
60 *
6 L
654 50 *
Number
of fires 5.6 F[ T I N/A
(log for full | ¢/ H a0 H
study area) a3 t
201 *
554 H
5.4 | 104 H
-3 -2 -1 0 1 2 1985 1990 1995 2000 2005 -2 —1 0 1 2 3
h 2 144 H
1.54
1.84 Fl1.24 L
) 1.4 H
Mean fire ol it H 1o L
size . L los L N/A
(log)* X
1.14 H1.24 | (0.6 o
1 N [ |04+ r
099 b TR T TN T RN R W R | T Y 02 T T T TN
3 2 1 0 1 2 1985 1990 1995 2000 2005 -2 —1 0 1 2 3

AYears 1986, 1991, 2004 removed as outliers for Oconto County Mean fire size regression

Fig. 3. Effects plots for most plausible linear regression models for number of fires (=0.09 ha; log-transformed for full study area) and mean fire size
(log-transformed) using the full and Oconto County fire datasets. The solid black lines represent the estimated effects and the grey lines represent 95%
confidence intervals. N/A indicates that a component was not included in the model identified as the most plausible (lowest Akaike Information Criteria (AICc)).
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Fig. 6. Estimated Ripley’s K function for fire occurrences in the full study

area compared with the theoretical Ripley’s K function that represents
complete spatial randomness.

corresponding to the medium housing density class. The models
containing only anthropogenic variables had consistently lower
AlICc scores and were therefore more plausible than models
containing only biophysical variables or models containing both
anthropogenic and biophysical variables. Looking at only the
individual spatial models (not combinations), the Oconto County
analysis identified the Economic model as the most plausible
(w;=1.000), and the full study area analysis identified the
Human Activity model as the most plausible (w; = 1.000).

The full study area analysis consistently identified the
Combined Anthropogenic model as the most plausible for all
fires, large fires (w;=1.000) and fires separated by decade
(1990 w;=1.000, 2000 w;=1.000). Each of these models
incorporated varied forms and decade-specific values for land
use or housing density and population density. The repeated
selection of the Combined Anthropogenic model suggested that
the importance of its constituent spatial drivers was consistent
across decades. However, the direction of the coefficients for the
covariates was not always consistent, including opposite signs
for some covariates between the full study area models for all
fires and large fires (Table 5).

Unlike in the full study area, the most plausible Oconto
County models for the two separate decades were not the same.
For the 1990s, the Soil and Human Activity model was the most
plausible (w; =0.900), whereas for the 2000s, the Combined
Anthropogenic model was the most plausible (w;=1.000).
These models shared several covariates (population density,
distance to road, distance to railroad and distance to large
city), but the 1990 model also included Soil attributes (drainage,
available water and percentage water cover) whereas the 2000
model included Economic attributes (median house value,
percentage seasonal homes and land-use index). The variability
in these decadal models indicated a potential shift in spatial
drivers through time that was not apparent for the full study area.

The exploratory analysis evaluating the removal of covari-
ates from the Combined Anthropogenic model for Oconto
County indicated that the full model had the highest weight of
evidence (w;) when compared with models that had any
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Table 5. Parameter coefficients from the most plausible model and
change in Akaike Information Criteria (AAICc) and Akaike weights (w;)
from post hoc analysis of a set of models that removed individual
covariates from the Oconto County and full study area Combined
Anthropogenic models
See Table 3 for definitions of parameter abbreviations. Abbreviations in
parentheses indicate the functional forms considered for each covariate:
F for factor, Log for logarithmic, P1 for first-order polynomial, P2 for
second-order polynomial

Parameter (function) Coefficient AAICc w;
Oconto County
Intercept (full model) —10.74 0.00 0.959
PctSeas (P1) 0.08 6.31 0.041
DistRail (Log) —0.15 18.86 <0.001
DistLgCity (P1) —243%x107° 24.28 <0.001
LU_HDI (P2) 0.01 40.84 <0.001
LU_HDI*2 (P2) ~129x107° N/A N/A
DistRoad (log) —0.53 70.26 <0.001
PopDen (log) 0.02 88.47 <0.001
MHVal (P1) —022x107° 1272.41 <0.001
Full study area
PctSeas (P1) 7.60 x 104 0.00 0.525
Intercept (Full model) —11.60 0.20 0.475
LU_HDI (P2) 4.04x10° 11.10 <0.001
LU_HDI?2 (P2) —6.26 x 107° N/A N/A
DistLgCity (P1) —443x10°° 130.30 <0.001
DistRail (log) —0.13 249.40 <0.001
MHVal (P1) —228x10°¢ 1760.90 <0.001
PopDen (log) 0.19 1928.30 <0.001
DistRoad (log) —0.71 2373.00 <0.001
Full study area — large fires
LU_HDI (P2) 0.01 0.00 0.597
LU_HDI?2 (P2) —740x 1073 N/A N/A
DistLgCity (P1) —4.45%x107° 2.38 0.182
PctSeas (P1) —0.01 3.30 0.115
Intercept (Full model) —15.19 3.49 0.104
DistRail (Log) —0.28 12.30 0.001
DistRoad (Log) —0.49 13.41 0.001
MHVal (P1) 8.27 x107° 46.27 <0.001
PopDen (Log) ~1.58x107* 81.83 <0.001

covariate removed (Table 5). The model excluding median
home value had the lowest w;, indicating it was the least
plausible model of the set. For the Oconto County 1990 and
2000 decadal models, the models excluding distance to road and
median home value had the lowest weights (both 0.000) of
evidence respectively. For the 1990 model, the model excluding
percentage water had a higher w; (0.378) than the full model
(0.327), indicating the inclusion of that variable resulted in a less
plausible model. In the 2000 model, the model excluding
distance to railroads had the highest weight of evidence
(0.679), exceeding w; for the full model (0.305).

In the all-variables model for Oconto County, the models
excluding housing density, distance to large city, August maxi-
mum temperature, June precipitation or presettlement fire rota-
tion (FR) class had higher weights of evidence than the full
model (0.046), with the model excluding FR class showing the
greatest w; (0.438). The model excluding median home value
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covariate showed the lowest w; (0.000), indicating that its
removal does not result in a more plausible model.

The removal of individual covariates from the Combined
Anthropogenic model for the full study area indicated that the
model excluding distance to road had the lowest w; near zero,
followed closely by the models excluding population density,
and then median home value (Table 5). The model excluding
percentage seasonal ownership had the highest w;, even greater
than the full model. The evaluation of models excluding
covariates from the Combined Anthropogenic model for large
fires identified the models excluding the same three covariates
(population density, median home value and distance to road) as
having the lowest weights of evidence, with a different rank
order. Population density had the lowest w;, followed by median
home value and then distance to roads (Table 5). Models
excluding housing density, distance to large city and percentage
seasonal ownership each showed higher weights of evidence
than the full model.

Discussion

Our spatial analysis demonstrates the importance of human
influence on wildfire occurrences by the inclusion of anthro-
pogenic, not biophysical covariates in the most plausible mod-
els. Syphard and others (2007) also concluded that human
factors are increasingly overriding the biophysical influence in
fire regimes. Analyses of the full study area consistently dem-
onstrated that distance to roads, population density and median
home values (in varying order) were important model compo-
nents during both of the decades and for large fires. The human
influence is not always straightforward, as indicated by a cur-
vilinear response to residential housing density. In both the
Oconto County models and the full study area models, the land-
use housing density index (LU_HDI) had a quadratic functional
form (Table 5), peaking at the medium housing density class.
Syphard et al. (2007) reported a similar relationship with pop-
ulation density in California, where fire peaked at intermediate
densities, and suggest that thresholds of anthropogenic rela-
tionships (e.g. population and housing densities) may be
important to fire risk. Because the land-use housing density
index, and not housing density itself was included in the most
plausible models, it is possible that these land-use classes
effectively represent those thresholds, and that the relative fre-
quency of these housing density classes, and not housing density
per se, account for this finding. Across the two study areas
between 1990 and 2000, housing density increased at a nearly
equal rate (9.2% Oconto County, 8.9% full study area). At the
same time, the area of both the medium- and high-density res-
idential land-use classes decreased (Fig. 7). The decline in these
two land-use classes during this time period may partially
explain the declining trend in wildfire occurrences across the
full study area, but it does not provide an explanation why
Oconto County does not exhibit a similar trend. In the inter-
pretation of these housing density trends, it is important to keep
in mind that most of the areas with the highest housing density
have been excluded from this analysis because they have local,
not state or Federal, fire protection. We are therefore missing the
high end of this scale, which might influence the relationships
between housing density and wildfire occurrences.
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Although human influence appears important for both
Oconto County and the full study area, there are subtle differ-
ences between the two. Within Oconto County, economic
variables (e.g. home value) appear to be the strongest drivers,
whereas human activity (e.g. population density, road networks)
appears be the strongest driver across the full study area. In
particular, median home value appears to be most strongly
associated with the spatial pattern of ignitions within Oconto
County, but this relationship is not as strong as distance to road
and population density across the full study area. Again, the
exclusion of areas with local fire protection may account for part
of this difference.

Few published studies directly address social factors of
wildfire occurrences (but see Prestemon and Butry 2005), but
we can speculate on how social factors may have influenced
wildfires. For example, median home value may be negatively
related to fire occurrence owing to social differences between
the occupants of high-value and low-value homes. Areas of
high-value homes may be in more urban—suburban settings,
have occupants with a more urban background (such as second-
home owners) or both, where debris-burning and campfires (for
cooking or recreation) are not the norm, whereas areas of low-
value homes may be more rural, where debris-burning and
campfires are more common. Additionally, the economic cost
of trash disposal could contribute to wildfires caused by debris-
burning in low-home-value areas, where homeowners (who may
include retirees on fixed incomes) might be unable or unwilling
to pay for trash disposal at the dump when they can burn it
themselves instead. In addition to these accidental fire causes,
economic factors such as low wages and poverty, for which
home value could serve as a surrogate, have been linked to
wildland arson (Prestemon and Butry 2005). Median home
value appears to have a stronger influence on fire occurrence
in Oconto County than in the full study area, which may indicate
that this social difference is greater in Oconto County than
elsewhere in the region. The median home values may be
surrogates for other characteristics of homeowners that should
be explored more directly with additional social science
research.
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Although the same drivers are important in determining
locations of large fires, the relative influences of the drivers
are different. The sign of the coefficients for percentage seasonal
ownership, median home value and population density switch
for large fires relative to the coefficients for all fires. This result
is consistent with the findings of Cardille et al (2001) and
Sturtevant and Cleland (2007) that large fires have different
drivers than small fires, but our results differ in that biophysical
factors did not show increased importance for the large fires.
The influence of the land-use housing density index also
changed for large fires, in that the quadratic form peaks at the
lowest values (0—1) of the index, corresponding to areas with no
or very low housing density, and declines as the index increases
towards the high-density class. These large fires generally
represent fires that escape initial control by suppression, which
appear to originate in the most remote areas where they may not
be quickly reported or suppressed.

Our results indicate that drought is an important driver of the
number of wildfire occurrences, and a less important driver of
mean fire size. The important influence of drought on fire
regimes has been well established by other researchers
(Mitchener and Parker 2005; Xiao and Zhuang 2007; Brown
et al. 2008; Grala and Cooke 2010), and is further supported by
the results of our regression analysis. All of the most plausible
models for number of wildfires showed strong negative linear
relationships with average PDSI, which corresponds with the
results of Ruffner and Abrams (1998) that show increased
lightning-caused fires in drought years (PDSI<<—2.0) in
Pennsylvania. In nearly all cases in the present study (92% of
models), the models using annual average PDSI had lower AICc
values than the models using seasonal average PDSI, which
suggests that drought conditions outside the typical fire season
may still influence the fire regime during the fire season. Mean
fire size appears to be less influenced by drought than the
number of fires. PDSI was not included in the most plausible
fire size models for the majority of causes, and in the fire size
model for all records, the coefficient for PDSI was smaller than
in the number of fires model, as well as having larger standard
errors. Contrary to Ruffner and Abrams (1998), we did not see
an effect of drought on MFS of lightning-caused fires. The
precipitation, temperature and climate variables that were
important in the models of Cardille et al. (2001) did not appear
in any of our most plausible models, likely because they operate
on a scale that is broader than that of our analysis. Still, the
influence of these climate factors is evident from the
consistently strong relationship between the annual number of
fires and the drought index. Our analysis underscores the
importance of accounting for drought as a key driver when
trying to evaluate temporal trends that may be related to social
and land-use changes.

Despite increasing housing density (in both magnitude and
spatial extent) throughout the region, the number of wildfires
has been declining in recent years across the study area when
accounting for drought influences. This result was contrary to
our expectations. Syphard et al. (2007) also showed a decline
in wildfire occurrence in California corresponding with
increasing housing density, though their analysis did not
account for drought effects. Because non-anthropogenic
(lightning)-caused fires show a declining trend during this
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time period (Fig. 4), we speculate that fuel conditions in
general have become less favourable to fire ignitions. We also
expect that some social factors are contributing to the decreas-
ing wildfire trends in this area among certain causes. Possible
social contributors include fire prevention education, fire
prevention activities (e.g. fuel treatments), suppression plan-
ning, suppression actions and demographic changes. We only
evaluated records of fires at least 0.09 ha in size, so it is
possible that fires of smaller size, although having a negligible
effect on fire risk, would support our original hypothesis of an
increasing trend in fire occurrence.

The result that Oconto County did not show any temporal
trends of annual fire occurrences (Fig. 3), whereas the full study
area did show temporal trends, which indicates that the drivers
affecting fire occurrences within the County are not necessarily
the same as those working across the full study area. When
broken down by specific cause, the relatively small number of
wildfires in the County prevents us from evaluating trends for
specific fire causes, but we can speculate on what differences
may exist between Oconto County and the region at large. The
proportions of wildfires due to each cause are fairly similar at
both scales, so discrepancies in the frequency of causes are not
likely the reason for the difference. The land-use classes and
housing density in Oconto County show similar proportional
changes to the full study area between decades (Fig. 7), indicat-
ing that land-use changes probably do not account for the
difference either. However, Oconto County has a larger propor-
tion of area in agricultural land use, which may partially account
for its lack of temporal trend in fire occurrences, because other
research has shown fires in agricultural land to have different
temporal patterns and drivers than forest fires (Sturtevant and
Cleland 2007). We suspect that these land-use differences as
well as social factors have contributed to the difference in
temporal trends between Oconto County and the larger region.

The spatial analysis separated by decade indicates some
potentially different drivers between the two time periods in
Oconto County. With only two points in time, we cannot draw
any definitive conclusions about trends, but the fact that bio-
physical factors were important in the 1990s but not in the 2000s
is interesting nonetheless, and we can speculate why there may
be differences. For the parameters that the two decadal models
share, the coefficients show similar values, so it appears that the
biophysical factors of soil drainage, soil water-holding capacity
and percentage of the landscape in water in the 1990s model are
replaced by percentage seasonal home ownership and median
home value in the 2000s model. This implies that there was a
social shift that made these socioeconomic parameters a stron-
ger influence on the pattern of wildfire occurrences, or a
biophysical difference that decreased the importance of the
biophysical parameters. The 1990 decade had more severe
drought conditions, with 2 years below the PDSI threshold for
moderate drought (—2), than did the 2000 decade, with no year
meeting the drought threshold. As we have seen the importance
of drought in the temporal analysis, it is probable that the
instances of drought in the 1990 decade increased the impor-
tance of the soil parameters (Drainage and AvWater) relative to
the human factors. In the decade that followed with less drought,
the underlying socioeconomic factors exerted more influence.
The full study area models, however, indicate that the
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socioeconomic variables were important drivers for both dec-
ades for the region as a whole. The differences in spatial drivers
in the 1990 decade and the differences in temporal trends
between Oconto County and the full study area provide evidence
that the underlying drivers of fire occurrence have not always
been the same across these two areas.

Management implications

When considering future spatial and temporal patterns of igni-
tions, it is important to identify the covariates that are likely to
change over time. Our spatial models were almost completely
composed of anthropogenic covariates that are subject to change
in the future based on human development patterns. Population
changes and development that alter the spatial patterns of these
covariates will influence the future spatial pattern of wildfire
ignitions. If projections of the future spatial pattern of these
covariates were available, they could be used with these models
to provide insight into the changes to the spatial patterns of
wildfires. Even without specific future predictions, this analysis
has identified important human-related drivers of wildfires,
which could be the focus of land managers, development plan-
ners and others concerned with minimising fire risk in an
increasingly human-dominated landscape such as this.

Some of the biophysical factors that we included in our
analyses (e.g. soil attributes) could be considered stable into the
future, whereas others (e.g. precipitation, fuel class) will be
dynamic. Although these biophysical covariates did not appear
in our most plausible models, changing biophysical factors are
still important to consider in determining future risk. Drought
cycles and climate change vary at scales broader than our
analysis, but they will influence regional fire patterns. Accord-
ing to the US Global Change Research Program (Easterling and
Karl 2000), the Midwestern United States is likely to experience
increased temperatures and precipitation over the next century.
Because evaporative demand may outpace precipitation when
both temperature and precipitation increase (Rind et al. 1990),
a net result of more drought-like conditions is expected in many
areas.

Owing to data availability, our analysis focussed on a
relatively short time period of fire history, but we did see some
evidence for shifting drivers through time. Over longer time
periods, as human development interacts with the surrounding
landscape, the relative importance of drivers may change
(Guyette et al. 2002). Complex social factors are likely to
contribute to shifting drivers in this region.

Despite some of the decreasing trends, severe wildfire years
can still occur and fires attributed to some causes have not
declined. The year 2007 (the last year of available data) was
notable for the relatively high area burned and large mean fire
size, due to a few very large fires. The most common cause of
wildfires in this area, debris-burning, does not show a temporal
trend in any of the models. The social factors that are causing
declines in other causes are not carrying over to debris-burning,
at least not as strongly. Along with campfires, which also do not
show a declining trend, debris-burning could be targeted for
future prevention education and activities, which can be effec-
tive at reducing these types of preventable wildfires (Prestemon
et al. 2010).
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Conclusions

Our results provide additional support for drought as an
important driver of wildfire occurrences and mean fire size.
Once we accounted for the effect of drought, we found that the
number of wildfires is declining across the study area, despite
increased housing density. Our evaluation of spatial models
demonstrated the importance of human influence on wildfire
occurrences, especially human activity, infrastructure and
property values. Among these influences, we identified a non-
linear relationship between housing density and wildfire
occurrence. We found that large fires are driven by similar
landscape variables to smaller fires, but the influence is often
opposite. We discerned subtle differences in drivers between the
full study area and Oconto County, which reinforces the need for
local information. We speculate that social factors play an
important role in both the temporal and spatial drivers of wild-
fires. These spatial and temporal drivers of wildfire occurrence
have important implications for land management, land-use
planning, wildfire suppression strategies and ecological goals.
Managing forests and other wildlands to meet ecological goals
while also accommodating housing growth requires attention to
somewhat different factors and processes in the unique land-
scape of northern Wisconsin where agricultural lands and
broadleaf forests mix with fire-dependent Eastern pine barrens.
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